
Trufflehunter: Cache Snooping Rare Domains
at Large Public DNS Resolvers

Audrey Randall
aurandal@eng.ucsd.edu

UC San Diego

Enze Liu
e7liu@eng.ucsd.edu

UC San Diego

Gautam Akiwate
gakiwate@cs.ucsd.edu

UC San Diego

Ramakrishna
Padmanabhan

ramapad@caida.org
CAIDA, UC San Diego

Geoffrey M. Voelker
voelker@cs.ucsd.edu

UC San Diego

Stefan Savage
savage@cs.ucsd.edu

UC San Diego

Aaron Schulman
schulman@cs.ucsd.edu

UC San Diego

ABSTRACT
This paper presents and evaluates Trufflehunter, a DNS cache snoop-
ing tool for estimating the prevalence of rare and sensitive Internet
applications. Unlike previous efforts that have focused on small,
misconfigured open DNS resolvers, Trufflehunter models the com-
plex behavior of large multi-layer distributed caching infrastructures
(e.g., such as Google Public DNS). In particular, using controlled
experiments, we have inferred the caching strategies of the four
most popular public DNS resolvers (Google Public DNS, Cloudflare
Quad1, OpenDNS and Quad9). The large footprint of such resolvers
presents an opportunity to observe rare domain usage, while pre-
serving the privacy of the users accessing them. Using a controlled
testbed, we evaluate how accurately Trufflehunter can estimate do-
main name usage across the U.S. Applying this technique in the wild,
we provide a lower-bound estimate of the popularity of several rare
and sensitive applications (most notably smartphone stalkerware)
which are otherwise challenging to survey.

CCS CONCEPTS
• Networks → Naming and addressing; Network measurement.
ACM Reference Format:
Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanabhan,
Geoffrey M. Voelker, Stefan Savage, and Aaron Schulman. 2020. Truffle-
hunter: Cache Snooping Rare Domains at Large Public DNS Resolvers. In
ACM Internet Measurement Conference (IMC ’20), October 27–29, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3419394.3423640

1 INTRODUCTION
Mitigating harmful Internet behavior requires monitoring its preva-
lence; specifically, to direct efforts to restricting services and block-
ing certain types of traffic. While there is a range of approaches to
measure the prevalence of widespread abuse (e.g., spam [54]), char-
acterizing the amount of rare abuse—where a small number of users
experience or cause a significant amount of harm—has remained

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8138-3/20/10.
https://doi.org/10.1145/3419394.3423640

elusive. For example, while a few surveillance apps [13] have been
found on devices belonging to participants of clinical studies of
intimate partner violence [22, 28], the prevalence of these apps in
the broader population is still unknown.

Harmful Internet behavior manifests in many different forms, us-
ing different protocols and on different platforms. However, virtually
all depend on making queries to the Domain Name Service (DNS).
Thus, the prevalence of a given source of abuse can be characterized
by the number of requests for its associated domain names. While in
most cases, it is not possible as a third party to directly measure the
number of global DNS queries for a given name, we can infer them
indirectly using DNS cache snooping: a technique that probes DNS
resolvers to observe if a domain is in the cache, therefore implying
that a user must have previously accessed it.

In this work, we focus on techniques for cache snooping large pub-
lic DNS resolvers. Due to their scale, public resolvers both provide
large-scale measurement opportunities and, due to their aggregation,
sidestep some of the traditional privacy concerns of cache snooping.
For example, as of May 2020, APNIC’s DNS service popularity mea-
surements indicate that ∼10% of web users appear to use Google
Public DNS (GPDNS) as their primary DNS resolver [39], while
Cloudflare and OpenDNS each serve ∼1% of web users.

However, public DNS resolvers consist of many independent
caches operating in independent Points-of-Presence (PoPs), which
makes them among the most challenging DNS resolvers to cache
snoop. Through controlled experiments, we infer the load-balanced
multi-layer distributed caching architectures of the four most popular
resolvers. To the best of our knowledge, we are the first to model
the behavior of these caching architectures and how they relate to
user accesses. Building on these models, we demonstrate that it is
possible to snoop public DNS PoPs and estimate how many caches
contain a specific domain. Surprisingly, we found that GPDNS ap-
pears to dynamically scale the number of caches that contain a
particular domain name based on the number of users accessing it;
we observed up to several thousand uniquely identifiable caches for
one domain name (Section 5). This behavior is a likely explanation
for the unusual caching behavior of GPDNS that was reported, but
not explained, in prior work [59, 62].

We present Trufflehunter, a tool to snoop the caches of public
DNS resolvers. We evaluate the accuracy of Trufflehunter’s cache
behavior modeling with a large-scale controlled experiment. Our rel-
ative error in estimating the number of filled caches for each resolver

https://doi.org/10.1145/3419394.3423640
https://doi.org/10.1145/3419394.3423640
https://doi.org/10.1145/3419394.3423640

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

varies from 10% to −50%, with the exception of one unusual Cloud-
flare location where our error is 75% (Section 5). Trufflehunter’s
error varies depending on the caching architecture of the resolver: it
can estimate the cache occupancy of OpenDNS and Cloudflare more
accurately than Quad9 and GPDNS. This error may seem large, but
because Trufflehunter consistently underestimates cache occupancy,
it can provide a lower-bounded estimate of the prevalence of rare
user behaviors (Section 6).

We demonstrate Trufflehunter with several case studies on abusive
Internet phenomena. We found that some of the most concerning
smartphone stalkerware apps have a minimum of thousands of si-
multaneous active users. We also found academic contract cheating
of the services were significantly more popular than the others, and
their popularity wanes during the summer.

Trufflehunter is open source and available at:

https://github.com/ucsdsysnet/trufflehunter

2 BACKGROUND
In this section, we describe how we can measure the prevalence
of rare Internet user activity by probing the caches of public DNS
resolvers. We begin by describing why public DNS services have
become a key vantage point for observing uncommon behavior of
Internet users. Then, we describe how the complex caching archi-
tecture of these services makes it possible to externally measure
the minimum number of simultaneous users that have queried for a
domain name. Finally, we outline how this complex caching archi-
tecture makes it challenging to accurately estimate the number of
users that accessed a domain with cache snooping techniques.

2.1 A variety of users query public resolvers
Initially, the set of users that adopted public DNS were Internet
power users who were privacy and security conscious. However,
public DNS is now becoming a popular default configuration on
networks and in software. This trend has caused a wide variety
of users to adopt these services; indeed, many public DNS users
today did not explicitly configure their devices to use public DNS.
The adoption of these services is largely driven by two factors: (1)
network operators and equipment vendors configuring networks and
devices so that users default to using public DNS services as their
primary or secondary resolver, and (2) developers hard-coding public
DNS resolution into their software.

Enterprise network administrators have switched from running
their own DNS resolvers to pushing users to public DNS resolvers
because that can improve reliability [30]. Small-scale ISPs have also
switched to public DNS to avoid the operation and maintenance cost
of providing their own DNS resolver. For instance, GPDNS has a
formal vetting process where ISPs can request to remove GPDNS’s
rate limits so they can have their entire customer base use GPDNS
as their primary resolver [24]. Also, public DNS is often adopted
by administrators and ISPs because it provides additional security
measures for their users. For example, Quad9 and OpenDNS both
block DNS requests for domains that are reported to be malicious on
threat intelligence feeds [40, 56]. This security feature was reported
to be the primary reason the NYC city-run public WiFi network
switched to using Quad9 as its default DNS resolver [55]. Security
is also cited as the primary reason that enterprises and schools have

 Query

User

IP
Anycast

Cache

Public DNS PoPs

1 Route query
to a PoP

Cache

Cache

Cache

Cache

Cache

Cache

3 Pick
resolver

Frontend
caches

2 Pick
cache

Backend
resolvers

Figure 1: How Public DNS services cache responses

switched to using OpenDNS [52]. Public DNS resolvers have also
been set as the default resolver in networking equipment as a means
of improving performance. The most notable example of this trend
is the “Google Home” WiFi router, which ships with its default
configuration to resolve all DNS queries with GPDNS [21].

Software developers have also increased public DNS adoption
by hard-coding their software to send DNS requests to public re-
solvers. The most notable instances are because public DNS services
offer the latest DNS security features. For example, when Firefox
deployed the privacy protections provided by DNS-over-HTTPS, it
hard-coded Cloudflare’s public DNS resolver as the default resolver
for all of their U.S. users [18]. Additionally, the reliability, and wide
availability, of public DNS makes it a common choice as a hard-
coded backup resolver. For example, in 2017 Linux distributions
started shipping with GPDNS hard-coded as a backup resolver in
SYSTEMD [45, 65], and in 2019 added Cloudflare as well [37].

2.2 Complex caching can reveal many active users
We now describe how cache snooping public DNS resolvers can
provide a lower bound on the number of users accessing domain
names—without revealing who has accessed these domain names.
Public DNS resolvers do not operate as a large contiguous cache
with global coverage. Rather, they operate many fragmented DNS
caches [2, 49, 71] and load-balance queries across many caching
resolver instances [36, 64].1 This architecture can have a negative
effect on their performance: even if a user recently resolved a do-
main name with a public DNS resolver, subsequent requests to that
domain may not be serviced from a cache. However, this perfor-
mance limitation is also an opportunity for establishing a non-trivial
lower-bound on the number of users accessing a domain.

To demonstrate how cache snooping public DNS services can
reveal a non-trivial number of users, we start by explaining how a
typical query is cached in a public DNS resolver’s hierarchy (Fig-
ure 1). In particular, we focus on the three steps used to resolve a
query on a public resolver, where the response to the query can be
cached in one of many independent caches. This cache architecture
is a generalization of how all of the large public DNS resolver caches
that we study operate. Section 3 later describes the details of how
caching works in each of the resolvers.

1GPDNS served 400 billion responses per day in 2015 [26].

https://github.com/ucsdsysnet/trufflehunter

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

Domain name

www.example.com

TTL (s)

60

Result

93.184.216.34Cache hit

www.example.comCache miss

Recurse?

