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Another key aspect of marine iron models is the representation of ligands that organically bind DFe and 

thereby prevent it from being scavenged to sinking particulates. Some models still prescribe a globally con-

stant ligand concentration typically at 1 nM, while others account for ligand distributions via a parameteri-

zation or directly simulating ligands as a prognostic tracer. Ligands are thought to be produced by microbes 

as a by-product during the production of organic matter (Gledhill & Buck, 2012), including by heterotrophic 

siderophores that flourish when systems become iron stressed (Bundy et al., 2018). This has led modelers 

to predict ligand concentrations by assuming they are produced during the production of organic matter 

(e.g., Völker & Tagliabue, 2015) or by prescribing a relationship to other organic tracers such as dissolved 

organic matter (DOM) and apparent oxygen utilization (AOU) (e.g., Misumi et al., 2013; Pham & Ito, 2018; 

Tagliabue & Völker, 2011).

The uncertainties associated with external source fluxes and scavenging represent key gaps in understand-

ing the global marine iron cycle. This hampers accurate estimates of the DFe budget, residence time and, 

consequently, its sensitivity to environmental perturbations and climate change. While the rapidly increas-

ing amount of DFe measurements is improving our knowledge of the distribution and inventory of dis-

solved iron in the ocean, constraining external fluxes has proved to be more difficult. As a result, the range 

of residence times estimated by the current global marine iron cycle models ranges from less than a decade 

to multiple centuries (Tagliabue et al., 2016), which limits our ability to confidently predict the impact of 

changes to the marine iron cycle on productivity in a future ocean. Observational estimates fall within a 

similar range (Johnson et al., 1997), noting that more recent studies estimate much shorter residence times 

in the upper ocean (∼10 days–4 years) (Croot et al., 2004; Sarthou et al., 2003) depending on the local dy-

namics, iron pools considered, and source inputs in different regions (Black et al., 2020).

In this study, we use a global marine DFe data set to constrain the iron cycle fluxes in a global marine bioge-

ochemical model. We analyze model sensitivity simulations that focus on three key uncertainties: varying 

source fluxes of (a) atmospheric soluble iron deposition and (b) reductive sedimentary iron release, as well 

as the role of a (c) variable ligand distribution on DFe distribution and scavenging rates. The resulting DFe 

concentrations in each model simulation are evaluated against observations to determine the most realistic 

marine iron cycle fluxes among the model scenarios.

2. Model Description

We used the UVic Earth System Climate Model (Weaver et al., 2001) version 2.9 (Eby et al., 2009). In the 

following section, we provide a general overview of the model components then focus on improvements 

made to the marine iron cycle in this study, whereas other modifications applied to all model simulations 

are described in the supplementary information.

2.1. Physical Model

The physical ocean-atmosphere-sea ice model includes a three-dimensional (1.8° × 3.6°, 19 vertical levels) 

general circulation model of the ocean (Modular Ocean Model 2) with parameterizations such as diffu-

sive mixing along and across isopycnals and eddy-induced tracer advection (Gent & McWilliams, 1990). 

The physical configuration is based on Somes et al. (2017) and includes parameterizations such as com-

putation of tidally induced diapycnal mixing over rough topography on the sub-grid scale (Schmittner & 

Egbert, 2014), anisotropic viscosity (Large et al., 2001; Somes et al., 2010), and enhanced zonal isopycnal 

mixing schemes in the tropics to better represent zonal equatorial undercurrents (Getzlaff & Dietze, 2013). 

A two-dimensional, single level energy-moisture balance atmosphere and a dynamic-thermodynamic sea 

ice model are used, forced with prescribed monthly climatological winds (Kalnay et al., 1996) and constant 

ice sheets (Peltier, 2004).

