
Bijective and Coarse High-Order Tetrahedral Meshes

ZHONGSHI JIANG, ZIYI ZHANG, and YIXIN HU, New York University, USA

TESEO SCHNEIDER, University of Victoria, Canada and New York University, USA

DENIS ZORIN and DANIELE PANOZZO, New York University, USA

Dense Linear Mesh

(Input)
Coarse Shell Curved Mesh Optimization

AfterBefore

Coarse Curved Mesh

(Output) Transferred Displacement

Fig. 1. Our pipeline starts from a dense linear mesh with annotated features (green), and converts it into a curved shell filled with high-order elements. The

region bounded by the shell is then tetrahedralized with linear elements, followed by optimization. Our output is a coarse yet accurate, curved tetrahedral

mesh ready to be used in the finite element method based simulation. Our construction also provides a bijective map between the input surface and the

boundary of the final tetrahedral mesh, which is used to transfer attributes and boundary conditions.

We introduce a robust and automatic algorithm to convert linear triangle

meshes with feature annotated into coarse tetrahedral meshes with curved

elements. Our construction guarantees that the high-order meshes are free of

element inversion or self-intersection. A user-specified maximal geometrical

error from the input mesh controls the faithfulness of the curved approx-

imation. The boundary of the output mesh is in bijective correspondence

to the input, enabling attribute transfer between them, such as boundary

conditions for simulations, making our curved mesh an ideal replacement

or complement for the original input geometry.

The availability of a bijective shell around the input surface is employed

to ensure robust curving, prevent self-intersections, and compute a bijective

map between the linear input and curved output surface. As necessary

building blocks of our algorithm, we extend the bijective shell formulation

to support features and propose a robust approach for boundary-preserving

linear tetrahedral meshing.

We demonstrate the robustness and effectiveness of our algorithm by

generating high-order meshes for a large collection of complex 3D models.

CCS Concepts: • Mathematics of computing → Mesh generation; •

Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: High-order mesh generation, Bijective

map, Feature preserving, Mesh adaptation, Attribute transfer

Authors’ addresses: Zhongshi Jiang, jiangzs@nyu.edu; Ziyi Zhang, ziyizhang@nyu.edu;
Yixin Hu, yixin.hu@nyu.edu; Teseo Schneider, teseo@uvic.ca; Denis Zorin,
dzorin@cs.nyu.edu; Daniele Panozzo, panozzo@nyu.edu. Courant Institute of Mathe-
matical Sciences, New York University, 60 5th Avenue, New York, NY 10011, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART157 $15.00
https://doi.org/10.1145/3450626.3459840

ACM Reference Format:

Zhongshi Jiang, Ziyi Zhang, YixinHu, Teseo Schneider, Denis Zorin, andDaniele

Panozzo. 2021. Bijective and Coarse High-Order Tetrahedral Meshes. ACM

Trans. Graph. 40, 4, Article 157 (August 2021), 16 pages. https://doi.org/10.

1145/3450626.3459840

1 INTRODUCTION

Piecewise linear approximations of surfaces are a popular represen-
tation for 3D geometry due to their simplicity and wide availability
of libraries and algorithms to process them. However, dense sam-
pling is required to faithfully approximate smooth surfaces. Curved
meshes, that is, meshes whose element’s geometry is described
as a high-order polynomial, are an attractive alternative for many
applications, as they require fewer elements to achieve the same rep-
resentation accuracy of linear meshes. In particular, curved meshes
have been shown to be effective in a variety of simulation settings in
mechanical engineering, computational fluid dynamics, and graph-
ics. Despite their major benefits, they are not as popular as linear
meshes: We believe that one of the main reasons among others
(e.g., contact resolution, interactive manipulation, texture mapping,
and distance computation) for their limited usage is the lack of an
automatic, robust way of constructing them.

While robust meshing algorithm exists for volumetric linear tetra-
hedral meshing, there are few algorithms for curved meshes, and
even fewer of them having either a commercial or open-source im-
plementation (Section 2). Only a few algorithms work directly on
arbitrary triangle meshes (most of them require the input geometry
to be either a CAD file or an implicit function), and none of them
can reliably process a large collection of 3D models.
We propose the first robust and automatic algorithm to convert

dense piecewise linear triangle meshes (which can be extracted
from scanned data, volumetric imaging, or CADmodels) into coarse,

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:2 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

curved tetrahedral meshes equipped with a bijective map between
the input triangle mesh and the boundary of the tetrahedral mesh.
Our algorithm takes advantage of the recently proposed bijective
shell construction [Jiang et al. 2020] to allow joint coarsening,
remeshing, and curving of the dense input mesh, which we ex-
tend to support feature annotations. Our outputs are guaranteed to
have a self-intersection-free boundary, and the geometric map of
every element is guaranteed to be bijective, an important require-
ment for FEM applications. Note that our guarantees hold using
exact computations. We leave the development of floating-point
predicates as future work.
The key ingredient of our algorithm is the separation of the

curved volumetric meshing problem into a near-surface, shell curv-
ing problem [Moxey et al. 2015; Sherwin and Peiró 2002], followed
by a restricted type of linear volumetric meshing.

We believe that our curved meshing algorithm will enable wider
adoption of curved meshes, as it will provide a way to automatically
convert geometric data in multiple formats into a coarse tetrahedral
mesh readily usable in finite element applications. To showcase the
benefits of our approach, we study two settings: (1) we show that
a coarse proxy mesh can be used to compute non-linear deforma-
tions efficiently and transfer them onto a high-resolution geometry,
targeting real-time simulation (Figure 1), and (2) we show that our
meshes are ready to use in downstream FEM simulations.
We validate the reference implementation of our approach on a

large collection of more than 8000 geometrical models, which will
be released as an open-source project1 to foster the adoption of
curved meshes in academia and industry.

Our contributions are:

• An algorithm to convert dense piecewise linear meshes into
coarse curved volumetric meshes while preserving a bijective
map with the input and bounding the approximation error.

• An extension of the bijective shell construction algorithm to
support annotated features.

• An algorithm for conforming tetrahedral meshing without
allowing refinement on the boundary, but allowing internal
Steiner points.

• A large-scale dataset of high-order tetrahedral meshes.

2 RELATED WORKS

We review the literature on the generation of unstructured and struc-
tured curved meshes. We also review the literature on boundary-
preserving linear meshing, as it is an intermediate step of our algo-
rithm.

