
Intersection-free Rigid Body Dynamics

ZACHARY FERGUSON, New York University

MINCHEN LI, University of California, Los Angeles and University of Pennsylvania

TESEO SCHNEIDER, New York University and University of Victoria

FRANCISCA GIL-URETA, New York University

TIMOTHY LANGLOIS, Adobe Research
CHENFANFU JIANG, University of California, Los Angeles and University of Pennsylvania

DENIS ZORIN, New York University

DANNY M. KAUFMAN, Adobe Research
DANIELE PANOZZO, New York University

Fig. 1. Expanding Lock Box. An intricate locking mechanism designed for 3D printing can be directly simulated with our algorithm. As the łkeyž turns, the

central spiral is rotated which in turn pulls in each of the five locking pins. When all pins have been retracted the bottom is able to freely fall. Our algorithm’s

intersection-free guarantee enables the automatic testing of designs without the need to tune simulation parameters. ©Angus Deveson.

We introduce the first implicit time-stepping algorithm for rigid body dy-

namics, with contact and friction, that guarantees intersection-free configu-

rations at every time step.

Our algorithm explicitly models the curved trajectories traced by rigid

bodies in both collision detection and response. For collision detection, we

propose a conservative narrow phase collision detection algorithm for curved

trajectories, which reduces the problem to a sequence of linear CCD queries

with minimal separation. For time integration and contact response, we

extend the recently proposed incremental potential contact framework to

reduced coordinates and rigid body dynamics.

We introduce a benchmark for rigid body simulation and show that

our approach, while less efficient than alternatives, can robustly handle a

wide array of complex scenes, which cannot be simulated with competing

methods, without requiring per-scene parameter tuning.

Authors’ addresses: Zachary Ferguson, New York University, zfergus@nyu.edu;
Minchen Li, University of California, Los Angeles, University of Pennsylvania; Teseo
Schneider, New York University, University of Victoria; Francisca Gil-Ureta, New
York University; Timothy Langlois, Adobe Research; Chenfanfu Jiang, University of
California, Los Angeles, University of Pennsylvania; Denis Zorin, New York Univer-
sity; Danny M. Kaufman, Adobe Research; Daniele Panozzo, New York University,
panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART183 $15.00
https://doi.org/10.1145/3450626.3459802

CCS Concepts: · Computing methodologies → Physical simulation;

Collision detection.

Additional Key Words and Phrases: Rigid Body Simulation, Contact Mechan-

ics, Continuous Collision Detection

ACM Reference Format:

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timo-

thy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele

Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Trans. Graph.

40, 4, Article 183 (August 2021), 16 pages. https://doi.org/10.1145/3450626.

3459802

1 INTRODUCTION

Simulations of rigid objects with contact resolution and friction are

ubiquitous in computer graphics and robotics. Rigid body models do

not deform. Equipped with just rotational and translational degrees

of freedom (DOF) they are a critical simplification enabling simula-

tions with orders of magnitude less DOF when material deformation

effects are either not significant or can be safely ignored.

An ideal rigid body simulator should take a scene description,

initial conditions, and a set of (possibly time-dependent) boundary

conditions, and integrate the system through time. This is unfor-

tunately not the case with existing algorithms, which require ex-

tensive parameter tuning to produce sensible results (Section 6).

In this work, we revisit the problem with a very different focus:

automation and robustness. We propose an algorithm that does not

require per-scene parameter tuning and can timestep large scenes

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:2 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

with complex geometry, contacts, and friction interactions. Our

algorithm is the first rigid body simulator that guarantees a lack

of interpenetrations for all trajectories (and consequently on each

timestep) of a simulation.

Our algorithm extends the recently proposed IPC formulation [Li

et al. 2020] for large deformation dynamics to rigid body dynamics.

We rely on the same core ideas: model contacts via a set of barrier

functions, and use an incremental potential formulation to timestep

the system while ensuring no intersection at all intermediate stages

of the computation. These ideas are extended to rigid body dynam-

ics with reduced coordinates, where each body is parametrized by

a rigid transformation. Our formulation supports large time steps,

co-dimensional objects, and complex scenes with hundreds of inter-

linked rigid bodies in resting or sliding contact. We compare our

solution against the original IPC volumetric formulation (proxying

the rigid bodies using a material with high Young’s modulus) show-

ing that our approach is, as expected, more efficient on large scenes

due to the smaller number of degrees of freedom while being able

to exactly model rigid motion.

As part of our algorithm, we need to conservatively detect colli-

sions on a special type of curved trajectories obtained by linearly

interpolating rigid motions in rotation vector representation.

We propose the first conservative broad and narrow phase solu-

tion for triangle-point and edge-edge collision detection queries for

rigid body motion. The narrow phase query is based on a simple and

effective observation: the problem can be reduced to a sequence of

linear CCD queries withminimal separation. For the broad phase, we

propose to use interval arithmetic to compute conservative bound-

ing boxes that can be used in a standard BVH data structure.

The resulting algorithm handles complex scenes that cannot be

simulated with existing rigid body simulators, or that otherwise

require laborious fine-tuning and hand-tweaking of simulation pa-

rameters to achieve, opening the doors to new applications in graph-

ics, robotics, and fabrication. To quantitatively and qualitatively

compare our algorithm with competing solutions, we introduce

a benchmark for rigid body simulation, and compare our results

against four popular simulators (Bullet [Coumans and Bai 2019],

MuJoCo [Todorov et al. 2012], Chrono [Tasora et al. 2016], and

Houdini’s Rigid Body Dynamics (RBD) [SideFX 2020]).

To foster future research and make our results reproducible, we

attach a reference implementation of our algorithm, the benchmark,

and scripts to reproduce all results in the paper in the additional

material. This material will be released publicly as an open-source

project.

Our main contributions are:

• An IPC formulation for rigid body dynamic;

• An efficient, provably conservative CCD query for curved

trajectories;

• A benchmark for rigid body simulation.

2 RELATED WORK

2.1 Rigid Body Simulation

Dating back to Euler the rigid body model is a fundamental primi-

tive for physical modeling and simulation [Marsden and Ratiu 2013].

Fig. 2. Mechanisms. We demonstrate the robustness of our method on

various mechanisms with tight conforming contact. Top: a piston is attached

to a rotating disk and a static cylinder is used to constrain the motion of

the piston. Middle: A wheel with complex geometry rotates smoothly, but

results in intermittent motion on the connected wheel. Bottom: a bike chain

is attached to a kinematic sprocket. Each link is modeled using a realistic

joint consisting of a roller, pin, and two plates. ©Okan (bike chain), Hampus

Andersson (sprocket) under CC BY.

While it offers an exceedingly compact representation for body dy-

namics it comes with unique challenges as well. The first being

that tracing a piecewise rigid trajectory is much more challenging

than for a piecewise linear one. We cover the implications this has

for integrating collision detection with time stepping in detail in

Section 2.2. The second being that because rigid bodies are infin-

itely stiff, applied forces and contact responses are communicated

instantaneously across the material domain. This sensitivity has

long challenged the stability, accuracy, and effectiveness of time-

stepping methods and friction models applied to simulate multibody

systems [Stewart 2000].

Rigid-body contact simulation has been extensively investigated

in mechanics, robotics, and graphics [Baraff 1989; Bender et al. 2012;

Brogliato 1999; Hahn 1988; Mirtich and Canny 1995; Stewart 2000;

Witkin and Baraff 2001]. In graphics, beginning with pioneering

work of Baraff [Baraff 1991] rigid body contact has especially fo-

cused on linearized complementarity programming (LCP) models

[Anitescu and Hart 2004b; Anitescu and Potra 1997; Baraff 1994;

Kaufman et al. 2008; Lötstedt 1982; Stewart and Trinkle 2000; Trin-

kle et al. 1995]. Here the semi-implicit models employed enforce

contact constraints at the velocity level. This linearized constraint

enforcement then results in constraint drift and tunneling. In turn,

these artifacts can be partially mitigated by constraint stabilization

methods [Anitescu and Hart 2004a; Cline and Pai 2003; Erleben

2007; Moreau 1988] at the cost of physical accuracy.

LCP and related contact models can also equivalently be for-

mulated variationally [Moreau 1966; Redon et al. 2002b] and are

amenable to both primal and dual constructions [Macklin et al. 2020].

However, as these rely on velocity level arguments and linearized

contact constraints they can not be employed for IPC-based opti-

mization. Here, to extend IPC to rigid coordinates, we construct an

incremental potential for rigid bodies based directly on positions

and rotations rather than velocities.

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:3

Focusing on efficiency and speed a wide range of faster, itera-

tive methods for rigid bodies have also been developed building off

of LCP [Erleben 2007; Guendelman et al. 2003], proximal [Erleben

2017], gradient descent [Mazhar et al. 2015], and decomposition [Co-

evoet et al. 2020; Hsu and Keyser 2010; Tonge et al. 2012] methods

to name just a few. With speed, however, comes additional accuracy

trade-offs [Kaufman et al. 2008]. In turn, this inherent loss of accu-

racy and the resultant impact on stability and robustness generally

requires compensation in the form of hand-tuning and often large

amounts of non-physical constraint stabilization.

A potential benefit of our work, which we leave as future work,

is the easy coupling of the original IPC formulation for deformable

bodies with our new IPC formulation for rigid bodies. Similar joint

formulations have been introduced, for example, Müller et al. [2020]

simulate rigid bodies through extended position-based dynamics

allowing them to easily couple soft and rigid bodies.

There is also a rich history of simulating rigid bodies with guaran-

tees. Time integration methods, starting with Moser and Veselov’s

[1991] celebrated work, focus on preserving geometric invariants of

free rigid bodies [Hairer et al. 2006]. Recent complementary work

[Smith et al. 2012; Vouga et al. 2017] focuses on designing meth-

ods for preserving geometric invariants (energy and momentum)

as well desirable collision properties for contacting rigid bodies.

For maintaining intersection-free rigid-body trajectories Mirtich

[2000, 1996] and Snyder et al. [1993] construct conservative, explicit

time-stepping methods. Mirtich [1996] explicitly forward steps rigid

bodies with conservative advancement to the time of contact and

later extends intersection-free resolution with efficient roll-backs

[Mirtich 2000]. Snyder et al. [1993] applies interval analysis to detect

collision between bodies. Further discussion and comparisons to

our CCD are provided in Section 2.2 and Appendix B. The use of an

explicit time-stepping scheme can extremely limit step size (and so

progress) as each collision must be detected and resolved before the

simulation can proceed. In comparison, our method is fully implicit

enabling large time-steps and global analysis of all collisions in a

time step simultaneously.

2.2 Collision Detection

screw

rotation vector

Fig. 3. Trajectories of in-

terpolating rotation vec-

tors can be wildly different

form the traditional screw

motion used by others.

We restrict our overview to contin-

uous collision detection (CCD) algo-

rithms for curved trajectories, as we

are interested in rigid motions, and

to CCD algorithms for linear trajec-

tories with minimal separation, as

our algorithm needs to tackle this

subproblem. We refer to Wang et al.

[2020] for an overview of CCD meth-

ods for linear trajectories without

minimal separation.

Curved. There has been extensive

research on curved CCD algorithms,

both in graphics and in robotics. The

trajectories considered are interpola-

tion of rotation matrices, screw motions, and spline curves. We

are not aware of any method designed to handle the trajectories

obtained interpolating rotation vectors that we consider in this

paper.

There are two major approaches: interval-based root-finding on

a system on non-linear equations and conservative advancement.

