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Abstract

Creative cognition has been consistently associated with functional connectivity between frontoparietal control and default
networks. However, recent research identified distinct connectivity dynamics for subnetworks within the larger
frontoparietal system—one subnetwork (FPCNa) shows positive coupling with the default network and another subnetwork
(FPCNb) shows negative default coupling—raising questions about how these networks interact during creative cognition.
Here we examine frontoparietal subnetwork functional connectivity in a large sample of participants (n=171) who
completed a divergent creative thinking task and a resting-state scan during fMRI. We replicated recent findings on
functional connectivity of frontoparietal subnetworks at rest: FPCNa positively correlated with the default network and
FPCNb negatively correlated with the default network. Critically, we found that divergent thinking evoked functional
connectivity between both frontoparietal subnetworks and the default network, but in different ways. Using community
detection, we found that FPCNa regions showed greater coassignment to a default network community. However, FPCNb
showed overall stronger functional connectivity with the default network—reflecting a reversal of negative connectivity at
rest—and the strength of FPCNb-default network connectivity correlated with individual creative ability. These findings
provide novel evidence of a behavioral benefit to the cooperation of typically anticorrelated brain networks.
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Neuroscientific investigations of creativity are increasingly
focused on the contributions of large-scale cortical networks to
creative cognition. Across a range of creative tasks and domains,
2 large-scale networks have emerged as central to creative
performance: the frontoparietal (or executive) control network
and the default (or default mode) network (Ellamil et al. 2012;
Jung et al. 2013; Beaty et al. 2016, 2018, 2019). Frontoparietal and
default network (DN) interaction during creative cognition is
thought to reflect a coordination of controlled and spontaneous
cognitive processes, respectively (Beaty et al. 2016). This
cooperative connectivity pattern is notable, however, because
the frontoparietal and DNs have previously been shown to work
in opposition (Fox et al. 2005; Anticevic et al. 2012). Yet recent
evidence points to heterogeneity within the frontoparietal

network, with one subnetwork showing “negative” intrinsic
(resting) and task-related connectivity with the DN and another
subnetwork showing “positive” connectivity with the DN (Dixon
et al. 2018; Murphy et al. 2020). These findings raise questions
about whether creative thinking involves a reorganization
of functional brain networks, or whether the cooperative
functional connectivity observed during creativity is embedded
within normative network dynamics. In the present research,
we aim to address this question by examining functional
connectivity of frontoparietal subnetworks during creative task
performance in a large sample of participants (n= 171). We
also test whether between-subject variation in frontoparietal
network dynamics is associated with individual differences in
creative thinking ability.
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Creative Cognition and Frontoparietal-DN
Dynamics
Creativity is a complex construct that involves variegated cogni-
tive,motivational, and contextual elements (Amabile 1983; Finke
et al. 1992). Cognitive research on creativity has tended to focus
on divergent thinking, or the ability to combine information in
new ways to solve open-ended problems. Divergent thinking is
thought to require a coordination of associative and executive
control processes in the service of generating ideas that are
both novel and appropriate. The associative theory of creativity
(Mednick 1962) posits that creative thinking involves spreading
activation of concepts within semantic memory networks. On
this view, coming up with a creative idea requires connecting
remote concepts within semantic networks, bypassing common
and unoriginal concepts along the way (Kenett and Faust 2019).
Executive theories of creativity (Benedek et al. 2014b; Benedek
and Fink 2019), in contrast, emphasize the contribution of strate-
gic and controlled aspects of cognition required to manage and
direct the creative thought process—inhibiting common asso-
ciations, strategically searching and selecting information, and
maintaining higher order goals (Beaty and Silvia 2012; Benedek
et al. 2014b; Green 2016; Volle 2018; Chrysikou 2019; Dygert and
Jarosz 2020).

Associative and executive cognitive processes appear to be
supported by 2 major brain networks: the DN and the fron-
toparietal control network (FPCN), respectively (Bendetowicz
et al. 2018). The DN is composed of medial frontal, medial
temporal, cingulate, precuneus, and inferior parietal cortical
regions (Raichle et al. 2001; Raichle 2015). DN activity and
connectivity are generally elevated during rest, in comparison to
cognitive task engagement, suggesting this network reflects the
“default mode” of activation in the brain. Yet much research has
demonstrated that the DN is notmerely a task-negative network
(Spreng 2012): it activates during tasks involving self-referential
and internally directed cognitive processes, including episodic
memory, social and emotional cognition, mental stimulation,
and mind wandering (Buckner et al. 2008; Andrews-Hanna 2012;
Andrews-Hanna et al. 2014). The FPCN—also known as the
executive control network—is composed of lateral prefrontal
and anterior inferior parietal regions (Seeley et al. 2007). FPCN
activity and connectivity are broadly associated with cognitive
processes requiring the strategic and top–down control of
attention and cognition, including working memory, decision-
making, task-set switching, and response inhibition (Niendam
et al. 2012).

Recent network neuroscience research has found that
creative cognition involves functional connectivity between
FPCN and DN (for reviews, see Beaty et al. 2016, 2019). This
connectivity pattern has been reported across studies of both
domain-general creative thinking (e.g., divergent thinking) and
domain-specific creative performance (e.g., artistic drawing;
Ellamil et al. 2012), suggesting that it is a reliable neural
correlate of creative performance. In a study of divergent
thinking—a cognitive processes requiring idea generation, such
as thinking of novel object uses—Beaty et al. (2015) found
that the posterior cingulate cortex (PCC) of the DN showed
increased functional connectivity with dorsolateral prefrontal
cortex of the FPCN. More recently, Beaty et al. (2018) replicated
and extended this finding in a larger sample, finding that the
strength of functional connectivity between the FPCN and the
DN (among other regions) could reliably predict an individual’s
creative ability. Several other studies on creative cognition

and artistic performance have reported similar interactions
between FPCN and DN regions, including studies on divergent
thinking (Shi et al. 2018; Adnan et al. 2019a, 2019b; Sunavsky
and Poppenk 2020), novel word association (Green et al. 2015;
Beaty et al. 2017a), metaphor production (Beaty et al. 2017b),
music improvisation (Pinho et al. 2016; Belden et al. 2020),
poetry composition (Liu et al. 2015), and artistic drawing (Ellamil
et al. 2012). The interaction of FPCN and DN during creative
cognition is hypothesized to represent goal-directed, self-
generated thought, with the DN supporting the generation of
ideas and the FPCN supporting the evaluation of those ideas by
modifying DN output to meet creative task goals (Beaty et al.
2016). Although FPCN-DN cooperation is consistent in creativity
neuroscience, a large neuroscience literature supports their
antagonistic relationship: DN regions tend to deactivate when
FPCN regions activate, both at rest and during performance on
many cognitively demanding tasks.