No

No

Timestamp (s)

1591002798

1591002825

Figure 2: Example of cache snooping responses

1 Users direct their query to one of the public DNS service’s
PoPs by sending the request to one of the service’s anycast IP ad-
dresses [49]. These addresses are announced by routers in PoPs
distributed geographically around the globe.2 This anycast DNS ar-
chitecture is similar to the anycast load balancing that the root DNS
servers use [8, 12, 47, 60]. In our experiments we found that, for
large resolvers, PoPs operate their caches independently (Section 5).

2 Then, within a PoP, a query is load-balanced to a pool of fron-
tend caches for the backend caching DNS resolvers [17]. The load
balancer selects from the pool of frontend caches based on a policy
that distributes the load across these caches. These frontend caches
can be isolated, creating the possibility of having more independent
locations users’ query responses can be cached.

3 If the selected frontend cache does not have an entry for
the domain name, the query will be forwarded to one of a pool of
backend resolvers via a second load balancer. Backend resolvers
operate independent caches, introducing yet another opportunity for
multiple users to have their queries cached independently.

After the backend resolves the domain name, all of the caches
along the path in the hierarchy are filled with the response. First, the
backend resolver fills its cache, and in some cases responds directly
to the user. Then the frontend resolver fills its cache, and finally the
response is sent to the user, which fills its local cache. The presence
of user-local caches makes it easier to count the number of users
accessing a rarely-used domain name: it effectively limits the number
of cache entries that can be created in a public DNS resolver to one
per user at a point in time. All major operating systems operate have
DNS caches [3, 7, 35, 43, 50], including MacOS, Windows, and
Linux. Additionally, many browsers operate their own local cache
such as Safari, Chrome, and Firefox. Some home networks and
organizations also run a caching forwarding resolver for all users
on their entire network. These local caches will effectively limit
a household or organization to filling only one cache in a public
resolver, per domain, at any point in time.

Snooping Public DNS caches can provide a lower-bound on the
number of active users. If we can estimate how many of these caches
hold a particular domain at any point in time, we can obtain a lower-
bound on the number of simultaneously active users of that domain.
However, this estimate is strictly a lower-bound on the number of
users that may have requested this domain—we cannot observe how
many users had their query serviced by one of the caches. As we
are limited to counting only one user per cache, snooping will be
most useful for estimating the popularity of rare domains. It will not
provide any new information about the prevalence of domains that
are already known to be popular.

Does DNS security limit counting users with cache snooping?
DNS security and privacy technologies, such as DNS-over-HTTPs,
2As of May 2020, GPDNS has 33 PoPs worldwide, Cloudflare has 46 PoPs in the U.S.,
Quad9 has 27 PoPs in the U.S., and OpenDNS has 11 PoPs in the U.S. & Canada.

DNS-over-TLS, as well as DNSSEC, do not change the cache model
for DNS described above. All queries made with these protections
enabled will be served out of the same caches as insecure queries.

2.3 Public DNS cache snooping challenges
The complex multi-level caching hierarchy makes it feasible to esti-
mate a non-trivial number of active users of a domain name. Unfortu-
nately, it also makes it challenging to accurately estimate the number
of caches that have been filled. Cache snooping a resolver with a
single cache—as has been investigated in prior work—is straight-
forward. The most direct way of snooping a cache is to “probe” it
by making a query for a particular domain name with the Recursion
Desired (RD) flag unset. Unsetting Recursion Desired prevents the
backend resolver from doing a recursive query to get the uncached
answer, causing it instead to report a cache miss by not including a
result in the answer. The DNS response from a cache probe contains
limited information (Figure 2) that answers the following questions:
is the domain name currently cached (indicated by the existence
of a DNS Answer section having a nonzero TTL), and how long
has it been cached (as inferred from the response timestamp and
the remaining TTL in the response)? Cache snooping a large public
DNS service to measure how many caches are occupied is signifi-
cantly more difficult because each probe (non-recursive DNS query)
returns information about only a single cache in the resolver.

From the limited information available in these single-cache re-
sponses, we somehow need to determine how many independent
caches have been filled at the resolver. Note that each cache probe
will provide the status of only one cache, in one PoP: we do not
know what cache, nor do we know what PoP, the response came
from. Additionally, we cannot tell if the response came from a fron-
tend cache, a backend cache, or both (if they are synchronized). We
also need to consider what happens when a cache entry is shared
between caches. For instance, is the same TTL value stored in the
frontend cache when copying from a backend resolver? What about
when cache entries are shared between frontend resolvers? We will
show in the next section that the data in the simple cache probes
described above (Figure 2) is sufficient to estimate how many caches
a domain is in at one time.

3 SNOOPING PUBLIC DNS CACHES
Cache snooping public DNS resolvers with Trufflehunter is possi-
ble because it can interpret the multi-level caching architecture’s
behavior by observing DNS responses. Specifically, it sends a col-
lection of cache snooping probes (non-recursive DNS queries) for
a domain name towards a resolver and deduces what the responses
reveal about how many caches are occupied by that domain name.
Different resolvers can use widely different architectures, however,
introducing resolver-specific challenges in interpreting responses to
cache snooping probes. In this section, we describe how we analyzed
and modeled resolvers’ caching architectures. We also show how
Trufflehunter’s inference technique will be tailored to each resolver’s
architecture.

In this section, we describe the cache inference logic we built
in Trufflehunter based on our observations about how the caching
architecture operates for the four largest public DNS resolvers. We

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

Google Public DNSOpenDNS and Quad9

556

552
554

560
562
570
573

550

575

550

597

575

564

551

x16

Cloudflare

550

550

549

550

548

550

556

552
554

558
560
570
573

550

575

Frontend Backend Shared frontend
Backend

Dynamic frontend
Backend

Figure 3: Inferred cache architectures of the four largest public DNS services (50 secs after filled with 600 sec maximum TTL)

explain how we inferred their behavior with a combination of con-
trolled experiments—where we intentionally put a domain name in
as many caches as possible in each resolver—and public information
released by the resolvers. Each of the architectures presents their
own opportunities or limitations for observing a non-trivial number
of independent caches that have the same domain. We discovered
that some resolvers employ caching strategies that allow us to mea-
sure a large number of user accesses, but others employ strategies
that impose significant limitations on the number of caches we can
observe. They also all present unique challenges that make it difficult
to estimate the number of occupied caches with cache snooping.

Inferring behavior of DNS cache architectures
We infer the caching architecture of public resolvers by inserting
DNS responses into as many caches as possible, and observing how
often new cache entries appear to be made.

Cache-filling experiment. We send recursive queries for a unique
domain name to one PoP of each public resolver once every two
seconds. These queries were made by a single machine in AS 7922
(Comcast). Since our goal is to fill as many caches as possible,
including the backend recursive resolver caches, we issue these
queries with the Recursion Desired (RD) flag enabled. We controlled
the domain name used in the experiment, allowing us to verify that
certain responses were serviced by a backend recursive resolver. The
behavior of the resolvers during this experiment will be similar to
how the resolver’s caches will look when a resolver has a constant
stream of users requesting a domain name.

The data collected during this experiment are DNS responses
from the resolvers. When resolvers operate independent caches, the
primary indicator that a response is coming from a particular cache
is the TTL in the response. We know that one of our queries caused
a cache to be filled when the response contains the maximum TTL
(i.e., the TTL returned by the authoritative nameserver). We know
that a query was serviced from a cache—and therefore did not fill a
new cache—if the TTL in the response is lower than the maximum
TTL.3 The TTL also reveals which cache the query was serviced
from because TTLs of cached responses decrement one second per
second: responses that were received N seconds apart, and also have
a difference in their TTLs of N seconds, can be assumed to come

3Most DNS resolvers age the TTLs of cached DNS responses once every second.

from the same cache. Our observations of the pattern of TTLs in the
responses form the basis for our technique (described in Section 4)
to measure the number of filled caches with DNS cache snooping
probes (i.e., repeated non-recursive DNS queries).

TTL Line. Responses that originate from the same cache should
fall on a line with a slope of −1 (since TTLs decrease once per
second) on a graph of TTLs over time. We use the term “TTL line”
to refer to this line. TTL lines originate from a point in time where
we infer that a cache was filled because we observe a response with
the maximum TTL (600 seconds in our controlled experiment).

Visualizing DNS resolver caching behavior. The results of this
experiment are presented as follows. For each resolver, we plot a
point for every DNS response we receive during the experiment. The
𝑥-value is the time the response was received, and the 𝑦-value is
the TTL contained in the response. We also draw a TTL line each
time we observe a response with the maximum TTL. We only plot
the first 50 seconds of each experiment because that is sufficient to
show the general caching behavior. To make it easier to understand
what cache architecture is producing this behavior, and to provide a
visual comparison between the architectures, we show the states of
the three different cache architectures at the end of the 50-second
period in Figure 3.

3.1 OpenDNS and Quad9
OpenDNS and Quad9 presented the most intuitive caching behavior
of the public resolvers. They both appear to be operating indepen-
dent frontend caches (Figure 3). This architecture means that Truffle-
hunter can observe at most 𝑁𝑏 simultaneous active users of domain
names, where 𝑁𝑏 is the number of backend resolvers operating at a
PoP.

Figure 4 depicts the results of the cache-filling experiment that
demonstrates this behavior (we omit the plot for Quad9 because its
behavior is similar). As OpenDNS received repeated queries over
time, we observed nine responses with the maximum TTL (indicated
by the vertical dotted lines). For each of these responses, we observed
a query to the authoritative resolver. Therefore, we can conclude
that a frontend cache did not have the entry cached, and the query
was resolved by a backend resolver. All of the other responses that
we received from OpenDNS had a TTL that fell on one of the TTL
lines that originate from these nine responses with the maximum

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

573
575

570
562
560
556
554
552
550

550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 4: OpenDNS and Quad9 caching behavior

550550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 5: Cloudflare DNS shared caching behavior

TTL (there is an inherent error of +1,−1 seconds that we address
in Section 4.2). This behavior indicates that when a frontend cache
does not have an entry, it copies the TTL from the response it gets
from forwarding the query to a backend resolver, even if the backend
resolver answers the query from its cache.