Interval-Based Root-Finding. One of the first approaches was in-

troduced in [Snyder 1992; Snyder et al. 1993], where they propose

to use an interval-based root finder to conservatively detect if there

are collisions and at which time. The approach is robust but slow,

as it heavily relies on interval arithmetic. To reduce the dimensions

in the domain, and correspondingly improve performances, Redon

et al. [2002a] proposes to use a similar strategy to only a part of

the problem and rewriting the CCD problem as a univariate system.

However, this approach leads to an infinite number of roots in degen-

erate cases, which dramatically slow down certain queries [Wang

et al. 2020]. A similar formulation, but for trajectories obtained by

interpolating quaternions is introduced in [Canny 1986]. We pro-

vide an explicit comparison against these approaches for both the

multivariate and univariate formulations in Appendix B.

Conservative Advancement. The most popular family of methods

is conservative advancement, which iteratively builds conservative

convex proxies for a substep of the trajectory [Mirtich 2000, 1996].

These methods have been proposed for spline trajectories [Pan

et al. 2012], trajectories with constant rotational and linear veloc-

ities [Tang et al. 2009], screw motion [Tang et al. 2011]. Different

primitives are used such as bounding boxes or spheres [Schwarzer

et al. 2005]. While most methods can be applied only to convex

primitives, there are extensions for nonconvex polyhedra [Zhang

et al. 2006]. In Zhang et al. [2007c], conservative advancement is

extended to articulated bodies, with a novel technique based on Tay-

lor expansion to compute tight approximations even for long body

chains. A useful tool for computing the conservative proxies is the

computation of distances between polyhedra. Specialized methods

for rigid body motions are introduced in [Zhang et al. 2007a,b] and

used within a conservative advancement framework to design a

CCD algorithm.

None of these techniques can directly handle the trajectories that

we consider in our work, obtained by interpolating rotation vectors.

Other Methods. In addition to the above classifications, Waveren

[2005] introduces a unique method for handling rotational contacts

between polyhedral features. By using Plücker coordinates and ac-

counting for errors in floating-point rounding, Waveren [2005] is

able to robustly detect and respond to collision in real-time applica-

tions. Unfortunately, this method is limited to screw motions and is

not immediately applicable to our current framework (interpolation

of rotation vectors).

Numerical Accuracy. Snyder [1992] and Snyder et al. [1993] con-

sider the problem of floating-point rounding, and can thus ensure a

correct result when a floating-point implementation is used. Other

methods are non-conservative when implemented using floating-

point arithmetic. Since any missed collision would be fatal in our

setting as it will break our interpenetration-free invariance, the only

method that we can use is [Snyder 1992; Snyder et al. 1993] both

on the original multivariate formulation, or on the one-dimensional

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:4 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

formulation proposed in [Redon et al. 2002a] (and adapted to rota-

tion vector interpolation trajectories). We provide a discussion of

these two methods in Section 4.3 and provide a comparison with

our technique in Appendix B.

Minimal Separation Linear CCD.. Linear CCD with minimal sepa-

ration [Harmon et al. 2011; Lu et al. 2019; Provot 1997; Stam 2009;

Wang et al. 2020] detects collisions when two primitives are at a

small user-specified distance. In our work, we reduce the curved

CCD problem to a sequence of linear CCD with minimal separation.

While any of the methods above could be used, we opt for [Wang

et al. 2020], as it is the only one that is guaranteed to be correct

when implemented using floating-point arithmetic, and it also has

a public implementation available on GitHub. Our curved CCD

algorithm can also be extended to support conservative minimal

separation (Section 5), a feature that, to the best of our knowledge,

no other curved CCD method considered before and that is useful

in fabrication applications to ensure the satisfaction of clearance

constraints.

3 IPC OVERVIEW

We briefly overview the Incremental Potential Contact solver intro-

duced in [Li et al. 2020] to make our paper self-contained.

Li et al. [2020] proposes a novel way to handle large deformation

dynamics with frictional contact, reducing a single time step to the

minimization of a unconstrained non-linear energy:

𝑥𝑡+1 = argmin
𝑥

𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡) + 𝐵(𝑥, 𝑑) + 𝐷 (𝑥, 𝑑), (1)

where 𝑥𝑡 is the set of nodal position, 𝑣𝑡 the velocities, 𝐸𝑑 (𝑥, 𝑥𝑡 , 𝑣𝑡)
is an Incremental Potential (IP) for numerical time stepping [Kane

et al. 2000], 𝐷 is the friction potential, and 𝐵 is the barrier potential.

The later vanishes when primitives are further than a user-defined

geometric accuracy 𝑑 and diverges when two objects are in contact.

Here we first review the barrier potential, as we will need to extend

it in this work. In the next section we cover the necessary work

to extend the incremental potential for rigid bodies and so enable

the IPC formulation. For further details on the friction model and

solving we refer to Li et al. [2020].

Solver and Line Search CCD. IPC requires an initial state that

is free of self-intersections and uses a custom Projected Newton

solver to time step the system by minimizing Equation (1) to a user-

controlled accuracy. The solver ensures that the trajectories of all

surface primitive pairs are intersection-free during the optimization.

The guarantee comes from explicitly validating the linear trajectory

in every line search using a conservative linear CCD query: if the

CCD query returns a collision, the step length is reduced until a step

is possible. The solver requires the energy to be 𝐶2 (as the Newton

method requires the computation of the second derivatives) and

thus a careful definition for all terms of the energy is necessary.

Barrier Functions and Distances. Let C be a set containing all

non-incident point-triangle and all non-adjacent edge-edge pairs in

surface meshes. The barrier potential is then defined as:

𝐵(𝑥, 𝑑) = 𝜅
∑

𝑘∈C
𝑏
(

𝑑𝑘 (𝑥), 𝑑
)

, (2)

where 𝜅 is the barrier stiffness, 𝑑𝑘 is the mollified unsigned distance

between the 𝑘 pair of primitives (we refer to Li et al. [2020] for the

detail on the computation of the mollified distances 𝑑𝑘 between the

primitive pairs), and 𝑏 is a logarithmic barrier function defined as

𝑏 (𝑑, 𝑑) =
{

−(𝑑 − 𝑑)2 ln
(

𝑑

𝑑

)

, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑.
(3)

We note that while C contains a number of pairs that is quadratic

with respect to the number of primitives, most of the pairs will

result in a zero contribution to Equation (3) as the support of the

barrier is local.

4 METHOD

Input. The input for our algorithm is a desired time step size ℎ, a

computational distance accuracy target, 𝑑 , and a set of 𝑛 rigid bodies.

Each rigid body 𝑖 has a set of 𝑘𝑖 vertices in axis-aligned, body-frame

local coordinates 𝑋𝑖 , a set of triangular faces 𝐹𝑖 , a mass𝑚𝑖 , and an

inertial frame 𝐼𝑖 . For each symbol, we use the subscript 𝑖 to identify

per-body quantities, and the same symbol without the subscript

denotes a stacked vector (or matrix, as appropriate) of that quantity

concatenated across the set of all simulated objects (e.g., 𝑋𝑖 give

the coordinates of the 𝑖-th body, while 𝑋 is the stacked coordinates

of all bodies). The position of each rigid body is then given by a

parametrization with a rotation vector1 𝜽𝑖 ∈ R3 and a translation

𝑞𝑖 ∈ R3 that together map each body from its local frame to world

coordinates with

𝜙𝑖 (𝜽𝑖 , 𝑞𝑖) = R(𝜽𝑖)𝑋𝑖 + 𝑞𝑖 , (4)

Here, the function 𝜙𝑖 : R3 × R3 → R
3×𝑘𝑖 maps the 𝑘𝑖 vertices

(in local coordinates) of the 𝑖-th body into world coordinates with

Rodrigues’s rotation formula R (see Equation (14)) mapping from a

rotation vector to a rotation matrix [Grassia 1998; Rodrigues 1840].

We initialize each simulation with a starting configuration of

rotations 𝜽 0 and translations 𝑞0 for all bodies. We require a non-

interpenetrating starting configuration and call any intersection

free configuration valid.

Output. Simulation output is a final valid configuration (𝜽 𝑡end , 𝑞𝑡end)
obtained by time integrating the rigid body system, and the corre-

sponding trajectory from (𝜽 0, 𝑞0) to (𝜽 𝑡end , 𝑞𝑡end) guaranteed free

of intersections. The generated trajectory is piecewise linear in

generalized coordinates, (𝜽 , 𝑞), and is a curved trajectory in world

coordinates.

Overview. Our approach follows the same high-level ideas as Li

et al. [2020] (briefly summarized in Section 3 above). Our first step

requires us to formulate rigid body system time integrators as in-

cremental potentials (IP) ś these are not previously available. With

rigid body IP in hand, we then can follow Li et al. [2020] by aug-

menting it with both a barrier and friction potential (remapped via

𝜙) to resolve contact and friction forces, respectively. Below we first

construct our incremental potential formulation (Section 4.1) and

then describe how we adapt line search, constraint set generation,

and a Newton-type solver to the rigid body time step problem. As

1This parameterization, also often called an łEuler vectorž, gives a rotation around the
vector’s direction prescribed by an angle equal to the vector’s magnitude.

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:5

a key part of this solution, during line search, we must process a

special type of curved trajectories for continuous collision detection.

For this, we develop a conservative CCD query in Section 4.3. We

provide an extensive comparison of our rigid body formulation and

the original formulation in [Li et al. 2020] Section 6.1.

4.1 Rigid Body Incremental Potential

Following Li et al. [2020], we construct a discrete energy whose

stationary points give an unconstrained time step method’s configu-

rational update. The Newton-Euler rigid body equations of motion

are naturally defined at the acceleration level, however, they don’t

(due to parameterization) naturally integrate up to an obvious vari-

ational formulation whose extremizers give an updated rotation for

a rigid body time step.

We then construct an IP formulation directly on rotation matrices

𝑄𝑖 that map points on rigid bodies 𝑖 from their local frames to a

frame axis-aligned with the world. At any time 𝑡 we then have

𝑄𝑡
𝑖 = R(𝜽 𝑡𝑖). Our first step is to recall that we can define angular

kinetic energy directly on rotation matrix velocities [Hairer et al.

2006] as 1
2 tr(¤𝑄𝑖 𝐽𝑖 ¤𝑄𝑇

𝑖) where

𝐽𝑖 =
1

2
diag(−𝐼𝑥𝑖 + 𝐼

𝑦
𝑖 + 𝐼

𝑧
𝑖 , 𝐼

𝑥
𝑖 − 𝐼

𝑦
𝑖 + 𝐼

𝑧
𝑖 , 𝐼

𝑥
𝑖 + 𝐼

𝑦
𝑖 − 𝐼

𝑧
𝑖)

is the inertial matrix, and 𝐼𝑥𝑖 , 𝐼
𝑦
𝑖 , and 𝐼𝑧𝑖 are components of the

inertial frame 𝐼𝑖 .

With the inertial matrix defined we now target flat equations of

motion that will allow us to compose IPs for arbitrary numerical time

integrators on𝑄𝑖 . To do so we simply apply constrained Lagrangian

dynamics with orthogonality𝑄𝑇
𝑖 𝑄𝑖 − Id = 0 as a constraint. We then

can directly apply standard form, constrained time integrators with

flat coordinates [Ascher and Petzold 1998]. With our construction,

we derive here the IP formulation for a rigid body system integrated

with implicit Euler. For our formulation, the constrained implicit

Euler time stepper is then

𝑄𝑡+1
𝑖 = 𝑄𝑡

𝑖 + ℎ ¤𝑄
𝑡
𝑖 − ℎ

2∇𝑉 (𝑄𝑡+1
𝑖) 𝐽

−1
𝑖 +𝑄

𝑡+1
𝑖 Λ𝐽−1𝑖 + ℎ

2 [𝜏𝑖] 𝐽−1𝑖 , (5)

𝑄𝑡+1
𝑖

𝑇
𝑄𝑡+1
𝑖 − Id = 0, (6)

¤𝑄𝑡
𝑖 =

𝑄𝑡
𝑖
−𝑄𝑡−1

𝑖

ℎ
, (7)

where Λ is the symmetric Lagrange-multiplier matrix for our con-

straint, 𝜏𝑖 are any external, applied torques to body 𝑖 at time 𝑡 and

𝑉 are any potential energies defined on 𝑄𝑖 . We use the notation [.]
to indicate the construction of the skew-symmetric (cross-product)

matrix2.

