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Abstract Iron is a key micronutrient controlling phytoplankton growth in vast regions of the

global ocean. Despite its importance, uncertainties remain high regarding external iron source fluxes
and internal cycling on a global scale. In this study, we used a global dissolved iron data set, including
GEOTRACES measurements, to constrain source and scavenging fluxes in the marine iron component
of a global ocean biogeochemical model. Our model simulations tested three key uncertainties: source
inputs of atmospheric soluble iron deposition (varying from 1.4 to 3.4 Gmol/yr), reductive sedimentary
iron release (14-117 Gmol/yr), and compared a variable ligand parameterization to a constant
distribution. In each simulation, scavenging rates were tuned to reproduce the observed global mean
iron inventory for consistency. The variable ligand parameterization improved the global model-data
misfit the most, suggesting that heterotrophic bacteria are an important source of ligands to the ocean.
Model simulations containing high source fluxes of atmospheric soluble iron deposition (3.4 Gmol/

yr) and reductive sedimentary iron release (114 Gmol/yr) further improved the model most notably in
the surface ocean. High scavenging rates were then required to maintain the iron inventory resulting in
relatively short surface and global ocean residence times of 0.83 and 7.5 years, respectively. The model
simulates a tight spatial coupling between source inputs and scavenging rates, which may be too strong
due to underrepresented ligands near source inputs, contributing to large uncertainties when constraining
individual fluxes with dissolved iron concentrations. Model biases remain high and are discussed to help
improve global marine iron cycle models.

1. Introduction

Iron is a critical micronutrient limiting primary productivity in vast ocean regions (Boyd & Ellwood, 2010;
Tagliabue et al., 2017). Iron limitation is responsible for the development of so-called High Nitrate Low
Chlorophyll regions of the Southern Ocean, Subarctic North Pacific, Subarctic North Atlantic, and Eastern
Equatorial Pacific (Moore et al., 2013). Since dissolved iron (DFe) in the ocean exists in the picomolar (pM)
to nanomolar (nM) concentration range, historical measurements with higher detection limits and contam-
ination issues have hindered a robust global understanding of the marine iron cycle compared to macronu-
trients (Bruland et al., 2014). However, over the past two decades, in large part due to the GEOTRACES pro-
gram, considerable progress has been made and reliable intercomparable iron measurements have become
available that permit a more synoptic view of the global marine iron cycle (Schlitzer et al., 2018).

The increasing number of robust iron measurements has sparked recent modeling efforts. However, few ob-
servational constraints are provided on a global scale, and the degree of complexity and assumptions on the
mechanistic processes implemented in global marine iron models have varied dramatically (e.g., Tagliabue
et al., 2016). For example, there is no consensus on the rates of key source fluxes to the ocean, particularly
from atmospheric deposition (Anderson et al., 2016) and sedimentary release (e.g., Dale et al., 2015; Elrod
et al., 2004) that vary between 1.4-30 Gmol yr~* and 0-194 Gmol yr', respectively, in state-of-the-art ma-
rine iron models (Tagliabue et al., 2016). Since uncertainties associated with scavenging and removal of DFe
are also high, global marine iron models can tune scavenging rates to reproduce the global iron inventory
with large ranges of sources fluxes (Frants et al., 2016; Pasquier & Holzer, 2017).
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Another key aspect of marine iron models is the representation of ligands that organically bind DFe and
thereby prevent it from being scavenged to sinking particulates. Some models still prescribe a globally con-
stant ligand concentration typically at 1 nM, while others account for ligand distributions via a parameteri-
zation or directly simulating ligands as a prognostic tracer. Ligands are thought to be produced by microbes
as a by-product during the production of organic matter (Gledhill & Buck, 2012), including by heterotrophic
siderophores that flourish when systems become iron stressed (Bundy et al., 2018). This has led modelers
to predict ligand concentrations by assuming they are produced during the production of organic matter
(e.g., Volker & Tagliabue, 2015) or by prescribing a relationship to other organic tracers such as dissolved
organic matter (DOM) and apparent oxygen utilization (AOU) (e.g., Misumi et al., 2013; Pham & Ito, 2018;
Tagliabue & Volker, 2011).

The uncertainties associated with external source fluxes and scavenging represent key gaps in understand-
ing the global marine iron cycle. This hampers accurate estimates of the DFe budget, residence time and,
consequently, its sensitivity to environmental perturbations and climate change. While the rapidly increas-
ing amount of DFe measurements is improving our knowledge of the distribution and inventory of dis-
solved iron in the ocean, constraining external fluxes has proved to be more difficult. As a result, the range
of residence times estimated by the current global marine iron cycle models ranges from less than a decade
to multiple centuries (Tagliabue et al., 2016), which limits our ability to confidently predict the impact of
changes to the marine iron cycle on productivity in a future ocean. Observational estimates fall within a
similar range (Johnson et al., 1997), noting that more recent studies estimate much shorter residence times
in the upper ocean (~10 days-4 years) (Croot et al., 2004; Sarthou et al., 2003) depending on the local dy-
namics, iron pools considered, and source inputs in different regions (Black et al., 2020).

In this study, we use a global marine DFe data set to constrain the iron cycle fluxes in a global marine bioge-
ochemical model. We analyze model sensitivity simulations that focus on three key uncertainties: varying
source fluxes of (a) atmospheric soluble iron deposition and (b) reductive sedimentary iron release, as well
as the role of a (c¢) variable ligand distribution on DFe distribution and scavenging rates. The resulting DFe
concentrations in each model simulation are evaluated against observations to determine the most realistic
marine iron cycle fluxes among the model scenarios.

2. Model Description

We used the UVic Earth System Climate Model (Weaver et al., 2001) version 2.9 (Eby et al., 2009). In the
following section, we provide a general overview of the model components then focus on improvements
made to the marine iron cycle in this study, whereas other modifications applied to all model simulations
are described in the supplementary information.