Estimating OpenDNS and Quad9 cache occupancy. Estimating
the number of domain users active on Quad9 and OpenDNS requires
estimating the number of independent backend resolvers that have
the domain cached at any point in time. Recall that each TTL line in
the recursive responses corresponds to one backend resolver having
the domain name cached. Therefore, Trufflehunter can estimate
this quantity by sending repeated cache probes for the domain, and
counting the number of unique TTL lines it observes.

3.2 Cloudflare DNS
Cloudflare’s DNS service is the only DNS resolver we evaluated that
operates a shared frontend cache architecture, as shown in Figure 3.
Specifically, it uses knotDNS’s resolver, which has a shared backing
database for its frontend caches (e.g., memcached) [27]. This ar-
chitecture means that, unfortunately, the lower-bound of number of
users accessing a domain on Cloudflare will be very conservative—
at most one user within a TTL interval at a PoP. However, for do-
main names that are infrequently used, such as the ones we design
Trufflehunter to observe, this limitation is not significant. Addition-
ally, domains often have short TTLs and Cloudflare operates its
resolvers from numerous PoPs, allowing us to provide meaningful
lower-bound estimates.

549

597

575

564

551550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 6: GPDNS’s dynamic caching behavior

Figure 5 shows the results of the cache-filling experiment for
Cloudflare DNS. The recursive queries to Cloudflare all produce
responses that fall on one TTL line that originates from the time the
first query was made. However, this one TTL line is not perfect: it
slowly deviates from a slope of -1. We believe this deviation is due to
the errors in the TTL that accumulate as the frontend resolvers copy
the cached response from the shared cache into their local cache.

Estimating Cloudflare cache occupancy. All Cloudflare resolvers
in a PoP share one cache. They also slowly drift away from the “true”
TTL line. As a result, it is not sufficient to simply send cache probes
and count how many individual TTL lines we observe. Drift in TTL
of cache responses will effectively extend the amount of time that a
result resides in the cache, ultimately longer than the maximum TTL.
If we only sample the cache infrequently, and at irregular intervals,
we may conclude there are more user requests than there truly are.

Instead, Trufflehunter counts how many times the cache was filled
by applying a peak-finding algorithm that will find the points where
all caches were empty and then filled again (details in Section 4.2).
It also only allows one of these peaks per maximum TTL of the
domain name to account for any spurious peaks that may be due to
errors from cache sharing.

3.3 Google Public DNS (GPDNS)
Google’s public DNS resolver has a unique caching behavior that
enables counting a large number of users that are actively request-
ing a domain name. Like other services, Google describes their
caching architecture as load-balanced frontend caches and backend
resolvers [23]. However, when a query hits a frontend cache that
does not contain the domain name, GPDNS appears to create a new,
independent frontend cache. This behavior means that it may be
possible to count nearly all accesses to a domain name by cache
snooping GPDNS’s frontend caches. We suspect the presence of
so many frontend caches is a design choice to scale the caching
infrastructure dynamically based on the number of requests to a
particular domain—and may be a reasonable way of protecting their
infrastructure from DDoS attacks. The cloned caches are deleted
when their “parent” backend cache expires.

Figure 6 shows the unique results of the cache-filling experiment
for GPDNS. The initial query is recursively resolved by a backend
resolver, and several future responses appear to be serviced from
the same cache because they follow the same TTL line. Strangely,
several of the responses contain a TTL that does not correspond with

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

that initial TTL line, and they also do not have the maximum TTL
(indicating a new cache has been filled). These caches also do not
appear to be backend resolvers because we only see one request to
our authoritative server per maximum TTL epoch. Previous work
also noticed these caches,4 but could not explain where they came
from [59, 62].

This behavior appears to be a result of the unique way that Google
shares query results from backend resolvers with frontend caches.
When a query is load balanced to a frontend cache that does not have
the domain name in cache, it will forward the query to a backend
resolver. The backend resolver will then do the same thing as other
public DNS resolvers: namely, send the response to the query to the
user, then it will fill the frontend cache that was empty. The exact way
that they fill the cache, however, is unique: the backend cache will
fill the maximum TTL (𝑇𝑇𝐿𝑚𝑎𝑥 − 1 in the case of GPDNS [19])
in the frontend cache, rather than filling it with the current TTL
of the cached entry at the backend cache. Therefore, each cache
miss to a frontend cache fills a uniquely identifiable new frontend
cache. We depict this behavior in Figure 6. Each cache hit to the
backend resolver is marked with a vertical dotted line that marks that
a frontend cache was filled at that time instant with the maximum
TTL. When we draw TTL lines starting at these lines, we see that
indeed four of them intersect the points that came from previously
unexplained caches.

These cache entries may seem problematic because they effec-
tively lengthen the duration that a domain entry is cached past the
maximum TTL from the authoritative server. Fortunately, we ob-
served that these cache entries are deleted as soon as the cache entry
expires at the backend resolver.

Estimating GPDNS cache occupancy. While this cache-filling
strategy creates an opportunity to count as many users as there
are frontend caches, it also makes it difficult to cache snoop. The
problem is that GPDNS fills a new frontend cache regardless of
if the query is from a user (i.e., recursive) or a cache probe (i.e.,
non-recursive). Fortunately, it is possible to distinguish the caches
created by cache probes from caches filled by users. Essentially, we
account for all TTL lines that would be created by Trufflehunter’s
cache probes. When we observe a probe response that has a TTL
on one of these lines, we simply discard it. Note that a consequence
of this approach is that the more frequently we probe, the more
frontend caches we may fill, and therefore the fewer users we can
observe. To address this problem, we probe infrequently (i.e., five
times per minute) relative to the duration of the maximum TTL (e.g.,
ten minutes), rather than probing as fast as possible.

Summary. This experiment demonstrates that public DNS re-
solvers often operate more than one independent cache in each PoP,
creating the opportunity to estimate the number of users resolving a
domain. We also describe how, by analyzing the TTLs obtained in
DNS cache snooping, it is possible to count the number of occupied
caches. In Section 5, we evaluate how well these cache snooping
techniques work with a controlled experiment across most of the
U.S. PoPs of these providers.

4One paper referred to them as “ghost caches” [59].

4 METHODOLOGY
In this section, we describe the details of the probing and analysis
methodology Trufflehunter uses to observe all unique TTL lines for a
specific domain. First, we describe how Trufflehunter probes public
resolvers at multiple PoPs using CAIDA’s distributed Archipelago
infrastructure [9]. Then, we describe the technique Trufflehunter uses
to count unique TTL lines from these probe responses. Combined
with the cache behavior models described in the previous section,
Trufflehunter produces estimates of the number of cached copies of
a domain across many of the PoPs of a public DNS resolver.

4.1 Probing multiple PoPs
Since DNS queries to public resolvers are routed using anycast [10],
we have multiple opportunities to improve our estimates of the users
of a domain. As each PoP implements multiple levels of caching,
and each of these caches in turn can be probed for a domain of
interest, each additional PoP we probe can significantly increase the
lower bound on the number of users Trufflehunter can observe.

Ark enables Trufflehunter measurements across many PoPs.
Measuring many domains over multiple PoPs requires a geographi-
cally distributed measurement infrastructure that offers considerable
flexibility in the number and type of DNS measurements that it can
make. In this study, we focus on the U.S. due to the diversity of PoPs
used by public resolvers in the country. We considered three choices
from which we could host Trufflehunter—RIPE Atlas [67], pub-
lic clouds such as Amazon AWS, and CAIDA’s Archipelago (Ark)
project [9]—and chose the Ark network to run our measurements
since it offers diverse vantage points and the flexibility to implement
and run continuous, longitudinal measurements. Though RIPE Atlas
probes are more numerous and can contact more PoPs than the Ark
nodes, more restrictions apply to their use; consequently we used At-
las probes only as controlled users for the smaller-scale experiments
described in Section 5. We also considered using AWS, Google Pub-
lic Cloud, and Microsoft Azure, but found that the Ark nodes have
considerably wider coverage of PoPs. We deployed Trufflehunter on
43 Ark nodes distributed across the U.S.

DNS location requests identify which PoPs probes route to.
While the existence of multiple PoPs per resolver enables improved
measurement capabilities, it also introduces a layer of complexity:
we need to identify to which PoP Ark nodes’ DNS queries are routed.
Doing so enables our analyses of filled caches for a domain at the
per-PoP level (Section 5) and subsequent aggregation per resolver
(Section 6). Fortunately, all four of the largest public resolvers pro-
vide ways to determine to which PoP requests are routed. Google
makes the locations of GPDNS resolvers available in the form
of a TXT record for the domain “locations.publicdns.goog.”
Querying this record gives a map of resolver IP addresses to three-
letter location codes. Another TXT record available at domain
“o-o.myaddr.l.google.com” returns the non-anycast IP address
of the resolver answering the query, which can then be looked up in
the map. Similarly, TXT queries to “debug.opendns.com” return
the three-letter airport code of the PoP that the query routed to in the
answer. Quad9 and Cloudflare similarly make their locations avail-
able via CHAOS TXT queries to the domain “id.server” [31, 61].

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

500

Predicted
TTL Line

(Probe clock)

Actual TTL
(Cache clock)

1 No error 2 Latency error 3 Offset error

499

500 499

500 499

500 499

500 499

500 499

Figure 7: Errors matching cache probes to TTL lines

For all experiments in the remainder of the paper, we identify PoPs
by the three-letter code of a nearby airport.