In turn, to create an implicit Euler rigid body IP we can next

convert this to a corresponding variational form

𝑄𝑖
𝑡
= 𝑄𝑡

𝑖 + ℎ ¤𝑄
𝑡
𝑖 + ℎ

2 [𝜏𝑖] 𝐽−1𝑖

𝑄𝑡+1
𝑖 = argmin

𝑄

1
2 tr

(

𝑄𝐽𝑖𝑄
𝑇) + tr

(

𝑄𝐽𝑖 (𝑄̃𝑡
𝑖)
𝑇) + ℎ2𝑉 (𝑄),

s.t.𝑄𝑇𝑄 − Id = 0.

(8)

2

[𝑣] =
[

0 −𝑣𝑧 𝑣𝑦
𝑣𝑧 0 −𝑣𝑥
−𝑣𝑦 𝑣𝑥 0

]

Then, for our entire rigid body system (presuming w.l.o.g. for

now no potentials) the implicit Euler IP for rotational coordinates is

𝐸𝑄 (𝑄) =
𝑛
∑

𝑖=1

(1
2 tr(𝑄𝑖 𝐽𝑖𝑄

𝑇
𝑖) − tr(𝑄𝑖 𝐽𝑖 (𝑄𝑖

𝑡)𝑇)
)

, (9)

and correspondingly for translational coordinates (directly from

standard implicit Euler) we have

𝑞𝑖
𝑡
= 𝑞𝑡𝑖 + ℎ ¤𝑞

𝑡
𝑖 + ℎ

2 (𝑔 +𝑚−1 𝑓𝑖)

𝐸𝑞 (𝑞) =
𝑛
∑

𝑖=1

(1
2𝑚𝑖𝑞

𝑇
𝑖 𝑞𝑖 −𝑚𝑖𝑞

𝑇
𝑖 𝑞

𝑡
𝑖

)

,
(10)

where𝑔 is the acceleration due to gravity, 𝑓𝑖 are any external, applied

forces to body i’s center of mass at time t, and velocities are updated

by

¤𝑄𝑡
=

1

ℎ
(𝑄𝑡 −𝑄𝑡−1) and ¤𝑞𝑡 = 1

ℎ
(𝑞𝑡 − 𝑞𝑡−1).

Finally, the complete implicit Euler rigid body IP is

𝐸 (𝑄,𝑞) = 𝐸𝑄 (𝑄) + 𝐸𝑞 (𝑞),
Now that it is defined entirely in terms of 𝑄 and 𝑞 it can be, as per

our strategy, directly applied to swap for 𝐸𝑑 in Equation (1), when

we wish to apply rigid body coordinates. This gives us the following

constrained optimization problem to solve

(𝑄𝑡+1, 𝑞𝑡+1) = argmin
𝑄,𝑞

𝐸 (𝑄,𝑞) + 𝐵(𝜙 (𝑄,𝑞), 𝑑) + 𝐷 (𝜙 (𝑄,𝑞)) (11)

s.t. 𝑄𝑇
𝑖 𝑄𝑖 = Id, 𝑖 = {1, . . . , 𝑛}, (12)

where the constraint is necessary to ensure that minimizer 𝑄𝑡+1

gives rotation matrices.

Rotation Vector Parametrization. Our goal remains to use uncon-

strained optimization in order to apply as Newton-type solver with

line-search filtering and so robustly minimize the IP with guaran-

tees. To do so parameterizing rotations with the rotation vector, 𝜽𝑖 ,

allows us to then directly apply Rodrigues’ rotation formula to drop

equality constraints from Equation (12). This finally leads us to an

unconstrained optimization problem, and so gives us our rigid body

incremental potential for frictional contact

(𝜽 𝑡+1, 𝑞𝑡+1) = argmin
𝜽 ,𝑞

𝐸 (R(𝜽), 𝑞) + 𝐵(𝜙 (R(𝜽), 𝑞)) + 𝐷 (𝜙 (R(𝜽), 𝑞)) .

In turn, as we discuss next it can now be solved with a filtered

projected Newton solver.

Our rotation vector parametrization is then critical to obtaining

our unconstrained minimization form of the IP, as it avoids addi-

tional constraints and enables us to solve the optimization with an

unconstrained projected Newton solver. While alternatives exist

to minimize energies like our IP in the space of SO(3) [Owren and

Welfert 2000], it is not immediately obvious how to integrate our

barrier in these methods as they do not offer filtered line-search.

Adding differently scaled rotation vectors can require an in-

creased number of updates to change the axis of rotation. However,

do to warm-starting each solve from the last time step, this problem

never arises in practice even in scenes with large time step sizes.

We discuss a synthetic example of this more and provide a solution

(if ever needed) in Appendix E.

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:6 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

4.2 Projected Newton Solver

Now that we have constructed an unconstrained barrier IP for rigid

bodies we apply the Newton-type solver proposed in [Li et al. 2020],

with a few modifications that are necessary to address numerical

challenges specific to the rigid body IP formulation.

Rodrigues’ Rotation Formula and its Derivatives. Rodrigues’ rota-

tion formula provides a way of computing a rotation matrix from a

rotation vector. Rodrigues’ rotation formula is commonly written as

R(𝜽) = Id + sin (∥𝜽 ∥)
[

𝜽

∥𝜽 ∥

]

+ (1 − cos(∥𝜽 ∥))
[

𝜽

∥𝜽 ∥

]2

, (13)

where R(0) = Id. For numerical stability (around 𝜽 = 0) we rewrite

R as

R(𝜽) = Id + sinc(∥𝜽 ∥) [𝜽] + 2 sinc2
(

∥𝜽 ∥
2

)

[𝜽]2, (14)

where

sinc(𝑥) =
{

1 𝑥 = 0
sin(𝑥)

𝑥 otherwise
.

Note, we compute values close to zero computed using a Taylor

series expansion (see Appendix A.1) [Grassia 1998].

While sinc is 𝐶∞, special care is needed to compute its gradient

and Hessian to avoid divisions by 0 (or small numbers). A full deriva-

tion of the derivatives of sinc(∥𝜽 ∥) is provided in Appendix A.2.

Additionally, when computing sinc(𝑥) with interval arithmetic a

naïve implementation using interval division can result in intervals

far outside the range of sinc(𝑥) (due to divisions of small numbers).

We instead utilize the monotonic domain near zero by computing

the real values (or a small interval to account for rounding errors)

of the interval’s endpoints. We discuss this strategy further in Ap-

pendix A.3.

Stabilization. Because of our transformation from axis-angle to

rotation matrix, the Hessian 𝐻 (𝐸𝑄 (𝑄)) may not be positive semi-

definite (PSD). Unlike in the elastodynamic case, a projection to PSD

is not balanced by the addition of a mass matrix and so can result in

a singular matrix. Instead, we first apply the unprojected Hessian

(inexpensive when compared to the finite element formulation in the

original IPC) and if the linear solve fails or the computed direction

is not a descent direction we apply standard offsetting by adding an

identity scaled by 𝜉 and solving. We continue the process, increasing

𝜉 by a factor of two until either the 𝜉 > 𝜉max
= 1𝑒12 or the solve

is successful. In practice, this offset is rarely needed, and we never

reach 𝜉max in any of our experiments.

Evaluation of the Barrier Term 𝐵. The set C contains all possible

collision pairs. However, due to the local support of the barrier

functions, it is unnecessary to consider pairs whose distance is

larger than 𝑑 , as they do not contribute to the barrier potential 𝐵

(Equation (2)). In [Li et al. 2020], the pairs of primitives closer than

𝑑 are quickly detected using a spatial hashing data structure. For

the rigid case, we can exploit the rigidity of the objects to avoid

the construction of a hash grid for every evaluation of the barrier

potential.

We explicitly consider the relative position of a pair of rigid bodies

𝑎 and 𝑏. In the reference system of 𝑏, the relative position of the

vertices of 𝑎 are:

𝑠𝑏𝑎 = R(𝜽𝑏)𝑇 (R(𝜽𝑎)𝑋𝑎 + 𝑞𝑎 − 𝑞𝑏) . (15)

We can thus build a bounding volume hierarchy (BVH) for every

rigid body independently made by one bounding box for every

primitive, only once when a model is loaded. We can then build

a bounding box for each primitive in 𝑎, enlarge it by 𝑑 , map it

to the reference system of 𝑏 using Equation (15), and then query

the BVH of 𝑏 to find candidate pairs for the set C. To ensure that

the check is conservative, we evaluate Equation (15) using interval

arithmetic [Tucker 2011] (note that an axis-aligned bounding box is

simply a triplet of one-dimensional intervals). Additionally, we also

use a scene BVH containing one bounding box for every body to

discard any pair of rigid bodies that do not contain potential pairs.

4.3 Curved CCD

To ensure that there are no intersections at any time during the sim-

ulation, we explicitly check for collisions during every line search.

Following the common approach used in linear CCD, we proceed

in two phases: a broad phase to quickly identify pairs of primitives

that are likely to be in contact, and the narrow phase, to certify

every candidate pair. We first introduce the special type of curved

trajectories that we consider in this work and then propose a broad

phase algorithm that takes advantage of the rigidity of the bodies.

Curved Trajectories. The trajectory of the vertices of a primitive

(i.e., a vertex, edge, or triangle) 𝑎𝑖 in a body 𝑋𝑖 are mapped from a

configuration (𝜽 0𝑖 , 𝑞
0
𝑖) to a configuration (𝜽 1𝑖 , 𝑞

1
𝑖), by

𝜙𝑎𝑖 (𝑡) = R(𝜽𝑖 (𝑡))𝑎𝑖 + 𝑞𝑖 (𝑡), 𝑡 ∈ [0, 1] . (16)

where

𝜽𝑖 (𝑡) = (1 − 𝑡)𝜽 0𝑖 + 𝑡𝜽
1
𝑖 and 𝑞𝑖 (𝑡) = (1 − 𝑡)𝑞0𝑖 + 𝑡𝑞

1
𝑖 .

Note that 𝜙𝑎𝑖 (𝑡) is non-linear in 𝑡 due to the presence of Rodrigues’

formula R.

Broad-Phase. To reduce the computational cost, we express the

trajectory in the reference system of one body extending Equa-

tion (15) to the time dependent case,

𝑠𝑏𝑎 (𝑡) = R(𝜽𝑏 (𝑡))𝑇 (R(𝜽𝑎 (𝑡))𝑋𝑎 + 𝑞𝑎 (𝑡) − 𝑞𝑏 (𝑡)) . (17)

We propose to use interval arithmetic [Tucker 2011] to automatically

compute a bound. That is, we evaluate 𝑠𝑏𝑎 (𝑡) over the interval

[0, 1] to obtain a bounding box for every point in 𝑋𝑎 representing

a conservative estimation of the trajectory with respect to 𝑏. The

bounding boxes can then be used in a standard spatial acceleration

data structure where we reuse the same BVH we built for evaluating

the barrier potential.