The role of executive control and the FPCN in creative
cognition is consistent with recent work on the neurocog-
nitive underpinnings of creativity and intelligence (Benedek
2018; Jung and Chohan 2019; Frith et al. 2021). According
to Jung and Chohan (2019), intelligence and creativity can
be conceived along 2 major axes—exploratory behavior and
restrained action—corresponding to DN and FPCN, respectively.
Recently, Frith et al. (2021) reported a substantial cognitive
and neural overlap between general intelligence and divergent
thinking.Usingmachine learning (connectome-based predictive
modeling), the authors found nearly half of the brain features
(i.e., functional connections) that predicted intelligence also
predicted divergent thinking, with a majority of the overlapping
features within the FPCN and ventral attention/salience
network. Intelligence and creative cognition may thus similarly
rely on brain regions and networks that support executive
control.

Frontoparietal Network Fractionation
and Relationships to the DN
Foundational work by Fox et al. (2005) demonstrated an antag-
onistic relationship between a “task-positive network” (com-
prised of FPCN and dorsal attention network [DAN] regions)
and a “task-negative network” (comprised of the DN): activity
within task-positive regions (e.g., intraparietal sulcus) correlated
positively with other task-positive regions (e.g., dorsolateral pre-
frontal cortex) but correlated negatively with DN regions (e.g.,
PCC). In the context of cognitively demanding tasks, DN deac-
tivation is posited to reflect the suppression of task-unrelated
thoughts (i.e., mind wandering) to facilitate goal-directed per-
formance. Critically, however, the DN has since been revealed
as far more than a passive, task-negative system (Spreng 2012),
with DN showing activation during internally directed and self-
referential cognitive processes, such as autobiographical mem-
ory retrieval, future simulation, and social cognition, among
others (Andrews-Hanna et al. 2014).

Although FPCN and DN show an antagonistic relationship
acrossmany tasks, the 2 networks are not always anticorrelated.
For instance, both the FPCN and DN are recruited during
cognitive tasks that require both goal-directed and self-
referential cognition, such as autobiographical future planning
(Spreng et al. 2010). Spreng et al. (2010) found that, compared
to a task requiring visuospatial planning (i.e., Tower of Hanoi)—
which engaged FPCN and the DAN—planning a sequence of
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autobiographical future events engaged FPCN and DN regions,
presumably reflecting the goal-directed manipulation of
episodic representations. Even in the most seemingly uncon-
strained context of mind wandering, a review of neuroimaging
studies found consistent activation of both the FPCN and DN
(Fox et al. 2015), supporting the notion that mind wandering
can be strategically constrained by goal-directed signals from
the FPCN. Across all of these cognitive processes, it is presumed
that the DN plays a role in generating thoughts via episodic or
semantic memory (e.g., future events to plan, ideas that could
be creative), while the FPCN strategically evaluates and filters
these thoughts according to the task at hand.

Recent work has attempted to clarify how and when FPCN
and DN regions cooperate by examining distinct subsystems
within the FPCN. Using hierarchical clustering and machine
learning classification of functional connectivity patterns
within the FPCN, Dixon et al. (2018) identified 2 functionally
distinct subnetworks previously characterized in a 17-network
parcellation (Yeo et al. 2011): FPCNa and FPCNb. FPCNa consisted
of rostrolateral prefrontal cortex, middle and superior frontal
gyri, middle temporal gyrus, anterior intraparietal sulcus, and
presupplementary motor area; FPCNb consisted of inferior
frontal sulcus, posterior superior frontal gyrus, posterior middle
temporal gyrus, and intraparietal sulcus. Critically, Dixon et al.
found that FPCNa showed stronger functional connectivity
with the DN core (medial prefrontal cortex, PCC, angular
gyri, and anterior middle temporal gyrus) and that FPCNa-
DN connectivity was stronger than FPCNa-DAN connectivity.
In contrast, FPCNb showed stronger connectivity with the DAN
than the DN. This connectivity pattern was observed in nine
different conditions (resting-state and 8 different tasks) across
4 independent samples, highlighting the robustness of the
relationships between frontoparietal subnetworks and the DN.

The findings of Dixon et al. were recently extended by a
multimodal connectivity analysis of working memory (Murphy
et al. 2020). Combining functional and structural connectivity
(i.e., diffusion tensor imaging), Murphy et al. (2020) found that
the strength of FPCN-DN coupling could be altered by tuning the
amplitudes of FPCN subnetworks, indicating that the FPCN gov-
erns the functional relationship between FPCN and DN. More-
over, the authors noted that FPCNb is critical toworkingmemory
performance, whereas FPCNa is more central to introspective
cognition—consistent with prior work (Dixon et al. 2018)—and
that working memory performance can be further explained by
network competition driven by activation of FPCNb (which is
negatively correlated with the DN). Taken together, this recently
identified heterogeneity within the FPCN, and its corresponding
functional relationships to the DN, substantially enriches the
initial characterization of these networks. However, questions
remain regarding how these networks interact to support other
modes of high-level cognition, such as creative cognition.

The Present Research
Creative cognition has been shown to involve positive functional
connectivity between FPCN and DN. Yet recent research has
identified heterogeneity within FPCN architecture and corre-
sponding functional relationships to the DN, with one FPCN
subnetwork (FPCNa) exhibiting a positive association with the
DN and another FPCN subnetwork (FPCNb) exhibiting a negative
association with the DN (Dixon et al. 2018). These findings
raise the question of how FPCN subnetworks operate during
creative cognition: Does functional connectivity of FPCN and
DN reflect tonically cooperative interaction dynamics of these

networks (FPCNa-DN), or does such coupling reflect a reversal
of otherwise competitive network interactions (FPCNb-DN)? The
present research examines this question using a combination
of functional connectivity and community network detection
techniques applied to resting-state and task-fMRI data from a
large neuroimaging sample (n= 171). First,we sought to replicate
the resting-state connectivity profiles of the 2 FPCN networks
reported in prior work (Dixon et al. 2018; Murphy et al. 2020).
Next, we tested the main question of interest by assessing
differential connectivity of FPCN subnetworks during divergent
creative thinking. To further characterize network relationships
associated with divergent thinking, we used a data-driven com-
munity detection approach to assess how frontoparietal and
DN regions cluster together when participants think creatively.
Finally, we addressed 2 questions regarding individual differ-
ences: (1) Does baseline connectivity of frontoparietal networks
“at rest” predict task-related connectivity? and (2) Does task-
related connectivity relate to behavioral performance on the
creative thinking task?