Data collection. Our deployment of Trufflehunter on Ark nodes
continuously runs two sets of DNS measurements from each node:

1. Given a list of domains to search for, Trufflehunter performs a
DNS request for each domain five times per minute towards each
public resolver we study. These requests are made with the RD flag
unset (non-recursive). We looked for evidence of rate limiting from
our chosen resolvers to ensure we were not generating too onerous a
load, but saw no instances of failures related to rate limiting (e.g.,
many SERVFAIL responses or query timeouts).

2. Trufflehunter makes a DNS location request once per minute to
determine the PoP towards which it is currently routing queries,
for each public resolver. While the Ark nodes usually only change
PoPs on the scale of days, they do go through occasional periods
of “fluttering,” where the PoP they are routed toward changes more
frequently (on the order of minutes).

4.2 Finding unique TTL lines using cache probing
Recall from Section 3 that estimating cache occupancy for the four
public resolvers we study requires counting the number of unique
TTL lines observed from cache probes of a domain at each PoP. We
now describe potential errors that can affect our estimate of unique
TTL lines and our methods to mitigate these errors. Trufflehunter
uses these methods in conjunction with the methods described in
Section 3 to estimate cache occupancy of a domain at each PoP. To-
gether, these methods yield a lower bounded estimate of the number
of caches that contain a domain at a PoP within a TTL epoch.5

Error correction method for GPDNS, Quad9, and OpenDNS.
Intuitively, counting the number of unique TTL lines (as defined in
Section 3) will yield the number of caches that contain a domain.
However, correctly identifying TTL lines using cache probing is
challenging since DNS TTLs only have precision to one second. This
lack of precision can introduce off-by-one errors when comparing
TTLs in responses originating from the same cache. This situation
may lead to significant overestimates of the number of TTL lines,
and therefore also active users. Our goal, however, is to present
lower-bounds on the number of active users. We will now describe
the nature of this problem in detail and describe the technique we
developed to avoid overestimating the count of unique TTL lines.

To determine if a TTL returned by a cache probe lies on a par-
ticular TTL line, Trufflehunter needs two pieces of information: a
5TTL epoch is another term for the time period of the maximum TTL.

sample of the actual TTL in the cache obtained by probing it, and
a predicted TTL based on the probe clock’s estimate of how much
time has passed on the TTL line. Naively, one can determine if a TTL
sample returned from the cache lies on the TTL line by checking if
the predicted and actual TTLs are equal. However, TTLs in DNS
responses only have precision to one second. Therefore, there can
be sub-second measurement uncertainty. This uncertainty will lead
to cases where Trufflehunter may overestimate the number of caches
because TTLs do not lie on their predicted TTL line. Specifically,
three cases can occur: the actual TTL matches the predicted TTL,
the actual TTL is below the predicted TTL, or the actual TTL can be
above the predicted TTL. The sources of uncertainty are as follows:
the resolver’s clock may not be synchronized with the probe clock,
and there can be latency between when a resolver copies the TTL
from its cache into a response, and when that response reaches the
probing host. The effects of these sources of uncertainty are depicted
in Figure 7.

First, consider the case where the resolver’s clock is nearly syn-
chronized with the cache probe’s clock. In this case, TTL line predic-
tion error will be due to the latency associated with cache probing.
1 There is no error when the TTL of the probe and cache stays the

same between the time when a resolver generates its response and
when the response arrives at the probing host.
2 The TTL will be underestimated by one second when the probe

TTL is decremented between the time when the resolver cache
generates its response, and when it is received by the probing host.

Next, we consider the case where the clocks are not synchronized.
3 The actual TTL can be either overestimated, or underestimated,

by one second. The error’s direction depends on whether the probe
clock is a fraction of a second ahead, or behind, the resolver’s clock.

Trufflehunter uses the following heuristics to avoid overestimating
the count of unique TTL lines due to TTL line prediction errors. If
TTLs from cache probes lie on a single TTL line—with no probe
TTLs falling on neighboring TTL lines (one second below or one
second above)—we assume there are no errors. If we see a group
of TTLs that lie on two neighboring TTL lines (one second apart),
we assume there was an error, and we remove one line. If TTLs lie
on a group of three or more neighboring TTL lines that are each
one second apart, we remove the first and last lines in the group.
Our rationale is that TTLs on the first TTL line may have been
due to TTL overestimation, and the last line may have been due to
TTL underestimation, but the TTLs on lines in the middle are likely
composed of at least one correct measurement. This method can
sometimes underestimate the count of TTL lines when lines that are
one second above or below the predicted TTL line arise from other
filled caches; however, this trade-off is consistent with our goal of
presenting lower-bounds on the number of active users. We have
found that this technique is reasonably accurate on resolvers with no
confounding factors, such as OpenDNS. In Section 5, we evaluate
the effectiveness of this technique using controlled experiments. We
found it allows us to estimate the number of caches (TTL lines)
within approximately 10% of the true value on the resolver with the
least confounding variables (OpenDNS).

Error correction method for Cloudflare. Because Cloudflare only
has one shared, distributed cache per PoP, we do not apply the
above error method to estimate how many caches each PoP contains.

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

CB
F

DL
S

IA
D

LA
X

TU
L

-80%

-60%

-40%

-20%

0%

20%

Re
la

tiv
e

Er
ro

r

GPDNS

AS
H

CH
I

DE
N1

DF
W

LA
X

NY
C

PA
O

SE
A

OpenDNS

BO
S

DE
N

DF
W

EW
R

IA
D

IN
D

LA
X

M
SP

OR
D

SE
A

SJ
C

Cloudflare

BU
R

DF
W IA
D

LG
A

M
IA

OR
D

PA
O

SE
A

SF
O

Quad9

Figure 8: Cache estimation error

Instead, Cloudflare presents a different problem: its single externally
visible cache is composed of many physical caches that all share the
same record. The TTLs in this distributed cache drift away from the
true TTL line over time, as the many individual caches that make up
the single distributed cache share the record between themselves. As
a result, TTLs from this cache get further away from the true TTL the
longer the record is cached. Although it is easy to see visually that a
group of DNS responses came from the same distributed cache, it is
not trivial for an algorithm to do so: the drift allows a single cached
entry to persist past the end of its TTL epoch. We use a peak-finding
algorithm to find clusters of TTL lines that are near the true TTL
line, essentially combining those TTL lines into one per TTL epoch.

cation

5 EVALUATION
In this section, we describe experiments to evaluate how accurately
Trufflehunter estimates how many caches in a PoP contain a partic-
ular domain. In these controlled experiments, we use RIPE Atlas
probes to mimic the behavior of many geographically distributed
users querying for a domain from their local PoP. This allows us to
quantify Trufflehunter’s error in estimating how many caches in a
PoP contain a domain within a TTL epoch, and therefore its error in
estimating a lower-bound on the number of users that have queried
for a domain within a TTL epoch. However, it does not reveal Truf-
flehunter’s accuracy in estimating the number of users over multiple
TTL epochs (Section 6.1). The results of these experiments demon-
strate that our estimates are consistent with Trufflehunter’s goal of
providing lower-bounded estimates of a domain’s prevalence.

5.1 Simulating users with RIPE Atlas probes
Our goal in this experiment was to emulate users from multiple
geographic locations requesting a domain from various public re-
solvers at diverse PoPs. Since Trufflehunter is deployed from the
Ark infrastructure, we sought an orthogonal infrastructure that could
provide this ability. RIPE Atlas probes are deployed in diverse loca-
tions; moreover, since this experiment did not have to be performed
longitudinally, the restrictions with RIPE Atlas probes that prevented
us from using the platform to run Trufflehunter long-term did not
apply (such as low rate-limits towards destinations, low availability
of RIPE Atlas credits etc.).

Choosing Atlas probes. We initially considered 956 RIPE Atlas
probes located in the U.S. for this experiment, but realized that some
showed evidence of having DNS requests hijacked by ISPs. If a
request was hijacked, a request would arrive at the authoritative
nameserver for the domain, but the cache that got filled as a result
would not belong to the resolvers we were trying to measure and
would therefore be invisible to Trufflehunter. We therefore designed
an experiment to filter probes whose requests are hijacked.

We first asked each RIPE Atlas probe to request a subdomain,
which contained its probe ID and its targeted resolver’s name, from
each of the four public resolvers. When we examined the IPs that
requested these domains from our authoritative nameserver, we iden-
tified those that came from ASes that do not belong to the four public
resolvers. We determined that the RIPE Atlas probes fell into three
categories: some never had their requests hijacked (reliable probes),
some always had their queries hijacked (unreliable probes), and
some, to our surprise, seemed to have some of their queries hijacked
but not others (suspicious probes). Further investigation revealed that
the suspicious probes were in small ASes that had multiple Internet
providers. Our hypothesis is that one of these providers hijacks DNS
queries and the other does not. Changes in routing could lead the
probe’s queries to switch between the hijacking provider and the
non-hijacking provider. Another possibility might be that some ISPs
hijack only a sample of DNS queries, not all of them.

We filtered 40 probes in this step, leaving 916 probes that could
participate in the experiment.

5.2 Measuring cache fills from Ark nodes
We used the RIPE Atlas probes chosen from the previous step to
repeatedly place a domain (whose authoritative nameserver is con-
trolled by us) in the caches of the public resolvers. We simultane-
ously attempted to detect the presence of the domain with Truf-
flehunter. The RIPE Atlas probes placed the domain in cache by
making recursive queries in bursts of ten minutes. These bursts were
repeated at three hour intervals for a total of 48 hours. Note that this
allows every individual cache to be filled up to sixteen times. Truf-
flehunter began searching for the domain several hours before the
experiment began, when it was not yet expected to be in cache, and
did not stop searching until many hours afterward. We did not detect
the domain in any cache outside the duration of the experiment.