Narrow Phase Curved CCD. After identifying potential pairs of

primitives colliding, the goal of the narrow phase is to find the

earliest time 𝑡 (if any) for which a pair of primitives (either triangle-

point or edge-edge) intersect.

Consider the trajectory of a point 𝒑(𝑡) and the trajectories of

the three vertices of a triangle 𝒑1 (𝑡),𝒑2 (𝑡),𝒑3 (𝑡). The most direct

formulation of continuous collision detection is to explicitly look

for the earliest root of the following non-linear system of equations

𝐹vf (𝑡, 𝛼, 𝛽) = 𝒑(𝑡) −
(

(1 − 𝛼 − 𝛽)𝒑1 (𝑡) + 𝛼𝒑2 (𝑡) + 𝛽𝒑3 (𝑡)
)

, (18)

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:7

for 𝑡, 𝛼, 𝛽 ∈ [0, 1], and 𝛼 + 𝛽 ≤ 1. If no root exists the two primitives

do not intersect. Similarly, consider the trajectory of two edges

whose vertices are 𝒑1,𝒑2 and 𝒑3,𝒑4

𝐹ee (𝑡, 𝛼, 𝛽) =
(

(1−𝛼)𝒑1 (𝑡)+𝛼𝒑2 (𝑡)
)

−
(

(1−𝛽)𝒑3 (𝑡)+𝛽𝒑4 (𝑡)
)

(19)

for 𝑡, 𝛼, 𝛽 ∈ [0, 1].

Baseline Solutions. To the best of our knowledge, there are no

existing algorithms developed specifically for our problem, that is

the particular formulation of 𝜙𝑎𝑖 (𝑡). However, there are two ap-

proaches that can be easily adapted. The first is the generic interval

root finder proposed by Snyder [1992], which can directly be used

to find roots of the non-linear system of equations (18) or (19). The

second is an adaptation for our problem of the screw CCD proposed

by Redon et al. [2002a], which uses a univariate formulation to im-

prove performances. Unfortunately, after experimenting with both

approaches, we conclude that they cannot be used for our purposes.

The former has a very long runtime due to the expensive interval

computation and large number of dimensions of the domain to sub-

divide, while the latter cannot handle degenerate cases linked to the

univariate formulation (see [Wang et al. 2020] for a more detailed

explanation of the intrinsic limitation of univariate formulations for

linear CCD). We provide a comparison between our algorithm and

the two baselines in Appendix B.

Linearization Error. We propose a novel algorithm based on the

following idea: if we can compute an upper bound 𝑏 of the maximal

error between a curved trajectory and its piecewise linear approx-

imation, then we can conservatively check for collisions using a

linear CCD with a minimal separation of 𝑏. Let us consider the

curved trajectory 𝜙𝑎𝑖 (𝑡) (16) of a single vertex 𝑎𝑖 ∈ 𝑋𝑖 . The time-

dependent distance between the curved trajectory and the linear

approximation is:

𝑒𝑎𝑖 (𝑡) = ∥𝜙𝑎𝑖 (𝑡) − ((1 − 𝑡)𝒑0 + 𝑡𝒑1)∥, 𝑡 ∈ [0, 1] . (20)

with 𝒑0
= 𝜙𝑎𝑖 (0) and 𝒑1

= 𝜙𝑎𝑖 (1). By evaluating 𝑒𝑎𝑖 over the

interval [0, 1] using interval arithmetic, we obtain our desired bound

𝑏. This construction can be extended to find a distance bound for all

points between two convex primitives by evaluating 𝑒𝑎𝑖 for every

vertex in both primitives and taking the maximum. Given the pair of

primitives and the bound𝑏 we conservatively check for intersections

using the linear minimal separation CCD proposed by Wang et al.

[2020], using the 𝐿∞ metric for minimal separation. This idea is

used in Algorithm 1 to adaptively refine the linear approximation

depending on the error bound.

Algorithm Description. The algorithm keeps track of the earliest

time guaranteed to be collision-free in a variable 𝑡0 (initially equal

to 0), which is incremented whenever the linear CCD is able to vali-

date a section of the trajectory (Line 23). The algorithm iteratively

subdivides the linear approximation, keeping track of the endpoint

of every segment in a stack 𝑡𝑠 . After a segment is retrieved from

the stack (Line 5), we compute the initial distance between the two

objects (Line 6) and an upper bound on the error of the linear ap-

proximation of the trajectory (Line 7). If the bound is larger than the

initial distance (Line 8) the linear CCD will find a collision at the be-

ginning of the time since the linear approximation is poor. We thus

refine the linear approximation. The parameter 𝛿 ∈ (0, 1) (Line 8)

Algorithm 1 contact, toi = CurvedCCD(𝑎𝑖 , 𝑏 𝑗 , 𝛿, 𝑁
max)

1: 𝑡0 ← 0

2: 𝑡𝑠 ← {1}
3: 𝑁 ← 1

4: while 𝑡𝑠 ≠ ∅ do
5: 𝑡1 ← top(𝑡𝑠)
6: 𝑑𝑡0 ← 𝑑 (𝑡0, 𝑎𝑖 , 𝑏 𝑗) {𝑑 is defined in [Li et al. 2020, (18)-(19)]}

7: 𝑏 ← 𝑒𝑎𝑖 ([𝑡0, 𝑡1]) + 𝑒𝑏 𝑗
([𝑡0, 𝑡1])

8: if 𝑏 ≥ 𝛿𝑑𝑡0 and (𝑁 < 𝑁max or 𝑡0 = 0) then
9: 𝑡𝑠 ← 𝑡𝑠 ∪ {(𝑡1 + 𝑡0)/2)}
10: 𝑁 ← 𝑁 + 1
11: continue

12: end if

13: impact, toi← lccd(𝜙𝑎𝑖 (𝑡0), 𝜙𝑎𝑖 (𝑡1), 𝜙𝑏 𝑗
(𝑡0), 𝜙𝑏 𝑗

(𝑡1), 𝑏)
14: if 𝑡0 = 0 and toi = 0 then

15: 𝑡𝑠 ← 𝑡𝑠 ∪ {𝑡1/2}
16: 𝑁 ← 𝑁 + 1
17: continue

18: end if

19: if impact then

20: return true, 𝑡0 + toi(𝑡1 − 𝑡0)
21: end if

22: pop(𝑡𝑠)
23: 𝑡0 ← 𝑡1
24: end while

25: return false,∞

allows us to trade off the cost between the CCD and the refinement.

A value close to 1 will lead to minimal refinement, but potentially

more challenging queries for the linear CCD, while a smaller value

will preemptively refine the linear approximation, making the CCD

queries easier. We experimentally found that a value of 0.5 is a good

tradeoff (see the parameter study in Appendix C). To bound the

cost of the linear CCD and prevent overrefinement, we set an upper

bound 𝑁max on the maximal number of subdivisions (we use 1000

in our experiments). The bound is however disabled when 𝑡0 = 0,

as we need to have a strictly positive time of impact (ToI) to make

progress in the Newton optimization and we know that a non-zero

𝑡 always exists due to our barrier formulation. If the interval passes

the distance check, we apply linear CCD (Line 13), and we further

refine in case the linear CCD returns a ToI of 0 and if 𝑡0 = 0 as

this must be due to the poor approximation of 𝑏 since a non-zero

𝑡 always exist. If the linear CCD finds a collision we report it and

return, otherwise we continue with the next segment in the stack.

If we reach the end of the trajectory without finding a collision, the

algorithm terminates and reports that the trajectory is collision-free.

For linear CCD with minimal separation, we use [Wang et al.

2020] with default parameters.

Shared Earliest Time of Impact. As in [Li et al. 2020], we compute

an upper bound on the step size using the earliest time-of-impact for

a given step. To speed up this process, we follow the advice of Redon

et al. [2002a] who suggests reusing the earliest time-of-impact from

the previous CCD queries for the same step. This reduces the number

of queries and is achieved by replacing Line 2 with 𝑡𝑠 ← 𝑡earliest,

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:8 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

Fig. 4. Bolt. A bolt spins inside a static nut under gravity. Without friction,

the bolt is quickly able to follow the threading and begins to rotate. ©YSoft

be3D under CC BY-SA 3.0.

where 𝑡earliest is the earliest time-of-impact for the current step

(initially 1).

Minimal Separation. To extend our algorithm to guarantee a min-

imal separation we make three minor modifications to our formula-

tion. First, we shift the input to our distance barrier (Equation (2))

by subtracting the minimum separation distance from the primitive

pair’s distance. Second, we inflate all bounding boxes used in the

broad-phase to account for the added minimum separation. Last, we

take advantage of the linear minimum separation CCD to add an

additional offset to the minimum separation (before Line 13 perform

𝑏 ← 𝑏 + 𝑑min).

4.4 Boundary Conditions

A kinematic rigid body moves under its own velocity but does not

respond to collision forces. We implement kinematic bodies using

an augmented Lagrangian (AL) based on the method of Li et al.

[2020] to enforce Dirichlet boundary conditions. For each kinematic

rigid body 𝑘 , we construct the AL from the two terms,

𝐸A,q (𝑞) =
𝜅A,𝑞

2
𝑚𝑘

𝑞𝑘 − 𝑞𝑡+1𝑘

2 − √𝑚𝑘𝜆
𝑇
A,𝑘 (𝑞𝑘 − 𝑞

𝑡+1
𝑘
)

𝐸A,Q (𝑄) =
𝜅A,𝑄

2
tr(𝑄𝑘 − 𝑄̂𝑡+1

𝑘
) 𝐽𝑘 (𝑄𝑘 − 𝑄̂𝑡+1

𝑘
)𝑇)

− tr(Λ𝑇A,𝑘 (𝑄𝑘 − 𝑄̂𝑡+1
𝑘
) 𝐽

1
2

𝑘
)

where (𝑞𝑡+1
𝑘

, 𝑄̂𝑡+1
𝑘
) is the prescribed configuration at time 𝑡 + 1.

Following the algorithm of Li et al. [2020], we initialize the La-

grange multipliers to 𝜆A,𝑘 = 0 and ΛA,𝑘 = 0 and penalty stiffnesses

to 𝜅A,𝑞 = 103 and 𝜅A,𝑄 = 103. These potentials are then added to

Equation (12).

The convergence criteria of each time step optimization is then

modified to account for the satisfaction of the kinematic bodies’

motion. Concretely, we compute

𝜂𝑞 = 1 −

√

√

√∑

𝑘 ∥𝑞𝑡+1𝑘
− 𝑞𝑘 ∥2

∑

𝑘 ∥𝑞𝑡+1𝑘
− 𝑞𝑡

𝑘
∥2

and

𝜂𝑄 = 1 −

√

√

√∑

𝑘 ∥𝑄̂𝑡+1
𝑘
−𝑄𝑘 ∥2𝐹

∑

𝑘 ∥𝑄̂𝑡+1
𝑘
−𝑄𝑡

𝑘
∥2
𝐹

and converge iff the optimization’s stationarity criteria is satisfied

with 𝜂𝑞 > 0.999, and 𝜂𝑄 > 0.999 [Li et al. 2020].

Fig. 5. Punching Press.We designed two variations of a punching press

mechanism: one with loose joints (top row) and one with tight (bottom row).

By applying a force to raise the punch, our use of full rigid DOF instead of

articulated bodies allows us to model and test varying tolerance in joints.

If only stationarity is satisfied, we update the AL parameters.

For brevity we only describe the update scheme for 𝜅A,𝑞 , 𝜆A as the

others follow closely. If 𝜂A,𝑞 < 0.99 and 𝜅A < 108, then

𝜅A,𝑞 ← 2𝜅A,𝑞 .