Given recent work on FPCN subnetwork connectivity (Dixon
et al. 2018; Murphy et al. 2020),we hypothesized that, during rest,
FPCNa would correlate positively with the DN and FPCNb would
correlate negatively with the DN. Critically, during divergent
thinking, we hypothesized that both FPCN subnetworks would
correlate with the DN, in light of prior findings implicating the
larger FPCN and DN in creative cognition. Regarding individual
differences, we hypothesized that FPCN connectivity strength
at rest would correlate with FPCN connectivity strength during
the task, and that FPCN connectivity strength would correlate
positively with behavioral performance, though given lack of
precedent, we did not have specific hypotheses regarding which
subnetwork would show a stronger correlation with behavior.

Method
Participants

Neuroimaging and behavioral data were collected as part of
a larger project on the psychology and neuroscience of cre-
ativity (see Beaty et al. 2018). The full sample of participants
consisted of 186 adults from the University of North Carolina
at Greensboro (UNCG) and the surrounding community (129
women, mean age= 22.74 years, standard deviation [SD]= 6.37).
Participants completed written consent forms and received up
to $100 for their participation in the multiphase study (mag-
netic resonance imaging [MRI], cognitive assessment, and daily-
life experience sampling). They were right-handed, with nor-
mal or corrected-to-normal vision, and reported no history of
cognitive impairment, neurological issues, or drugs affecting
the central nervous system. Participants were excluded for the
following reasons: excessive head movement (mean framewise
displacement [FD] >0.5 mm, n= 4; Power et al. 2012), incomplete
behavioral data (i.e., verbal responses to creativity tasks), and
software/hardware issues. After exclusions, the final sample
consisted of 171 adults (119 females, mean age= 22.73 years,
SD=6.22); 165 participants in the final task sample also com-
pleted a resting-state scan. The study procedure was approved
by the UNCG Institutional Review Board.

fMRI Task Procedures and Divergent
Thinking Assessment

Participants completed 2 tasks during functional imaging in an
event-related design: (1) the Alternate Uses Task (AUT) and (2)
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the Object Characteristics Task (OCT; see Beaty et al. 2015, 2018).
TheAUT is awidely used assessment of divergent thinking (Guil-
ford 1967; Kaufman et al. 2008). Participants were presentedwith
a series of 23 objects and asked to think of a single creative use
for each one; they were encouraged to “think creatively” (Green
et al. 2015) and to try to come up with the most original idea
they could during the thinking period. The OCT is a common
semantic control task in fMRI studies of divergent thinking (Fink
et al. 2009; Beaty et al. 2015; Vartanian et al. 2018), and it requires
participants to think of the defining physical features of a series
of objects (23 trials).

The trial structure consisted of: (1) a jittered fixation cross
(4–6 s), (2), a condition cue (3 s), (3) a silent response genera-
tion phase (12 s), and (4) a response production phase, during
which participants spoke their response into anMRI-compatible
microphone (5 s; cf., Benedek et al. 2014a, 2018; Beaty et al.
2017a, 2017b, 2018). Before the fMRI scanning session, partic-
ipants received thorough instructions and completed several
practice trials of both tasks. Following the fMRI task, participants
completed a 5-minute resting scan, during which they were
asked to relax with their eyes closed.

Verbal responses were transcribed by an experimenter for
subsequent assessment of creative quality. In the present study,
creative quality was assessed via semantic distance—an objec-
tive method that is increasingly used in creativity research to
automate creativity assessment using computational seman-
tic models (Green 2016; Kenett 2019; Beaty and Johnson 2020).
Semantic distance has shown consistent validity for assess-
ment of divergent creativity—the extent to which ideas/con-
cepts diverge in a semantic space—including high correlations
with human creativity ratings (Beaty and Johnson 2020; Dumas
et al. 2020) and moderate correlations with other creativity
measures (e.g., creative achievement in the arts and sciences;
Prabhakaran et al. 2014; Beaty and Johnson 2020). At the neural
level, recent work has found that semantic distance and human
creativity ratings overlap in terms of functional connectivity
patterns at rest (Orwig et al. 2021). Given this finding and prior
work reporting correlations between human creativity ratings
and functional connectivity between the default and control
networks (Beaty et al. 2018), we hypothesized that semantic
distance would similarly correlate with default-control connec-
tivity strength. However, given the lack of precedent, we did not
have a strong prediction regarding whether semantic distance
would correlate with either FPCNa or FPCNb.

Consistent with past work, we computed the semantic
similarity between the AUT object words (e.g., brick) and
participants’ verbal responses, then took the inverse of these
values to obtain a measure of distance (Green 2016). To
compute semantic distance, we used the online platform,
SemDis (semdis.wlu.psu.edu; Beaty and Johnson 2020). The
SemDis platform leverages 5 semantic models previously shown
to have a strong correspondence with human relatedness
judgments (Mandera et al. 2017), including 2 count models
(which count the co-occurrences of words in large text corpora)
and 3 predict models (which use neural networks to predict
a given word from surrounding context words; see Mandera
et al. 2017). A benefit of this multimodel approach is that
it can mitigate biases introduced by relying on a single
model and text corpus, thereby increasing generalizability
and reliability (Kenett 2019). Following our prior work (Beaty
and Johnson 2020), verbal responses were preprocessed by
spell checking and removal of the AUT cue word (and its
plurals; e.g., “box” and “boxes”). The preprocessed response

file was then uploaded to the SemDis platform, using the
following options: cleaning type= remove filler and clean (removes
stop words; e.g., an, a, the), semantic space= all; compositional
model =multiplicative. For subsequent fMRI analysis, we used the
semdis_factor score, a latent variable comprised of the 5 semantic
distance values (Beaty and Johnson 2020).

MRI Data Acquisition and Preprocessing

The MRI protocol and preprocessing pipeline were identical to
our prior work (Frith et al. 2021), with the exception of brain
network modeling (see Functional Network Construction and
Preprocessing).

Participants completed the tasks in a single fMRI run.Whole-
brain imaging was performed on a 3 T Siemens Magnetom
MRI system (Siemens Medical Systems) using a 16-channel
head coil. BOLD-sensitive T2∗-weighted functional images were
acquired using a single shot gradient-echo echo-planar imaging
(EPI) pulse sequence [repetition time (TR) = 2000 ms, echo time
(TE) = 30 ms, flip angle =78◦, 32 axial slices, 3.5×3.5×4.0 mm,
distance factor 0%, field of view=192× 192 mm, interleaved
slice ordering] and corrected online for head motion. The first
2 volumes were discarded to allow for T1 equilibration effects.
Visual stimuliwere presented using E-Prime and viewed through
a mirror attached to the head coil. In addition to functional
imaging, a high resolution T1 scan was acquired for anatomic
normalization. Preprocessing of the anatomical and functional
data were performed using fMRIPrep1.4rc1 (Esteban et al. 2019).