2.1 Curved Tetrahedral Mesh Generation

High-order meshes are used in applications in graphics [Bargteil
and Cohen 2014; Mezger et al. 2009; Suwelack et al. 2013] and en-
gineering analysis [Jameson et al. 2002] where it is important to
reduce the geometric discretization error [Babuska and Guo 1988;
Babuška and Guo 1992; Bassi and Rebay 1997; Luo et al. 2001; Oden
1994], while using a low number of degrees of freedom. The cre-
ation of high-order meshes is typically divided into three steps: (1)
linear meshing of the smooth input surface, (2) curving of the linear

1https://github.com/jiangzhongshi/bichon.git

elements to fit the surface, and (3) optimization to heal the elements
inverted during curving. We first cover steps 2 and 3 and postpone
the overview of linear tetrahedral algorithms to Section 2.3.

Direct methods. Direct methods are the simplest family of curving
algorithms, as they explicitly interpolate a few points of the target
curved surface or project the high-order nodes on the curved bound-
ary [Abgrall et al. 2012; Dey et al. 1999; Ghasemi et al. 2016; Marcon
et al. 2019; Moxey et al. 2015; Sherwin and Peiró 2002; Turner 2017].
The curved elements are represented using Lagrange polynomi-
als, [Dey et al. 1999; Peiró et al. 2008], quadratic or cubic Bézier
polynomials [George and Borouchaki 2012; Lu et al. 2013; Luo et al.
2002a], or NURBS [Engvall and Evans 2016, 2017]. [Shephard et al.
2005; Sherwin and Peiró 2002] further optimizes the high-order
node distribution according to geometric quantities of interest, such
as length, geodesic distance, and curvature. In the case where no
CAD information is available, [Wang et al. 2016], [Jiao and Wang
2012] use smooth reconstruction to compute high-order nodes and
perform curving.

Deformation methods. Deformation methods consider the input
linearmesh as a deformable, elastic body, and use controlled forces to
deform it to fit the curved boundary. Different physical models have
been employed such as linear, [Abgrall et al. 2012, 2014; Dobrzynski
and El Jannoun 2017; Xie et al. 2013], and (variants of) non-linear
elasticity [Fortunato and Persson 2016; Moxey et al. 2016; Persson
and Peraire 2009]. A comparison between different elasticity and
distortion energies is presented in [Dobrev et al. 2019; Poya et al.
2016; Turner et al. 2016].
Direct and deformation methods have been tested on small col-

lections of simple models, and, to the best of our knowledge, none
of them can provide guarantees on the validity of the output or
has been tested on large collections of models. There are also no
reference implementations we could compare against.

Inversions and Intersections. Most of these methods introduce
inverted elements during the curving of the high-order elements.
Inverted elements can be identified by extending Jacobian metrics
for linear elements [Knupp 2000, 2002] to high-order ones [Engvall
and Evans 2018; Johnen et al. 2013; Peiró et al. 2014; Poya et al. 2016;
Roca et al. 2012]. Various untangling strategies have been proposed,
including geometric smoothing and connectivity modifications [Car-
doze et al. 2004; Dey et al. 1999; Dobrev et al. 2019; Dobrzynski and
El Jannoun 2017; Gargallo-Peiró et al. 2015; Gargallo Peiró et al.
2013; George and Borouchaki 2012; Geuzaine et al. 2015; Lu et al.
2013, 2014; Luo et al. 2008, 2002a; Peiró et al. 2008; Roca et al. 2012;
Ruiz-Gironés et al. 2017, 2016a,b; Shephard et al. 2005; Stees and
Shontz 2017; Steve L. Karman and Stefanski 2016; Toulorge et al.
2013, 2016; Turner 2017; Ziel et al. 2017]. None of these techniques
can guarantee to remove the inverted elements.
An alternative approach is to start from an inversion-free mesh

and slowly deform it [Persson and Peraire 2009; Ruiz-Gironés et al.
2017], explicitly avoiding inversions at the cost of possibly inac-
curate boundary reproductions. These methods cannot, however,
guarantee that the boundary will not self-intersect. Our approach
follows a similar approach but uses a geometric shell to ensure
element validity and prevention of boundary self-intersections.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:3

Curved Optimal Delaunay Triangulation. [Feng et al. 2018] gen-
eralize optimal Delaunay triangulation paradigm to the high-order
setting, through iteratively update vertices and connectivity. Their
algorithm starts with a point cloud sampled from triangle meshes.
However, the success of the method depends on the choice of fi-
nal vertex number and sizing field, where insufficient vertices may
result in broken topology or invalid tetrahedral meshes.

Software Implementation. Despite the large literature on curved
mesh generation, there are very few implementations available.
Nektar [Moxey et al. 2018] is a finite element software with a

meshing component, which can generate high-order elements. We
do not explicitly compare as their documentation (Section 4.5.1.5
Mesh Correction2) states that the algorithm is not fully automatic
and not designed to process robustly large collections of models.
Gmsh [Geuzaine and Remacle 2009] is open-source software that
supports the curved meshing of CADmodels, but it does not support
dense linear meshes as input. Despite the difference in the input
type, we provide a comparison with Gmsh in Section 6.2, as it is the
only method that we could run on a large collection of shapes.

To the best of our knowledge, the commercial software that sup-
port curved meshing (Pointwise [Pointwise 2018; Steve L. Karman
and Stefanski 2016]) are also requiring a CAD model as input.

Animation. Curved tetrahedral meshes have also gained popular-
ity in the context of fast animation. With fewer degrees of freedom
and preserved geometric fidelity, [Mezger et al. 2007] observe the
benefit of quadratic tetrahedra in the pipeline of physically-based
animation. [Suwelack et al. 2013] further investigate the transfer
problem when using curved meshes as a proxy.

2.2 Curved Structured Mesh Generation

The use of a hexahedral mesh as a discretization for a volume allows
to naturally define 𝐶𝑘 splines over the domain, which can be used
as basis functions for finite element methods: this idea has been pi-
oneered by Isogeometric Analysis (IGA), and it is an active research
area. The generation of volumetric, high-order parametrizations
that conform to a given input geometry is an extremely challenging
problem [Peiró et al. 2015; Sorger et al. 2014]. Most of the existing
methods rely on linear hexahedral mesh generation, which is on its
own a really hard problem for which automatic and robust solutions
to generate coarse meshes are still elusive [Gao et al. 2019; Guo et al.
2020; Li et al. 2012; Marschner et al. 2020; Palmer et al. 2020; Zhang
et al. 2020] due to the inherently global nature of the problem. The
current state of the art for IGA meshing is a combination of manual
decomposition of the volume and the semi-automated geometrical
fitting [Coreform 2020; Yu et al. 2020].

In contrast, our approach is automatic, i.e., we can automatically
process thousands of models without anymanual intervention while
providing explicit guarantees on both the validity of the elements
and the maximal geometric error. Its downside is the 𝐶0 continu-
ity of the basis on the elements’ interfaces. However, we believe
that curved tetrahedral meshing is a promising alternative as it
dramatically simplifies both the meshing and fitting of high-order
elements.