Otherwise, for each kinematic body 𝑘 ,

𝜆A,𝑘 ← 𝜆A,𝑘 − 𝜅A
√
𝑚𝑘 (𝑞𝑖𝑘 − 𝑞

𝑡+1
𝑘
) .

Additionally, whenever the AL convergence criteria are satisfied,

we fix all prescribed DOF and remove the AL from Equation (12)

for the remainder of the optimization. This helps by removing un-

necessary stiffness in our objective function [Li et al. 2020].

5 RESULTS

Our algorithm is implemented in C++ and uses Eigen [Guennebaud

et al. 2010] for the linear algebra routines, libigl [Jacobson et al. 2018]

for basic geometry processing routines, and filib for interval arith-

metic [Lerch et al. 2006]. We run our experiments on a workstation

with two AMD EPYC™ 7452 Processors. The reference implemen-

tation used to generate the results is attached to the submission

and will be released as an open-source project. We provide a video

for every simulation shown in the paper as part of our additional

material.

We first present our results and postpone a comparison against

existing rigid body simulators to Section 6 and to a volumetric IPC

formulation in Section 6.1.

Rigid BodyMechanisms with Complex Geometry. The first example

is a bolt that spins under gravity inside a nut. This is a challenging

scene for many rigid body simulators (although others have shown

success [Wang et al. 2012; Xu et al. 2014]) due to the tight sliding

contacts on an extended curved area (Figure 4).

We show a collection of more complex mechanisms in Figure 2,

including a piston, a rotating wheel that generates intermittent

motion, and a bike chain. In all cases, we do not use any constraint

on the reduced coordinates.

Note that the contacts are reliably handled by our approach,

enabling us to experiment with variations in the mechanisms, for

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:9

Fig. 6. Codimensional bodies. The IPC formulation allows us to easily

simulate codimensional objects. Top: A ball is dropped onto a chain net

composed of 1D codimensional edges. Bottom: A sphere of disconnected

codimensional planes and a point cloud ball roll into each other. Upon

contact, the geometry locks, and both spheres rock back and forth before

coming to rest.

Fig. 7. Spolling coin. A coin spolls (spins while rolling) on a surface with

friction (𝜇 = 0.2). As the coin falls it continues to rotate while only a single

point touches the ground. To accurately capture these high-speed dynamics,

we use a small timestep of ℎ = 10−4 s.

example by adding additional tolerance in the holes of a punching

press (Figure 5). Note that explicit collision modeling is necessary

to capture this effect.

Simulation for Fabrication. Our method can be used to design

and simulate complex mechanisms before real-world fabrication. To

mock-up this use case, we purchased the 3D model of a 3D printed

locking box from Maker’s Muse, and directly use the STL files in

our simulator (Figure 1). The mechanisms can be studied in our

simulation, where it is easy to modify the design and test it in a

virtual environment.

Codimensional Rigid Bodies. Our algorithm supports simulating

codimensional bodies. We show a card house composed of 2D codi-

mensional, rigid cards in Figure 10. 1D co-dimensional objects are

also supported and can be used, for example, to efficiently simulate

a large chain net (Figure 6 Top). As a stress test, we drop a heavy

ball on top of the chain net. We can even simulate 0D codimensional

point-clouds. As a demonstration, we roll a point cloud ball (with

friction) towards another ball composed of planar slices (Figure 6

Bottom).

Fig. 8. Wrecking ball. A stack of 560 boxes is hit by a wrecking ball made

from a chain of interlinked bodies.

Fig. 9. Anchor. A heavy anchor attached to a chain briefly falls under grav-

ity before being lifted by rolling the chain around an axle. Natural bunching

and kinking behaviors are visible. ©Animation Anchor Line (anchor) under

TurboSquid 3D Model License.

Large Angular Velocity. We can simulate objects moving at high

angular velocities to capture interesting real-world effects involving

rigid body objects, such as a spolling coin (Figure 7), with a timestep

of 10−4 s.

Large Numbers of Bodies. Our algorithm can stably simulate large

collections of rigid bodies, as demonstrated by a stack of boxes

displaced by a wrecking ball (Figure 8).

We can also stably simulate long chains of interlinked bodies.

We show an example in Figure 9, where a heavy anchor is lifted by

rolling up a chain composed of 21 individual links.

Friction. We repeat the arch scene experiment used to benchmark

the friction model in [Li et al. 2020], replacing the deformable yet

stiff blocks with rigid objects (Figure 11). The results are indistin-

guishable (see also Figure 19).

The Lewis is an interesting mechanism used to lift heavy bodies,

relying on static friction (Figure 12). As a final friction experiment,

we place a box on a spinning disk with four different coefficients

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:10 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

Fig. 10. Codimensional card house.Wedesign a codimensional variant of

the standard frictional benchmark of Kaufman et al. [2008], where each card

is composed of only two triangles. The cards are briefly allowed to stably

come to rest (𝜇 = 0.9), before being impacted by two cubes. The top two

levels collapse, but the final floor is able to catch the cubes demonstrating

our ability to quickly handle transitions between static and dynamic friction.

Fig. 11. Arch. An arch composed of 101 rigid blocks is in equilibrium under

gravity due to friction forces.

Fig. 12. Lewis lifting mechanism. Utilizing friction and geometry the

Lewis is able to lift large weights. A pyramid-shaped piece is placed between

wedge-shaped pieces. When the center piece is pulled up the surrounding

pieces are pressed into the outer block. The center is moved kinematically

at 0.5m/s with 𝜇 = 0.3 and is able to lift a block 10 times its mass.

of friction. As the rotational velocity of the disk increases, the box

loses contact and flies away (Figure 13) for 𝜇 ≠ 1.

Packing for 3D Printing with Minimal Separation. The stability

of our algorithm over large time steps and the possibility to add

controlled minimal separation makes it ideal for packing multiple

objects within the bed of a 3D printer. A common way to solve this

problem is inflating the objects by the printer clearance and then

use bin packing [Fogleman 2017].

Our algorithm can be used as a simple alternative to packing for

3D printing (Figure 14): we can compute a packing of a collection

of objects by dropping them in a box and extending our algorithm

to ensure that the printer clearance is respected.

Fig. 13. Turntable. A block is dropped on an accelerating turntable with

four different coefficients of friction (𝜇 = 0, 0.1, 0.5, 1.0). With 𝜇 = 0, the

block rests on top of the table, slowly drifting. With 𝜇 = 0.1, the block

quickly catches and is flung away by the table. With 𝜇 = 0.5, the block is

able to hang on longer but eventually slides to the edge and falls off. With

𝜇 = 1, the block sticks to the table and remains in the same relative position

throughout the simulation.

Fig. 14. 3D packing. Based on the tolerance of Shapeway’s PA11 material,

we pack eight models into the bed of a 3D printer of size 290 × 290 × 600
mm, with a clearance of 1mm enforced by our minimum separation. (Inset)

We plot the minimum distance throughout the simulation showing that we

always maintain the desired minimum distance between objects. ©tjhowse,

blecheimer, Kacie Hultgren, Creative Tools, Dustin Sallings, Brad Pitcher,

Andy Lesniak, and Tony Buser under CC BY.

This is just a prototype, and more research will be necessary

to evaluate the effectiveness of this approach in practical applica-

tions and compare it with bin packing, especially since the runtime

of Wang et al. [2020] (and consequently of our curved CCD) in-

creases considerably for large minimal separation distances.

Scalability. Our reference implementation exploits parallelization

in the following algorithmic stages: energy gradients and Hessians

are constructed in parallel, all body pairs in the barrier and CCD

broad phase are evaluated in parallel, and the narrow phase CCD is

performed in parallel to compute the earliest time-of-impact. Overall,

this allows our algorithm to take advantage of modern multi-core

processors. We test the weak (i.e., we increase the complexity of

the scene as we increase the number of threads) and strong (i.e.,

we keep the scene the same as we increase the number of threads)

scaling of our method by simulating a chain of densely meshed links

(Figure 15).

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:11

1 4 8 12 16 20 24 28 32
1

1.5

2

2.5

3

Weak Scaling

# cores

re
la
tiv

e 
tim

e

1 4 8 12 16 20 24 28 32

2

4

6

8

10

Strong Scaling

# cores

sp
ee

d­
up

Fig. 15. Scalability.We test both the weak (left) and strong (right) scala-

bility on a chain of densely meshed links (bottom). For weak scaling, we

set the number of free links equal to the number of threads and plot the

runtime divided by the single link time. For strong scaling, we use a chain

of 64 links and plot the speed-up over the single-core time. In each case,

we plot the ideal value in grey. While our method greatly benefits from

parallelization we see diminishing returns after 16 cores and observe little

improvement when testing up to 64 cores.

6 BENCHMARK

We perform an extensive benchmark comparison on some of the

most popular rigid body simulators (Bullet, MuJoCo, Chrono, and

Houdini’s RBD), focusing on evaluating the methods’ ability on:

(1) maintaining stability, (2) avoiding interpenetration, and (3) pro-

ducing accurate dynamics. Our benchmark includes unit tests com-

posed of simple primitive geometries like tetrahedron and cubes

(Figure 16), degenerate test cases proposed by Erleben [2018] (Fig-

ure 17), and some of our more complex, large scale examples. In

general, existing methods are orders of magnitude faster than our

method, but fail severely even on simple scenes, depending on the

parameters. Additionally, we show that, even with extensive pa-

rameter tuning, these methods cannot simulate certain scenes. All

scripts with simulation parameters tested will be publicly released

as part of our open-source project.

Bullet. The primary method for modeling contacts between mov-

ing concave geometries in Bullet is via convex collision resolution

employing convex decomposition proxies for input mesh geome-

tries. Bullet provides automated construction of approximate convex

decompositions for meshes via V-HACD [Mammou 2020]. Hand-

crafted custom decompositions are often employed instead which

can provide better approximation of the geometry and so improved

collision proxies. In the following experiments we use input meshes

for convex geometries (all of the unit test and Erleben’s tests) or

else, for concave geometries, an expert-constructed manual decom-

position.

Bullet performs well on the unit tests and tests of Erleben [2018],

but generates interpenetrations at larger time steps (0.01 s). Bul-

let performs best when the timestep is not too large (the default

is 1/240 s and łseveral parameters are tuned with this value in

mindž [Coumans and Bai 2019]). We find that ℎ = 10−3 s works
for most scenes, but some scenes (e.g., five-cube stack and spikes)

require time steps as small as (10−4 s) to completely avoid interpen-

etrations. In the volumetric chain-net, one of our more complex

benchmark scenes, large time steps generate intersections and con-

straint drift that eventually lead to tunneling. A smaller time step

Fig. 16. Unit tests. A set of unit test scenes used to benchmark the accuracy

and robustness of each method. We show the initial configuration and the

resulting simulation using our method.

Fig. 17. Erleben’s degenerate test cases. Our method can easily handle

the challenging degenerate cases proposed by Erleben [2018].

(0.001 s) helps avoids tunneling artifacts, but small intersections still

occur.

We also test Bullet’s experimental collision handling between

arbitrary input triangle meshes directly (without convex decom-

position proxies) and find it fails on almost all unit tests and the

tests of Erleben [2018] using default parameters. We observe large

amounts of energy injected into the system as an effect of position

stabilization: once an intersection appears, the simulator quickly

pulls the objects which produces large velocities.