Anatomical Data Preprocessing
The T1-weighted (T1w) image was skull-stripped and corrected
for intensity nonuniformity using ANTs v.2.2.0 (Avants et al.
2008). Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM), and gray-matter (GM) was performed on
the brain-extracted T1w using FAST in FSL v.5.0.9 (Zhang et al.
2001). Brain surfaces were reconstructed using FreeSurfer v.6.0.1
(Dale et al. 1999), and the brain mask estimated previously was
refined with a custom variation of Mindboggle (Klein et al.
2017). Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym; Fonov et al. 2009) was performed
through nonlinear registrationwith ANTs, using brain-extracted
versions of both T1w reference and the T1w template.

Functional Data Preprocessing
For each BOLD run per subject, first a reference volume and its
skull-stripped version were generated using a custom method-
ology of fMRIPrep. The BOLD reference was then coregistered
to the T1w reference FreeSurfer, which implements boundary-
based registration (Greve and Fischl 2009). Coregistration was
configured with 9 degrees of freedom to account for distor-
tions remaining in the BOLD reference.Head-motion parameters
with respect to the BOLD reference (transformation matrices,
and 6 corresponding rotation and translation parameters) are
estimated before any spatiotemporal filtering using FSL (Jenk-
inson et al. 2002). BOLD runs were slice-time corrected using
AFNI (Cox and Hyde 1997). The BOLD time-series were then
resampled into MNI space using ANTs. FD and 3 region-wise
global signals extracted from CSF, the WM, and the whole-brain
masks, respectively, were also computed as confound regressors
(Satterthwaite et al. 2013; Power et al. 2014).
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Functional Network Construction and Preprocessing
Functional brain networks were constructed and analyzed using
the Functional Connectivity (CONN) toolbox in MATLAB (Whit-
field-Gabrieli andNieto-Castanon 2012).Our primary goal was to
compare functional connectivity of frontoparietal subnetworks
during divergent thinking. We therefore used the 17 networks
parcellation of Yeo et al. (2011), which includes the 2 subnet-
works of interest (see Dixon et al. 2018): FPCNa and FPCNb.
The DN core (DN_core) was included to assess its functional
connectivity with the 2 FPCN subnetworks. To replicate and
extend this analysis,we used the Schaefer parcellation (Schaefer
et al. 2018). The Schaefer atlas was based on the original Yeo
parcellation and it provides a finer resolution of anatomical
regions within the same large-scale networks. Consistent with
Schaefer and other recent work (Murphy et al. 2020), we used
the 17 network parcellation with 400 parcels; again, we focused
on the 3 networks of interest (FPCNa, FPCNb, and DN_core).
Given prior work demonstrating increased coupling between
the inferior frontal gyrus (IFG) and DN during creativity tasks
(Beaty et al. 2014; Takeuchi et al. 2017), we used a mask of IFG
to identify 6 parcels within the FPCNb network that were of
additional interest (see Analysis Plan). The finer resolution of
the Schaefer atlas permitted a community detection analyses,
to examine how the regions within the 3 larger networks cluster
together during DT compared to the control condition (OCT) and
fixation (baseline). Note that the fixation period was used to
obtain a more stable baseline for community detection because
it provided more fMRI data to compute communities than the
shorter resting-state scan.

Mean BOLD signal (concatenated within-condition) was
extracted from the 3 network maps (Yeo et al. 2011) and
individual network regions (Schaefer et al. 2018) during the
AUT, OCT, and fixation conditions. Bivariate correlations were
computed between each pair of networks. We conducted
separate second-level analyses for the 3 Yeo networks and
Schaefer networks (see Analysis Plan). In a first-level analysis,
WMand CSFmasks, alongwith first-order derivatives ofmotion,
were entered as confounds and regressed from the network
timeseries. Additional preprocessing steps included high-pass
filtering, linear detrending, and regression of outlying functional
volumes (FD> 0.5; Power et al. 2012). The onsets and durations
of the verbal response periods were regressed to account
for expected artifacts related to participant vocalization. We
also regressed the onsets and durations of all task events
(AUT, OCT, and fixation) to account for potential task-induced
responses in the BOLD signal that are unrelated to the
cognitive processes of interest (e.g., increased arousal during
AUT).

For all second-level analyses, t-tests on Fisher’s Z-transformed
correlations were used to test for differences in functional
connectivity between conditions. Correction for multiple
comparisons was implemented using false discovery rate (FDR).
Seed-to-voxel analyses are reported at a cluster-level threshold
of P< 0.05 FDR corrected and a voxelwise threshold of level of
P< 0.001 uncorrected; ROI-to-ROI analyses are reported at a ROI-
level when significant at a threshold of P< 0.05 FDR corrected.
Connectivity contrasts were conducted using the CONN toolbox,
using the following procedures: For ROI-to-ROI level analysis,
F-contrasts in ROI-level contrast analyses were implemented
as multivariate analyses and evaluated through Wilks lambda
statistics. For seed-to-voxel contrast analyses, F-contrasts in
voxel-level analyses are implemented as repeated-measures
analyses using restricted maximum likelihood estimation of

covariance components and evaluated through F-statistical
parameter maps.

Network Topology and Community Detection
We employed 2 complementary approaches to explore the
extent to which the DN and FPCNs exhibited differential
patterns of functional connectivity during the AUT, OCT, and
fixation. First, to visualize network coupling,we used a Kamada–
Kawai energy algorithm (Kamada and Kawai 1989) in Pajek
software (Mrvar and Batagelj 2016). This algorithm arranges
network nodes such that well-connected nodes are pulled
closer together in geometric distancewhereasweakly connected
nodes are placed further apart.

Second,we used a community detection algorithm (Newman
and Girvan 2004) to assign nodes to “communities” by com-
paring the connection density for each node (i.e., the portion
of possible edges that are actual connections) against the con-
nection density for each node of a generated null model, such
that the internal connection density will maximally exceed the
internal density of the null model. Intuitively, this approach
places strongly connected nodes within the same community
and weakly connected nodes in different communities. Each
node is assigned to one community. This process was repeated
5 times, with consensus clustering applied to create a con-
sensus community partition for each participant. Consistent
with recommended procedures (Rubinov and Sporns 2011) the
community detection algorithm was fit with negative asym-
metrical weight, which treats negative correlations as auxiliary
to positive correlations, as the latter more directly relate to
modular organization (i.e., positive correlations among nodes
directly indicate that those nodes correspond to a community,
whereas negative correlations can only dissociate nodes from
communities).