2.1. Physical Model

The physical ocean-atmosphere-sea ice model includes a three-dimensional (1.8° X 3.6°, 19 vertical levels)
general circulation model of the ocean (Modular Ocean Model 2) with parameterizations such as diffu-
sive mixing along and across isopycnals and eddy-induced tracer advection (Gent & McWilliams, 1990).
The physical configuration is based on Somes et al. (2017) and includes parameterizations such as com-
putation of tidally induced diapycnal mixing over rough topography on the sub-grid scale (Schmittner &
Egbert, 2014), anisotropic viscosity (Large et al., 2001; Somes et al., 2010), and enhanced zonal isopycnal
mixing schemes in the tropics to better represent zonal equatorial undercurrents (Getzlaff & Dietze, 2013).
A two-dimensional, single level energy-moisture balance atmosphere and a dynamic-thermodynamic sea
ice model are used, forced with prescribed monthly climatological winds (Kalnay et al., 1996) and constant
ice sheets (Peltier, 2004).

2.2. Marine Biogeochemical Model

The updated marine ecosystem-biogeochemical model coupled within the ocean circulation model is based
on the Model of Ocean Biogeochemistry and Isotopes (MOBI), version 2.0. Briefly, MOBI includes three
prognostic inorganic nutrient tracers (nitrate [NOs], phosphate [PO,], iron [DFe]) and two organic phases
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Figure 1. Schematic of the marine iron (Fe) model. See Section 2.3 for a full description.

(dissolved organic nitrogen [DON] and dissolved organic phosphorus [DOP]), three phytoplankton (or-
dinary, N,-fixing diazotrophs, calcifying coccolithophores), one zooplankton, sinking detritus (i.e., dead
particulate organic matter [POM]), as well as dissolved oxygen (O,), dissolved inorganic carbon, alkalin-
ity, and A"C (Figure S1). It combines latest features from previous studies focusing on the nitrogen cycle
(Somes & Oschlies, 2015), iron cycle (Muglia et al., 2017), and carbon chemistry (Kvale et al., 2015), and
is also constrained by isotope systems of *C and "°N (Schmittner & Somes, 2016) (not shown here). Our
model experiments were simulated for over 5,000 years under pre-industrial boundary conditions as they
approached their quasi steady state.

2.3. Marine Iron Cycle Model
2.3.1. Base Configuration

The marine iron model configuration is based on the previous UVic Kiel Marine Biogeochemistry Model
(KMBM) (Nickelsen et al., 2015), including improvements implemented in Muglia et al. (2017) (Figure 1).
The marine iron model includes explicit tracers for DFe and particulate iron (PFe). All phytoplankton grow
with a constant elemental stoichiometry ratio of iron relative to nitrogen. The sources of DFe to the ocean
are atmospheric soluble deposition (Luo et al., 2008), reductive dissolution and release from sediments
(Elrod et al., 2004; Moore & Braucher, 2008), and hydrothermal fluxes (Tagliabue et al., 2010) (Table 2,
Figure 2). The ligand concentration determines the fraction of DFe that is organically complexed and thus
unavailable for scavenging, whereas the remaining free DFe (DFe’) pool can be scavenged to PFe, which
then sinks and remineralizes at the same rate as POM (Table S1). In the base simulation #1, ligands are
prescribed to be globally constant at 1 nM as in previous iterations of the model. This simulation is given
the name SrcLow_LigCon to reflect its differences (i.e., low source inputs of atmospheric soluble deposition
and reductive sedimentary iron release, and constant ligand distribution) from further changes made to the
marine iron model in this study (see subsections below and Tables 1 and 2).

2.3.2. Scavenging

The formulation for scavenging and partitioning of free and organically complexed DFe is based on from
previous model parameterizations (Nickelsen et al., 2015; Galbraith et al., 2010). Scavenging of DFe’ to
PFe occurs via two mechanisms in the model: (a) absorption onto POM following (Honeyman et al., 1988;
Parekh et al., 2004)

Feg,es. = kFe,,,DFe’POC"™, 1)
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Table 1
Marine Iron Model Configurations

Atmospheric soluble Reductive sedimentary Ligand Inorganic scavenging Particle scavenging

# Simulation name deposition release distribution (kFepr,") (kFemgb)
1 SrcLow_LigCon Low® Low! Constant® 0.0069 1.2
2 SrcLow_LigVar Low Low Variable' 0.0052 1.5
3 SedMid_LigVar Low Mid® Variable 0.0069 2.2
4 SedHigh_LigVar Low High" Variable 0.0081 2.9
5 Atm + SedHigh_LigVar High' High Variable 0.0098 2.9

*Inorganic scavenging parameter has units of (mmol Fe/m?)~d~". PParticle scavenging parameter has units of (gC/m®~**® d=". “Luo et al. (2008). “Elrod
et al. (2004) parameterization with low flux rate (see Section 2.3.4). “Constant concentration of 1 nM everywhere in the ocean. Variable ligand parameterization
(see Section 2.3.3). #Dale et al. (2015) parameterization with intermediate maximum flux rate 100 umol Fe m > d ™. "Dale et al. (2015) parameterization with
suggested maximum flux rate 170 umol Fe m~2 d~". Myriokefalitakis et al. (2018).

which is a function of particulate organic carbon (POC), free DFe (DFe’), and the particle scavenging rate
constant (kFe,,); and (b) inorganic scavenging

Fe,s. = kFe,,,DFe”, )

which depends only on DFe’ and the inorganic scavenging rate constant (kFe,,) following the scheme of
Galbraith et al. (2010). This inorganic scavenging term primarily represents colloidal aggregation into larg-
er, sinking particles as well as lithogenic scavenging not explicitly accounted for in our model. Here we use
a non-linear formulation for inorganic scavenging following Galbraith et al. (2010) which was designed to
account for high lithogenic scavenging rates to better reproduce DFe where atmospheric deposition is high
(e.g., tropical and subtropical North Atlantic) (Pham & Ito, 2019; Ye & Volker, 2017). Note that we included a
slightly higher non-linear exponent (2.) compared to Galbraith et al., 2010 (1.5) that better reproduced DFe
in high atmospheric deposition areas in our model. This difference may be related to the fact that Galbraith
et al., 2010 model included higher phytoplankton iron quotas when DFe is high which further reduces DFe
in that model, whereas our model formulation assumes constant iron stoichiometry due to high uncertain-
ties associated with this process. Thus, our model performed better with higher scavenging rates to reduce
the overestimation of DFe in these high deposition areas.