2.2. Marine Biogeochemical Model

The updated marine ecosystem-biogeochemical model coupled within the ocean circulation model is based 

on the Model of Ocean Biogeochemistry and Isotopes (MOBI), version 2.0. Briefly, MOBI includes three 

prognostic inorganic nutrient tracers (nitrate [NO3], phosphate [PO4], iron [DFe]) and two organic phases 
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Figure 3. Distribution of variable ligand concentrations in the surface (0–250 m) ocean (a), and basin-scale averages in 
the Atlantic (b), Indian (c), Pacific (d), and Southern (e). Note that the Southern Ocean region (>40°S) from within the 
other basins (b)–(d) is excluded there since it is shown in (e).
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Figure 4. Annually averaged depth profiles of marine iron source inputs (left column), scavenging rates (center-left column), dissolved iron concentrations 
(center-right column), and dissolved iron (DFe) standard deviation (Std Dev) (right column) in the Global, Atlantic, Indian-Pacific, and Southern Ocean for 
model simulations (colored symbols) and dissolved iron observations (black circles). Source inputs (left column) are atmospheric soluble deposition as large 
filled symbols in the low scenario (AtmLow, green down-pointing triangle) and high (AtmHigh; red diamonds) scenarios, sedimentary iron release in the low 
(SedLow; blue hexagons) and high scenarios (SedHigh; purple triangles), and hydrothermal flux (green square, applied to all simulations). For dissolved iron 
concentrations (center-right column), lines show model averages in the entire selected domain, while symbols include model results only where dissolved iron 
observations exist. Note that the Southern Ocean region (>40°S) from within the Atlantic and Indian-Pacific basins is excluded there since it is shown in the 
Southern Ocean panels.
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deposition models that explicitly accounted for the soluble iron deposition rather than assuming a constant 

solubility from total deposition.

Another estimate we test in this study applies the average flux from four recent atmospheric soluble iron 

deposition models (Myriokefalitakis et al., 2018). The intermodel average global soluble deposition rate is 

3.4 Gmol yr−1 with similar patterns to Luo et al. (2008) but higher rates most notably in the North Atlantic. 

This simulation with high atmospheric soluble iron deposition (AtmHigh; Figure 2) is applied to the simu-

lation with high sedimentary release and variable ligands and is therefore named Atm + SedHigh_LigVar.

3. Model Results and Data Comparison

3.1. Global Dissolved Iron Data Set

The DFe database used in this study is a collection of observations from both GEOTRACES Intermedi-

ate Data Product 2017 (7,520 points; Schlitzer et al., 2018) and prior observations compiled by Tagliabue 

et al. (2012) (12,371 points). Note that we excluded 37 measurements (19 from GEOTRACES, 18 from pri-

or) with high DFe concentrations between 10 and 216 nM mainly from locations with high hydrothermal 

activities, but also some near-shore settings (e.g., Laptev Sea, Bristol Bay, Peruvian coastal waters near ur-

ban area of Trujillo) and around small islands not resolved in the model (e.g., Kerguelen, Indonesian and 

Coronation), and thus the data set used here contains concentrations up to 10 nM. We then interpolated 

the data onto the UVic model grid using the PyFerret SCAT2GRIDGAUSS function developed by NOAA’s 

Pacific Marine Environmental Laboratory, which is a Gaussian interpolation function based on Kessler 

and McCreary  (1993). This gridded data was used for the model-data comparison (Figures  3–7) and to 

calculate model-data statistical metrics (i.e., correlation coefficient, (uncorrected) standard deviation, and 

root-mean-squared error) (Figure 8). It covers 5,917 grid points since many observations overlap and thus 

are averaged on corresponding grid points. Since we compare to annual model results, we interpolated all 

observations onto the grid and thus temporal aspects and variability of the data are not taken into account 

or investigated in this study.

Model-data misfit statistical metrics are sensitive to unresolved outlier concentrations and spatial extent 

of the data interpolation onto the model grid. However, these aspects do not affect which simulations best 

reproduce the global data set according to statistical metrics. This is illustrated by comparing metrics cal-

culated from all observations (triangles) to only GEOTRACES (circles) in Figure 8. The statistical metrics 

slightly improve when comparing against only GEOTRACES observations, with the only exception being 

root-mean-squared error for model simulation #1 in the surface ocean, but the relative improvements in 

the model simulations are nearly identical. The arbitrary exclusion concentration threshold of 10 nM was 

chosen as a balance between including as many observations as possible while still being able to calculate 

useful statistical metrics that are not dominated by these outlier concentrations.