2https://doc.nektar.info/userguide/5.0.0/user-guidese17.html

2.3 Boundary Preserving Tetrahedral Meshing

We refer to [Hu et al. 2018] for a detailed overview of linear tetrahe-
dral meshing, and we focus here only on the techniques that target
boundary preserving tetrahedral meshing.

The most popular linear tetrahedral meshing methods are based
on Delaunay refinement [Chew 1993; Ruppert 1995; Shewchuk 1998],
i.e., the insertion of new vertices at the center of the circumscribed
sphere of the worst tetrahedron in terms of radius-to-edge ratio.
This approach is used in the most popular tetrahedral meshing
implementations [Jamin et al. 2015; Si 2015], and, in our experiments,
proved to be consistently successful as long as the boundary is
allowed to be refined. A downside of these approaches is that a
3D Delaunay mesh, unlike the 2D case, might still contain łsliverž
tetrahedra, thus requiring mesh improvement heuristics [Alliez et al.
2005; Cheng et al. 2000; Du and Wang 2003; Tournois et al. 2009].
[Alexa 2019] discusses this issue in detail and provides a different
formulation to avoid it without the use of a postprocessing. [Alexa
2020] introduces an approach that does not allow insertion of Steiner
points, making it not suitable for generic polyhedra domains.

There are many variants of Delaunay-based meshing algorithms,
including Conforming Delaunay tetrahedralization [Cohen-Steiner
et al. 2002; Murphy et al. 2001], constrained Delaunay tetrahedral-

ization [Chew 1989; Shewchuk 2002; Si and Gärtner 2005; Si and
Shewchuk 2014], and Restricted Delaunay tetrahedralization [Bois-
sonnat and Oudot 2005; Cheng et al. 2008; Engwirda 2016].
To the best of our knowledge, all these methods are designed to

allow some modifications of the input surface (either refinement,
resampling, or approximation). One exception is the constrained
Delaunay implementation in TetGen [Si 2015] that allows disabling
any modification to the boundary. However, this comes at the cost
of much lower quality and potential robustness issues, as we show
in Appendix C.
A different tetrahedral meshing approach has been proposed in

[Hu et al. 2018], and its variants [Hu et al. 2019, 2020], where the
problem is relaxed to generate a mesh that is close to the input to
increase robustness. However, these approaches are not directly
usable in our setting, as we require boundary preservation.
Due to these issues, we propose a novel boundary-preserving

tetrahedral meshing algorithm specifically tailored for the shell
mesh generated by our curved meshing algorithm.

2.4 Curved Surface Fitting

There are many algorithms for fitting curved surfaces to dense 3D
triangle meshes. The most popular approaches fit spline patches,
usually on top of a quadrangular grid. Since generating quadrilateral
meshes is a challenging problem for which robust solutions do not
exist yet, we refer to [Bommes et al. 2012] for an overview, and
only review in this section algorithms for unstructured curved mesh
generation, which are more similar to our algorithm. We note that
the focus of our paper is volumetric meshing: while we generate
an intermediate curved surface mesh, this is not the goal of our
algorithm, especially since the generated surface is only𝐶0 on edges.
[Hoppe et al. 1994] fits a smooth surface represented by a point

cloud to a curved triangle mesh based on a subdivision surface
scheme and an interleaving mesh simplification and fitting pipeline

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:4 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

that preserves sharp features. The algorithm does not provide ex-
plicit correspondence to the input: they are defined using distance
closest point, which is not bijective far from the surface.
[Krishnamurthy and Levoy 1996] converts dense irregular poly-

gonmeshes of arbitrary topology into coarse tensor product B-spline
surface patches with accompanying displacement maps. Based on
thework [Lin et al. 2007] that fits triangle surfacemeshes with Bézier
patches, [Zhang et al. 2011] fits triangle surface meshes with high-
order B-spline quadrilateral patches and adaptively subdivide the
patches to reduce the fitting error. These methods produce smooth
surfaces but do not have feature preservation.

Another related topic is the definition of smooth parametric sur-
faces interpolating triangle meshes. We refer to [Zorin 2000] for an
overview of subdivision methods and discuss here the approaches
closer to our contribution.

[Hahmann and Bonneau 2003] proposed to use triangular Bézier
patches to define smooth surfaces over arbitrary triangle meshes
ensuring tangent plane continuity by relaxing the constraint of
the first derivatives at the input vertices. Following Hahmann’s
work, [Yvart et al. 2005b] presents a complete pipeline: perform
QEM simplifications, trace the coarse mesh onto the dense one and
perform parameterization relaxing and smoothing. Then it fits a
hierarchical triangular spline [Yvart et al. 2005a] to the surface. More
recent work [Tong and Kim 2009] approximates the triangulation
of an implicit surface with a 𝐺1 surface. These schemes are usually
designed to interpolate existing meshes rather than simplifying a
dense linear mesh into a coarse curvedmesh and are thus orthogonal
to our contribution.

3 SHELL PRELIMINARIES

We briefly overview [Jiang et al. 2020] as our work uses and extends
it. [Jiang et al. 2020] introduces bijective projection shells (which
we will abbreviate as shells in the rest of the paper), a new geometry
processing tool to perform mesh editing while preserving a close-by
bijective map to the input surface.

Shell. The shell is defined by three trianglulated surface meshes

S = {(𝐵𝑠 ,𝑉𝑠 ,𝑇𝑠), 𝐹𝑠 } sharing the same mesh connectivity 𝐹𝑠 , where
𝐵𝑠 ,𝑉𝑠 , and 𝑇𝑠 are the vertices of the bottom, middle, and top sur-
face respectively. Each triangle in 𝐹𝑠 corresponds to a generalized
prism, defined by connecting the corresponding triangles in the
three surfaces with straight edges, called pillars. Each prism 𝑃 has
three vertices 𝑣𝑖 ∈ 𝑉𝑠 , 𝑡𝑖 ∈ 𝑇𝑠 , 𝑏𝑖 ∈ 𝐵𝑠 , 𝑖 = 1, 2, 3 on the middle, top,
and bottom surface, respectively. Each pillar decomposes into a top

ℎ𝑇𝑖 = 𝑡𝑖 − 𝑣𝑖 , 𝑖 = 1, 2, 3 and bottom ℎ𝐵𝑖 = 𝑏𝑖 − 𝑣𝑖 , 𝑖 = 1, 2, 3 slab, and
each slab can be canonically decomposed into 3 tetrahedra, and
each tetrahedron contains a constant vector field aligned with the
pillars it is connected with [Jiang et al. 2020, Figure 4]. The vector
field is used to define a projection operator Π within the shell.