In each model simulation, the scavenging rate constants (kFe,,, kFe,,) were manually tuned so that each
simulation contains a nearly identical global iron inventory with an average global DFe concentration of
0.7 = 0.03 nM (Table 2). The inorganic scavenging rate constant was adjusted until the model reproduced
the mean observed DFe concentration in the ocean interior since it is the dominant form of scavenging
there, whereas the POM scavenging rate constant was adjusted to reproduce declining DFe concentrations
toward the surface ocean (Figure 4). The globally integrated rates of the different scavenging processes are
shown in Table 2, vertically integrated rates from high and low source input simulations in Figure 2, and
total basin-scale averages in Figure 4.

2.3.3. Ligand Parameterization

In the base model configuration, a constant ligand concentration of 1 nM is applied globally, and thus has
LigCon in its model name (see Table 1). However, the distribution of ligands in the real ocean is variable
(e.g., Volker & Tagliabue, 2015). Since iron-binding ligands are thought to be produced during the produc-
tion of organic matter (Gledhill & Buck, 2012), which might explain why DOM and AOU may qualitatively
reflect some observed ligand concentration patterns (Misumi et al., 2013; Pham & Ito, 2018; Tagliabue &
Volker, 2011). However, a first global model-data comparison with ligands simulated as prognostic tracers
found ligand distributions difficult to constrain with available observations and is further complicated by
large variations in binding strength of different types of ligands (Volker & Tagliabue, 2015). Therefore, to
maintain computational efficiency, we pragmatically chose to implement ligand concentrations as a func-
tion of existing tracers rather than include additional prognostic tracers.
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Table 2
Global Marine Iron Cycle Results

Atmospheric Reductive Hydro- Inorganic Particle Global Surface
soluble deposition  sedimentary release thermal scavenging scavenging Dissolved residence residence

# Simulatiosn name (Gmol yr™) (Gmol yr™) (Gmolyr™") (Gmolyr™") (Gmolyr™') iron(nM) time®(yr) time” (yr)
1 SrcLow_LigCon 1.4 15.1 11.4 343 22.5 0.68 33.3 3.12
2 SrcLow_LigVar 1.4 14.6 11.4 30.9 29.3 0.73 35.9 2.56
3 SedMid_LigVar 1.4 68.6 11.4 99.3 55.9 0.73 12.2 1.35
4 SedHigh_LigVar 1.4 117 11.4 159 83.9 0.73 7.66 0.87
5 Atm+ SedHigh LigVar 34 114 11.4 162 81.5 0.71 7.49 0.83

“Since our iron model simulates active (re)cycling between particulates and dissolved forms and thus scavenging does not permanently remove bioavailable
iron from the system, we calculate residence time based on global external fluxes and bulk inventory, that is, global Fe inventory/YSource Inputs. *For surface
residence time, we follow Black et al. (2020) by including the upper 250 m and account for sinking particulate iron out of this layer as the sink flux. Since our
particulate iron pool includes both biogenic (i.e., produced during primary production) and authigenic (i.e., produced by scavenging) iron in the model, this
model residence time is comparable to their mean dissolved, biogenic + authigenic estimate, which ranges from 0.1 to 4 years depending on location.

We implemented a variable ligand parameterization to estimate ligand concentrations based on a function
of DON and AOU:

Lig =aAOU"® + BDON"8, 3)

where a (0.015 nmol ligand/(mmol O, m™)*®) and § (0.21 nmol ligand/(mmol DON m~>)°®) are generic pa-
rameters that determine ligand concentration associated with the tracers AOU and DON, respectively. The
parameters o and {3 were chosen so that the global ligand mean concentration remained at 1 nM, consistent
with simulation #1 with constant ligands, but now reflects changes in their spatial distribution (Figure 3).
Model simulations with this variable ligand parameterization (simulations #2-5, see Table 1) have LigVar
in their respective model simulation name.

Although we follow previous studies for the variable ligand parameterization (Misumi et al., 2013; Pham &
Ito, 2018; Tagliabue & Volker, 2011), a few notable changes have been made in our version. Since AOU can
be negative in the surface ocean due to dissolved oxygen supersaturation, we applied a minimum ligand
concentration of 0.5 nM. Previous ligand parameterizations have also applied minimum ligand concentra-
tions to account for ligands associated with more refractory forms of DOM not explicitly included in our
model (Aumont et al., 2015; Tagliabue & Volker, 2011). We also applied an exponential parameter (0.8) to
the AOU and DON terms, which reduces ligands associated to these tracers particularly when their con-
centrations are high. This helped the model from overestimating DFe concentrations when AOU and DON
concentrations are at their highest concentrations in the model.

2.3.4. Reductive Sedimentary Iron Release Parameterization

The base model version uses reductive sedimentary iron release based on the Moore and Braucher (2008)
implementation of Elrod et al. (2004),

Fesed = }/FESEdCUX’ (4)

where the Fe flux from the sediments (Fe,,) is determined by the sedimentary iron release rate (¥Vpesea =
0.27 umol Fe/mmol C,, m~* d ™), and organic carbon oxidation (C,,) in the sediments. The base model ver-
sion uses the DFe flux rate from Nickelsen et al. (2015) that is lower than suggested by Elrod et al. (2004)
(0.72 umol Fe mmol C,, ' m™ d™). Since this formulation yields lower global rates of this source input
in the model compared with other implemented sedimentary functions included in this study (described
below), model simulations with this sedimentary iron release implementation (#1-2) contain the name
SrcLow, noting they also include a low source input of atmospheric soluble iron deposition (see Section
2.3.5 below).