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

Figure 8 shows the accuracy of our estimate of the number of
filled caches per PoP for each resolver. We calculate our error by
calculating the percentage of the caches filled by Ripe probes that
were missed by Trufflehunter. Missed caches are the caches filled by
Ripe probes minus the caches observed by Trufflehunter. We count
the caches filled by Ripe probes by enumerating the responses that
have the maximum TTL for that domain. Both Trufflehunter nodes
and the Ripe probes identify the PoP they are currently routed to
by using the location queries from Section 4. Our error ranges from
underestimating by approximately 10% on average on OpenDNS,
to approximately 50% on average on Quad9. The difference in
underestimation rate depends on the caching architecture of the
resolver: some resolvers are easier to measure than others. We note
several interesting points from the results.

First, on OpenDNS, our method for eliminating error caused by
measurements that have a granularity of one second appears to be
reasonably successful. Recall that we eliminate the first and last TTL
lines from each group, since we predict that they are likely to be
composed only of measurements that are one second off from the
true values (Section 4.2). We speculate that the remaining error is
due to the fact that our error-removing technique is only a heuristic:
there are a few lines that we remove that are not erroneous, and a
few that we allow to remain that are erroneous.

We use the same technique on Quad9, but get very different re-
sults. Upon further investigation, it turns out that although Quad9
uses one DNS load-balancer called “dns-dist” for its frontend caches,
they use two different software packages, Unbound and PowerDNS,
for their backend resolvers. Unbound defaults to not answering
queries with the Recursion Desired flag disabled; it returns a status
of REFUSED [51]. Therefore, when a RIPE Atlas probe places its
domain into the cache of a backend resolver that does not answer
non-recursive queries, that record becomes invisible to Trufflehunter.
We therefore underestimate the true number of filled caches at Quad9
PoPs. On most PoPs we underestimated by ∼50%, except for the
BUR PoP, where our controlled users’ queries appear to have coinci-
dentally hit PowerDNS more than Unbound resolvers. Quad9’s use
of two backend resolver implementations is an interesting challenge,
and one that limits the accuracy of our current technique.

On GPDNS, we appear to underestimate the number of filled
caches by up to 45%, but this result may be due to the fact that the
true number of filled caches is very hard to determine. Any request
that missed in a frontend cache and hit in a backend cache presum-
ably filled the frontend cache. Unfortunately, since it would not have
caused a request to the authoritative nameserver, we cannot count
the true number of filled caches with perfect certainty. We appear
to have observed more caches than either RIPE Atlas’s or Truffle-
hunter’s queries would account for. However, since our estimate
is consistently lower than the probable true value, this outcome is
consistent with Trufflehunter’s goal of providing a lower-bounded
estimate of domain prevalence.

On most Cloudflare PoPs, Trufflehunter’s error varies from 15%
to −5%. Although each PoP’s shared cache can only be filled once
during a single TTL epoch, Trufflehunter cannot differentiate TTL
epochs with perfect accuracy because the TTLs of the records drift
over time (Section 4.2). IAD is the exception with significantly
higher error (75%). For IAD, Trufflehunter only observed only the
final four out of sixteen times the Atlas probes filled the cache. We

suspect that there may have been a problem with the DNS location
queries (Section 4) during this experiment. While both Trufflehunter
and the Atlas probes recorded that they were using IAD, they may
have been routed to different PoPs during the first twelve cache fills.

We also tested if any of a resolvers’ PoPs appeared to use signifi-
cantly different caching strategies compared to the resolver-specific
strategies we identified in Section 3. We did not observe strong
evidence of PoP-level inconsistencies.

In summary, Trufflehunter’s cache enumerations underestimate by
approximately 10-50% (excluding Cloudflare’s IAD) depending on
the resolver’s cache architecture. Furthermore, since Trufflehunter
consistently underestimates, our error does not prevent us from
providing a lower-bounded estimate of cache occupancy. This allows
Trufflehunter to fulfill its aim of enabling relative comparisons of
rare domain popularity.

6 CASE STUDIES
In this section, we apply our cache snooping technique to examine
the use of three categories of abusive Internet phenomena: stalker-
ware, contract cheating services, and typo-squatting domains.

Our goal in this section is to provide lower-bounded estimates on
the number of users of various domains using our estimates of the
number of caches filled with these domains. During a single TTL
epoch, local caches prevent a user from filling more than one resolver
cache (Section 2), so every filled cache represents at minimum a
single user. But when attempting to enumerate users, we would
like to present estimates across multiple TTL epochs (such as the
number of users in a day). This is more challenging—it is hard to
distinguish between one user making multiple queries in distinct
epochs and multiple users making individual queries. If the rate
at which users make requests can be determined, it is possible to
deduce the number of individual users from the observed filled
caches [57]. Unfortunately, the intervals at which a user visits a
website are not usually deterministic. Without a vantage point that
can grant insight into user behavior, estimating the number of unique
visitors to a site is difficult. It is reasonable to assume that a user
will not make multiple requests for a domain within a single TTL
epoch, because of the caching behavior of operating systems and
browsers (Section 2). But the number of unique website visitors
cannot be estimated at time scales larger than a TTL epoch. We
therefore present our estimates of website traffic in the form of web
requests per day, summed over all resolvers and PoPs.

However, domains that are associated with applications instead of
websites are often accessed automatically, without user interaction,
at regular time intervals. Such regularity provides the opportunity to
estimate the number of unique application users with better accuracy
than we can estimate unique website visitors. Unfortunately, this
insight still does not allow us to distinguish between unique users
in multiple TTL epochs. As a result, we use the maximum number
of users ever observed during a single TTL epoch as a conservative
lower bound estimate of the number of users of a given application.
This “maximum users per epoch” metric sums users observed across
all PoPs and resolvers during that epoch. We assume that an individ-
ual user is unlikely to make DNS requests to either multiple PoPs or
multiple resolvers during one TTL epoch.

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

AT
L

CB
F

DL
S

IA
D

LA
X

M
RN TU

L

0

2000

4000

6000

8000

M
ax

 C
ac

he
s

GPDNS

AS
H

AT
L1 CH

I
DE

N1
DF

W
LA

X
M

IA
NY

C
PA

O
SE

A
YV

R

0

20

40

60

80
OpenDNS

AM
S

AT
L

BU
R

CD
G

DE
N

DF
W IA
D

LG
A

M
IA

OR
D

PA
O

PD
X

SE
A

SF
O

0

20

40

60

80
Quad9

Figure 9: Maximum caches observed per PoP per resolver

6.1 Limits on observed users
Recall that our lower bound estimates of the number of users of a
domain depend upon the number of caches at each PoP that can
potentially contain a domain. If there is only a single shared cache at
a PoP (as in Cloudflare’s case, for example), we can only estimate at
most one user per TTL epoch at that PoP. However, as the number of
available caches increases, so does the opportunity to observe more
users filling caches.

Trufflehunter can observe at most one user or web request per
cache per TTL epoch. We can quantify our error in estimating how
many caches have been filled over time (Section 4.2), but we cannot
estimate how many more users have accessed a cache after it has
been filled by the first user, until the cache expires and is refilled. This
is the reason that Trufflehunter can only provide a lower-bounded
estimate of the users of an application or visitors to a domain.

We used the data collected by Trufflehunter between March 6,
2020, and May 30, 2020 (per the methodology described in Sec-
tion 4.1) for the domains in our study to estimate the number of
individual caches that each PoP contains.6 We counted the maxi-
mum caches that Trufflehunter saw during this period filled with
any of the domains we studied during any single TTL epoch. Fig-
ure 9 shows these results. We do not include Cloudflare in Figure 9
since the maximum number of caches in any PoP is always one due
to Cloudflare’s use of a single shared cache per PoP. We note that
GPDNS appears to have thousands of caches, consistent with our
model of GPDNS in Section 3. This allows us to observe thousands
of users per TTL epoch at each GPDNS PoP. On the other end of the
scale, Cloudflare only has one cache per PoP. We do note, however,
that although Cloudflare has the fewest caches per PoP, it has the
most PoPs in the U.S. out of the resolvers we studied (46). This
allows us to observe a non-trivial number of Cloudflare users across
the U.S., and Cloudflare users do contribute to our total estimates of
users (Figure 10). We also observe that across resolvers, larger PoPs
like IAD and NYC have more caches, as might be expected.

6We elided a handful of days from our data because a small number of Ark nodes
constructed some queries incorrectly on these scattered days, and may have poisoned
the resolvers’ caches by placing domains in them.

6.2 Stalkerware
We first apply Trufflehunter to estimate the prevalence of stalker-
ware. The term “stalkerware” covers a wide range of software used
in the context of intimate partner violence (IPV). It is installed by
the abuser onto the target’s device, usually a cell phone. Apps vary
widely in their range of capabilities, which can include tracking
location, recording messages sent by text or other messaging apps,
recording audio of phone calls and ambient sound, spoofing texts
to the target, and more. The abuser then accesses the target’s infor-
mation by visiting an online dashboard, which is updated regularly
by the app. Stalkerware broadly falls into two categories: “dual-use”
apps, designed for a benign purpose and repurposed as spyware,
and “overt” apps, which hide their presence on the target device and
often have more dangerous capabilities than dual-use apps. Some
are explicitly marketed for catching an unfaithful partner or spouse,
although this messaging recently appears to have become more sub-
tle or disappeared entirely [41, 42]. Since even overt applications are
now advertised for legal or legitimate uses such as parental control,
it must be noted that we have no way to tell whether Trufflehunter
is observing stalkerware used in the context of IPV, or stalkerware
installed for other reasons.

In the context of IPV, previous research has taken a clinical ap-
proach to studying stalkerware, and has uncovered little evidence
of the use of overt applications. Most digital surveillance previ-
ously uncovered appears to be facilitated by either dual-use apps or
misconfigured settings [13, 28].

However, a clinical approach has limited scalability: the researchers
were able to speak with fewer than fifty IPV survivors. In contrast
with clinical studies, a quick Google search reveals dozens of overt
stalkerware applications, as well as anecdotes and articles describ-
ing what targets of the overt applications’ capabilities have gone
through. The contrast begs the question: how many people have overt
stalkerware installed on their phones? Even if overt stalkerware is
not the most common vector for digital stalking, it is a dangerous
phenomenon worth understanding in more detail.

