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ABSTRACT: We report the catalytic activity of two phosphinoimidazole-
derived bimetallic palladium complexes in Pd-catalyzed amination reactions. 
Our studies demonstrate that the starting oxidation state (Pd(I) or Pd(II)) of the 
dimeric complex has a significant impact on the efficiency of the catalytic 
reaction. The corresponding Pd(I) complex shows higher reactivity in 
Buchwald-Hartwig aminations, while the Pd(II) complex is much more reactive 
in carbonylative amination reactions. These new dimeric palladium complexes 
provide good to excellent reactivity and yields in the amination reactions tested. 

Palladium-catalyzed C–N cross couplings are among the most 
efficient and selective methods for generating carbon nitrogen 
bonds in synthetic and medicinal chemistry.1 Recent advances 
in the development of Pd catalysts for cross couplings have led 
to the discovery of various dimeric Pd(I) and Pd(II) catalysts 
that are highly effective at C–N bond formation, as well as for 
C–C, C–O, and C–S couplings (Figure 1a).2–5  In many cases, 
these dimeric catalysts serve as precatalysts to monometallic 
Pd(0) reaction pathways. Schoenebeck and others have 
demonstrated that in some cases the intact dimeric structure of 
the bimetallic palladium complex can in fact be essential to high 
reactivity via cooperative catalytic effects.6 These cooperative 
effects can include binding substrates across both metals, or 
accessing unique oxidation states that are not achievable with 
monometallic Pd catalysts. Dimeric palladium complexes have 
also been identified in palladium-catalyzed oxidation reactions, 
where the dimeric catalyst structure helps stabilize higher 
oxidation state Pd(III) intermediates.7 

 

 Figure 1. a) Common bimetallic Pd precatalysts and catalysts. b) 
Aminocarbonylations and Buchwald-Hartwig aminations with 
bimetallic Pd catalysts. 

 We recently reported the synthesis of new bimetallic 
palladium complexes scaffolded on a 2-phosphinoimidazole 
ligand that can be isolated at either the Pd(I) or Pd(II) oxidation 
states (Figure 2b).8 Mechanistic experiments and DFT 
calculations confirmed the thermodynamic stability of the 
dimeric Pd complex with respect to the monomeric form and 

suggested that the Pd complex stays intact during catalysis. 
Because either the bimetallic Pd(I) or Pd(II) complex can be 
selectively isolated, we wondered if the starting oxidation state 
of the palladium complex would have a significant impact on 
the reactivity of the catalyst in cross coupling reactions. We 
chose to investigate the reactivity of our bimetallic catalysts in 
C–N bond forming reactions due to the precedence for Pd(I) and 
Pd(II) complexes to participate in many of these catalytic 
reactions.3-5 In this report, we demonstrate that our bimetallic 
Pd(I) catalyst has much higher reactivity in Buchwald-Hartwig 
aminations than the corresponding Pd(II) complex, which is 
consistent with previous results with dimeric Pd(I) precatalysts 
in this transformation.6a We also demonstrate that the 
corresponding dimeric Pd(II) catalyst is much more active for 
aminocarbonylation reactions with aryl iodides and amines in 
the presence of CO. The ability to selectively modify the 
starting oxidation state of the metal catalyst in this manner on 
the same ligand framework provides a unique method for 
optimizing catalytic activity with bimetallic complexes that is 
hard to achieve with monometallic catalysts.    
 We previously reported the catalytic activity of bimetallic 
complexes 1 and 2 in a newly discovered naphthalene synthesis 
reaction that occurs via tandem ketone arylation and 
cyclization.8 In that study, we found that Pd(II) complex 2 had 
slightly higher reactivity than the Pd(I) complex. This result 
suggested to us that the starting oxidation state of our bimetallic 
complexes could have an important impact on catalytic 
efficiency and that there may be reactions where either the Pd(I) 
or Pd(II) complex would be more active. To test this, we started 
by screening our complexes in the Buchwald-Hartwig 
amination reaction seen in Table 1. The addition of AgOTf as 
co-catalyst led to a slight increase in reactivity in all cases. We 
found that while the dimeric Pd(I) complex 1 had excellent 
reactivity, the Pd(II) catalyst 2 reacted sluggishly (Table 1, 
entries 1–2). This trend is consistent with previous reports of 
the high activity of dimeric Pd(I) catalysts over Pd(II) catalysts 
in Suzuki reactions and Buchwald-Hartwig aminations, where 
the Pd(I) dimer can act as a source for monoligated Pd(0)L 
catalysts.3 Alternatively, the Pd(I) dimer could remain intact 
and benefit from being at a lower oxidation state than the 
corresponding Pd(II) complex, facilitating faster oxidative 
addition (vide infra). We also compared catalyst 1 with other 