We also implemented the sedimentary iron release function proposed by Dale et al. (2015), who compiled
a global data set of sedimentary DFe fluxes to constrain their model estimate. While it has a strong depend-
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Figure 2. Vertically integrated fluxes of atmospheric soluble iron deposition (top row) prescribed on model simulations #1-4 from Luo et al. (2008) (AtmLow)
(a), high scenario (AtmHigh) from the GESAMP intermodel average (Myriokefalitakis et al., 2018) (b), and their difference (c). Center row: Vertically integrated
sedimentary iron release using parameterizations based on Elrod et al. (2004) (SedLow from simulation #2) (d) and Dale et al. (2015) (SedHigh from simulation
#4) (e), and their difference (f). Bottom row: Vertically integrated total scavenging rates from simulation #2 with low source inputs and scavenging rates
(SrcLow) (g) and simulation #5 with highest rates (Atm + SedHigh) (h), and their difference (i).

ence on the flux of POM to the seafloor similar to Elrod et al. (2004), the data set in Dale et al. (2015) also
revealed a strong dependence on bottom water oxygen concentration. Dale et al. (2015) thus parameterized
sedimentary DFe release as

Feyy = }/FeSedMaxtanh(Cox : bWOZ)’ ©)

where Yroseamax is the maximum flux under steady-state conditions, and bwO, is dissolved oxygen concentra-
tion in bottom waters interacting with the sediments.

Wetesttwoscenarioswith the Daleetal. (2015) parameterization by altering the maximum flux constant (Y rseq-
Max)- The SedHigh simulations apply the value suggested by Dale et al. (2015) (¥ reseanax = 170 umol m—2d™"),
whereas the SedMid simulation reduces the maximum flux value to 100 wmol m™2 d™" to test more a inter-
mediate level of sedimentary DFe release (see Tables 1 and 2). This reduced value was chosen to test a global
sedimentary DFe flux approximately halfway in between SedHigh and SedLow since their fluxes differ by a
large amount. Note that the SedMid simulation does not produce a significantly different spatial distribu-
tion compared to SedHigh.

2.3.5. Atmospheric Soluble Iron Deposition

We applied the atmospheric soluble iron deposition mask from Luo et al. (2008) in model simulations #1-4.
This atmospheric soluble iron deposition estimate delivers 1.4 Gmol yr~* of soluble iron to the global ocean,
which is on the low-end (AtmLow; see Figure 2) compared to other estimates applied in the marine iron
model intercomparison study (Tagliabue et al., 2016). This estimate from Luo et al. (2008) is one of the first
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Figure 3. Distribution of variable ligand concentrations in the surface (0-250 m) ocean (a), and basin-scale averages in
the Atlantic (b), Indian (c), Pacific (d), and Southern (e). Note that the Southern Ocean region (>40°S) from within the
other basins (b)-(d) is excluded there since it is shown in (e).
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deposition models that explicitly accounted for the soluble iron deposition rather than assuming a constant
solubility from total deposition.

Another estimate we test in this study applies the average flux from four recent atmospheric soluble iron
deposition models (Myriokefalitakis et al., 2018). The intermodel average global soluble deposition rate is
3.4 Gmol yr™" with similar patterns to Luo et al. (2008) but higher rates most notably in the North Atlantic.
This simulation with high atmospheric soluble iron deposition (AtmHigh; Figure 2) is applied to the simu-
lation with high sedimentary release and variable ligands and is therefore named Atm + SedHigh_LigVar.

3. Model Results and Data Comparison
3.1. Global Dissolved Iron Data Set

The DFe database used in this study is a collection of observations from both GEOTRACES Intermedi-
ate Data Product 2017 (7,520 points; Schlitzer et al., 2018) and prior observations compiled by Tagliabue
et al. (2012) (12,371 points). Note that we excluded 37 measurements (19 from GEOTRACES, 18 from pri-
or) with high DFe concentrations between 10 and 216 nM mainly from locations with high hydrothermal
activities, but also some near-shore settings (e.g., Laptev Sea, Bristol Bay, Peruvian coastal waters near ur-
ban area of Trujillo) and around small islands not resolved in the model (e.g., Kerguelen, Indonesian and
Coronation), and thus the data set used here contains concentrations up to 10 nM. We then interpolated
the data onto the UVic model grid using the PyFerret SCAT2GRIDGAUSS function developed by NOAA’s
Pacific Marine Environmental Laboratory, which is a Gaussian interpolation function based on Kessler
and McCreary (1993). This gridded data was used for the model-data comparison (Figures 3-7) and to
calculate model-data statistical metrics (i.e., correlation coefficient, (uncorrected) standard deviation, and
root-mean-squared error) (Figure 8). It covers 5,917 grid points since many observations overlap and thus
are averaged on corresponding grid points. Since we compare to annual model results, we interpolated all
observations onto the grid and thus temporal aspects and variability of the data are not taken into account
or investigated in this study.

Model-data misfit statistical metrics are sensitive to unresolved outlier concentrations and spatial extent
of the data interpolation onto the model grid. However, these aspects do not affect which simulations best
reproduce the global data set according to statistical metrics. This is illustrated by comparing metrics cal-
culated from all observations (triangles) to only GEOTRACES (circles) in Figure 8. The statistical metrics
slightly improve when comparing against only GEOTRACES observations, with the only exception being
root-mean-squared error for model simulation #1 in the surface ocean, but the relative improvements in
the model simulations are nearly identical. The arbitrary exclusion concentration threshold of 10 nM was
chosen as a balance between including as many observations as possible while still being able to calculate
useful statistical metrics that are not dominated by these outlier concentrations.