Our application user measurement technique is uniquely suited
to measuring stalkerware because it leverages the knowledge that
some apps make requests automatically at well-defined intervals.
Stalkerware apps often exhibit this behavior, without requiring any

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

0 250 500 750 1000 1250 1500 1750
Maximum targets observed per TTL epoch

Zoemob
Senior Safety App

Life360
ACR

Find My Kids
Geozilla FGL
Sap4Mobile

HelloSpy
SMS Tracker

PhoneMonitor
Hoverwatch

TheTruthSpy
mSpy

Spyzie
Call/SMS Tracker
Track My Phones

Flexispy
Spy Phone App

SpyMyFone
WebWatcher

Spy2Mobile
MTF

AppType
Overt Apps
Dual-Use Apps

Resolver
GPDNS
Quad9
Cloudflare
OpenDNS

Figure 10: Stalkerware targets visible per TTL epoch

0 10 20 30 40
Maximum requests per TTL epoch

SpyMyFone
Spy2Mobile

WebWatcher
SpyPhoneApp

MSpy
Flexispy

TheTruthSpy
MTF

GPDNS
Quad9
Cloudflare
OpenDNS

Figure 11: Web requests per TTL epoch for stalkerware dash-
boards. Note that not all stalkerware apps have dashboards.

user interaction. In fact, since they are installed on devices whose
owners are unaware of their presence, this behavior is a necessity.

6.2.1 Profiling Stalkerware Applications. To model stalkerware
request behavior, we examined the network traces of approximately
60 stalkerware apps on an Android Pixel phone. We found these
stalkerware apps using a combination of searching the Google Play
store and Google search results: previous work [13] indicates that
spyware is surprisingly easy to find this way. We discarded around
40 apps that did not function correctly or were not usable as spyware.
The remainder are a combination of dual-use and overt apps.

We then installed each application one at a time and recorded
its network trace for a few hours. During each recording, we occa-
sionally sent messages, made calls, installed apps, and simulated
other behavior that the stalkerware claimed to track. We identified
most of the domains that each app requested in this manner. We then
installed all of the applications at once and recorded the phone’s
network activity during specific activities, such as sending a text,
making a phone call, or rebooting the phone. The goal was to de-
termine if any apps reacted to the target’s activity on the phone by
making network requests, or if the apps simply send information at

regular intervals regardless of target behavior. We found that most
apps did not appear to respond to target actions, with the exception
of reboots: most apps made network requests directly after the phone
was restarted. Finally, we recorded the phone’s network traffic for
a total of eighteen days, while attempting to use the phone like a
normal device. Using this data, we determined which apps make
requests at regular intervals. For the apps that do not, we make the
most conservative assumption: that they make requests at most once
per TTL epoch.

We make the simplifying assumption that targets have one device
with stalkerware installed. We also assume that an individual device
will not access more than one PoP or more than one resolver during
a single TTL epoch. Therefore, for each domain used by an app, we
first calculate the sum of all the caches we observed to be filled with
that domain across all PoPs and resolvers for every TTL epoch. We
then divide this sum of filled caches for every TTL epoch by the app
request rate we calculated with our network traces. This yields the
number of targets visible during each epoch. Finally, we calculate
the maximum number of targets ever visible during one TTL epoch
as a lower-bounded estimate of how many targets of stalkerware
exist in the U.S.

6.2.2 Estimates. Figure 10 shows the maximum targets ever ob-
served in a single epoch for 22 stalkerware apps between March 6,
2020, and May 29, 2020. Overt apps are shown as solid colors and
dual-use apps have hatches. Each app is broken down by the resolver
at which the targets were observed. Most targets are observed in
GPDNS’s caches, since GPDNS has the most caches per PoP. Inter-
estingly, during the particular TTL epoch when the maximum users
were observed, some apps, such as WebWatcher, SpyPhoneApp, and
others, were not present in Quad9’s caches. We speculate that this
could be due to Quad9’s use of Unbound resolver software, which
prevents Trufflehunter from observing some filled caches.

We estimate that a minimum of 5,758 people are targeted by
overt stalkerware in the U.S. today. The most popular overt app,
Mobile Tracker Free, accounts for a third of observed targets (1,750).
In contrast to most subscription-based overt stalkerware, Mobile

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

Ma
y-
13

Ma
y-
15

Ma
y-
17

Ma
y-
19

Ma
y-
21

Ma
y-
23

Ma
y-
25

Ma
y-
27

Ma
y-
29

0

50

100

150

200

250

300

Re
qu

es
ts
/D
ay

OpenDNS

Ma
y-
13

Ma
y-
15

Ma
y-
17

Ma
y-
19

Ma
y-
21

Ma
y-
23

Ma
y-
25

Ma
y-
27

Ma
y-
29

0

1000

2000

3000

4000

5000

6000

Google Public DNS

evolutionwriters.com expertwriting.org handmadewriting.com powerwritings.com www.paperhelp.org

Figure 12: Web requests per day of contract cheating services

Tracker Free and Spy2Mobile (the second most frequently observed
app) are both free, which likely accounts for their high popularity.
Additionally, Spy2Mobile is one of only two overt apps we studied
that is available on the Google Play store (the other is Call/SMS
Tracker). All other overt apps must be downloaded from third-party
websites.

We also used Trufflehunter to observe web requests for the dash-
board websites that attackers use to view targets’ information. Be-
cause web requests made by attackers do not exhibit periodic be-
havior, Figure 11 shows the maximum number of web requests ever
visible during one epoch. We note that the popularity of app dash-
boards does not always correspond to the prevalence of the app,
likely due to the features the app provides. For example, abusers
might check Spy2Mobile’s dashboard less frequently than MTF’s
because Spy2Mobile primarily provides location data, while MTF
also records messages, phone calls, and more.

6.3 Contract Cheating Services
We next use Trufflehunter to examine users visiting “contract cheat-
ing” domains. Contract cheating services offer to complete students’
homework assignments, projects, and in some cases entire classes
for a fee. It is an increasingly popular method of cheating since it
does not rely on plagiarism and is therefore more difficult to de-
tect [15, 69]. The specific services provided include essay-writing
services, “agency sites” that use auction models to match students to
contractors who can complete assignments, copy-edit services, and
more [38]. Since cheating is by its nature something that students are
reluctant to admit to, it is difficult to measure using indirect means
such as surveys.

We identified a set of ten popular contract cheating websites based
upon search results and online discussions and recommendations.
From May 3–29, 2020, we used Trufflehunter to track activity to
these sites. Figure 12 shows the daily sum of web requests observed
over time across the two resolvers with the most activity. Interest-
ingly, we note a decrease in some services towards the end of May,

Ma
y-
14

Ma
y-
16

Ma
y-
18

Ma
y-
20

Ma
y-
22

Ma
y-
24

Ma
y-
26

Ma
y-
28

0

20

40

60

80
Re

qu
es
ts
/D
ay

dropbox-com.com ggoogle.in go-uberfreight.com googlw.it you5ube.com

Figure 13: Web requests per day for typo-squatting domains on
GPDNS

perhaps because schools and universities that use semester systems
were transitioning to summer break.

6.4 Typo Squatting Domains
Finally, we use Trufflehunter to estimate users visiting typo-squatting
domains. Typo-squatting is the abusive practice of registering a
domain similar to a popular domain so that users will be tricked into
mistyping or clicking on it. Some forms of typo-squatting simply
seek to show unwanted advertisements to the user, which is irritating
but not generally harmful. Others distribute malware, or imitate
children’s websites and redirect to adult websites, or trick users into
entering credentials which are then stolen [70].

To find typo-squatting domains that were likely to be active, we
first tried to resolve the typo squatting domains listed in Tian et al.’s
study [68]. We attempted to remove domains that did not appear
malicious at the time of the study, such as paypal-cash.com, which
is now an apparently legitimate domain owned by PayPal. Figure 13
shows the snooping results for the five most-accessed typo-squatting
domains from May 3–29, 2020, on GPDNS, the resolver that showed

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

the most activity. Given that these domains were in use two years
before our study, it would not be surprising if all were on blacklists.
We found that some domains were still surprisingly active, with
dozens of resolutions per day.

We also looked for several domains used by hack-for-hire services
in spear phishing attempts [46]. Of all of these, 18 still resolved to
an IP address as of May 2020, and only one made an infrequent
appearance in any resolver’s cache.

7 RELATED WORK
Various aspects of recursive DNS resolver behavior, including caching [32,
33, 48], client proximity [6, 14, 44, 53], and vulnerabilities [29,
63, 66] have been studied. We focus our attention on studies that
investigated caching behavior in public DNS resolvers and prior
applications of cache snooping.

With public DNS recursive resolvers increasing in popularity [11],
their caching and load-balancing behavior has received attention
from the community. Callejo et. al. observed that public DNS re-
solvers including GPDNS, OpenDNS, Level3, and Cloudflare are
responsible for 13% of the DNS requests in their online-advertising-
based measurement campaign [11]. Public DNS resolvers use any-
cast [49] and can be present at multiple PoPs [17]. Some studies
have observed that public resolvers have multiple caches for load-
balancing [36, 64], which can be fragmented [2, 49, 71]. While these
studies have investigated different aspects of the caching behavior
of public resolvers, ours is the first to enable DNS cache snooping
on them.

Several studies have used DNS cache snooping to measure various
domains. Wills et al. used this technique in 2003 to measure the
popularity of various web domains [72] and in 2008, two other
studies used DNS cache snooping for similar purposes [4, 57]. Rajab
et al. measured the relative footprints of various botnet domains [1,
58], and Kührer et al. used cache snooping to analyze which “open”
resolvers found in an Internet-wide scan were actively providing
service to clients [34]. All these studies assume that the resolvers they
are probing have a single cache; our work has demonstrated that this
assumption is no longer valid, especially for public DNS resolvers.
Since these efforts did not focus upon potentially sensitive domains,
they were able to probe the caches of arbitrary “open” resolvers.
However, recent work has shown that millions of open resolvers are
misconfigured residential devices that are unintentionally open [5,
16, 34, 62, 63], and are therefore not suitable for use in our study.