To quantify the extent to which nodes belonging to one atlas-
defined network (e.g., DN nodes) were placed in the same com-
munity as other nodes belonging to the samenetwork (e.g., other
DN nodes) and different networks (e.g., FPCNa, FPCNb), we first
identified—for each participant and each network—which com-
munity contained the highest percentage the network’s nodes.
Higher values in this case indicate that a larger percentage of
network nodes were placed within the same community by the
detection algorithm. For example, if 53% of a participants’ DN
nodes were placed in community 1 and the remaining 47% of
DN nodes were distributed across the remaining communities,
then community 1 would be deemed the “DN-rich” community.
Finally,we then calculated “co-assignment”of the other network
nodes: the percent of network nodes for each of the other 2 net-
works that were also placed within this community. Once again,
higher values here suggest that the network nodes are more
strongly associated with nodes belonging to other networks.We
also identified—for each participant individually—which com-
munity contained the second highest percentage of DN nodes,
and how many nodes from each of the other 2 networks fell
within this community as well. This network topology approach
is conceptually similar to prior work (Mattar et al. 2015).

Analysis Plan

Our study aimed to test whether frontoparietal subnetworks
differentially relate to the DN during creative task performance.
First, we sought to replicate the resting-state connectivity
profiles of the 2 frontoparietal networks reported in prior
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Figure 1. Surface rendering of the default network and frontoparietal subnet-
works. Network masks were derived from the Yeo 17-network parcellation and

overlaid on an inflated cortical surface using the ConnectomeWorkbench pack-
age. DN=default network; FPCNa= frontoparietal control network (subnetwork
a); FPCNb= frontoparietal control network (subnetwork b).

work (Dixon et al. 2018). To this end, we conducted ROI-to-
ROI and seed-to-voxel functional connectivity analysis on the
resting-state data using the 2 frontoparietal subnetworks and
the DN from the Yeo 17 networks parcellation as seeds/ROIs.
Next, we tested the main question of interest—assessing
differential connectivity of frontoparietal subnetworks during
divergent creative thinking—by contrasting functional coupling
of the networks during the AUT compared to the OCT using
both ROI-to-ROI and seed-to-voxel connectivity analyses. To
further characterize network relationships associated with
divergent thinking,we used a data-driven, community detection
approach applied to the Schaefer parcellation to assess how
frontoparietal and DN regions cluster together to support
divergent thinking. To explore questions related to IFG-DN
connectivity specifically, we also assessed the extent to which
the FPCNb IFG parcels—compared to the remaining FPCNb
parcels and FPCNa—exhibited different patterns of functional
connectivity and community assignments with the DN. Finally,
we examined individual differences in terms of resting-task
correlations and behavioral performance.

Results
Resting-State Connectivity of FPCN Subnetworks

We began by assessing resting-state functional connectivity
between FPCN subnetworks to confirm their relationships with
the DN reported in recent studies. Figure 1 depicts the 2 FPCNs
(FPCNa and FPCNb) and the DN from the Yeo et al. (2011) atlas.
We computed 1-sample t-tests (with 0 as a reference) to examine
connectivity between networks at rest.

Consistent with prior work, ROI-to-ROI analysis yielded
the expected positive correlation between FPCNa and DN:
r=0.06, t(df = 165) = 11.70, P< 0.001. In contrast, we found
the expected negative correlation between FPCNb and DN:
r=− 0.06, t(df = 165) =−11.01, P< 0.001; the 2 frontoparietal net-
workswere positively correlated, as expected: r=0.14 t(df = 165) =
32.48, P< 0.001.

The ROI-to-ROI connectivity pattern above was further con-
firmed in a series of seed-to-voxel analysis. Using FPCNa as
seed, we found significant voxel clusters positively correlated
within core default regions: PCC,MPFC,bilateral AG,and bilateral
MTG (see Fig. 2). Using FPCNb as seed, we found the opposite
profile, with negative connectivity clusters found within the
same default regions. Contrasting connectivity associated with
FPCNa versus FPCNb yielded a pattern of functional connec-
tivity that mirrored the DN (see Fig. 2). In sum, these results
replicate previous findings regarding the relationships between
frontoparietal subnetworks and the DN during the resting state
(Dixon et al. 2018; Murphy et al. 2020).

Divergent Thinking and FPCN Subnetwork Connectivity

Having confirmed the hypothesized resting-state network rela-
tionships,we next examined FPCN subnetwork interactions dur-
ing the divergent thinking task (AUT) compared to the control
task (OCT).We thus contrasted ROI-to-ROI functional connectiv-
ity between FPCNa, FPCNb, and DN (3 connections, between all
pairs of networks) during the AUT compared to OCT control task.
A multivariate general linear model showed a significant effect
of condition: F(1, 170) = 7.20, P< 0.05 (FDR corrected). Post-hoc t-
tests revealed stronger positive functional connectivity between
FPCNb and DN during the AUT: t(170) = 2.68, P=0.008. Thus,
the task-based results showed increased coupling between 2
networks (FPCNb andDN) thatwere negatively correlated at rest.

To explore differences in DN functional connectivity with
the IFG and the remainder of the FPCNb—as well as whether
connectivity was significantly different for the creative and
noncreative task—we conducted 2 (FPCNb parcel: IFG parcels, all
remaining non-IFG parcels) × 2 (Task: AUT, OCT) mixed effects
ANOVA using the Schaefer atlas parcellation. This model indi-
cated a small, but significant main effect of FPCNb parcel; func-
tional connectivity between the DN and IFG (mean z(r)=0.05)
was greater than that between the DN and the remaining FPCNb
parcels (z(r)=0.04; P=0.03) across both task conditions.However,
this model failed to indicate an effect of task (P=0.09) or an
FPCNb parcel × Task interaction (P=0.19). Thus, IFG regions of
FPCNb were more strongly connected to the DN (relative to
remainder of the FPCNb network), with this effect consistent
across creative and noncreative task conditions.