Additionally, we note that Bullet successfully manages to prevent

interpenetration in examples at larger dimensions. However, for

smaller scenes we see severe interpenetrations even at small time

steps. For example, we tested Bullet on a 0.1×-scale chain net scene,

and observed severe interpenetration and instabilities even with

ℎ = 10−4 s. This could certainly be related to Bullet’s design, as stated
in Bullet’s documentation, being tuned towork on scenes with larger

dimensions. Interestingly, we also note that Bullet simulates the

0.1×-scale chain net example roughly 8× slower than at the original

scale, reflecting Bullet’s parameters controlling collision detection

and activation distance with respect to scale.

MuJoCo. MuJoCo works well on almost all unit tests and Er-

leben’s test cases, without severe explosion or interpenetrations.

Note that, for this method, we do not report small intersections that

exist in almost all MuJoCo results as a failure since this is the ex-

pected behavior for the contact resolution used in MuJoCo. For the

tet-corner example, even with frame-rate time step size ℎ = 0.01 s,

MuJoCo successfully simulates the tetrahedron falling down into

the tight space. However, we found that MuJoCo fails on all our

large-scale examples independently from time step size. Nearly half

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:12 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

of the examples crash the program, either because huge velocity or

bounding boxes are detected (suggesting explosion), or the contact

buffer is full and the slow progressive memory reallocation does

not help. Similar to Bullet, we find that MuJoCo runs the 0.1×-scale
much slower (more than 3×) comparing to the larger dimension

counterpart. Compared to Bullet, MuJoCo is generally several times

faster for the same time step sizes. We tried to avoid interpenetra-

tions on the 4 × 4 chain example by (1) swapping integrators from

Implicit Euler to RK4, (2) changing solver from Newton to PCG,

and (3) increasing solver iteration from 100 to 1000. None of these

changes avoided interpenetrations.

Chrono. Chrono provides two methods for rigid body contacts:

smooth contacts (SMC) and non-smooth contacts (NSC). SMC uses a

penalty-based formulation, so it is known to have intersections with

large time steps or velocities. NSC uses a complementarity-based

approach and is, therefore, more robust. We focus our benchmark

on the NSC model. Chrono also provides several solver and time-

stepper methods. We benchmark the Barzilai-Borwein solver and

projected implicit Euler time-stepper as we found they are the most

robust for a wide range of scenes and the documentation recom-

mends them for łfast dynamics with hard (NSC) contacts and low

inter-penetrationž [Tasora et al. 2016].

Similar to Bullet, Chrono performs well on the unit tests and

Erleben’s test cases, but we find noticeable interpenetrations at large

time steps (ℎ = 0.01 s). In particular, sharp features and parallel edge-

edge contacts (e.g., five-cube stack or parallel-edge tetrahedrons)

are more prone to interpenetrations. Overall we find that Chrono is

robust at smaller time steps, and only the five-cube stack requires a

time step smaller than 0.001 s to avoid interpenetrations.

However, Chrono struggles in some of our more complex scenes.

For example, the bolt scene initially works as the bolt turns in the

nut, but after a short time they intersect and the bolt stops moving.

Testing with different time steps (ℎ = 10−2, 10−3, and 10−4 s), we get
the same results. In an effort to get the bolt to work we tested various

parameters and discovered adjusting the scale of the scene resolves

the problems. When we scale the scene by 10× (and so change

the overall physical system), we find Chrono performs remarkably

well and is able to simulate the bolt at a time step of 0.01 s without

interpenetration. Avoiding this kind of unintuitive parameter tuning

that is necessary to prevent intersections and produce plausible

results is a motivation of our work.

Houdini RBD. Since Houdini RBD (not the binding to Bullet) is

harder to script than the two former methods, we modeled only

three scenes: five cubes, bolt, and wrecking ball. For the five cubes

scene, the simulation quickly stabilizes without artifacts, but it fails

on resting contacts after a few seconds, and the stack starts to

collapse (even using a small time step of ℎ = 10−4 s). Improving over

Bullet and MuJoCo, Houdini successfully simulates the bolt scene,

in real physical dimensions (i.e., small since all units are in meters)

without explosion. However, the bolt intersects with the nut even

when the time step is set to ℎ = 10−4 s. Finally, for the wrecking
ball scene, Houdini does not support a plane geometry composed

of 2 triangles holding the large cube matrix, therefore we make the

problem easier by using a built-in ground plane. Still, just like in

the five cubes scene, the cube matrix collapses after becoming static

Fig. 18. High school physics friction test. We perform a simple test of

high school physics by placing a block on an inclined plane with a slope of

26.565◦. For a value of 𝜇 ≥ tan(26.565◦) ≈ 0.5, the friction force will counter

the acceleration due to gravity. We accurately replicate this by showing for

𝜇 = 0.49 the block slides and for 𝜇 = 0.5 the block does not slide.

(before being hit by the wrecking ball). For this scene, we further

tested with a higher resolution for the signed distance field used in

RBD for collision detection: However, the cube matrix still collapses.

Friction Tests. We compare the different frictionmodels by placing

a block on a slope at 26.565◦, which has a critical value for the

coefficient of friction at 0.5 (Figure 18). In our results, the block

does not move for 𝜇 = 0.5 and starts to slide at 𝜇 = 0.49. Bullet is

able to closely match the expected behavior: The block does not

move for a value of 𝜇 ≥ 0.505. MuJoCo requires a value of 𝜇 = 0.9

to prevent the block from sliding. Chrono perfectly matches the

expected results with a critical value of 𝜇 = 0.5. Houdini’s RBD

requires a value of 𝜇 = 0.7 to prevent the block from sliding.

For our arch test (Figure 11), Bullet’s convex collision handling is

able to reach a stable equilibrium, but for large time steps (0.01 s)

the blocks intersect. Bullet’s concave triangle mesh collision han-

dling, experiences large łghostž forces that cause it to collapse even

for varying time step sizes (10−2, 10−3, and 10−4 s). With MuJoCo,

Chrono, and Houdini the arch is unable to support itself as large in-

tersections occur between the bottom blocks (tested with ℎ = 10−2,
10−3, and 10−4 s).

6.1 IPC

While not designed for rigid body simulations, the IPC algorithm

[Li et al. 2020] can handle very stiff materials, and it is thus possible

to use it to approximate dynamic systems of rigid bodies. While the

bodies are not exactly rigid when simulated with IPC, the major

advantage is that restitution effects are directly simulated (while

we do not account for them in our current rigid body formulation).

The disadvantage is that the interior of the objects needs to be filled

with tetrahedra, increasing the solve time, especially for complex

geometries. We show three representative scenes in Figure 19: in

the arch, there is no need to insert any internal vertices and IPC

is actually faster than the rigid version (two times slower), due

to the cheaper linear CCD. On the bolt and chain-net scenes, the

geometry is more complex, and the reduced set of coordinates of

the rigid body formulation makes our algorithm faster (2.8 and 7.0

times). In all scenes, the overall dynamic is very similar between

the two formulations. We provide a more detailed comparison over

a selection of nine scenes in Appendix D.

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:13

IPC Ours

t=0.36 t=0.36

t=5.0 t=5.0

OursIPC

OursIPC

Fig. 19. IPC comparison. Comparison of the original volumetric, de-

formable IPC formulation (using material parameters for steel: Young’s

modulus 𝐸 = 200GPa and Poisson ratio Poisson’s ratio 𝜈 = 0.3) and our

rigid body formulation. ©YSoft be3D (screw) under CC BY-SA 3.0.

7 LIMITATIONS AND CONCLUDING REMARKS

We revisited the rigid body simulation problem focusing on robust-

ness and automation. By introducing a new IP formulation for rigid

body dynamics and a new conservative curved CCD formulation,

we designed a system that can reliably simulate complex scenes,

with large time steps, and without parameter tuning.

Limitations. Our method has three major limitations. (1) The

robustness of the algorithm comes at a computational cost, our

algorithm is (two to three orders of magnitude) slower than other

rigid body simulators. (2) The current formulation does not preserve

energy. (3) Our current formulation does not provide direct control

for restitution.

While (1) is an intrinsic limitation, which could be ameliorated

with more code optimizations or the use of GPU accelerators, (2)

and (3) are very interesting venues for future work.

Future Work. Our work opens the door to robust rigid body sim-

ulation, over a wider range of geometries and contact scenarios.

While our algorithm is slower than competing methods, our method

requires no parameter tuning to generate feasible results, and there-

fore can be potentially used to generate simulation data in one shot

for reinforcement learning in robotics. In that setting, it would be

interesting to add support for articulated bodies, add support for

accurate actuators, and merge the deformable and rigid body for-

mulation to allow robots to interact with deformable objects. For

applications in graphics, it would be interesting to add additional

collision primitives, such as spheres, capsules, and boxes, to lower

the runtime in cases where geometrical accuracy is less important.

Concluding Remarks. To conclude, we believe our formulation

will foster the development of a new family of robust rigid body

simulations while supporting exciting simulation applications in

graphics, robotics, and digital fabrication.

ACKNOWLEDGMENTS

We thank Erwin Coumans, Dan Negrut, Alessandro Tasora, Radu

Serban, Simone Benatti, and Xun Tan for generous assistance in gen-

erating comparisons. This work was supported in part through the

NYU IT High Performance Computing resources, services, and staff

expertise. This work was partially supported by the NSF CAREER

award 1652515 and IIS-1943199, the NSF grants IIS-1320635, DMS-

1436591, DMS-1821334, OAC-1835712, OIA-1937043, CHS-1908767,

CHS-1901091, CCF-1813624, ECCS-2023780, a gift from Adobe Re-

search, a gift from nTopology, and a gift from Advanced Micro

Devices, Inc.

REFERENCES
Mihai Anitescu and Gary D. Hart. 2004a. A Constraint-Stabilized Time-Stepping

Approach for Rigid Multibody Dynamics with Joints, Contact and Friction. Internat.
J. Numer. Methods Engrg. (2004).

Mihai Anitescu and Gary D. Hart. 2004b. A Fixed-Point Iteration Approach for Multi-
body Dynamics with Contact and Small Friction. Mathematical Programming 101, 1
(2004), 3ś32.

Mihai Anitescu and Florian R. Potra. 1997. Formulating Dynamic Multirigid-Body
Contact Problems with Friction as Solvable Linear Complementarity Problems.
ASME Nonlinear Dynamics 14 (1997), 231ś247.

Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations (1st ed.). Society for Industrial and
Applied Mathematics, USA.

David Baraff. 1989. Analytical Methods for Dynamic Simulation of Non-Penetrating
Rigid Bodies. Computer Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989),
223ś232.

David Baraff. 1991. Coping with Friction for Non-penetrating Rigid Body Simulation.
Computer Graphics (Proceedings of SIGGRAPH) 25, 4 (July 1991), 31ś41.

David Baraff. 1994. Fast Contact Force Computation for Nonpenetrating Rigid Bodies.
In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’94). Association for Computing Machinery, New York, NY,
23ś34.

Jan Bender, Kenny Erleben, Jeff Trinkle, and Erwin Coumans. 2012. Interactive Simula-
tion of Rigid Body Dynamics in Computer Graphics. In Eurographics 2012 - State
of the Art Reports, Marie-Paule Cani and Fabio Ganovelli (Eds.). The Eurographics
Association.

Bernard Brogliato. 1999. Nonsmooth Mechanics. Springer-Verlag.
John Canny. 1986. Collision Detection for Moving Polyhedra. IEEE Transactions on

Pattern Analysis and Machine Intelligence Pami-8, 2 (1986), 200ś209.
Michael B. Cline and Dinesh K. Pai. 2003. Post-stabilization for rigid body simulation

with contact and constraints. In Proceedings of IEEE International Conference on
Robotics and Automation.

Eulalie Coevoet, Otman Benchekroun, and Paul G. Kry. 2020. Adaptive Merging for
Rigid Body Simulation. ACM Transactions on Graphics (2020).