3.2. Variable Ligand Distribution

The simulation with constant ligands does not reproduce the major basin-scale features of the observed
DFe distribution, despite that its globally averaged depth profile is generally consistent with observations
(Figure 4c). Most notably, simulations with constant ligands significantly overestimate the DFe in the inte-
rior Southern Ocean (Figure 40), a critical ocean basin for Fe-limited phytoplankton growth. LigCon thus
overestimates supply of DFe via upwelling, and underestimates Fe limitation of phytoplankton growth,
which is a key deficiency in the base configuration and previous model versions (e.g., Muglia et al. (2017)).
They also underestimate DFe in intermediate waters in the Indian and Pacific Ocean (Figures 4k and 5b),
which we have averaged together since they have similar deep ocean biogeochemical tracer profiles relative
to the global average (Figure S1).

The simulations with variable ligand concentrations (#2-5; LigVar) better reproduce the ocean interior dis-
tribution of DFe (Figure 5). This is primarily due to the AOU dependence of the variable ligand param-
eterization that mainly determines ligand concentrations in the deep ocean since semi-refractory DOM
concentrations are low there in the model. This is most obvious when comparing intermediate depths of the
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Figure 5. Annual, zonally averaged dissolved iron concentrations in the Indian-Pacific and Atlantic basins in observations (a), SrcLow_LigCon (b), SrcLow_
LigVar (c), SedHigh_LigVar (e), and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model
differences from variable ligands (i.e., SrcLow_LigVar — SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar — SrcLow_LigVar) (f), and
high atmospheric soluble deposition (i.e., Atm + SedHigh_LigVar — SedHigh_LigVar) (h). In locations where no observations exist (black region in a), zonal
model averages are shown (b,c,e,g).
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Figure 6. Annually averaged dissolved iron concentrations in the upper 250 m in observations (a), SrcLow_LigCon (b), SrcLow_LigVar (c), SedHigh_LigVar (e),
and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model differences from variable ligands

(i.e., SrcLow_LigVar — SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar — SrcLow_LigVar) (f), and high atmospheric soluble deposition
(i.e., Atm + SedHigh_LigVar — SedHigh_LigVar) (h).
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Figure 7. Comparison of dissolved iron measurements from GEOTRACES (black circles) and others (black down-pointing triangles) in the upper 250 m with
model simulations SrcLow_LigCon (green squares), SrcLow_LigVar (blue hexagons), SedHigh_LigVar (purple triangles), Atm + SedHigh_LigVar (red diamonds)
across ocean the western equatorial Pacific (10°S-10°N) (a); eastern tropical South Pacific (5°S-15°S) (b); eastern North Atlantic (30°W-0°) (c); eastern tropical
South Atlantic (35°W-15°) (d); central North Pacific (175°-150°W); and western Indian (zonal averaged from 20° to 100°E) (c). The intersecting continental
margin or shelf sea at the end of the transect is given in parenthesis. Model results are included only at locations where observations exist. Since the core of
oxygen deficient zones in the model does not directly overlap with the real ocean where high dissolved iron concentrations exist in the eastern tropical South
Pacific (b) and northern Indian Ocean (f), we added dissolved iron concentrations directly above the core of the oxygen deficient zones (O, < 5 mmol m™?) in

the model as star symbols.

Southern and Indian-Pacific Oceans, which contain relatively low and high values of AOU and thus ligand
concentrations, respectively, according to our parameterization (see Figures 3 and S1). Lower ligand con-
centrations in the Southern Ocean enhances scavenging causing lower DFe concentrations, with the oppo-
site effect occurring in the Indian-Pacific Ocean, resulting in better reproduced observations in both basins.
Therefore, the interior DFe distribution with the variable ligand parameterization is better partitioned with
respect to observations (Figures 4 and 5) and improves the global model-data misfit by 9.2% when averag-
ing across our three metrics (i.e., correlation coefficient (R), normalized standard deviation (nSTD), and
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Figure 8. Model-data statistical misfit metrics calculated using all observations (triangles) and using only GEOTRACES observations (circles). Correlation
coefficient (left column), standard deviation (center column), root-mean-squared error (right column) are calculated for the global ocean (top rows) and

upper 250 m of the water column (bottom rows). Standard deviation (b, e) and root-mean-squared error (c, f) are normalized by the standard deviation of
observations. The root-mean-squared error vertical axis has been inverted so the upwards direction represents a better model misfit in all panels. Note a perfect
representation of observations would yield the value 1 for correlation coefficient, 1 for normalized standard deviation, and 0 for normalized root-mean-squared

error.

normalized root-mean-squared error (nRMS); (AR + AnSTD + AnRMS - —1)/3 X 100%) against all obser-
vations (Figure 8), which represents the largest improvement from any individual simulation in this study.

The concentration of semi-refractory DON largely determines ligand concentrations in the surface ocean
(Figure 3a). DON concentrations are higher around the high productivity regimes in the low latitudes with
generally decreasing values toward higher latitudes (Somes & Oschlies, 2015) (Figure S2). This pattern is
reflected in the surface DFe distribution that shows the same latitudinal trend in the variable ligand model
(Figures 6¢-6d). While this meridional DFe pattern better reproduces low DFe concentrations in the open
Southern Ocean, it creates larger model-data biases on high latitude continental shelves in the Bering Sea,
Weddell Sea, and European shelf seas (Figures 6a-6d, 7c and 7e). This shows that while the overall variable
ligand effect significantly improves the global DFe distribution (Figure 7), model-data biases in some re-
gions (e.g., high latitude continental shelf seas) still increase, which contributes to a smaller average metric
improvement (3.9%) in the surface layer compared to the global ocean.

3.3. Sedimentary Iron Release

The simulations with low sedimentary source inputs (#1-2 SrcLow) provide a relatively poor fit to observed
DFe concentrations according to the statistical metrics (Figure 8). They fail to reproduce the high DFe con-
centrations near continental margins (Figures 6 and 7), suggesting higher sedimentary release rates are nec-
essary to explain these features. The simulated DFe distribution also lacks the strong spatial gradient toward
depleted concentrations in many open ocean regions in the observations. These overly smooth gradients in
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SrcLow are the result of low sedimentary release rates and subsequent low scavenging rates that are then
required to reproduce the global mean DFe inventory, resulting in a relatively long global mean residence
time of 35 years among our simulations (Table 2).