Next, we conducted a seed-based analysis to further explore
connectivity patterns between the FPCN subnetworks and the
rest of the brain during the AUT compared to the OCT control
task (see Fig. 3 and Table 1). Compared to FPCNa, FPCNb showed
stronger divergent thinking-related functional connectivitywith
7 clusters, including 2 regions of the DN core—left angular gyrus
(AG) and PCC—as well as the left parahippocampal gyrus (PHG)
of the medial temporal lobe subsystem of the DN; additional
clusters were found within the frontal and parietal lobes (see
Table 1). Compared to FPCNb, FPCNa showed greater divergent
thinking-related functional connectivity with 8 clusters, includ-
ing regions with the DN core: PCC, precuneus, and right AG;
additional clusters were found within the parietal and temporal
lobes (see Table 1). Thus, both FPCN subnetworks were function-
ally connected to DN regions and other regions during divergent
thinking.

To test whether FPCN connectivity related to individual
creative ability, we extracted time-series correlations from the
ROI-to-ROI analyses for both FPCNs and the DN (FPCNa-DN
and FPCNb-DN, separately), for the AUT>OCT contrast, and
computed Pearson correlations with semantic distance of AUT
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Frontoparietal Subnetworks and Divergent Thinking Beaty et al. 7

Figure 2. Resting-state seed-to-voxel functional connectivity for two FPCN subnetworks and the DN. Warm colors indicate increased connectivity and cooler colors
indicate decreased connectivity. The FPCNa>FPCNb contrast shows similar connectivity as the DN.

Figure 3. Task-based seed-to-voxel functional connectivity for two FPCN subnetworks during divergent thinking (AUT>OCT). AG=angular gyrus; IFG= inferior
frontal gyrus; PCC=posterior cingulate cortex; MFG=middle frontal gyrus; MTG=middle temporal gyrus; PCG=postcentral gyrus; PHG=parahippocampal gyrus;
PreCu=precuneus; SMG=supramarginal gyrus; STG=superior temporal gyrus.

responses. We found a modest but statistically significant
correlation between FPCNb-DN connectivity strength and
semantic distance (r=0.17, P=0.03); FPCNa-DN connectivity
strength was not significantly related to semantic distance.
Next, we examined whether participants with stronger FPCN-
DN connectivity (both subnetworks) during the AUT showed
stronger coupling at rest. We found a positive correlation
between task- and resting-state connectivity for FPCNb-DN
(r=0.22, P=0.004); this relationship was not observed for
FPCNa-DN connectivity. Participants with stronger FPCNb-
DN coupling at rest therefore also showed stronger FPCNb-
DN coupling during divergent thinking, suggesting that these
participants could more effectively reverse the competitive

resting association between FPCNb and DN to facilitate thinking
creatively.

Topological Organization of DN and FPCN

Next, to visualize FPCN and DN topology during the 2 task con-
ditions and fixation, we implemented a Kamada–Kawai energy
algorithm. Kamada–Kawai algorithms arrange network nodes
such that more strongly connected nodes are placed closer
together in geometric distance. This approach allowed us to
replicate and extend recent work on FPCN subnetwork topology
at rest (fixation) and during cognitive task performance, exam-
ining how nodes within the 3 networks cluster together. The

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab100/6249829 by C

olum
bia U

niversity user on 09 August 2021



8 Cerebral Cortex, 2021, Vol. 00, No. 00

Table 1 Seed-to-voxel functional connectivity analysis for divergent thinking

Peak (MNI)

Seed Region Lat. BA x y z Tpeak k

FPCNa
MTG L 21 −52 −31 −7 4.29 336
STG R 22 47 −29 0 4.66 312
STG R 13 47 −44 25 4.91 180
PCC R 23 2 −35 25 5.60 921
PreCu L 7 −13 −67 32 5.03 530
PreCu R 7 8 −73 40 5.74 2164
SMG R 40 56 −46 39 4.24 243
IPL R 40 41 −52 40 3.96 276
FPCNb
PHG L 37 −31 −40 −12 4.66 204
PCC L 23 −10 −56 8 5.33 540
AG L 39 −40 −76 35 5.76 1822
IFG L 9 −55 10 28 5.04 360
IPL L 40 −58 −29 48 6.28 2149
MFG L 8 −31 13 53 5.91 2329
MFG L 6 −28 −8 52 4.23 306

Note: The analysis contrasted AUT>OCT and FPCNa > FPCNb. Lat. = Laterality, BA=Brodmann Area, L/R=Left/Right, k=cluster size, MTG=Middle Temporal Gyrus,
STG=Superior Temporal Gyrus, PCC=Posterior Cingulate Cortex, PreCu=Precuneus, SMG=Supramarginal gyrus, IPL= Inferior Parietal Lobule, PHG=Parahippocampal
Gyrus, AG=Angular gyrus, IFG= Inferior Frontal Gyrus, MFG=Middle Frontal Gyrus

average full sample Z-transformed correlation matrix (FPCNa,
FPCNb,andDNnodeswithin the Schaefer atlas)was thresholded
to retain only the top 20% of connections (based on Z values).
Visualizations were produced for fixation, AUT, and OCT (Fig. 4).

Kamada–Kawai visualizations indicated stronger within-
network FC during fixation and greater between-network FC
during the 2 task conditions. That is, network nodes appeared
more interconnected during AUT and OCT compared to fixation.
In order to quantify these findings, we compared average FC
within and between each network during the AUT, OCT, and fix-
ation.Consistentwith the visualizations,paired t-tests indicated
that FC within each network during fixation was significantly
greater than within-network FC during AUT (all t(df = 170)> 7.50,
P< 0.0001) and OCT (all t(df = 170)> 7.50, P< 0.0001). Within-
network FC was also significantly greater during OCT than AUT
for FPCNa (t(df = 170) = 3.86, P=0.0002) and DN (t(df = 170) = 6.11,
P< 0.0001), but not FPCNb (t(df = 170) = 0.70, P=0.49). Further, all
between-network FC was significantly weaker during fixation
than during AUT (all t(df = 170)> −7.01, P< 0.0001) and OCT (all
t(df = 170)> −5.60, P<0.0001). Connectivity between the 2 FPCNs
was also greater during OCT than during AUT (t(df = 170) = 4.68,
P< 0.0001). Together, these findings suggest that the DN and
frontoparietal subnetworks exhibit greater decoupling at rest
(fixation) than during the AUT or OCT conditions.

Community Detection of DN and FPCN Subnetworks

We next implemented a complimentary approach—community
detection—to further quantify differences in FC patterns of the
frontoparietal subnetworks and DN at task and during rest.
The community detection algorithm (Newman and Girvan 2004)
placed nodes into communities such that the internal connec-
tion density maximally exceeded the internal density of a null
model. That is, strongly connected nodes were more likely to be
placed within the same community.

We then examined community coassignment of fron-
toparietal subnetworks and DN nodes to further evaluate
network topology. First, for each network for each partici-
pant, we identified which community contained the greatest
number of nodes for the corresponding network. We then
calculated the percent of each network’s nodes that fell
within that community, with a larger value indicating that a
greater percentage of network nodes were placed in the same
community.