3.2. Variable Ligand Distribution

The simulation with constant ligands does not reproduce the major basin-scale features of the observed 

DFe distribution, despite that its globally averaged depth profile is generally consistent with observations 

(Figure 4c). Most notably, simulations with constant ligands significantly overestimate the DFe in the inte-

rior Southern Ocean (Figure 4o), a critical ocean basin for Fe-limited phytoplankton growth. LigCon thus 

overestimates supply of DFe via upwelling, and underestimates Fe limitation of phytoplankton growth, 

which is a key deficiency in the base configuration and previous model versions (e.g., Muglia et al. (2017)). 

They also underestimate DFe in intermediate waters in the Indian and Pacific Ocean (Figures 4k and 5b), 

which we have averaged together since they have similar deep ocean biogeochemical tracer profiles relative 

to the global average (Figure S1).

The simulations with variable ligand concentrations (#2–5; LigVar) better reproduce the ocean interior dis-

tribution of DFe (Figure 5). This is primarily due to the AOU dependence of the variable ligand param-

eterization that mainly determines ligand concentrations in the deep ocean since semi-refractory DOM 

concentrations are low there in the model. This is most obvious when comparing intermediate depths of the 
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Figure 5. Annual, zonally averaged dissolved iron concentrations in the Indian-Pacific and Atlantic basins in observations (a), SrcLow_LigCon (b), SrcLow_
LigVar (c), SedHigh_LigVar (e), and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model 
differences from variable ligands (i.e., SrcLow_LigVar − SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar − SrcLow_LigVar) (f), and 
high atmospheric soluble deposition (i.e., Atm + SedHigh_LigVar − SedHigh_LigVar) (h). In locations where no observations exist (black region in a), zonal 
model averages are shown (b,c,e,g).



Global Biogeochemical Cycles

SOMES ET AL.

10.1029/2021GB006948

11 of 20

Figure 6. Annually averaged dissolved iron concentrations in the upper 250 m in observations (a), SrcLow_LigCon (b), SrcLow_LigVar (c), SedHigh_LigVar (e), 
and Atm + SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron concentrations by showing model differences from variable ligands 
(i.e., SrcLow_LigVar − SrcLow_LigCon) (d), high sedimentary iron release (i.e., SedHigh_LigVar − SrcLow_LigVar) (f), and high atmospheric soluble deposition 
(i.e., Atm + SedHigh_LigVar − SedHigh_LigVar) (h).
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Southern and Indian-Pacific Oceans, which contain relatively low and high values of AOU and thus ligand 

concentrations, respectively, according to our parameterization (see Figures 3 and S1). Lower ligand con-

centrations in the Southern Ocean enhances scavenging causing lower DFe concentrations, with the oppo-

site effect occurring in the Indian-Pacific Ocean, resulting in better reproduced observations in both basins. 

Therefore, the interior DFe distribution with the variable ligand parameterization is better partitioned with 

respect to observations (Figures 4 and 5) and improves the global model-data misfit by 9.2% when averag-

ing across our three metrics (i.e., correlation coefficient (R), normalized standard deviation (nSTD), and 
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Figure 7. Comparison of dissolved iron measurements from GEOTRACES (black circles) and others (black down-pointing triangles) in the upper 250 m with 
model simulations SrcLow_LigCon (green squares), SrcLow_LigVar (blue hexagons), SedHigh_LigVar (purple triangles), Atm + SedHigh_LigVar (red diamonds) 
across ocean the western equatorial Pacific (10°S–10°N) (a); eastern tropical South Pacific (5°S–15°S) (b); eastern North Atlantic (30°W–0°) (c); eastern tropical 
South Atlantic (35°W–15°) (d); central North Pacific (175°–150°W); and western Indian (zonal averaged from 20° to 100°E) (c). The intersecting continental 
margin or shelf sea at the end of the transect is given in parenthesis. Model results are included only at locations where observations exist. Since the core of 
oxygen deficient zones in the model does not directly overlap with the real ocean where high dissolved iron concentrations exist in the eastern tropical South 
Pacific (b) and northern Indian Ocean (f), we added dissolved iron concentrations directly above the core of the oxygen deficient zones (O2 < 5 mmol m−3) in 
the model as star symbols.