The simulations with higher sedimentary release rates (Figure 2e) produce higher DFe concentrations in
continental shelf seas (Figures 6 and 7), particularly where bottom water oxygen is low in the low latitudes.
The simulations applying high-end sedimentary Fe release rates (SedHigh) modestly outperformed simula-
tions assuming lower rates across all calculated statistical metrics (Figure 8) on average by 3.3% in the global
ocean and slightly higher by 3.8% in the surface layer, with the intermediate release rate scenario SedMid
performed between SedLow and SedHigh. Therefore, our model-data analysis suggests that high-end esti-
mates for global reductive sedimentary iron release rates are the most realistic.

One region that was notably improved by high sedimentary release rates was the low latitude margins near
oxygen deficient zones (ODZs) (Figures 6 and 7). Observations there in both the eastern tropical South
Pacific off Peru (Figure 7a), eastern tropical South Atlantic off Namibia (Figure 7d), and northern Indian
Ocean show high DFe concentrations that are best reproduced in SedHigh scenarios. Since SedHigh sim-
ulations also contain high scavenging rates, they better reproduce the lowest DFe concentrations in the
offshore open ocean locations as well.

The high DFe concentrations on high latitude continental shelf systems (Figures 6, 7c and 7e) are not im-
proved in SedHigh_LigVar due to the interactions with ligands and scavenging. Decreasing surface ligand
concentrations toward high latitude systems (Figure 3) allow scavenging to compensate the additional sed-
iment-derived DFe more efficiently, in contrast to low latitude systems near ODZs (e.g., Tropical Pacific)
that contain higher ligands allowing DFe to be retained in the water column. This causes the simulation
with constant ligands to retain slightly higher DFe compared to simulations with variable ligands in high
latitude continental shelf systems (e.g., Bering Sea (Figure 7c) and European Shelf Seas (Figure 7¢)), despite
that these simulations with variable ligands include much higher sedimentary release rates there (e.g., Se-
dHigh_LigVar, Figure 2). This demonstrates that more efficient scavenging rates associated with low ligands
can overcompensate the high sedimentary release rates in determining DFe concentrations in the model.

3.4. Atmospheric Soluble Deposition

The two soluble atmospheric deposition scenarios tested here predict similar spatial depositional patterns
(Figure 2), with the more recent GESAMP intermodel average (Myriokefalitakis et al., 2018) providing a
significantly higher global deposition rate (3.4 Gmol yr ") relative to the low estimate from Luo et al. (2008)
(1.4 Gmol yr™"). These enhanced rates cause higher DFe concentrations mainly from the Saharan dust
plume in subtropical North Atlantic, but also to a lesser degree in the Arabian Sea and North Pacific (Fig-
ures 6g, 6h, 7c and 7f). The impact of including higher soluble deposition only slightly improves the global
model-data statistical metrics by 0.7% globally and 1.5% in the surface layer, making it difficult to determine
the most realistic rates based on our model-data DFe comparison alone.

3.5. High Scavenging Effect

In model simulations with high source fluxes (e.g., #5 Atm + SedHigh_LigVar), higher scavenging rates are
necessary to maintain a realistic global DFe inventory (Tables 1 and 2, Figures 2h-2i and 3). Scavenging is
thus more efficient at reducing DFe concentrations in the high source flux simulations. In regions far away
from the source fluxes, particularly in the deep ocean and open Southern Ocean (e.g., see Figure 6), the
model simulations with higher source fluxes actually contain lower DFe because the enhanced scavenging
outweighs the source fluxes in these areas (Figure 4). Lower DFe concentrations in these deep and open
ocean regions better reproduce observations further improving the model-data misfit metrics (Figure 8).
The combined effects of high atmospheric and sedimentary source inputs, which also includes highest
scavenging rates, contributed to the largest improvement in the surface ocean across our metrics (5.5% im-
provement relative to SrcLow_LigVar).
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4. Discussion

4.1. Model-Data Constraints and Uncertainties

The variable ligand parameterization improved the model’s ability to reproduce the global distribution of
DFe observations the most. This is most evident in the interior ocean due to AOU dependency of this pa-
rameterization. Since ligands are produced when dissolved oxygen is consumed during the respiration of
POM via heterotrophic microbes in the variable ligand parameterization, their concentrations reach max-
imum values in old Pacific intermediate waters (Figure 3). High ligands reduce scavenging that causes the
model to better reproduce high observed DFe concentrations there (Figures 4k and 5c¢), a feature that has
also been demonstrated in other models (Misumi et al., 2013; Pham & Ito, 2018; Frants et al., 2016). This
model improvement suggests that ligand production by heterotrophic bacteria is a key mechanism main-
taining the global marine iron cycle.

The model simulations that include higher source inputs and scavenging rates show a subtle but continu-
ous improvement in the model-data misfit metrics particularly in the surface ocean (Figure 8). This is in
contrast to the intermodel comparison study of Tagliabue et al. (2016), which showed no clear relationship
between model performance and source inputs, as well as an inverse modeling study of Pasquier and Hol-
zer (2017), which could not find an optimal solution among their large set of model simulations varying
source inputs. However, Pasquier and Holzer (2017) only tested relatively low sedimentary release rates
(up to 22 Gmol/yr compared to 117 Gmol/yr in this study) and also did not include an oxygen dependency
that has a strong influence in our parameterization. Our analysis emphasizes that future modeling studies
should test these important factors associated with reductive sedimentary DFe release that contributed to
the model improvements in this study.

The ligand and high sedimentary DFe release effects have similar impacts on DFe spatial distributions
making it difficult to constrain their individual impacts with DFe concentrations alone. This spatial overlap
is most pronounced above ODZs in the eastern tropical Pacific, eastern tropical Atlantic, and Northern In-
dian Ocean (Figure 6). This spatial covariance occurs because when AOU is high, bottom water oxygen is
typically low. Therefore, DFe concentrations are enhanced both by reduced scavenging due to high ligands
where AOU is high, as well as by higher sedimentary DFe release rates where bottom water oxygen is low.
Future studies should examine the integrative DFe cycling in these systems (e.g., sedimentary release and
scavenging rates, ligand concentrations) to give additional insights on individual processes contributions to
total DFe concentrations.