Projection Operator. For every prism 𝑃 , the projection operator
Π𝑃 is defined as the tracing of the piecewise constant vector field
𝑉 inside the decomposed prism, by assigning to each tetrahedron

𝑇𝑃
𝑗 , 𝑗 = 1, . . . , 6, the constant vector field defined by the only edge

of 𝑇𝑃
𝑗 which is one of the oriented pillars ℎ𝑇𝑖 , ℎ

𝐵
𝑖 , 𝑖 = 1, 2, 3 ([Jiang

Fig. 2. Input triangle mesh M and points P. Output curved tetrahedral

mesh T𝑘 and bijective map 𝜙𝑘 .

et al. 2020, Figure 4]). That is, ∀𝑝 ∈ 𝑇𝑃
𝑗

Π𝑃 (𝑝) = ℎ𝑘𝑖 ,

where 𝑖 is the index of the vertex corresponding to the pillar edge

of𝑇𝑃
𝑗 , and 𝑘 is either the top or bottom surface. The shell projection

operator Π is defined as the operator whose restriction to 𝑃 , Π |𝑃
is Π𝑃 , and it defines a bijective map between every pair of specific
triangle meshes contained in the shell, called sections.

Section. A triangle mesh is a section if it is contained within the
shell, and if the dot product of the normal of each of its triangles
with the vector field in each of the overlapping tetrahedra is positive.
The projection operator Π defines a bijective map between any pair
of sections if the shell is valid.

Shell Validity. [Jiang et al. 2020] defines a shell S to be valid with
respect to an input meshM if it satisfies two conditions:

(1) The volumes of all possible tetrahedral decomposition of a
prism (24 of them) are positive.

(2) M is a section for all possible tetrahedral decompositions.
That is, the input mesh is contained within the shell, and the
dot product between the mesh’s normals and the shell’s pillar
is positive.

Singularity. Singular vertices are a special geometric configura-
tion, where the neighboring triangles of a specific vertex admit a
conflicting set of normals. [Jiang et al. 2020] extends the shell con-
struction to allow such cases. Around the (isolated) singular vertices,
the prisms are pinched to become generalized pyramids, composed
of two tetrahedra instead of three.

The algorithm to build the shell creates an initial valid extrusion,
potentially thin and dense, and then iteratively uses the shell local
operations (i.e., vertex smoothing, edge collapse, edge split, and
edge flip) [Jiang et al. 2020, Section 3.4] to improve its quality while
preserving the validity.

3.1 Variation from the Original Algorithm

To extend the shell formulation in [Jiang et al. 2020] to accommodate
for feature preservation (Section 5), we modify the definition of a
valid section [Jiang et al. 2020, Definition 3.1] by relaxing several
zero-measure intersections between a triangle and a prism in the
discrete case. That is, we do not consider the prism to be intersecting
a triangle if they share only one vertex of the triangle; we also ignore
when the prism and the triangle intersect only on one feature edge
if they are on the opposite sides of the edge. The bijectivity and
validity condition of the shell projection trivially holds.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:5

k = 1 k = 2 k = 2

g

k = 3

Fig. 3. Lagrange nodes on the reference element 𝜏 for different 𝑘 = 1, 2, 3

and example of geometric mapping 𝑔.

0 points. 200 points. 500 points. 1000 points.

Fig. 4. Effect of the choice of the set P on the output.

4 CURVED TETRAHEDRAL MESH GENERATION

Input. The input of our algorithm is a collection of oriented man-
ifold, watertight, self-intersection-free triangle mesh M = (𝑉 , 𝐹),
and a set of points 𝑝𝑖 ∈ P (possibly empty) on the surface ofM (Fig-
ure 2, left) where the distance bound 𝜀 is prescribed. The collection
M must be consistently oriented such that it is the boundary of an
oriented 3-manifold. A set of edges can also be optionally provided
as annotated features (Section 5).

Output. The output of our algorithm is a tetrahedral mesh T𝑘
=

(𝑉𝑘 ,𝑇𝑘) of order 𝑘 . Formally, each tetrahedron 𝜏 ∈ 𝑇𝑘 is defined
through the geometric map from the reference tetrahedron 𝜏 ,

𝑔𝜏 =

𝑛∑︁

𝑗=1

𝑐𝜏𝑗 𝑙 𝑗 (𝑢, 𝑣, 𝑤̂), (1)

where 𝑢, 𝑣, 𝑤̂ are the local coordinates of a point in 𝜏 , 𝑐𝜏𝑗 are the

control points for a tetrahedron 𝜏 , and 𝑙 𝑗 are polynomial bases

(typically Lagrange bases). For two tetrahedra 𝜏1 and 𝜏2 of𝑇
𝑘 sharing

a face 𝐹 , the restriction of the maps 𝑔𝜏𝑖 |𝐹 , 𝑖 = 1, 2 coincide. Figure 3
shows the position of the control points 𝑐 𝑗 on the reference element
for 𝑘 = 1, 2, 3 for the Lagrange bases. We call the tetrahedralization

of a curved mesh T𝑘 positive if the Jacobian determinant of 𝑔𝜏

det(𝐽𝑔𝜏) is positive everywhere on every 𝜏 . In particular, for 𝑘 = 1,
since 𝑔 is affine, 𝐽𝑔𝜏 is constant and the positivity reduces to the
positive orientation of the vertices [Shewchuk 1997].

Note that, while bijectivity of the geometric map 𝑔𝜏 implies pos-
itivity, the reverse is not true. Therefore, our algorithm not only

checks for det(𝐽𝑔𝜏) > 0, but also ensures that the boundary 𝜕T𝑘

does not intersect; we show in Appendix A that these two conditions
guarantee the bijectivity of 𝑔𝜏 . Furthermore, our algorithm ensures

that the distance from any point in P to 𝜕T𝑘 (the surface of T𝑘) is
smaller than a user-controlled parameter 𝜀.
We are not assuming anything on P: a sparse set of points will

generate a mesh that is less faithful to the input geometry, while

Fig. 5. Our algorithm maintains free of intersection even on challenging

models, without the need of setting an adaptive threshold.

a dense sampling computed, for instance with Poisson disk sam-
pling [Bowers et al. 2010], will prevent the surface from deviating
too much (Figure 4).
Our algorithm guarantees that the tetrahedralization is positive

and that 𝜕T𝑘 does not have self-intersections. It also aims at coarsen-
ingT𝑘 as much as possible while striving to obtain a good geometric

quality. To reliable fit 𝜕T𝑘 to M, we require a bijective map

𝜙𝑘 : M → 𝜕T𝑘

from the input M to the surface of T𝑘 (Figure 2 right). Our al-
gorithm also generates this map and exposes it as an output for
additional uses, such as attribute transfer. Note that, since we build
upon the shell construction in [Jiang et al. 2020], we also guarantee

𝜕T𝑘 is homeomorphic and topology-preserving with respect to M

(Figure 5).