Global Biogeochemical Cycles

normalized root-mean-squared error (nRMS); (ΔR + ΔnSTD + ΔnRMS ⋅ −1)/3 × 100%) against all obser-

vations (Figure 8), which represents the largest improvement from any individual simulation in this study.

The concentration of semi-refractory DON largely determines ligand concentrations in the surface ocean 

(Figure 3a). DON concentrations are higher around the high productivity regimes in the low latitudes with 

generally decreasing values toward higher latitudes (Somes & Oschlies, 2015) (Figure S2). This pattern is 

reflected in the surface DFe distribution that shows the same latitudinal trend in the variable ligand model 

(Figures 6c–6d). While this meridional DFe pattern better reproduces low DFe concentrations in the open 

Southern Ocean, it creates larger model-data biases on high latitude continental shelves in the Bering Sea, 

Weddell Sea, and European shelf seas (Figures 6a–6d, 7c and 7e). This shows that while the overall variable 

ligand effect significantly improves the global DFe distribution (Figure 7), model-data biases in some re-

gions (e.g., high latitude continental shelf seas) still increase, which contributes to a smaller average metric 

improvement (3.9%) in the surface layer compared to the global ocean.

3.3. Sedimentary Iron Release

The simulations with low sedimentary source inputs (#1–2 SrcLow) provide a relatively poor fit to observed 

DFe concentrations according to the statistical metrics (Figure 8). They fail to reproduce the high DFe con-

centrations near continental margins (Figures 6 and 7), suggesting higher sedimentary release rates are nec-

essary to explain these features. The simulated DFe distribution also lacks the strong spatial gradient toward 

depleted concentrations in many open ocean regions in the observations. These overly smooth gradients in 
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Figure 8. Model-data statistical misfit metrics calculated using all observations (triangles) and using only GEOTRACES observations (circles). Correlation 
coefficient (left column), standard deviation (center column), root-mean-squared error (right column) are calculated for the global ocean (top rows) and 
upper 250 m of the water column (bottom rows). Standard deviation (b, e) and root-mean-squared error (c, f) are normalized by the standard deviation of 
observations. The root-mean-squared error vertical axis has been inverted so the upwards direction represents a better model misfit in all panels. Note a perfect 
representation of observations would yield the value 1 for correlation coefficient, 1 for normalized standard deviation, and 0 for normalized root-mean-squared 
error.
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SrcLow are the result of low sedimentary release rates and subsequent low scavenging rates that are then 

required to reproduce the global mean DFe inventory, resulting in a relatively long global mean residence 

time of 35 years among our simulations (Table 2).

The simulations with higher sedimentary release rates (Figure 2e) produce higher DFe concentrations in 

continental shelf seas (Figures 6 and 7), particularly where bottom water oxygen is low in the low latitudes. 

The simulations applying high-end sedimentary Fe release rates (SedHigh) modestly outperformed simula-

tions assuming lower rates across all calculated statistical metrics (Figure 8) on average by 3.3% in the global 

ocean and slightly higher by 3.8% in the surface layer, with the intermediate release rate scenario SedMid 

performed between SedLow and SedHigh. Therefore, our model-data analysis suggests that high-end esti-

mates for global reductive sedimentary iron release rates are the most realistic.

One region that was notably improved by high sedimentary release rates was the low latitude margins near 

oxygen deficient zones (ODZs) (Figures 6 and 7). Observations there in both the eastern tropical South 

Pacific off Peru (Figure 7a), eastern tropical South Atlantic off Namibia (Figure 7d), and northern Indian 

Ocean show high DFe concentrations that are best reproduced in SedHigh scenarios. Since SedHigh sim-

ulations also contain high scavenging rates, they better reproduce the lowest DFe concentrations in the 

offshore open ocean locations as well.

The high DFe concentrations on high latitude continental shelf systems (Figures 6, 7c and 7e) are not im-

proved in SedHigh_LigVar due to the interactions with ligands and scavenging. Decreasing surface ligand 

concentrations toward high latitude systems (Figure 3) allow scavenging to compensate the additional sed-

iment-derived DFe more efficiently, in contrast to low latitude systems near ODZs (e.g., Tropical Pacific) 

that contain higher ligands allowing DFe to be retained in the water column. This causes the simulation 

with constant ligands to retain slightly higher DFe compared to simulations with variable ligands in high 

latitude continental shelf systems (e.g., Bering Sea (Figure 7c) and European Shelf Seas (Figure 7e)), despite 

that these simulations with variable ligands include much higher sedimentary release rates there (e.g., Se-

dHigh_LigVar, Figure 2). This demonstrates that more efficient scavenging rates associated with low ligands 

can overcompensate the high sedimentary release rates in determining DFe concentrations in the model.