Despite high sedimentary release rates, the SedHigh model simulations still underestimate DFe on most
continental shelf systems (Figure 7). The poorly resolved coastal dynamics in our coarse resolution
circulation model is likely a key model deficiency preventing the model from representing many coast-
al dynamics where sedimentary DFe fluxes are high. Coarse resolution models underestimate coastal
upwelling and the nutrient input on narrow shelf systems that drive productivity. This bias causes un-
derestimated POM production as well as overestimated dissolved bottom water oxygen concentrations,
both of which contribute to underestimating reductive sedimentary DFe release rates on coastal shelf
systems.

Further complicating matters are interactions between sedimentary DFe release rates, ligands, and scav-
enging. For example, our SedHigh_LigVar model simulation releases significantly higher DFe on high
latitude shelves (Figures 2e-2f). However, only a small part of this DFe remains in the dissolved pool
since scavenging efficiently converts it to particulate iron that eventually sinks back to the sediments
(Figures 2h-2i). Therefore, our model underestimation of DFe concentrations remains despite high DFe
release rates. This strong spatial coupling between source and scavenging fluxes has also been demon-
strated in other modeling studies (Frants et al., 2016; Pasquier & Holzer, 2017), which also found that
this tight spatial coupling significantly contributes to the difficulty in constraining source inputs. The
exclusion of riverine inputs that may also directly include ligands could also contribute to overly efficient
scavenging resulting in underestimated DFe. If our ligand parameterization predicted higher concentra-
tions on these high latitude shelf systems, which has been indicated by ligand observations (Volker &
Tagliabue, 2015), this would prevent rapid scavenging of DFe released from sediments and better repro-
duce observations.
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Sedimentary DFe release rates may still be underestimated even in our high release scenario. Note that our
highest tested global sedimentary release rate (117 Gmol yr™') was not the highest from the marine iron
model intercomparison (up to 194 Gmol yr™") (Tagliabue et al., 2016), and every model scenario tested
here with increased source fluxes improved the model-data misfit metrics (Figure 8). Potentially important
sedimentary processes not included in the model are non-reductive dissolution and release from reactive
sediments in tectonically active or volcanic regions (Conway & John, 2014; Homoky et al., 2013) and sed-
imentary colloidal production (Homoky et al., 2021), which could further contribute to higher total sedi-
mentary DFe release rates that may improve the model-data misfit.

An important limitation of applying these empirical functions of reductive sedimentary DFe release (e.g.,
Dale et al., 2015; Elrod et al., 2004) in global models is that total iron balance within the sediments is not
explicitly accounted for. Thus, these parameterizations can potentially represent an unlimited long-term
supply of DFe to the ocean which is unrealistic. This simplification can be justified because many important
sources of particulate Fe to the sediment are not yet included in the model, for example, atmospheric and
riverine input of lithogenic material and in situ production at volcanic islands or active margins, which
provide DFe for release. Also note that the Dale et al. (2015) parameterization applied in the SedHigh sim-
ulations sets a maximum rate determined under steady-state conditions which caps potentially unrealistic
high release rates. While this simplification is likely not a significant deficiency in steady-state model sim-
ulations presented here, this should be considered in transient simulations with substantial enhancement
of sedimentary DFe fluxes.

Atmospheric deposition often occurs at high rates over continental shelves (e.g., North Pacific, Patagonia)
and ODZs (e.g., Arabian Sea), again making it difficult to constrain individual processes driving DFe con-
centrations when multiple processes act together in close spatial proximity. For example, our high atmos-
pheric soluble deposition scenario helps reproduce high DFe concentrations in the Arabian Sea (Figure 7f).
However, our model underestimates the extent of the Arabian Sea ODZ which could be the real cause driv-
ing high DFe concentrations there via high sedimentary DFe release, reduced scavenging, and/or enhanced
redox cycling (Moffett et al., 2007). Instead the model ODZ is mostly misplaced to the Bay of Bengal, where
higher simulated DFe there in the model better matches observations within the real ODZ in the Arabian
Sea (see star symbols in Figure 7f).

The model simulations do not resolve the high variance of the observations which is reflected in the un-
derestimated standard deviation (Figures 4 and 8). This occurs everywhere in the ocean and is most pro-
nounced in the Southern Ocean due to it containing very low DFe in the open ocean but also high concen-
trations near islands, continental margins, and hydrothermal vents (Figures 4-6). Although not a focus
of this study, the model was not able to reproduce the full spatial extent of high DFe concentrations near
hydrothermal vents at mid-ocean depths (Figures 4 and 5), despite that this source is included (Table 2).
Previous modeling studies were only able to reproduce this high DFe extent when assuming that the hydro-
thermal vents were also a significant source of ligands (Frants et al., 2016; Resing et al., 2015) or included
stabilization via reversible scavenging (Roshan et al., 2020), both of which we have not accounted for in our
model. This emphasizes that future model versions should include all important ligands and scavenging
dynamics to better represent their importance in marine iron models, but that a more robust global database
of ligand concentrations including their binding strength would be required (Volker & Tagliabue, 2015).