Consistent with results using network-to-network FC, a
higher percentage of nodes were placed in the same community
during fixation than during task for the FPCNb (t(df = 170)> 4.80,
P< 0.0001), FPCNa (rest vs. AUT: t(df = 170) = 3.02, P=0.0029; fixa-
tion vs. OCT: t(df = 170) = 1.98, P=0.049), and DN (t(df = 170)> 9.01,
P< 0.0001). That is, nodes that belonged to the same atlas-
defined resting-state network exhibited more similar con-
nectivity patterns during fixation than during the 2 task
conditions. Thus, these results were consistent with the
imposed structure of the brain atlas, since the atlas-defined
resting-state networks were more intact (i.e., placed in the same
data-driven community more frequently) in the absence of task
demands.

To investigate “co-assignment,”we calculated the percentage
of nodes from the frontoparietal subnetworks that were placed
in the DN-rich community (i.e., the community containing the
highest percentage of DN nodes). Another series of paired
t-tests was performed to examine whether coassignment
for both FPCNs was significantly greater during the task
conditions than during fixation. Compared with fixation, FPCNb
and DN coassignment was significantly greater during both
AUT (t(df = 170) = 10.47, P<0.0001) and OCT (t(df = 170) = 8.72,
P< 0.0001). Coassignment between FPCNa and DN was also
higher at task than fixation (AUT: t(df = 170) = 8.35, P<0.0001;
OCT: t(df = 170) = 4.93, P< 0.0001).

We next performed a 2 (FPCN: A, B) × 2 (Task: AUT,
OCT) mixed effects ANOVA in order to determine whether
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Figure 4. Kamada–Kawai visualizations of network topology during the two task conditions (AUT and OCT) and the baseline condition (Fixation). Orange=FPCNa;
Blue=FPCNb; Yellow=DN.

community coassignment of the FPCN nodes to the DN-rich
community varied by task condition. This model revealed
a significant FPCN × Task interaction (F(340) = 4.78, P=0.03),
with coassignment greatest for FPCNa and DN during the
AUT.

Lastly, given prior work indicating particularly strong func-
tional connectivity between the IFG and DN during AUT (Beaty
et al. 2014; Takeuchi et al. 2017), we explored the extent to
which the increased FPCNb-DN coassignment during the AUT
was driven by the IFG. That is, was IFG coassignment to the
DN-rich community significantly greater than the coassignment
of all the remaining FPCNb parcels to the DN-rich community?
Despite greater functional connectivity between the IFG and DN
(see Divergent Thinking and FPCN Subnetwork Connectivity), a
paired t-test indicated that a larger percentage of the non-IFG
regions of FPCNb (23.9%) were placed in the DN-rich community
than were the IFG parcels (9.5%, t(170) = 7.38, P< 0.0001). How-
ever, when the same question was applied to the community
containing the second-most DN nodes (i.e., is there a higher
percentage of IFG parcels than non-IFG FPCNb parcels in this
community?), results were indeed consistent with functional
connectivity analyses as well as prior work; a paired t-test
revealed more IFG parcels placed in the same community as the
DN (33.4%) thanwas the remainder of FPCNb (17.8%; t(170) = 7.43,
P< 0.0001). Thus, the IFG may play an especially crucial role in
DN community organization. That is, the DN may reconfigure
into 2 large communities during AUT: one community with the
non-IFG regions of FPCNb, and another community with the
IFG. Consistent with this interpretation, a 2 (DN community:
most DN nodes, second-most DN nodes) × 3 (FPCN: FPCNa, non-
IFG FPCNb, IFG) mixed effects ANOVA indicated a significant
interaction effect (F(510) = 43.81, P< 0.0001), such that the rela-
tive increase in IFG coassignment to the community with the
second-most DN nodes was greater than the change for the
remainder of FPCN.

Discussion
Creative cognition has been reliably linked to functional
connectivity between the frontoparietal (executive) and DNs.
Given recent work on frontoparietal subnetwork architecture
and functional relationships with the DN—positive DN coupling
for one subnetwork (FPCNa) and negative DN coupling for
another (FPCNb; Dixon et al. 2018)—we sought to determine
whether frontoparietal subnetworks differentially interact with
the DN during creative task performance.We conducted a series
of functional connectivity analyses (ROI-to-ROI, seed-to-voxel,
and community detection), examining both resting-state and
task-based connectivity in a large sample. We replicated recent
findings regarding resting-state relationships (Dixon et al. 2018;
Murphy et al. 2020): FPCNa was positively correlated with the
DN and FPCNb was negatively correlated with the DN at rest.
The task-based findings, however, revealed a reversal of this
functional connectivity pattern during divergent thinking for
FPCNb, i.e., positive functional coupling between FPCNb and
DN, as well as a greater reorganization of FPCNa regions during
the task. At the individual level, we found that more creative
people (defined via computational semantic distance) showed
stronger functional connectivity between FPCNb (but not FPCNa)
and the DN during the divergent thinking task. Collectively,
our findings indicate that creative thinking is supported by a
functional realignment of a control network that typically shows
an antagonistic relationship with the DN, extending recent work
on frontoparietal subnetwork interactions and demonstrating
their differential dynamics during creative cognition.

Our findings add to the growing literature on the network
neuroscience of creative cognition and functional connectivity
between FPCN and DN (Ellamil et al. 2012; Jung et al. 2013; Pinho
et al. 2016; Beaty et al. 2018, 2019). FPCN-DN interactions have
been hypothesized to reflect the top–down regulation of sponta-
neous cognition,with FPCN guiding and constraining generative
processes within the DN (Beaty et al. 2016). In their recent study
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of FPCN subnetworks, Dixon et al. (2018) proposed that FPCNa
is involved in the regulation of “introspective” cognition. They
find that FPCNa functionally connects to the core DN at rest and
during several cognitive states, including movie viewing, art-
work analysis, evaluation-based introspection, and acceptance-
based introspection. In contrast, Dixon et al. found that FPCNb
exhibited negative coupling with the core DN at rest and during
all task conditions, but positive functional connectivity with the
DAN, which supports executive control of attention to external
stimuli. A topic-based Neurosynth meta-analysis further found
that, although both networks were associated with cognitive
control topics (e.g., working memory), FPCNa was associated
with introspective topics (e.g., mentalizing, emotion), whereas
FPCNb was associated with extrospective topics (e.g., attention,
semantics).