To simplify the explanation, we use the bar to represent

quantities on the straight linear shell, the tilde ˜ for the

curved shell, and hat ˆ for the reference elements (e.g., 𝑃

is the prism on the straight coarse shell, 𝑃 is the curved

prism, and 𝑃 is the prism on the reference configuration).

Definition 4.1. We call a curved mesh T𝑘 and its boundary map-

ping 𝜙𝑘 to M valid if it satisfies the following conditions:

(1) 𝜙𝑘 is bijective;

(2) the distance between any 𝑝 ∈ P and 𝜕T𝑘 is less than 𝜀;

(3) T𝑘 is positive (i.e., each geometric map 𝑔𝜏 has a positive
Jacobian determinant).

Overview. Our algorithm starts by creating a valid mesh (i.e.,
it satisfies 4.1), then it performs local operations (Appendix B) to

improve T𝑘 (i.e., coarsen it and improve its quality) while ensuring
all the conditions remain valid with respect to local modification.
To achieve this goal, our algorithm uses two stages: (1) curved shell
generation and (2) tetrahedral mesh generation and optimization.

Stage 1: Curved Shell Construction. In the first stage (Section 4.1)
we extend the shell construction of [Jiang et al. 2020] by combining

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:6 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Fig. 6. Overview of curved mesh generation pipeline.

the shell projection Π with a high-order volumetric mapping

𝜓𝑘 : S → S̃.

We start form the valid shell S constructed from the input mesh

M (i.e.,M is a section S). We call S a projection shell and call the

prismatic projection Π. Together with the construction of S, we

build an order 𝑘 curved prismatic shell S̃ that defines a curved layer

around M and a bijective map𝜓𝑘 between S̃ and S (Figure 6, first

three figures) that ensures that the distance betweenM and 𝜕T𝑘 is

smaller than 𝜀 (Section 4.2). That is, 𝜙𝑘 (𝑝) < 𝜀 for any 𝑝 ∈ P. (Note

that we do not requireM to be a section of S̃.)
To facilitate the volumetric meshing in the next stage (Section 4.3),

we restrict the top and bottom surface of S̃ to be linear (indepen-

dently from the order of𝜓𝑘). The final output of this first stage is a

high-order volumetric shell, a bijective mapping 𝜙𝑘 = 𝜓𝑘 ◦Π, and a

positive tetrahedralization of S̃ with flat boundary. In other words,

the tetrahedralization of S̃ satisfies 4.1.

Stage 2: Tetrahedral Mesh Generation. In the second stage (Sec-
tion 4.3) we use boundary-conforming tetrahedralization to connect

the top and bottom surface of S̃ with a background tetrahedral

mesh, thus generating a positive order 𝑘 tetrahedralization T𝑘 of a
bounding box around the input, which we can further optimize with
local operations to improve its quality (Figure 6, last two figures).

To ensure that our first condition is satisfied, we define the map-

ping 𝜙𝑘 as a composition of several mappings, which we ensure are
bijective. For the second condition, we initialize our construction

with 𝜙𝑘 as the identity, and thus, the distance at the sample points is
zero. After every operation, we recompute the distance and łundož
the operation if the distance becomes larger than 𝜀. To ensure that
the last condition holds, we rely on checking if all prisms (linear and
curved) have positive geometric mapping, which ensures that they
can be tetrahedralized with a positive tetrahedralization. Ensuring
the condition while coarsening M allows us to generate a coarse

curved tetrahedral mesh T𝑘 and the bijective map 𝜙𝑘 to the input
mesh M.

4.1 High-order Shells

To simplify the explanation, we first focus on the case where 𝜀 =

∞, that is, we aim at generating an as-coarse-as-possible curved
mesh. Note that, the trivial solution (i.e., a single tetrahedron) is

not necessary a valid T𝑘 since it would be impossible to build the

bijective mapping 𝜙𝑘 .

The output of [Jiang et al. 2020] is a coarse shellSwith a piecewise

linear middle surface. To curve it, we construct a shell S̃ and the
bijective map𝜓𝑘 while constructing S. The shell S̃ is constructed

warping every prism 𝑃 of S̃ with 𝜓𝑘 . Since we define 𝜙𝑘 as 𝜓𝑘 ◦

Π, and Π satisfies the first two conditions 4.1, we only need to

ensure that 𝜓𝑘 is bijective, for 𝜙𝑘 to be bijective. We define the

mapping𝜓𝑘
= 𝜔𝑘 ◦ (𝜔)−1 through two parametrization maps from

the reference prism 𝑃 :

𝜔 : 𝑃 → 𝑃, 𝜔𝑘 : 𝑃 → 𝑃 .

Both mappings 𝜔 and 𝜔𝑘 are defined as the tensor product be-

tween the base triangular mapping (high-order for 𝜔𝑘) and pillar’s

barycentric heights. For a prism 𝑃 , piecewise defined for top slab
and bottom slab,

𝜔𝑘 (𝑢, 𝑣, ℎ̂) =

𝑛∑︁

𝑗=1

𝑐 𝑗 𝑙
𝑘
𝑗 (𝑢, 𝑣) (|2ℎ̂ − 1| + 1)

+

3∑︁

𝑗=1

𝑏 𝑗 𝑙
1
𝑗 (𝑢, 𝑣)max(1 − 2ℎ̂, 0)

+

3∑︁

𝑗=1

𝑡 𝑗 𝑙
1
𝑗 (𝑢, 𝑣)max(2ℎ̂ − 1, 0)

where 𝑢, 𝑣, ℎ̂ are the barycentric coordinates in the reference prism,
𝑐 𝑗 the control points of the middle triangle, 𝑡 𝑗 and 𝑏 𝑗 the top/bottom

triangles’ vertices, and 𝑙𝑘𝑗 is an order 𝑘 triangle polynomial basis.

Note that for the top/bottom part we use only 𝑡 𝑗 and 𝑏 𝑗 as they

remain linear. By ensuring that𝜓𝑘 is bijective, we guarantee that

any curved tetrahedralization of a prism 𝑃 will be a valid tetrahe-

dralization of S̃.
We note that to decouple the following tetrahedral mesh genera-

tion and the curved shell generation, we ensure that 𝜔𝑘 maps the

top and bottom face of the curved prism 𝑃 to a linear triangle.
After each local operation, we generate samples 𝑠𝑖 , 𝑖 = 1, . . . ,𝑚

on the parametric base of the prism 𝑃 and use Π−1 ◦ 𝜔 to map 𝑠𝑖
back toM and 𝜔𝑘 to map them to 𝜕T𝑘 . Using the mapped points
we solve

min
𝑐𝑖

𝑚∑︁

𝑖=1

∥(Π−1 ◦ 𝜔) (𝑠𝑖) − 𝜔 [𝑐𝑖]
𝑘 (𝑠𝑖)∥

2
2,

where 𝑐𝑖 are the control points of 𝜔𝑘 . As 𝜔 [𝑐𝑖]
𝑘 (𝑠𝑖) is a linear

function of 𝑐𝑖 . This is a quadratic optimization problem. The control

points of the top and bottom surface are fixed to ensure that 𝜔𝑘

maintains the two surfaces as linear. We validate the bijectivity of

𝜔𝑘 by checking positivity of the determinant [Johnen et al. 2013]
after splitting into tetrahedral elements [Moxey et al. 2015] and that
the top and bottom surfaces are intersection free. The intersection
is simplified in our case since fast and exact algorithms[Guigue and
Devillers 2003] are available since the top and bottom surfaces stay
linear.