More recently, Farnan et al. used cache snooping on recursive
resolvers belonging to VPN providers to analyze which domains
are accessed through VPNs [20]. They target recursive resolvers be-
longing to VPN providers, which do not appear to have the complex
caching architectures we observed in public resolvers.

Our work is the first to successfully demonstrate that public DNS
resolvers can yield meaningful estimates of active users in a privacy-
conscious way due to their underlying caching properties.

8 ETHICS
Since DNS cache snooping can reveal if a domain was recently
accessed by the users of a DNS resolver, some ethical questions
arise that we address below.

First, if a DNS resolver is used only by a few users, cache snoop-
ing may identify with fine granularity which domains these users
accessed, impinging upon their privacy [25]. We avoid this issue
by targeting our measurements only at large, public resolvers with
thousands of users. Doing so allows us to measure how often anony-
mous users access rare domains and yet learn little that could aid in
deanonymizing individual users. We refrain from probing caches of
other “open” resolvers, since these are often misconfigured residen-
tial devices that may be serving only a few users [62, 63].

Second, domain names could contain user identifiers that poten-
tially enable identifying a user’s activity in a resolver. For example,
a service may embed usernames into a unique service subdomain
that may be periodically requested from a user’s device. While a
potential side channel for a resolver of any size, in our work we do
not probe any domain that contains user-specific identifiers, and no
individual user’s information is exposed by our measurements.

Third, some users may be motivated to use large public resolvers
because of the increased resilience to cache snooping they seemingly
provide. Since the technique we describe in this paper identifies a
side channel using the combination of rare applications and the
caching architecture of large resolvers, we will be notifying the
public resolvers of our findings.

Finally, the applications that we use in our case studies are by their
nature sensitive. Since we are not able to identify individual users,
though, we cannot associate the use of sensitive applications with
any particular user. At most we can identify that these applications
are in use at the coarse granularity of a large geographic region
served by a PoP.

9 CONCLUSION
This paper introduces Trufflehunter, a privacy-preserving DNS cache
snooping that models the caching architecture of public resolvers
to provide lower-bounded estimates of cache occupancy. Applied
to four large public DNS resolvers, Trufflehunter achieves a 10% to
-50% error. Trufflehunter may be applicable to more distributed pub-
lic DNS resolvers than the four we studied in the paper. Indeed, we
observed the same caching strategy in Quad9 and OpenDNS. Truffle-
hunter provides lower-bounded estimates of domain usage, therefore
it is best suited for relative comparisons of rare domain popularity,
rather than for estimating an absolute number of users per domain.
To demonstrate this capability, we showed how to estimate the preva-
lence of rare and sensitive applications on the Internet, which are
otherwise difficult to measure from a third-party perspective.

ACKNOWLEDGEMENTS
We thank our shepherd John Heidemann and the anonymous re-
viewers for their insightful suggestions and feedback. We also thank
Young Hyun and KC Claffy at CAIDA for providing access and
support for their ARK infrastructure. We are also grateful to Cindy
Moore for managing software and systems used in this project. This
work was supported in part by National Science Foundation grants
CNS-1629973 and CNS-1705050, Department of Homeland Secu-
rity grant AFRL-FA8750-18-2-0087, the Irwin Mark and Joan Klein
Jacobs Chair in Information and Computer Science, and generous
support from Facebook and Google.

IMC ’20, October 27–29, 2020, Virtual Event, USA Randall, Liu, Akiwate, Padmanabhan, Voelker, Savage, and Schulman

REFERENCES
[1] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. 2006. A

Multifaceted Approach to Understanding the Botnet Phenomenon. In Proc. ACM
Internet Measurement Conference (IMC).

[2] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig.
2010. Comparing DNS Resolvers in the Wild. In Proc. ACM Internet Measurement
Conference (IMC).

[3] Ron Aitchison. 2011. Pro Dns and BIND 10. Apress.
[4] Hüseyin Akcan, Torsten Suel, and Hervé Brönnimann. 2008. Geographic Web

Usage Estimation By Monitoring DNS Caches. In Proc. International Workshop
on Location and the Web (LOCWEB).

[5] Rami Al-Dalky, Michael Rabinovich, and Kyle Schomp. 2019. A Look at the ECS
Behavior of DNS Resolvers. In Proc. ACM Internet Measurement Conference
(IMC).

[6] Rami Al-Dalky and Kyle Schomp. 2018. Characterization of Collaborative Res-
olution in Recursive DNS Resolvers. In Proc. Passive and Active Measurement
Conference (PAM).

[7] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael B.
Abu-Ghazaleh. 2019. Collaborative Client-Side DNS Cache Poisoning Attack. In
Proc. IEEE Conference on Computer Communications (INFOCOM).

[8] Marc Blanchet and Lars-Johan Liman. 2015. RFC 7720: DNS Root Name Service
Protocol and Deployment Requirements.

[9] CAIDA. 2020. Archipelago (Ark) Measurement Infrastructure. https://www.caida.
org/projects/ark/

[10] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proc. ACM
Internet Measurement Conference (IMC).

[11] Patricia Callejo, Rubén Cuevas, Narseo Vallina-Rodriguez, and Ángel Cuevas.
2019. Measuring the Global Recursive DNS Infrastructure: A View From the
Edge. In Proc. IEEE Access.

[12] Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. 2008.
A Day at the Root of the Internet. ACM Computer Communication Review (CCR)
(2008), 41–46.

[13] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad, Sam Havron, Jackeline
Palmer, Diana Freed, Karen Levy, Nicola Dell, Damien McCoy, and Thomas
Ristenpart. 2018. The Spyware Used in Intimate Partner Violence. In Proc. IEEE
Symposium on Security and Privacy (SP). 441–458.

[14] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. 2015. End-User Map-
ping: Next Generation Request Routing for Content Delivery. In Proc. ACM
SIGCOMM.

[15] Robert Clarke and Thomas Lancaster. 2006. Eliminating the successor to pla-
giarism? Identifying the usage of contract cheating sites. In Proc. International
Plagiarism Conference.

[16] David Dagon, Niels Provos, Christopher P. Lee, and Wenke Lee. 2008. Corrupted
DNS Resolution Paths: The Rise of a Malicious Resolution Authority. In Proc.
Network and Distributed Systems Security (NDSS) Symposium.

[17] Wouter B. de Vries, Roland van Rijswijk-Deij, Pieter-Tjerk de Boer, and Aiko
Pras. 2019. Passive Observations of a Large DNS Service: 2.5 Years in the Life of
Google. (2019), 190–200.

[18] Selena Deckelmann. 2020. Firefox continues push to bring DNS over HTTPS by
default for US users. https://blog.mozilla.org/blog/2020/02/25/firefox-continues-
push-to-bring-dns-over-https-by-default-for-us-users/

[19] Frank Denis. 2012. Performance: How Long Does a Second Actually Last?
https://dzone.com/articles/performance-how-long-does

[20] Oliver Farnan, Alexander Darer, and Joss Wright. 2019. Analysing Censorship
Circumvention with VPNs Via DNS Cache Snooping. In Proc. IEEE Security and
Privacy Workshops (SPW).

[21] Rom Feria. [n.d.]. Hiding from Data Collectors. https://rom.feria.name/hiding-
from-data-collectors-9485dcb93b22.

[22] Diana Freed, Sam Havron, Emily Tseng, Andrea Gallardo, Rahul Chatterjee,
Thomas Ristenpart, and Nicola Dell. 2019. “Is my phone hacked?” Analyz-
ing Clinical Computer Security Interventions with Survivors of Intimate Partner
Violence. In Proc. ACM Conference on Human-Computer Interaction.

[23] Google. 2018. Google Public DNS: Performance Benefits. https://developers.
google.com/speed/public-dns/docs/performance?hl=zh-cn

[24] Google. 2020. Google Public DNS FAQ. https://developers.google.com/speed/
public-dns/faq#isp

[25] Luis Grangeia. 2004. DNS Cache Snooping or Snooping the Cache for Fun and
Profit. Technical Report. Securi Team-Beyond Security.

[26] Yunhong Gu. 2014. Google Public DNS and Location-Sensitive DNS Re-
sponses. https://webmasters.googleblog.com/2014/12/google-public-dns-and-
location.html.

[27] Ólafur Guðmundsson. [n.d.]. Introducing DNS Resolver, 1.1.1.1 (not a joke).
https://blog.cloudflare.com/dns-resolver-1-1-1-1/.

[28] Sam Havron, Diana Freed, Rahul Chatterjee, Damon McCoy, Nicola Dell, and
Thomas Ristenpart. 2019. Clinical Computer Security for Victims of Intimate
Partner Violence. In Proc. USENIX Security.

[29] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,
or: one-domain-to-rule-them-all.org. In IEEE Conference on Communications and
Network Security (CNS).

[30] Michael Horowitz. 2007. OpenDNS provides added safety for free. https://www.
cnet.com/news/opendns-provides-added-safety-for-free/

[31] joenathanone. 2017. Hacker News forum: Quad9 location request. https://news.
ycombinator.com/item?id=15712940

[32] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. 2003. Modelling TTL-
based Internet Caches. In Proc. IEEE Conference on Computer Communications
(INFOCOM).

[33] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2002. DNS
Performance and the Effectiveness of Caching. In Proc. IEEE/ACM Transactions
on Networking.

[34] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten
Holz. 2015. Going Wild: Large-Scale Classification of Open DNS Resolvers. In
Proc. ACM Internet Measurement Conference (IMC).

[35] Amit Klein and Benny Pinkas. 2019. DNS Cache-Based User Tracking. In Proc.
Network and Distributed Systems Security (NDSS) Symposium.