 

palladium catalyst systems and found that our bimetallic 
catalyst had similar or better reactivity to optimized catalysts 
including Pd2dba3/RuPhos,9a-c RuPhos Pd G3,9d and Pd(I) dimer 
3 (entries 3–5).3c, 9e However, our goal in this work is to 
demonstrate that these bimetallic Pd catalysts are reactive in C–
N bond forming reactions and that the starting oxidation state 
of the catalysts can be important for catalysis. Based on this 
excellent reactivity, we further optimized the reaction 
parameters and found that in situ formation of the Pd(I) dimer 
with Pd(OAc)2 led to only modest reactivity (entry 6). Either 
palladium acetate by itself (entry 7), or the phosphinoimidazole 
ligand with no palladium (entry 8) led to only 5% or no product, 
respectively. We also found that the reaction performed equally 
well in dioxane solvent and that KOtBu as base led to lower 
conversions (entries 9–10). Finally, we can drop the 
temperature of the reaction to room temperature and still obtain 
nearly full conversion after 15 hours. We have not extensively 
investigated the optimization of this or the following reaction, 
as there are other more reactive catalysts capable of performing 
these reactions as well as or better than our bimetallic complex. 

Table 1. Optimization of Buchwald-Hartwig amination 
reaction with palladium dimers. 

 
entrya catalyst % Conv.b 

1 1 100 (90) 
2 2 42 
3 Pd2dba3/RuPhos 97 
4 RuPhos Pd G3 87 
5 3 99 
6c 1 68 
7 Pd(OAc)2 5 
8 Ligand 1 
9d 1 93 
10e 1 54 
11f 1 92 

 a Reaction run with 2% palladium or 1% dimer  (0.01 mmol), silver 
triflate (0.02 mmol), iodobenzene (0.1 mmol, 1 eq), morpholine 
(0.12 mmol, 1.2 eq), and sodium tert-butoxide in 0.2 mL toluene at 
50 ℃ for 4 hours. b Conversion determined by 1H NMR analysis of 
the crude reaction mixture. Isolated yield is shown in parentheses.  
c Ligand and Pd(OAc)2 were pre-stirred in a 0.1 M solution of 
toluene for 15 minutes. d With dioxane. e With KOtBu (1.2 equiv). 
f Run at room temperature for 15 h. 

 Based on the excellent reactivity observed in Table 1, we 
decided to explore the substrate scope of complex 1 in 
Buchwald-Hartwig aminations (Figure 2). Both aryl bromides 

and iodides undergo amination in good yield (4a-4b, 4h-4i, 4m-
4n), although aryl bromides often required longer reaction 
times. When multiple halides are present, reaction with an aryl 
iodide is preferred over reaction with a bromide or chloride 
within the same molecule (4c-4d). Aryl iodides containing both 
electron donating and withdrawing groups could undergo the 
reaction, with donating groups providing higher yields (4e-4k). 
More sterically hindered aryl iodides (4j-4k) could also give 
good yields, as well as heteroaryl halides (4l-4n). We also 
investigated additional amine coupling partners and found that 
while more electron-rich, disubstituted amines worked well (4o, 
4q, 4s), primary amines gave lower yields of product (4p, 4r). 

 

Figure 2. Substrate scope of Buchwald-Hartwig aminations. 
Yields are isolated yield of the product after purification. a Reaction 
run at 40 ºC. b Reaction run at room temperature. c Reaction run at 
60 ºC. d Reaction run at 100 ºC. 

 Our next goal was to investigate the reactivity of our two 
dimeric Pd complexes in an additional amination reaction. To 
this end, we began by screening our catalyst in carbonylative 
aminations of aryl halides, as seen in Figure 3.10 In this reaction, 
the addition of AgOTf as a co-catalyst had no impact on the rate 
of the reaction, and thus was omitted. For the carbonylative 
amination, Pd(I) dimer 1 gave very low conversion to product, 
while Pd(II) dimer 2 reached 100% conversion in just 90 
minutes. This difference in reactivity confirms our hypothesis 
that changing the starting oxidation state in our bimetallic 
complexes can lead to a dramatic shift in reactivity, and that 
different reactions benefit from different oxidation states of the 
same catalyst. We hypothesize that the Pd(I) dimer is less active 
because it may bind more strongly to CO than the Pd(II) dimer. 
A recent study by Hartwig showed that in the 
aminocarbonylation reaction, an off-cycle Pd(I) dimer 
containing a bridging CO led to catalyst deactivation, which 
may explain the difference in reactivity we observed.11 While 
we were unable to observe any change in the structure of 
complexes 1 or 2 (via 31P NMR) in the presence of CO, this does 
not necessarily mean that a non-active CO adduct of 1 does not 
form during the reaction. Finally, we tested a variety of aryl 
iodide and amine coupling partners (5a-5e). As with the 



 

Buchwald-Hartwig amination, use of 1-bromo-4-iodobenzene 
gave only activation of the iodide bond (5b). Primary and 
secondary amines worked equally well in the reaction (5a–5c), 
and more electron-rich amines provided higher yields of the 
amide product (5d, 5e). 