A similar pattern of connectivity was reported by Murphy
et al. (2020), who examined FPCN activity and connectivity dur-
ing working memory. Critically, the authors found a dissociation
of FPCN subnetwork activity andworkingmemory performance:
better working memory was negatively related to FPCNa activ-
ity and positively related to FPCNb. Murphy et al. propose a
mechanistic framework to describe the competitive relationship
between default and control networks, such that the activity
of FPCNb governs the connectivity between the larger FPCN
and DN. Prior work has found that stronger deactivation of
the DN during working memory relates to improved working
memory performance, potentially reflecting the suppression of
task-irrelevant cognition during an executively demanding task
requiring focused attention (Anticevic et al. 2012).

To our knowledge, the current findings are the first to
demonstrate a cognitive benefit to increased communication
between FPCNb and DN. Although recent work indicates
that FPCNa couples with DN to support internally directed
cognition (e.g., mentalizing; cf., Dixon et al. 2018), here we
showed that both FPCN subnetworks interact with the DN
during creative cognition. ROI-to-ROI analyses found stronger
functional coupling of FPCNb with DN, yet seed-to-voxel
analyses revealed increased connectivity of both FPCNs with DN
regions, among other regions. Notably, the positive connectivity
pattern observed for FPCNb during the divergent thinking task
constitutes a reversal of functional connectivity found for the
same individuals during a resting-state scan; the direction of
connectivity was comparable for FPCNa at rest and during the
task. Individual differences analyses found that more creative
individuals—people who produced more semantically distant
responses on the AUT—showed stronger connectivity between
FPCNb and DN (but not FPCNa and DN). Thus, individual
creativity was related to an ability to simultaneously engage
networks that work in opposition at rest.

Positive divergent thinking-related functional connectivity
between FPNCb and DN—which were negatively correlated
at rest—raises questions about the cognitive mechanisms
involved. During common executive control tasks (e.g., working
memory), the anticorrelation between FPCNb and DN is thought
to reflect the suppression of task-unrelated thoughts (i.e.,
mind wandering) in service of externally focused, goal-directed
cognition (Anticevic et al. 2012). Indeed, FPCNb has largely been
considered an externally directed network that couples with
the DAN (and decouples with the DN) when attention must be
focused externally for effective cognitive performance (Spreng
et al. 2010; Murphy et al. 2020). However, we show that FPCNb
can also cooperate with the DN during a decidedly internally
directed cognitive task (i.e., divergent creative thinking).

One possibility is that the unique combination of demands
required by creativity tasks, i.e., high demands on internally
focused and goal-directed cognition, realigns FPCNb and
DN to a “quasi-control” state that may not be otherwise
conducive to effective executive control. Although FPCNa has
recently been linked to such internally directed, goal-directed
cognition (Dixon et al. 2018), we propose that the demands
on goal-directed/executive cognition (and therefore FPCNb)
are especially high during creative cognition, which requires a
range of executive control processes, includingworkingmemory
updating (Benedek et al. 2014a), controlled semantic retrieval
(Silvia et al. 2013), and executive attention (Frith et al. 2021). We
thus contend that FPCNb couples with DN to guide, direct, and
constrain its activity by inhibiting common ideas, maintaining
the task goal, and evaluating candidate ideas for their utility.

Importantly, the community detection analysis provided
additional evidence for a role of FPCNa in divergent thinking.
Although the community coassignment between both FPCNs
and DNwas significantly higher during AUT and OCT compared
to fixation (i.e., greater task-based realignment compared to
rest), the community coassignment of FPCN nodes to the
DN-rich community varied by task condition. Specifically,
coassignment was greatest for FPCNa and DN during the AUT.
Realignment of FPCNa indicates that this control network
is more aligned with the DN when people think creatively,
consistent with the findings of Dixon et al. (2018) showing a
comparable profile for FPCNa during several tasks requiring
internally focused cognition.We also identified the IFG as being
particularly crucial for DN reconfiguration during AUT; the DN
appeared to form 2 large communities—1 with the IFG, and 1
with the rest of FPCN. These findings, based on community
coassignment, offer unique insight into the relationship
between the FPCN and DN during divergent thinking beyond
what can be examined with ROI-to-ROI or seed-to-voxel
analyses, which assess connectivity strength between the larger
scale networks. Taken together, our findings indicate that both
control networks interactwith theDNduring divergent thinking,
but the nature and extent of these interactions differ between
networks.

Summary, Limitations, and Future Directions

The present study examined functional connectivity of fron-
toparietal subnetworks during divergent creative thinking.
Despite FPCNb andDN showing an anticorrelated relationship at
rest, consistent with recent neuroimaging research (Dixon et al.
2018; Murphy et al. 2020), we found that both FPCNs increased
their communication with the DN during the divergent thinking
task. A few limitations of the current study should be noted.
First, the resting-state fMRI scan occurred after the task-based
scan. It is therefore possible that task activation influenced
subsequent resting-state connectivity patterns. At the same
time, we still observed a reversal in the connectivity patterns
of the networks, and one might expect this effect to be even
stronger if the resting-state scan occurred before the task-based
scan, since any task-related network effect should bias what
comes after the scan (but not before). Nevertheless, to address
any potential task-based “priming” of resting-state networks,
future research should include resting-state scans before and
after task scans. Second, the sample was predominantly women
(75%), which may limit the generalizability of the findings to
a representative sample. Third, our study included a single
measure of divergent thinking (i.e., the AUT), which further
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constrains the generalizability of our findings to nonverbal
domains.

Future research should further investigate the cognitive
relevance of frontoparietal subnetworks. FPCNa has been
linked to the regulation of introspective cognition (Dixon et al.
2018) whereas FPCNb has been linked to the regulation of
extrospective cognition (Murphy et al. 2020). To determine the
cognitive roles of FPCN subnetworks in creative cognition,
future studies could correlate network activity/connectivity
with individual differences in cognitive control abilities that
differentially recruit FPCNa and FPCNb, or examine how FPCNs
interact with the DN under different task constraints (e.g.,
inhibiting prepotent associates during idea generation; cf. Beaty
et al. 2017a).Nevertheless, given that divergent thinking involves
internally directed attention (Benedek 2018), and that FPCNb
has been associated with externally directed attention to date
(Murphy et al. 2020), our findings suggest that current models
of the frontoparietal network should be updated to account
for the involvement of both subnetworks in creative cognition.
Moreover, in light of the finding that more creative individuals
showed stronger divergent thinking-related coupling between
networks that were anticorrelated at rest, future research
should also examine how the creative brain manages such
a functional realignment of networks that typically work in
opposition, potentially by tracking the dynamic course of
network interactions across time.
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