3.4. Atmospheric Soluble Deposition

The two soluble atmospheric deposition scenarios tested here predict similar spatial depositional patterns 

(Figure 2), with the more recent GESAMP intermodel average (Myriokefalitakis et al., 2018) providing a 

significantly higher global deposition rate (3.4 Gmol yr−1) relative to the low estimate from Luo et al. (2008) 

(1.4  Gmol  yr−1). These enhanced rates cause higher DFe concentrations mainly from the Saharan dust 

plume in subtropical North Atlantic, but also to a lesser degree in the Arabian Sea and North Pacific (Fig-

ures 6g, 6h, 7c and 7f). The impact of including higher soluble deposition only slightly improves the global 

model-data statistical metrics by 0.7% globally and 1.5% in the surface layer, making it difficult to determine 

the most realistic rates based on our model-data DFe comparison alone.

3.5. High Scavenging Effect

In model simulations with high source fluxes (e.g., #5 Atm + SedHigh_LigVar), higher scavenging rates are 

necessary to maintain a realistic global DFe inventory (Tables 1 and 2, Figures 2h–2i and 3). Scavenging is 

thus more efficient at reducing DFe concentrations in the high source flux simulations. In regions far away 

from the source fluxes, particularly in the deep ocean and open Southern Ocean (e.g., see Figure 6), the 

model simulations with higher source fluxes actually contain lower DFe because the enhanced scavenging 

outweighs the source fluxes in these areas (Figure 4). Lower DFe concentrations in these deep and open 

ocean regions better reproduce observations further improving the model-data misfit metrics (Figure 8). 

The combined effects of high atmospheric and sedimentary source inputs, which also includes highest 

scavenging rates, contributed to the largest improvement in the surface ocean across our metrics (5.5% im-

provement relative to SrcLow_LigVar).
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4. Discussion

4.1. Model-Data Constraints and Uncertainties

The variable ligand parameterization improved the model’s ability to reproduce the global distribution of 

DFe observations the most. This is most evident in the interior ocean due to AOU dependency of this pa-

rameterization. Since ligands are produced when dissolved oxygen is consumed during the respiration of 

POM via heterotrophic microbes in the variable ligand parameterization, their concentrations reach max-

imum values in old Pacific intermediate waters (Figure 3). High ligands reduce scavenging that causes the 

model to better reproduce high observed DFe concentrations there (Figures 4k and 5c), a feature that has 

also been demonstrated in other models (Misumi et al., 2013; Pham & Ito, 2018; Frants et al., 2016). This 

model improvement suggests that ligand production by heterotrophic bacteria is a key mechanism main-

taining the global marine iron cycle.

The model simulations that include higher source inputs and scavenging rates show a subtle but continu-

ous improvement in the model-data misfit metrics particularly in the surface ocean (Figure 8). This is in 

contrast to the intermodel comparison study of Tagliabue et al. (2016), which showed no clear relationship 

between model performance and source inputs, as well as an inverse modeling study of Pasquier and Hol-

zer (2017), which could not find an optimal solution among their large set of model simulations varying 

source inputs. However, Pasquier and Holzer  (2017) only tested relatively low sedimentary release rates 

(up to 22 Gmol/yr compared to 117 Gmol/yr in this study) and also did not include an oxygen dependency 

that has a strong influence in our parameterization. Our analysis emphasizes that future modeling studies 

should test these important factors associated with reductive sedimentary DFe release that contributed to 

the model improvements in this study.