 

Figure 3. a) Performance of palladium dimers in 
aminocarbonylation reaction. b) Substrate scope for carbonylative 
amination of aryl iodides. 

 For the two amination reactions above, we wondered whether 
the palladium catalysts (1 or 2) remained intact throughout the 
reaction, or if they undergo decomposition to more active 
monometallic forms or nanoparticles.3b,12 For both catalytic 
systems, we tracked the reaction by 31P NMR and mass 
spectrometry. For the Buchwald-Hartwig reaction, we see only 
a slight shift in the 31P NMR spectra for complex 1 and a small 
amount of free ligand (3.5:1 ratio 1 to free ligand). The 
phosphorus shift for complex 1 is likely the result of chloride 
exchange.13 In addition, the mass spectrum (MS) of the crude 
reaction mixture shows mainly dimeric palladium species, 
suggesting that catalyst breakdown to a monometallic species is 
not particularly preferred. This result is in direct contrast with 
Schoenebeck’s results that show that Pd(I) dimer 
{[PtBu3]PdBr}2  rapidly undergoes conversion to monometallic 
Pd(0)(PtBu3)2 in Suzuki-Miyaura cross couplings.3b While a 
catalytically-active monometallic complex cannot be ruled out, 
the evidence at hand suggests that the bimetallic Pd complex 
may be responsible for the observed catalysis. The presence of 
free ligand in the reaction suggests that some of the catalyst may 
decompose to nanoparticles or monometallic complexes. The 
addition of mercury to a Buchwald-Hartwig amination reaction 
with complex 1 gave 87% conversion in 4 hours. This result 
suggests that nanoparticles do not play a significant role in this 
reaction, although this effect cannot be ruled out completely. 
For complex 2, we observed similar results by 31P and mass 
spectrometry in the Buchwald Hartwig reaction. Thus, we 
believe the enhanced reactivity for complex 1 when compared 
with complex 2 may result from its lower starting oxidation 
state, which could accelerate oxidative addition or lead to a 
more stable bimetallic catalyst due to the presence of the metal–
metal bond. 
 For the aminocarbonylation reaction with catalysts 1 and 2, 
we observed the formation of a significant amount of free ligand 
by 31P NMR. This suggested the formation of nanoparticles in 
the reaction and so we ran the mercury drop test to investigate 
this possibility.12 When excess mercury was added to the 
aminocarbonylation reaction with 1 or 2, <5% conversion was 
achieved in 90 minutes. This suggests that nanoparticles may 
play a significant role in catalyzing this reaction, especially 
considering the high temperature.14 Under these reaction 
conditions, 1 and 2 likely break down to catalytically active 
phosphine-stabilized Pd0 nanoparticles. It follows that catalyst 

1 likely forms nanoparticles at a slower rate than catalyst 2 and 
therefore provides lower yields and conversions in high-
temperature aminocarbonylation reactions. At this stage we can 
only hypothesize that the lower reactivity of complex 1 and its 
proposed slower rate of nanoparticle formation may be due to 
possible formation of off-cycle Pd(I) dimer CO complexes, as 
previously observed,11 that slow the decomposition rate. This 
hypothesis is supported by the large number of unidentified 
peaks in the 31P NMR of complex 1 (see Supporting 
Information). Less electronic density on the Pd(II) centers in 2 
may limit the formation of similar CO-bound complexes and 
allow for quicker ligand loss and formation of nanoparticles. 
 In conclusion, we have demonstrated that the beginning 
oxidation state of 2-phosphinoimidazole-derived bimetallic 
palladium complexes can have a dramatic impact on catalytic 
efficiency in palladium-catalyzed amination reactions. In the 
Buchwald-Hartwig amination reaction, the Pd(I) dimer had 
higher reactivity, while the Pd(II) dimer performed more 
efficiently in the carbonylative amination reaction. Additional 
studies show that the Pd(I) dimer complex remains largely 
intact throughout the Buchwald-Hartwig amination reaction 
and may be important for the high catalytic efficiency observed. 
For the aminocarbonylation reaction, we demonstrate that 
nanoparticle formation likely is responsible for catalysis and 
hypothesize that the faster rate of decomposition from the Pd(II) 
dimer may explain the observed differences in catalysis. 
Ongoing studies in our laboratory with these complexes are 
investigating both experimentally and with DFT calculations 
the importance of the bimetallic catalyst structures during 
catalysis.  
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