High variance in the global data set may not reflect mean climatological conditions simulated by the prein-
dustrial steady-state model results given the highly dynamic nature of DFe cycling particularly in the sur-
face ocean with short residence times (Black et al., 2020). The spatial and temporal sparsity of the data set
likely contribute to high variance as well. But note that the standard deviation was significantly improved in
our best model simulation with variable ligands and high source/scavenging fluxes (Atm + SedHigh_LigVar;
see Figures 4, 8b and 8e) suggesting that a model with low residence times can better reproduce the high
variance and strong gradients in the DFe observations. Since most DFe observations have been collected in
recent decades, there could already be a significant anthropogenic impact (e.g., enhanced deoxygenation,
atmospheric/riverine pollutants) on the global marine iron cycle not included in these model simulations,
especially if the marine DFe residence time operates on decadal timescales or less. Future additions and
expansion to the global DFe data set as well as comparison with transient model simulations at the same
period of data collection will improve uncertainties in future model-data analyses.
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Table 3
Global Marine Biogeochemistry Results

3t

Simulation name

Net primary production (Gt C yr™) Export production (Gt C yr™) Dissolved O, (mmol m~)

Global Southern Global Southern Global Southern

SrcLow_LigCon
SrcLow_LigVar
SedMid_LigVar
SedHigh_LigVar
Atm + SedHigh_LigVar

wm AW N =

47.0 8.11 8.1 2.12 167 206
47.4 7.09 7.9 1.86 175 216
47.7 6.72 7.9 1.75 178 221
48.0 6.67 7.9 1.74 179 222
47.9 6.42 7.8 1.68 181 224

4.2. A Global Marine Iron Cycle With a Residence Time Under a Decade?

Our model simulations testing various external source fluxes in the global marine iron cycle result in global
average residence times ranging from 7.5 to 36 years. The simulation that best reproduces the observations
(Atm + SedHigh_LigVar) has the lowest residence time (global: 7.5 years; surface ocean: 0.83 years) among
our model experiments. This low-end residence time is caused in large part due to the high source fluxes,
with the reductive sedimentary release being the most important with the highest global rate in our simu-
lations. These high source fluxes need to be compensated by efficient scavenging and subsequent removal
via burial in the sediments to reproduce the distribution and global mean inventory in DFe observations,
a model feature that was also found in other modeling studies (e.g., see Frants et al., 2016; Pasquier &
Holzer, 2017).

This is in general agreement with observational studies focusing on the surface layer (Black et al., 2020;
Sarthou et al., 2003). For example, Black et al. (2020) estimated similar residence times throughout the
global surface ocean (0-250 m) for DFe ranging from approximately 1 month to 4 years depending on the
region and specific iron pools considered, although noting that the uncertainties remain large (i.e., equal or
greater than the absolute value of the estimate in each region). These generally low surface residence times
are captured in our model simulations that range from 0.83 to 3.12 years (Table 2). However, residence times
of individual molecules and regions can further vary depending on the local coupling of source inputs,
scavenging efficiency, and regeneration (e.g., Holzer et al. (2016); Pasquier and Holzer (2018); Tagliabue
et al., 2019). For instance, DFe in the ocean interior is more stable and controlled by the amount of ligands
that reduces scavenging and removal to the sediments via sinking particulates, contributing to the longer
global residence times.

4.3. Marine Iron Flux Impacts on Global Ocean Biogeochemistry

An interesting feature of the model simulations is that there is surprisingly little change to globally aver-
aged marine productivity and export production (Table 3). This occurs in large part in the model because
scavenging was also increased in high sedimentary iron release scenarios, and thus much of the additional
DFe fluxes from the sediments is efficiently scavenged to particulate iron that sinks back to the sediments
before it can be transported to the surface ocean where it may stimulate additional productivity. This gen-
eral impact was also found in a model study using a previous iteration of the model version used here but
comparing different complexities of the marine iron configurations (Yao et al., 2019) as well as other inverse
modeling studies (Pasquier & Holzer, 2017, 2018). However, it must be noted that all of these model studies,
including this one, only evaluated steady-state simulations in which uncertain parameters were manually
tuned or optimized to best reproduce observations. Therefore, they are not necessarily indicative to how the
iron dynamics in the model may respond to and impact marine productivity in externally forced transient
scenarios.

There is a notable decrease in marine productivity and export production in the Southern Ocean among our
model simulations with better representations of the global iron distribution (Table 3). The variable ligand
parameterization predicts less ligands in the Southern Ocean (Figure 3), which allows higher scavenging to
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reduce DFe that better reproduces observations. Furthermore, since external iron sources in the Southern
Ocean are small (Figures 2 and 4m), the enhanced scavenging in the high source flux simulations removes
more DFe than source fluxes add to the Southern Ocean. Therefore, DFe levels further decrease in the
Southern Ocean (Figures 40 and 6) in the high source flux scenarios. The high scavenging in our best model
simulation with variable ligands and high source fluxes (Atm + SedHigh_LigVar) reduces DFe, marine pro-
ductivity and resulting oxygen consumption during remineralization of POM, thereby increasing dissolved
oxygen concentrations at depth. This effect is significant enough to increase average global dissolved oxygen
concentrations by 8% in the model because water masses formed in the Southern Ocean contribute to much
of the global deep ocean (Table 3). This emphasizes the importance of simulating a robust global marine
iron cycle most importantly in the Southern Ocean.

5. Conclusions

In this study we tested various rates of atmospheric soluble deposition, reductive sedimentary release, and
variable ligand distributions within a marine iron component in a global ocean biogeochemical model.
The simulations that best reproduce the global DFe observations include highest tested source fluxes and
a variable ligand parameterization. The most striking feature in the global DFe observations that supports
this hypothesis is the strong gradients that often occur with high concentrations near source fluxes and
low concentrations in adjacent open ocean regions. This high source flux/scavenging iron cycling regime
causes a relatively short residence times of less than a decade in the global oceans and less than a year in
the surface ocean. The short residence time implies that the global marine iron cycle is highly sensitive
to environmental perturbations in the Anthropocene and geological past. Uncertainties remain high due
to model parameterizations of complex, poorly understood, and often intertwined processes (e.g., ligand
production and subsequent control on scavenging near source inputs) and the sparsity of DFe and ligand
measurements throughout the global ocean. Nevertheless, our model-data analysis suggests the marine
iron cycle operates with high global source inputs and scavenging rates and low residence times compare
to most previous estimates.

Data Availability Statement

Model code and output will be made publicly accessible at GEOMAR open access repository (https://
thredds.geomar.de).
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