The ligand and high sedimentary DFe release effects have similar impacts on DFe spatial distributions 

making it difficult to constrain their individual impacts with DFe concentrations alone. This spatial overlap 

is most pronounced above ODZs in the eastern tropical Pacific, eastern tropical Atlantic, and Northern In-

dian Ocean (Figure 6). This spatial covariance occurs because when AOU is high, bottom water oxygen is 

typically low. Therefore, DFe concentrations are enhanced both by reduced scavenging due to high ligands 

where AOU is high, as well as by higher sedimentary DFe release rates where bottom water oxygen is low. 

Future studies should examine the integrative DFe cycling in these systems (e.g., sedimentary release and 

scavenging rates, ligand concentrations) to give additional insights on individual processes contributions to 

total DFe concentrations.

Despite high sedimentary release rates, the SedHigh model simulations still underestimate DFe on most 

continental shelf systems (Figure  7). The poorly resolved coastal dynamics in our coarse resolution 

circulation model is likely a key model deficiency preventing the model from representing many coast-

al dynamics where sedimentary DFe fluxes are high. Coarse resolution models underestimate coastal 

upwelling and the nutrient input on narrow shelf systems that drive productivity. This bias causes un-

derestimated POM production as well as overestimated dissolved bottom water oxygen concentrations, 

both of which contribute to underestimating reductive sedimentary DFe release rates on coastal shelf 

systems.

Further complicating matters are interactions between sedimentary DFe release rates, ligands, and scav-

enging. For example, our SedHigh_LigVar model simulation releases significantly higher DFe on high 

latitude shelves (Figures 2e–2f). However, only a small part of this DFe remains in the dissolved pool 

since scavenging efficiently converts it to particulate iron that eventually sinks back to the sediments 

(Figures 2h–2i). Therefore, our model underestimation of DFe concentrations remains despite high DFe 

release rates. This strong spatial coupling between source and scavenging fluxes has also been demon-

strated in other modeling studies (Frants et al., 2016; Pasquier & Holzer, 2017), which also found that 

this tight spatial coupling significantly contributes to the difficulty in constraining source inputs. The 

exclusion of riverine inputs that may also directly include ligands could also contribute to overly efficient 

scavenging resulting in underestimated DFe. If our ligand parameterization predicted higher concentra-

tions on these high latitude shelf systems, which has been indicated by ligand observations (Völker & 

Tagliabue, 2015), this would prevent rapid scavenging of DFe released from sediments and better repro-

duce observations.
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Sedimentary DFe release rates may still be underestimated even in our high release scenario. Note that our 

highest tested global sedimentary release rate (117 Gmol yr−1) was not the highest from the marine iron 

model intercomparison (up to 194  Gmol  yr−1) (Tagliabue et  al.,  2016), and every model scenario tested 

here with increased source fluxes improved the model-data misfit metrics (Figure 8). Potentially important 

sedimentary processes not included in the model are non-reductive dissolution and release from reactive 

sediments in tectonically active or volcanic regions (Conway & John, 2014; Homoky et al., 2013) and sed-

imentary colloidal production (Homoky et al., 2021), which could further contribute to higher total sedi-

mentary DFe release rates that may improve the model-data misfit.

An important limitation of applying these empirical functions of reductive sedimentary DFe release (e.g., 

Dale et al., 2015; Elrod et al., 2004) in global models is that total iron balance within the sediments is not 

explicitly accounted for. Thus, these parameterizations can potentially represent an unlimited long-term 

supply of DFe to the ocean which is unrealistic. This simplification can be justified because many important 

sources of particulate Fe to the sediment are not yet included in the model, for example, atmospheric and 

riverine input of lithogenic material and in situ production at volcanic islands or active margins, which 

provide DFe for release. Also note that the Dale et al. (2015) parameterization applied in the SedHigh sim-

ulations sets a maximum rate determined under steady-state conditions which caps potentially unrealistic 

high release rates. While this simplification is likely not a significant deficiency in steady-state model sim-

ulations presented here, this should be considered in transient simulations with substantial enhancement 

of sedimentary DFe fluxes.

Atmospheric deposition often occurs at high rates over continental shelves (e.g., North Pacific, Patagonia) 

and ODZs (e.g., Arabian Sea), again making it difficult to constrain individual processes driving DFe con-

centrations when multiple processes act together in close spatial proximity. For example, our high atmos-

pheric soluble deposition scenario helps reproduce high DFe concentrations in the Arabian Sea (Figure 7f). 