Erwin Coumans and Yunfei Bai. 2016ś2019. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics
animation. ACM Transactions on Graphics (2007).

Kenny Erleben. 2017. Rigid Body Contact Problems using Proximal Operators. In
Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation
(SCA ’17). Association for ComputingMachinery, New York, NY, Article 13, 12 pages.

Kenny Erleben. 2018. Methodology for Assessing Mesh-Based Contact Point Methods.
ACM Transactions on Graphics 37, 3 (2018).

Michael Fogleman. 2017. Binary Packing for SLS printing. https://www.
michaelfogleman.com/pack3d/.

F. Sebastin Grassia. 1998. Practical Parameterization of Rotations Using the Exponential
Map. Journal of Graphics Tools 3, 3 (March 1998), 29ś48.

Eran Guendelman, Robert Bridson, and Ronald Fedkiw. 2003. Nonconvex Rigid Bodies
with Stacking. ACM Transactions on Graphics (Proceedings of SIGGRAPH) (2003).

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.
James K. Hahn. 1988. Realistic Animation of Rigid Bodies. Computer Graphics (Proceed-

ings of SIGGRAPH) (Aug. 1988), 299ś308.
Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric Numerical Inte-

gration: Structure-Preserving Algorithms for Ordinary Differential Equations. Vol. 31.
Springer.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-
Aware Geometric Modeling. ACM Transactions on Graphics 30, 6 (Dec. 2011), 1ś10.

Shu-Wei Hsu and John Keyser. 2010. Piles of Objects. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) (2010).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/

Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational In-
tegrators and the Newmark Algorithm for Conservative and Dissipative Mechanical
Systems. Internat. J. Numer. Methods Engrg. 49, 10 (Dec. 2000).

Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered
Projections for Frictional Contact in Multibody Systems. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 27, 5 (2008).

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:14 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

Fig. 20. Simulation statistics for all scenes presented in Section 5. We report the number of bodies, number of primitives, simulation parameters, and the

average timings and Newton iterations per timestep. All timings are generated on a machine with a 2x32-core 2.35 GHz AMD EPYC™ 7452 32-Core Processor

with 1TB of memory. Each simulation is limited to a maximum of 16 cores (* indicates up to 64 cores). The suffix ℓ indicates the value is relative to the world

diagonal. We also report friction parameters and the Newton convergence tolerance. Please refer to Li et al. [2020] for full definition of these parameters.

Example bodies vertices edges faces h (s) d (m) μ ϵᵥ (m/s)
friction

iterations

newton tol.
(ϵ_d (m/s))

contacts avg.
(per timestep)

contacts max.
(per timestep)

memory
(MB)

iterations
(per timestep)

timing (s)
(per timestep)

Expanding lock box 11 66K 66K 22K 0.01 1e-5 N/a 1e-2 ℓ 5K 9K 811 24.9 9.0

Bolt 2 3K 8K 5K 0.01 1e-4 N/a 1e-2 ℓ 332 759 86 8.3 3.5

Piston 4 6K 6K 2K 0.01 1e-3 N/a 1e-2 ℓ 370 1K 1323 9.9 1.5

Intermitten motion 5 2K 6K 4K 0.01 1e-4 N/a 1e-2 ℓ 21 498 875 5.7 0.2

Bike chain* 138 48K 143K 96K 0.01 1e-5 N/a 1e-2 ℓ 6K 11K 12403 42.0 21.6

Punch 6 2K 7K 5K 0.01 1e-4 N/a 1e-2 ℓ 57 136 591 9.2 1.3

Punch (loose) 6 2K 7K 5K 0.01 1e-4 N/a 1e-2 ℓ 47 78 903 12.5 1.3

Codim. house of cards 18 80 116 56 0.01 1e-3 0.9 1E-05 1 1e-3 ℓ 78 204 1045 161.9 3.2

Codm. chain net 673 23K 25K 1K 0.01 1e-3 N/a 1e-2 ℓ 2K 2K 3234 130.5 20.5

Disconnected components 3 5K 2K 850 0.01 1e-3 0.1 1E-03 1 1e-2 ℓ 7 10 41 1.9 0.1

Spolling coin 2 134 389 258 1e-4 1e-4 0.2 1E-05 * 1e-4 ℓ 12 84 229 3.8 0.01

Wrecking ball 575 8K 20K 13K 0.01 1e-3 N/a 1e-2 ℓ 4K 14K 1959 17.1 4.8

Anchor 23 9K 27K 18K 0.01 1e-3 N/a 1e-2 ℓ 267 1K 1178 21.4 3.0

Arch 102 812 2K 1K 0.01 1e-3 0.5 1E-03 1 1e-3 ℓ 649 695 1590 2.1 0.21

Lewis 7 64 149 98 0.01 1e-3 0.3 1E-03 1 1e-2 ℓ 50 55 26 2.7 0.02

Turntable (mu=0.0) 2 138 402 268 0.025 1e-3 0 1E-05 * 1e-4 ℓ 9 15 178 2.3 0.004

Turntable (mu=0.1) 2 138 402 268 0.025 1e-3 0.1 1E-05 * 1e-4 ℓ 2 13 284 2.9 0.003

Turntable (mu=0.5) 2 138 402 268 0.025 1e-3 0.5 1E-05 * 1e-4 ℓ 7 14 255 5.9 0.01

Turntable (mu=1.0) 2 138 402 268 0.025 1e-3 1 1E-05 * 1e-4 ℓ 10 10 246 9.1 0.01

3D packing* 10 7K 20K 13K 0.01 1e-3 N/a 1e-2 ℓ 184 456 8860 91.3 33.5

Michael Lerch, German Tischler, Jürgen Wolff Von Gudenberg, Werner Hofschuster,
and Walter Krämer. 2006. FILIB++, a Fast Interval Library Supporting Containment
Computations. ACM Trans. Math. Software 32, 2 (June 2006), 299ś324.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM
Transactions on Graphics 39, 4 (2020).

Per Lötstedt. 1982. Numerical Simulation of Time-Dependent Contact Friction Problems
in Rigid Body Mechanics. SIAM Journal of Scientific Statistical Computing 5, 2 (1982),
370ś393.

Libin Lu, Matthew J. Morse, Abtin Rahimian, Georg Stadler, and Denis Zorin. 2019.
Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows through Vas-
cular Networks. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’19). Association for Computing
Machinery, New York, NY, Article 6, 30 pages.

M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020. Pri-
mal/Dual Descent Methods for Dynamics. In Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (SCA ’20). Eurographics Associa-
tion, Goslar, DEU, Article 9, 12 pages.

Khaled Mammou. 2020. V-HACD. https://github.com/kmammou/v-hacd
Jerrold E. Marsden and Tudor S. Ratiu. 2013. Introduction to Mechanics and Symmetry.

Springer.
Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nes-

terov’s Method to Accelerate Multibody Dynamics with Friction and Contact. 34, 3,
Article 32 (May 2015), 14 pages.

Brian Mirtich. 2000. Timewarp Rigid Body Simulation. Annual Conference Series
(Proceedings of SIGGRAPH), 193ś200.

Brian Mirtich and John F. Canny. 1995. Impulse-based dynamic simulation of rigid
bodies. In Symposium on Interactive 3D Graphics.

Brian Vincent Mirtich. 1996. Impulse-Based Dynamic Simulation of Rigid Body Systems.
Ph.D. Dissertation.

Jean Jacques Moreau. 1966. Quadratic Programming in Mechanics: Dynamics of One-
Sided Constraints. SIAM Journal on Control 4, 1 (1966), 153ś158.

Jean Jacques Moreau. 1988. Unilateral Contact and Dry Friction in Finite Freedom
Dynamics. Nonsmooth Mechanics and Applications, CISM Courses and Lectures 302
(1988), 1ś82.

Jürgen Moser and Alexander P. Veselov. 1991. Discrete Versions of Some Classical
Integrable Systems and Factorization of Matrix Polynomials. Communications in
Mathematical Physics 139 (1991), 217ś243.

Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong
Kim. 2020. Detailed Rigid Body Simulation with Extended Position Based Dynamics.
Computer Graphics Forum 39, 8 (2020), 101ś112.

B. Owren and B. Welfert. 2000. The Newton Iteration on Lie Groups. BIT Numerical
Mathematics 40 (2000), 121ś145.

Jia Pan, Liangjun Zhang, and Dinesh Manocha. 2012. Collision-Free and Smooth
Trajectory Computation in Cluttered Environments. The International Journal of
Robotics Research 31, 10 (2012), 1155ś1175.

Xavier Provot. 1997. Collision and Self-Collision Handling in Cloth Model Dedicated
to Design Garments. In Computer Animation and Simulation. Springer, 177ś189.

Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002a. Fast Continuous
Collision Detection between Rigid Bodies. Computer Graphics Forum 21, 3 (2002),
279ś287.

Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002b. Gauss’ least
constraints principle and rigid body simulations. In Proceedings of IEEE International
Conference on Robotics and Automation, Vol. 1. 517ś522.

Rodrigues. 1840. Des lois géométriques qui régissent les déplacements d’un système
solide dans l’espace, et de la variation des coordonnées provenant de ces déplace-
ments considérés indépendamment des causes qui peuvent les produire. Journal de
Mathématiques Pures et Appliquées (1840), 380ś440.

Fabian Schwarzer, Mitul Saha, and Jean-Claude Latombe. 2005. Adaptive Dynamic Colli-
sion Checking for Single and Multiple Articulated Robots in Complex Environments.
IEEE Transactions on Robotics 21 (July 2005), 338ś353.

SideFX. 2020. Houdini. https://www.sidefx.com/products/houdini/

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

Intersection-free Rigid Body Dynamics • 183:15

Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan
Grinspun. 2012. Reflections on Simultaneous Impact. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 31, 4 (2012), 106:1ś106:12.

John M. Snyder. 1992. Interval Analysis for Computer Graphics. Computer Graphics
(Proceedings of SIGGRAPH) 26, 2 (July 1992), 121ś130.

John M. Snyder, Adam R. Woodbury, Kurt Fleischer, Bena Currin, and Alan H. Barr.
1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved
Surfaces. Annual Conference Series (Proceedings of SIGGRAPH), 321ś334.

Jos Stam. 2009. Nucleus: Towards a Unified Dynamics Solver for Computer Graphics.
Proceedings of IEEE International Conference on Computer-Aided Design and Computer
Graphics (2009), 1ś11.

David Stewart. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42
(March 2000), 3ś39.

David Stewart and J.C. Trinkle. 2000. An Implicit Time-Stepping Scheme for Rigid Body
Dynamics with Coulomb Friction. Proceedings of IEEE International Conference on
Robotics and Automation 1, 162ś169.

Min Tang, Young J. Kim, and Dinesh Manocha. 2009. C2A: Controlled Conservative Ad-
vancement for Continuous Collision Detection of Polygonal Models. In Proceedings
of IEEE International Conference on Robotics and Automation. 849ś854.

Min Tang, Young J. Kim, and Dinesh Manocha. 2011. CCQ: Efficient Local Planning
Using Connection Collision Query. Springer Berlin Heidelberg, Berlin, Heidelberg,
229ś247.

Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel Melanz,
Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan Negrut. 2016.
Chrono: An Open Source Multi-physics Dynamics Engine. Springer, 19ś49.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for
model-based control. In Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 5026ś5033.

Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass Splitting for
Jitter-Free Parallel Rigid Body Simulation. ACM Transactions on Graphics (2012).