4.2 Distance Bound

In the previous section, we explained how to generate a curved shell

S̃ that satisfies 4.1. To ensure that the middle surface of S̃ has a
controlled distance from the points in P, we interleave a distance

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:7

Input 𝜀 = 5 × 10−3 𝜀 = 10−3 𝜀 = 5 × 10−4

Fig. 7. A model simplified with different distances.

(1) (5)(4)(3)(2)

Fig. 8. Two dimensional overview of the five steps of our boundary preserv-

ing tetrahedral meshing algorithm.

check in the construction of 𝜔𝑘 after each local operation. Formally,

after every local operation we use the mapping 𝜙𝑘 to map every

point 𝑝𝑖 ∈ P to 𝑝𝑖 = 𝜙𝑘 (𝑝𝑖) a point on the coarse curved middle

surface of S̃ and, if ∥𝑝𝑖 −𝑝𝑖 ∥ ≥ 𝜀 we reject the operation. The initial

shell is trivially a valid initialization as 𝜙𝑘 is identity and thus, the
distance is zero. Note that, 𝑝𝑖 is not necessarily the closest point to

𝑝𝑖 on 𝜕T𝑘 , thus ∥𝑝𝑖 −𝑝𝑖 ∥ is an upper bound on the actual pointwise
distance. Figure 7 shows the effect of the distance bound on the
surface; a small distance will lead to a denser mesh with more details,
while a large one will allow for more coarsening.

4.3 Tetrahedral Meshing

The outcome of the previous stage is a curved tetrahedralization of

S̃ that closely approximates M with linear (łflatž) boundaries. We
now consider the problem of filling its interior (and optionally its
exterior) with a tetrahedral mesh, a problem known as conforming

boundary preserving tetrahedralization.
Several solution exists for this problem (Section 2.3) and the most

common implementation is TetGen [Si 2015]. Most algorithms re-
fine the boundary, which allows deriving bounds on the quality of
the tetrahedral mesh. However, in our setting, this is problematic,
as any change will have to be propagated to the curved shell. To
avoid coupling the volumetric meshing problem with the curved
shell coarsening, while technically possible it is very challenging
to implement robustly, we opt for using a tetrahedral meshing al-
gorithm that preserves the boundary exactly. Not many algorithms
support this additional constraint, the only one with a public im-
plementation is the widely used TetGen algorithm. However, we
discovered that, when this option is used, it suffers from robustness
issues, which we detail in Appendix C. To solve this problem in
our specific setting, we propose in the following five step algorithm
(Figure 8) taking advantage of the availability of a shell, based on
the TetWild [Hu et al. 2018] algorithm.

Step 1. To generate a boundary preserving linear mesh, we first
exploit the shell to extrude the bottom surface 𝐵 (and top𝑇) further
by a positive (potentially small) constant 𝛿 such that the newly
extruded bottom surface 𝐵𝑒 (and top𝑇𝑒) does not self-intersect. The

space between 𝐵 and 𝐵𝑒 (and between 𝑇 and 𝑇𝑒) consists of prisms
divided into positive tetrahedra.

Step 2. Then we insert 𝐵𝑒 and 𝑇𝑒 in a background mesh B gener-
ated following TetWild algorithm ([Hu et al. 2018, Section 3.1]), that
is, we use the triangle of 𝐵𝑒 and 𝑇𝑒 as the input triangle meshes for
the first stage of the TetWild algorithm, which inserts them into a
background mesh B, so that each input triangle is a union of faces
of refinement of B.
We interrupt the algorithm after the binary space partitioning

(BSP) subdivision (and before the TetWild mesh optimization [Hu
et al. 2018, Section 3.2]) to obtain a positive tetrahedral mesh in
rational coordinates with a surface with the same geometry of 𝐵𝑒
and 𝑇𝑒 , but possibly different connectivity as TetWild might refine
it during the BSP stage.

Step 3. Our original goal was to compute a mesh conforming
to 𝐵 and 𝑇 , but we could not do it directly with TetWild as they
might be refined. We now replace the mesh generated by TetWild
between 𝐵𝑒 and 𝑇𝑒 with another one conforming to 𝐵 and 𝑇 . To
achieve this, we delete all tetrahedra between 𝐵𝑒 and 𝑇𝑒 , and insert
the surfaces 𝐵 and𝑇 , which will łfloatž in the empty space between
𝐵𝑒 and 𝑇𝑒 . We now want to fill the space between 𝐵 and 𝐵𝑒 with
positive tetrahedra conforming to the surfaces 𝐵 and 𝑇 .

Step 4. Every prism 𝑃 , made by a bottom triangle 𝐵𝑇 and a bottom

extruded triangle 𝐵𝑇𝑒 and its corresponding bottom extruded refined

triangle 𝐵′𝑇
𝑒 ∈ B, can be tetrahedralized without refining 𝐵: That is,

we first decompose the prism 𝐵𝑇 , 𝐵𝑇𝑒 in tetrahedra (always possible

by construction), then refine every tetrahedron touching 𝐵′𝑇
𝑒 . By

repeating the same operation on the space between 𝑇 and 𝑇𝑒 we
will have a positive linear boundary conforming tetrahedral mesh
of 𝐵 and 𝑇 .

Step 5. The tetrahedra generated in the previous step will have
rational coordinates and will also likely have low quality. To round
the coordinates to floating-point representation and to improve
their quality, we use the mesh optimization stage of TetWild, with
the minor variant of keeping the vertices and edges on 𝐵 and 𝑇

frozen. Note that the vertices in 𝐵 and 𝑇 are already roundable to
floating-point representation, as they were part of the input.