[36] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Counting in the Dark:
DNS Caches Discovery and Enumeration in the Internet. In Proc. IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[37] Ignat Korchagin and Lennart Poettering. 2019. Git commit: resolved: use Cloud-
flare public DNS server as a default fallback. https://github.com/systemd/systemd/
commit/def3c7c791e7918a889c2b93dee039ab77b3a523

[38] Thomas Lancaster and Robert Clarke. 2015. Contract Cheating: The Outsourcing
of Assessed Student Work.

[39] Abner Li. 2018. Google’s Public DNS turns ‘8.8.8.8 years old,’ teases ‘exciting’
future announcements. https://9to5google.com/2018/08/13/google-public-dns-8-
8-8-8-years-future-announcements/.

[40] Owen Lystrup. 2020. OpenDNS Enforces Threat Intelligence at the Speed of
Automatic. https://umbrella.cisco.com/blog/opendns-custom-api-operationalizes-
threat-intelligence

[41] Internet Archive Wayback Machine. 2018. Mobile Spy App for Personal Catch
Cheating Spouses. https://web.archive.org/web/20180216084527/http://hellospy.
com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US

[42] Internet Archive Wayback Machine. 2020. Catch Cheating Spouses With TheTruth-
Spy. https://web.archive.org/web/20200523174940/https://thetruthspy.com/catch-
cheating-spouses-with-thetruthspy/

[43] Linux Programmer’s Manual. 2020. GetHostByName – Linux manual page.
https://www.man7.org/linux/man-pages/man3/gethostbyname r.3.html

[44] Zhuoqing Morley Mao, Charles D. Cranor, Fred Douglis, Michael Rabinovich,
Oliver Spatscheck, and Jia Wang. 2002. A Precise and Efficient Evaluation of the
Proximity Between Web Clients and Their Local DNS Servers. In Proc. USENIX
Annual Technical Conference.

[45] Xavier Mertens. 2017. Systemd Could Fallback to Google DNS? https://isc.sans.
edu/forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/

[46] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and Kurt
Thomas. 2019. Hack for Hire: Exploring the Emerging Market for Account
Hijacking. In Proc. International World Wide Web Conference (WWW).

[47] Paul V. Mockapetris. 2020. Domain Names - Implementation and Specification.
https://tools.ietf.org/html/rfc1035

[48] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes
Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-to-Live. In Proc.
ACM Internet Measurement Conference (IMC).

[49] Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt,
and Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses
During DDoS. In Proc. ACM Internet Measurement Conference (IMC).

[50] Yu Ng. 2014. In the World of DNS, Cache is King. https://blog.catchpoint.com/
2014/07/15/world-dns-cache-king/

[51] NLNet Labs. 2020. Unbound configuration file. https://nlnetlabs.nl/
documentation/unbound/unbound.conf/

[52] OpenDNS. 2015. FAQ: Why did Cisco buy OpenDNS? https://www.opendns.
com/cisco-opendns/

[53] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Bustamante. 2012.
Content Delivery and the Natural Evolution of DNS: Remote DNS Trends, Per-
formance Issues and Alternative Solutions. In Proc. ACM Internet Measurement
Conference (IMC).

[54] Andreas Pitsillidis, Chris Kanich, Geoffrey M. Voelker, Kirill Levchenko, and
Stefan Savage. 2012. Taster’s Choice: A Comparative Analysis of Spam Feeds. In
Proc. ACM Internet Measurement Conference (IMC).

[55] Quad9. 2018. Quad9 Enabled Across New York City Guest and Public WiFi. https:
//www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/

[56] Quad9. 2020. Quad9: Internet Security And Privacy In a Few Easy Steps. https:
//www.quad9.net

[57] Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, and Niels Provos. 2008.
Peeking Through the Cloud: DNS-Based Estimation and Its Applications. In Proc.
Applied Cryptography and Network Security Conference (ACNS).

https://www.caida.org/projects/ark/
https://www.caida.org/projects/ark/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://dzone.com/articles/performance-how-long-does
https://rom.feria.name/hiding-from-data-collectors-9485dcb93b22
https://rom.feria.name/hiding-from-data-collectors-9485dcb93b22
https://developers.google.com/speed/public-dns/docs/performance?hl=zh-cn
https://developers.google.com/speed/public-dns/docs/performance?hl=zh-cn
https://developers.google.com/speed/public-dns/faq#isp
https://developers.google.com/speed/public-dns/faq#isp
https://webmasters.googleblog.com/2014/12/google-public-dns-and-location.html
https://webmasters.googleblog.com/2014/12/google-public-dns-and-location.html
https://blog.cloudflare.com/dns-resolver-1-1-1-1/
https://www.cnet.com/news/opendns-provides-added-safety-for-free/
https://www.cnet.com/news/opendns-provides-added-safety-for-free/
https://news.ycombinator.com/item?id=15712940
https://news.ycombinator.com/item?id=15712940
https://github.com/systemd/systemd/commit/def3c7c791e7918a889c2b93dee039ab77b3a523
https://github.com/systemd/systemd/commit/def3c7c791e7918a889c2b93dee039ab77b3a523
https://9to5google.com/2018/08/13/google-public-dns-8-8-8-8-years-future-announcements/
https://9to5google.com/2018/08/13/google-public-dns-8-8-8-8-years-future-announcements/
https://umbrella.cisco.com/blog/opendns-custom-api-operationalizes-threat-intelligence
https://umbrella.cisco.com/blog/opendns-custom-api-operationalizes-threat-intelligence
https://web.archive.org/web/20180216084527/http://hellospy.com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US
https://web.archive.org/web/20180216084527/http://hellospy.com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US
https://web.archive.org/web/20200523174940/https://thetruthspy.com/catch-cheating-spouses-with-thetruthspy/
https://web.archive.org/web/20200523174940/https://thetruthspy.com/catch-cheating-spouses-with-thetruthspy/
https://www.man7.org/linux/man-pages/man3/gethostbyname_r.3.html
https://isc.sans.edu/forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/
https://isc.sans.edu/forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/
https://tools.ietf.org/html/rfc1035
https://blog.catchpoint.com/2014/07/15/world-dns-cache-king/
https://blog.catchpoint.com/2014/07/15/world-dns-cache-king/
https://nlnetlabs.nl/documentation/unbound/unbound.conf/
https://nlnetlabs.nl/documentation/unbound/unbound.conf/
https://www.opendns.com/cisco-opendns/
https://www.opendns.com/cisco-opendns/
https://www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/
https://www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/
https://www.quad9.net
https://www.quad9.net

Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers IMC ’20, October 27–29, 2020, Virtual Event, USA

[58] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. 2007. My
Botnet Is Bigger Than Yours (Maybe, Better Than Yours): Why Size Estimates
Remain Challenging. In Proc. USENIX Workshop on Hot Topics in Understanding
Botnets.

[59] Tarcan Turgut Rohprimardho and Roland M. van Rijswijk-Deij. 2015. Peeling the
Google DNS Onion. Technical Report.

[60] root-servers.org. 2020. Root Server Technical Operations Association homepage.
https://root-servers.org/

[61] Chris Scharff. 2018. Have problems with 1.1.1.1? *Read Me First*. https://
community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me-first/15902

[62] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
Measuring the Client-Side DNS Infrastructure. In Proc. ACM Internet Measure-
ment Conference (IMC).

[63] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2014.
Assessing DNS Vulnerability to Record Injection. In Proc. Passive and Active
Measurement Conference (PAM).

[64] Lior Shafir, Yehuda Afek, Anat Bremler-Barr, Neta Peleg, and Matan Sabag. 2019.
DNS Negative Caching in the Wild. In Proc. ACM SIGCOMM Conference Posters
and Demos.

[65] Redhat Customer Solutions. 2017. systemd-resolved falls back to Google public
DNS servers. https://access.redhat.com/solutions/3083631

[66] Sooel Son and Vitaly Shmatikov. 2010. The Hitchhiker’s Guide to DNS Cache
Poisoning. In Proc. International Conference on Security and Privacy in Commu-
nication Systems (SECURECOMM).

[67] RIPE NCC Staff. 2015. Ripe Atlas: A Global Internet Measurement Network.
Internet Protocol Journal (2015).

[68] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang Wang. 2018. Needle
in a Haystack: Tracking Down Elite Phishing Domains in the Wild. In Proc. ACM
Internet Measurement Conference (IMC).

[69] Mary Walker and Cynthia Townley. 2012. Contract cheating: a new challenge for
academic honesty? Journal of Academic Ethics 10, 1 (March 2012), 27–44.

[70] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels.
2006. Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting.
In Proc. USENIX Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI).

[71] Nicholas Weaver, Christian Kreibich, Boris Nechaev, and Vern Paxson. 2011.
Implications of Netalyzr’s DNS Measurements. In Proc. Workshop on Securing
and Trusting Internet Names (SATIN).

[72] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. 2003. Inferring Relative
Popularity of Internet Applications by Actively Querying DNS Caches. In Proc.
ACM Internet Measurement Conference (IMC).

https://root-servers.org/
https://community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me- first/15902
https://community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me- first/15902
https://access.redhat.com/solutions/3083631

	Abstract
	1 Introduction
	2 Background
	2.1 A variety of users query public resolvers
	2.2 Complex caching can reveal many active users
	2.3 Public DNS cache snooping challenges

	3 Snooping Public DNS Caches
	3.1 OpenDNS and Quad9
	3.2 Cloudflare DNS
	3.3 Google Public DNS (GPDNS)

	4 Methodology
	4.1 Probing multiple PoPs
	4.2 Finding unique TTL lines using cache probing

	5 Evaluation
	5.1 Simulating users with RIPE Atlas probes
	5.2 Measuring cache fills from Ark nodes

	6 Case Studies
	6.1 Limits on observed users
	6.2 Stalkerware
	6.3 Contract Cheating Services
	6.4 Typo Squatting Domains

	7 Related Work
	8 Ethics
	9 Conclusion
	References