Jeff Trinkle, Jong-Shi Pang, Sandra Sudarsky, and Grace Lo. 1995. On Dynamic Multi-
Rigid-Body Contact Problems with Coulomb Friction. Technical Report. Texas A&M
University, Department of Computer Science.

Warwick Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computa-
tions. Princeton University Press, USA.

Etienne Vouga, Breannan Smith, Danny M. Kaufman, Rasmus Tamstorf, and Eitan
Grinspun. 2017. All’s Well That Ends Well: Guaranteed Resolution of Simultaneous
Rigid Body Impact. ACM Transactions on Graphics 36, 4 (July 2017).

Bin Wang, François Faure, and Dinesh K. Pai. 2012. Adaptive Image-based Intersection
Volume. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012).

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2020. A Large Scale Benchmark and an Inclusion-Based Algorithm for
Continuous Collision Detection. arXiv:2009.13349 [cs.GR]

J.M.P. van Waveren. 2005. Robust Continuous Collision Detection Between Arbitrary
Polyhedra Using Trajectory Parameterization of Polyhedral Features. (March 2005).

Andrew Witkin and David Baraff. 2001. Physically Based Modeling. In SIGGRAPH 2001
Course Notes.

Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit Multibody Penalty-based
Distributed Contact. IEEE Transactions on Visualization and Computer Graphics 20,
9 (2014).

Liangjun Zhang, Young J. Kim, and Dinesh Manocha. 2007a. C-DIST: Efficient Distance
Computation for Rigid and Articulated Models in Configuration Space. In Proceed-
ings of ACM Symposium on Solid and Physical Modeling (Beijing, China) (SPM ’07).
Association for Computing Machinery, New York, NY, 159ś169.

Liangjun Zhang, Young J. Kim, Gokul Varadhan, and Dinesh Manocha. 2007b. General-
ized Penetration Depth Computation. Computer-Aided Design 39, 8 (2007), 625ś638.

Xinyu Zhang, Minkyoung Lee, and Young J Kim. 2006. Interactive Continuous Collision
Detection for Non-convex Polyhedra. The Visual Computer 22, 9-11 (2006), 749ś760.

Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim. 2007c. Continuous
Collision Detection for Articulated Models Using Taylor Models and Temporal
Culling. ACM Transactions on Graphics 26, 3 (July 2007), 15śes.

A ROBUSTLY COMPUTING RODRIGUES’ ROTATION
FORMULA

A.1 Talyor Series Expansion of sinc

To avoid numerical issues when computing sinc(𝑥) we instead use

sinc(𝑥) =
{

𝑥4/120 − 𝑥2/6 + 1 |𝑥 | ≤ 𝜖
sin(𝑥)

𝑥 otherwise

where sinc(|𝑥 | ≤ 𝜖) is computed using a fifth-order Taylor series

expansion around zero.

A.2 Rodrigues’ Rotation Formula Derivatives

To avoid numerical issues in derivatives of Rodrigues’ rotation for-

mula (Equation (14)) we use a Taylor series expansion around 0. The

gradient of sinc(∥𝜽 ∥) is computed as

∇ sinc(∥𝜽 ∥) = 𝑔(∥𝜽 ∥)𝜽
with

𝑔(𝑥) =
{

𝑥4/840 + 𝑥2/30 − 1/3 |𝑥 | ≤ 𝜖𝑔

(𝑥 cos(𝑥) − sin(𝑥))/𝑥3 otherwise

where 𝜖𝑔 = 10−4. The Hessian of sinc(∥𝜽 ∥) is computed as

∇2 sinc(∥𝜽 ∥) = ℎ(∥𝜽 ∥)𝜽𝜽𝑇 + 𝑔(∥𝜽 ∥)Id
with

ℎ(𝑥) =
{

𝑥4/7560 − 𝑥2/210 + 1/15 |𝑥 | ≤ 𝜖𝐻

(−𝑥2 sin(𝑥) − 3𝑥 cos(𝑥) + 3 sin(𝑥))/𝑥5 otherwise

where 𝜖𝐻 = 0.1.

A.3 Interval Computation of sinc

Given an interval 𝑥 = [𝑎, 𝑏] we want to compute sinc(𝑥) while
avoiding exponentially large intervals around 0. We first start by

exploiting the evenness of sinc to compute

𝑦neg = sinc(𝑥 ∩ [−∞, 0]) = sinc(−(𝑥 ∩ (−∞, 0])) .
Now that our domain is from [0,∞), we utilize the monotonicity

of sinc to decompose 𝑥 into 𝑥 ∩ [0,𝑚] and 𝑥 ∩ [𝑚,∞) where𝑚 =

4.4934094579 is a conservative value lower value for the upper bound

of the monotonic sub-domain. The latter case can be computed as

normal using interval division because the values are not too small.

For sinc(𝑥 ∩ [0,𝑚]), we compute sinc as

𝑦monotonic = [lower(sinc([upper(𝑥 ∩ [0,𝑚])])),
upper(sinc([lower(𝑥 ∩ [0,𝑚])]))]

where [.] indicates computing an interval containing a single value

to account for floating-point rounding. Finally, we combine all sub-

domain results using the hull of all ranges.

B COMPARISON FOR CURVED CCD

We compared our curved narrow-phase CCDwith the interval-based

root-finding methods of [Snyder 1992] and [Redon et al. 2002a].

Figure 21 contains a histogram of query timings, illustrating the

orders of magnitude improvement of our method over previous

works. This performance is due in part to the expensive nature

of interval arithmetic but also the use of multivariate root-finder

of in the case of [Snyder 1992] and degeneracies in the univariate

formulation of [Redon et al. 2002a]. This results in queries that

can take several seconds to process (our maximum time for point-

triangle queries is 0.02s and for edge-edge is 0.3s).

C EFFECT OF 𝛿

The parameter 𝛿 in our curved CCD controls the adaptive subdi-

vision of our trajectories and in turn the accuracy and runtime of

CCD. To demonstrate these effects we simulate the Piston (Figure 2)

with three different values of 𝛿 : 0.1, 0.5, and 0.9. We do not consider

a value outside of (0, 1) because our distances are all unsigned and a

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

183:16 • Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo

2e-05 - 5e-05

5e-05 - 1e-04

1e-04 - 5e-04

5e-04 - 1e-03

1e-03 - 5e-03

5e-03 - 1e-02

1e-02 - 5e-02

5e-02 - 1e-01

1e-01 - 5e-01

5e-01 - 1e+00

> 1e+00

0%

10%

20%

30%

40%

50%

60%

70%

time (s)

p
er

ce
n

ta
g

e

1e-05 - 5e-05

5e-05 - 1e-04

1e-04 - 5e-04

5e-04 - 1e-03

1e-03 - 5e-03

5e-03 - 1e-02

1e-02 - 5e-02

5e-02 - 1e-01

1e-01 - 5e-01

5e-01 - 1e+00

> 1e+00

0%

10%

20%

30%

40%

50%

60%

70%

time (s)

p
er

ce
n

ta
g

e

Redon et al. 2002

Snyder et al. 1992

Ours

Point-triangle Edge-edge

Fig. 21. CCD comparison. We compare our narrow-phase curved CCD

with the methods of [Snyder 1992] and [Redon et al. 2002a]. We extracted

43K point-triangle and 240K edge-edge queries from the first ten steps of

our bolt simulation (Figure 4) which has a good mix of linear and rotating

contacts between close conforming geometry. Our method is several orders

of magnitude faster than prior methods (x-axis is logarithmic).

value 𝛿 > 1 could result in the immediate termination of the linear

CCD (the initial distance is less than the minimum distance 𝑏).

For 𝛿 = 0.1, the CCD is forced to do unnecessary refinement

leading to a high runtime (611.6s with 227 Newton iterations).

For 𝛿 = 0.9, the CCD requires less refinement and is, therefore,

faster, but it is less accurate as the error 𝑏 is not tightly bound. This

inaccuracy results in a large number of Newton iterations (1162

iterations) which ultimately shifts the bottleneck and results in a

large runtime (742.6s).

We, therefore, choose to use the Goldilocks value of 𝛿 = 0.5

because it provides the best trade-off between runtime (130.6s) and

iterations (211 iterations).

D COMPARISON WITH IPC

We compared against IPC on a set of nine scenes with varying

geometric complexity and numbers of bodies. Figure 22 provides a

detailed summary of the total runtime and number of newton itera-

tions. For scenes with simple geometry (Arch (25 and 101 stones)

and Wrecking ball), our rigid formulation has little to no perfor-

mance advantage over IPC because of its cheaper linear CCD. For

more complex geometries (the chain net (4× 4 and 8× 8) and rolling
cone) IPC suffers due to the large number of DOF.

E INTERPOLATING LARGE ROTATION VECTORS

Although rotation vectors are invariant to multiples of 2𝜋 , adding

rotation vectors whose axes are not aligned is not. In fact, adding

a small rotation update to a large rotation vector will result in a

rotation axis close to the large rotation’s axis. For example, [0, 0, 0] +
[0, 1, 0] = [0, 1, 0] results in a rotation of 1 radian around the y-axis,

but [2𝜋, 0, 0] + [0, 1, 0] = [2𝜋, 1, 0] results in a rotation of
√
4𝜋2 + 1

radians around an axis ≈ [0.988, 0.157, 0].
In our experiments, we find this property has little to no effect

on the quality of simulation. In synthetic tests, however, this can

lead to an increased number of Newton iterations (more updates

necessary to move the axis of rotation) or small displacements that

can trigger early convergence in our Newton optimization (using

the same displacement-based convergence of Li et al. [2020]).

An easy fix to this problem, should the need ever arise, is to

substitute the resulting rotation vector 𝜽 = 𝜃𝒂 with (𝜃 mod 2𝜋)𝒂

Fig. 22. IPC comparison. We compare our method with the volumetric

IPC [Li et al. 2020] on a variety of scenes with varying geometric complexity

and number of bodies. IPC performs well (in some cases better) than our

method when the geometry is easily represented by only surface elements.

When the geometry is complex, however, our reduced DOF allows us to get

a performance gain.

Example
runtime (s)

(IPC)
runtime (s)

(Rigid)
speed-up

iterations
(IPC)

iterations
(Rigid)

Pendulum 339.7 133.1 2.6x 10K 3K

Double pendulum 914.0 1559.9 0.6x 12K 4K

Arch (25 stones) 26.5 55.8 0.5x 2K 2K

Arch (101 stones) 238.3 487.8 0.5x 4K 5K

Wrecking ball 7179.8 5748.1 1.2x 9K 18K

Bolt 4031.0 1436.9 2.8x 24K 4K

Rolling cone 1184.2 150.9 7.8x 21K 16K

Chain net (4x4) 1369.9 99.8 13.7x 4K 3K

Chain net (8x8) 9950.5 1420.9 7.0x 5K 5K

at the end of the timestep. It is important to only do this at the end

of the timestep to avoid discontinuities in our potential during the

optimization.

ACM Trans. Graph., Vol. 40, No. 4, Article 183. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Rigid Body Simulation
	2.2 Collision Detection

	3 IPC Overview
	4 Method
	4.1 Rigid Body Incremental Potential
	4.2 Projected Newton Solver
	4.3 Curved CCD
	4.4 Boundary Conditions

	5 Results
	6 Benchmark
	6.1 IPC

	7 Limitations and Concluding Remarks
	Acknowledgments
	References
	A Robustly Computing Rodrigues' Rotation Formula
	A.1 Talyor Series Expansion of sinc
	A.2 Rodrigues' Rotation Formula Derivatives
	A.3 Interval Computation of sinc

	B Comparison for Curved CCD
	C Effect of delta
	D Comparison with IPC
	E Interpolating Large Rotation Vectors