However, our model underestimates the extent of the Arabian Sea ODZ which could be the real cause driv-

ing high DFe concentrations there via high sedimentary DFe release, reduced scavenging, and/or enhanced 

redox cycling (Moffett et al., 2007). Instead the model ODZ is mostly misplaced to the Bay of Bengal, where 

higher simulated DFe there in the model better matches observations within the real ODZ in the Arabian 

Sea (see star symbols in Figure 7f).

The model simulations do not resolve the high variance of the observations which is reflected in the un-

derestimated standard deviation (Figures 4 and 8). This occurs everywhere in the ocean and is most pro-

nounced in the Southern Ocean due to it containing very low DFe in the open ocean but also high concen-

trations near islands, continental margins, and hydrothermal vents (Figures  4–6). Although not a focus 

of this study, the model was not able to reproduce the full spatial extent of high DFe concentrations near 

hydrothermal vents at mid-ocean depths (Figures 4 and 5), despite that this source is included (Table 2). 

Previous modeling studies were only able to reproduce this high DFe extent when assuming that the hydro-

thermal vents were also a significant source of ligands (Frants et al., 2016; Resing et al., 2015) or included 

stabilization via reversible scavenging (Roshan et al., 2020), both of which we have not accounted for in our 

model. This emphasizes that future model versions should include all important ligands and scavenging 

dynamics to better represent their importance in marine iron models, but that a more robust global database 

of ligand concentrations including their binding strength would be required (Völker & Tagliabue, 2015).

High variance in the global data set may not reflect mean climatological conditions simulated by the prein-

dustrial steady-state model results given the highly dynamic nature of DFe cycling particularly in the sur-

face ocean with short residence times (Black et al., 2020). The spatial and temporal sparsity of the data set 

likely contribute to high variance as well. But note that the standard deviation was significantly improved in 

our best model simulation with variable ligands and high source/scavenging fluxes (Atm + SedHigh_LigVar; 

see Figures 4, 8b and 8e) suggesting that a model with low residence times can better reproduce the high 

variance and strong gradients in the DFe observations. Since most DFe observations have been collected in 

recent decades, there could already be a significant anthropogenic impact (e.g., enhanced deoxygenation, 

atmospheric/riverine pollutants) on the global marine iron cycle not included in these model simulations, 

especially if the marine DFe residence time operates on decadal timescales or less. Future additions and 

expansion to the global DFe data set as well as comparison with transient model simulations at the same 

period of data collection will improve uncertainties in future model-data analyses.

SOMES ET AL.

10.1029/2021GB006948

16 of 20



Global Biogeochemical Cycles

4.2. A Global Marine Iron Cycle With a Residence Time Under a Decade?

Our model simulations testing various external source fluxes in the global marine iron cycle result in global 

average residence times ranging from 7.5 to 36 years. The simulation that best reproduces the observations 

(Atm + SedHigh_LigVar) has the lowest residence time (global: 7.5 years; surface ocean: 0.83 years) among 

our model experiments. This low-end residence time is caused in large part due to the high source fluxes, 

with the reductive sedimentary release being the most important with the highest global rate in our simu-

lations. These high source fluxes need to be compensated by efficient scavenging and subsequent removal 

via burial in the sediments to reproduce the distribution and global mean inventory in DFe observations, 

a model feature that was also found in other modeling studies (e.g., see Frants et  al.,  2016; Pasquier & 

Holzer, 2017).

This is in general agreement with observational studies focusing on the surface layer (Black et al., 2020; 

Sarthou et al., 2003). For example, Black et al.  (2020) estimated similar residence times throughout the 

global surface ocean (0–250 m) for DFe ranging from approximately 1 month to 4 years depending on the 

region and specific iron pools considered, although noting that the uncertainties remain large (i.e., equal or 

greater than the absolute value of the estimate in each region). These generally low surface residence times 

are captured in our model simulations that range from 0.83 to 3.12 years (Table 2). However, residence times 

of individual molecules and regions can further vary depending on the local coupling of source inputs, 

scavenging efficiency, and regeneration (e.g., Holzer et al. (2016); Pasquier and Holzer (2018); Tagliabue 

et al., 2019). For instance, DFe in the ocean interior is more stable and controlled by the amount of ligands 

that reduces scavenging and removal to the sediments via sinking particulates, contributing to the longer 

global residence times.