Curved Tetrahedral Mesh Optimization. After generating the con-
forming linear tetrahedral mesh. we stitch it with the tetrahedralized

S̃ to obtain a valid output mesh T𝑘 (Definition 4.1). However, its

quality might be low, in particular in the curved region, as S̃ can

be thin with large triangles. To improve the quality of T𝑘 we adapt
the local operation of a linear pipeline to our curved settings. We
propose three local operations: smoothing, collapse, and flip. Since

the surface of T𝑘 is already coarse and of high quality, as part of

the definition of 𝜙𝑘 , we prevent any local operation from changing
it. We validate every local operation (i.e., check the positivity of

T𝑘) using the convex-hull property [Johnen et al. 2013] and reject
the operation if it is violated. Our local operations are prototypical,
and we leave as future work a more comprehensive study of curved
mesh optimization.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:8 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

φk

M = (V, F)

vk
i

vi

T
k = (V k, T k)

Fig. 9. Input triangle mesh with features and output curved mesh with

feature preserved equipped with bijective map 𝜙𝑘 .

Fig. 10. A sphere with different marked features (green). As we increase the

number of features, our algorithm will preserve them all but the quality of

the surface suffers.

Smoothing. As for the linear case, we compute the total energy
of a vertex 𝑣 by summing up the energies of the tetrahedra adjacent
to it, which we compute on 56 uniformly sampled points. We then
perform gradient descent for all high-order nodes in the star of
𝑣 [Arnold et al. 2000; Farrell et al. 2019; Vanka 1986]. That is, we
collect all edge nodes, face nodes, and cell nodes of the one-ring
neighborhood of 𝑣 . Differently from the linear case, the optimiza-
tion is expensive since the nodes neighborhood typically contains
hundreds of nodes.

Collapse and Swap. The collapse and swap are the same as in a
linear mesh, and we place the high-order nodes of the newly created
face on the linear flat face.

5 FEATURE PRESERVING CURVED SHELL

Input. We enhance the input to additionally include a set of fea-
ture edges 𝑓𝑖 ∈ F and feature vertices 𝑣𝑖 ∈ V such that no triangle
in 𝐹 has more than one feature edge (Figure 9 left). (This property
can be satisfied on any generic mesh by performing 1-to-3 refine-
ment on every triangle with more than one feature edge).

Output. Since the input has features, the output curved mesh

T𝑘 will also have curved feature edges 𝑓 𝑘𝑖 ∈ T𝑘 , feature vertices

𝑣𝑘𝑖 ∈ V𝑘 , and the bijective map 𝜙𝑘 preserves features by bijectively

mapping F to F 𝑘 andV toV𝑘 . Our method makes no assumption
on the topology and łqualityž of the features. If the features are
reasonable, it will produce a high-quality mesh, while if the features
are close, our algorithm will preserve them and result in smaller
triangles on the surface. (Figure 10).
The previous construction generates valid curved tetrahedral

meshes and the bijective map 𝜙𝑘 based on the construction of [Jiang
et al. 2020]. However, the shell construction cannot coarsen features:
the authors suggest freezing them. For instance, when performing
an edge collapse on the feature, the new coarse edge (orange) will
not map to the feature (green) anymore (Figure 11). To ensure feature
preservation we extend Definition 4.1.

Fig. 11. Input feature (green) is not preserved after traditional shell simplifi-

cation.

Fig. 12. Overview of the construction of the first stage of our pipeline.

Input mesh Snapped mesh Curved mesh

Fig. 13. The input mesh has feature edges snapped, to create a valid shell,

as well as the curved mesh.

Definition 5.1. We call a curved mesh T𝑘 and its mapping 𝜙𝑘

fromM valid and feature preserving if they are valid (Definition 4.1)

and 𝜙𝑘 bijectively maps F to F 𝑘 andV toV𝑘

As for the non-feature preserving case, we always aim tomaintain

a valid feature preserving T𝑘 .
To account for features, we propose to change the prismatic map

Π, that is, we only need to change the first stage. This is done by
snapping the input features (Section 5.1). That is, we modify M to
łstraightenž the feature to ensure that the coarse prismatic projection
preserves them and construct a mapping 𝛽 between the straight

mesh M andM (Figure 13).

The outcome is a valid shell S with respect to the straight surface

M (i.e., M is a section S) that preserve features, the prismatic
projection Π, and the bijective map 𝛽 that can be directly used in

the curved pipeline (Section 4). That is, the mapping 𝜙𝑘 will be

defined as 𝜙𝑘 = 𝜓𝑘 ◦ Π ◦ 𝛽 .
As for the non-preserving feature pipeline, we ensure that our

conditions are always met, starting from a trivial input and rejecting
operations violating them. Our goal is to modify the input mesh M

and create M by moving its vertices. In such a way, the mapping

𝛽 is simply barycentric. To guarantee bijectivity of 𝜙𝑘 we need to
ensure that all mappings composing it are bijective, in particular 𝛽 .

To ensure that 𝛽 is bijective, it is enough thatM is self-intersection

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:9

Fig. 14. The input edges feature (green) are grouped together in poly-lines

and categorized in graph (left) and loops (right). For every graph, we add

the nodes (blue) to the set of feature vertices.

Fig. 15. Illustration of smoothing on a feature.

free (guaranteed by the shell construction) and that all its triangles
have positive areas. By straightening the features ofM we ensure

that the edges of the prism will map to the feature. Thus, 𝜙𝑘 will be
feature preserving.

Feature Grouping. The first step of our pipeline consists of group-
ing successive edges 𝑓𝑖 ∈ F into poly-lines and identifying two
categories: loops and graphs (Figure 14). For every graph, we iden-
tify its nodes and add them as feature vertices. In other words, we
add toV all the end-points and junction of poly-lines.

5.1 Feature straightening.

To allow feature coarsening, we propose to straighten M to ensure
that all features are collinear. In other words, we build, together

with the shell S, a mesh M = (𝑉 , 𝐹) (i.e., a mesh with the same

connectivity 𝐹 of M) and features F such that every triangle of

M has a positive area, M is a section of S, and the features in

F are collinear. In such a way, the mapping 𝛽 is trivially defined

as piecewise affine (M and M share the same connectivity) and

is locally injective as long as all the triangles on M have positive
areas. Note that the bijectivity of 𝛽 follows from the fact that the

shell prevents self-intersections ofM.

To construct a mesh M with straight features, we start with

M = M (in the beginning, all prisms of S cover at most one fea-

ture edge). Let 𝑓
1
= {𝑓

1
𝑖 }, 𝑖 = 1, . . . , 𝑛 and 𝑓

2
= {𝑓

2
𝑖 }, 𝑖 = 1, . . . , 𝑘

two chains of feature edge belonging to the same feature 𝑓 ∈ F .