4.3. Marine Iron Flux Impacts on Global Ocean Biogeochemistry

An interesting feature of the model simulations is that there is surprisingly little change to globally aver-

aged marine productivity and export production (Table 3). This occurs in large part in the model because 

scavenging was also increased in high sedimentary iron release scenarios, and thus much of the additional 

DFe fluxes from the sediments is efficiently scavenged to particulate iron that sinks back to the sediments 

before it can be transported to the surface ocean where it may stimulate additional productivity. This gen-

eral impact was also found in a model study using a previous iteration of the model version used here but 

comparing different complexities of the marine iron configurations (Yao et al., 2019) as well as other inverse 

modeling studies (Pasquier & Holzer, 2017, 2018). However, it must be noted that all of these model studies, 

including this one, only evaluated steady-state simulations in which uncertain parameters were manually 

tuned or optimized to best reproduce observations. Therefore, they are not necessarily indicative to how the 

iron dynamics in the model may respond to and impact marine productivity in externally forced transient 

scenarios.

There is a notable decrease in marine productivity and export production in the Southern Ocean among our 

model simulations with better representations of the global iron distribution (Table 3). The variable ligand 

parameterization predicts less ligands in the Southern Ocean (Figure 3), which allows higher scavenging to 
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# Simulation name

Net primary production (Gt C yr−1) Export production (Gt C yr−1) Dissolved O2 (mmol m−3)

Global Southern Global Southern Global Southern

1 SrcLow_LigCon 47.0 8.11 8.1 2.12 167 206

2 SrcLow_LigVar 47.4 7.09 7.9 1.86 175 216

3 SedMid_LigVar 47.7 6.72 7.9 1.75 178 221

4 SedHigh_LigVar 48.0 6.67 7.9 1.74 179 222

5 Atm + SedHigh_LigVar 47.9 6.42 7.8 1.68 181 224

Table 3 
Global Marine Biogeochemistry Results
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reduce DFe that better reproduces observations. Furthermore, since external iron sources in the Southern 

Ocean are small (Figures 2 and 4m), the enhanced scavenging in the high source flux simulations removes 

more DFe than source fluxes add to the Southern Ocean. Therefore, DFe levels further decrease in the 

Southern Ocean (Figures 4o and 6) in the high source flux scenarios. The high scavenging in our best model 

simulation with variable ligands and high source fluxes (Atm + SedHigh_LigVar) reduces DFe, marine pro-

ductivity and resulting oxygen consumption during remineralization of POM, thereby increasing dissolved 

oxygen concentrations at depth. This effect is significant enough to increase average global dissolved oxygen 

concentrations by 8% in the model because water masses formed in the Southern Ocean contribute to much 

of the global deep ocean (Table 3). This emphasizes the importance of simulating a robust global marine 

iron cycle most importantly in the Southern Ocean.

5. Conclusions

In this study we tested various rates of atmospheric soluble deposition, reductive sedimentary release, and 

variable ligand distributions within a marine iron component in a global ocean biogeochemical model. 

The simulations that best reproduce the global DFe observations include highest tested source fluxes and 

a variable ligand parameterization. The most striking feature in the global DFe observations that supports 

this hypothesis is the strong gradients that often occur with high concentrations near source fluxes and 

low concentrations in adjacent open ocean regions. This high source flux/scavenging iron cycling regime 

causes a relatively short residence times of less than a decade in the global oceans and less than a year in 

the surface ocean. The short residence time implies that the global marine iron cycle is highly sensitive 

to environmental perturbations in the Anthropocene and geological past. Uncertainties remain high due 

to model parameterizations of complex, poorly understood, and often intertwined processes (e.g., ligand 

production and subsequent control on scavenging near source inputs) and the sparsity of DFe and ligand 

measurements throughout the global ocean. Nevertheless, our model-data analysis suggests the marine 

iron cycle operates with high global source inputs and scavenging rates and low residence times compare 

to most previous estimates.

Data Availability Statement

Model code and output will be made publicly accessible at GEOMAR open access repository (https://

thredds.geomar.de).
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