For every local operation acting on a feature 𝑓 1 and 𝑓 2 we first

construct the new feature 𝑓
𝑛

= {𝑓
𝑛
𝑖 }, 𝑖 = 1, . . . , 𝑘 such that the

segments (𝑓
𝑛
𝑖 , 𝑓

𝑛
𝑖+1) are collinear and their length is proportional

to (𝑓𝑖 , 𝑓𝑖+1) (the feature vertices in the input mesh M), that this we

use arc-length cross parameterization from 𝑓 to 𝑓
𝑛
(Figure 15 show

an example of smoothing a feature). Moving vertices of 𝑓
𝑛
will also

move the vertices of M thus, straighten the mesh as the local oper-

ations proceed. After the construction of 𝑓
𝑛
we check if the newly

constructedM is still a section of S and if the triangles modified by
the straightening have areas larger than 𝜖 . In practice, we choose

Input 𝑘 = 3 𝑘 = 4 𝑘 = 5

Fig. 16. Curved meshes of different order. The additional degrees of freedom

allow for more coarsening.

𝜖 = 10−10: a smaller value would lead to numerical instabilities and
a larger one to less straightening.
Note that not all features can be straightened: for instance, if a

triangle has three feature vertices (the snapped feature will result in
a degenerate triangle, thus, 𝛽 will not be bijective) or if the snapping

flips the normal (M will no longer be a section of S). Both are
extremely rare cases in our dataset.

6 RESULTS

Our algorithm is implemented in C++, using Eigen [Guennebaud
et al. 2010] for the linear algebra routines, CGAL [The CGAL Project
2020] and Geogram [Lévy 2015] for predicates and geometric kernel,
libigl [Jacobson et al. 2016] for basic geometry processing routines,
and meshio [Schlömer 2020] for converting across the different
formats. We run our experiments on cluster nodes with Intel Xeon
Platinum 8268 CPU 2.90GHz. The reference implementation and the
data used to generate the results will be released as an open-source
project.
To simplify the exposition, all meshes presented in this section

are quartic meshes (𝑘 = 4). Our method is flexible and, for lower 𝑘 ,
it will generate denser meshes (Figure 16).

6.1 Large Scale Validation.

We tested the robustness and quality of the result produced by
our algorithm on three datasets: (1) Thingi10k dataset [Zhou and
Jacobson 2016] containing 3574 models without features; (2) the first
chunk of the ABC dataset [Koch et al. 2019] with 5328 models with
features marked from the STEP file and (3) the CAD dataset [Gao
et al. 2019] containing 106 models with semi-manual features.

Note that the original datasets containmoremodels since, for each
of them,we selectedmeshes satisfying our assumptions: intersection-
free (using the same strategy as in [Jiang et al. 2020] with a distance
tolerance of 10−6 and dihedral angle of 2◦) oriented, manifold trian-
gle meshes, smallest triangle area larger than 10−8.

Our method has only the geometry accuracy parameter 𝜀, which
we set to 1% of the longest bounding box edge, and the point set P
which we set as the input vertices𝑉 . With this basic setup, our algo-
rithm aims to produce the coarsest possible mesh while preserving
features and striving to generate high-quality meshes. Our algo-
rithm successfully generates curved meshes for 3527 for Thingi10k,

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:10 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Thingi10k ABC CAD

E
d
g
e
le
n
g
th

%

2 5 10 2 5100 2 510002 510k 2 5100k2

1%

2%

5%

10%

20%

5 1000 2 5 10k 2 5 100k 2

0.5%

1%

2%

5%

10%

20%

5 10 2 5 100 2 510002 5 10k 2 5100k

5%

10%

20%

Input Vertices

Fig. 17. Relative average edge length (with respect to longest bounding box

edge of each model) of our curved meshes versus number of input vertices.

Input fTetWild Ours

Fig. 18. Within the same distance bound (10−3 of the longest bounding box

side), our method generates a coarser high order mesh, compared to the

linear counterpart generated by fTetWild.

Thingi10k ABC CAD

V
o
lu
m
e
en
er
g
y

2 5 10 2 5 100 2 5 1000 2 5

1

1e2

1e4

1e6

1e8

2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100

1

1e2

1e4

1e6

1e8

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

100

Surface Energy

Fig. 19. Surface and volume average MIPS energy of the output of our

method (the CAD volume energy is truncated at 100, excluding 6 models).

5268 for the ABC, and all for CAD dataset within 12 hours; by allow-
ing more time, all models but 3 can be successfully processed. The
3 failures are due to models with a small one-tetrahedra component
that łmovež inside the shell as it grows. This is an implementation
choice: we use collision detection instead of continuous collision
detection for efficiency reasons.
Our method successfully generates coarse meshes whose aver-

age edge length is 10% of the model size while preserving features
(Figure 17). Figure 18 shows how our method successfully captures
the features and coarsen the surface with curved elements, while
many linear elements (generated with fTetWild [Hu et al. 2020])
are required to closely approximate the surface.

The output of our algorithm can be directly used in the simulation
(Section 6.4) since we guarantee that the geometric mapping𝑔 is pos-
itive. To ensure good conditioning and performance of the numerical
solver, we measure the MIPS energy [Fu et al. 2015; Hormann and
Greiner 2000] of our output meshes (Figure 19).

Thingi10k ABC CAD

T
im

e(
s)

100 2 5 1000 2 5 10k 2 5 100k 2

2

5

100

2

5

1000

2

5

10k

2

5

5 1000 2 5 10k 2 5 100k 2

5

100

2

5

1000

2

5

10k

2

5

100 2 5 1000 2 5 10k 2 5 100k

5

100

2

5

1000

2

5

10k

2

5

Input Vertices

Fig. 20. Timing of our algorithm versus the input number of vertices.

Input
CODT with

uniform

(46249 elements)

CODT with LFS

(38159 elements)

Our

(2037 elements)

Fig. 21. Compared with Curved ODT, our method does not rely on setting

vertex number and sizing field and can generate coarse valid results.

Figure 20 shows the running time of our method with respect to
the number of vertices. The running time of our algorithm is linear
with respect to the number of input vertices; it takes around an hour
for a model with around 10 thousand vertices.

6.2 Comparisons

Curved ODT. [Feng et al. 2018] is, to the best of our knowledge, the
only existing algorithm designed to convert dense triangle meshes
into coarse, curved approximations. The input and output are the
same as in our algorithm. However, their method does not provide a
bijective map between the input and output, does not guarantee to
preserve features, has no bound on the distance to the input surface,
and does not guarantee that the elements are positive. While our
algorithm has been designed to process large collections of data
automatically, exposing only a few intuitive options to control the
faithfulness to the input, the reference implementation of the curved
ODT method provided to us by the authors requires the user to
choose multiple per-model parameters to achieve good results, and
the parameters have a strong effect on the quality and validity of the
result (as shown in [Feng et al. 2018, Figure 16]). We thus restricted
our comparison to only a small selection of models (see additional
material) that the authors of [Feng et al. 2018] processed for us.

From our discussions with the authors, we observed that curved
ODT generates a valid output when we provide (1) a sufficiently
large number of vertices and (2) a good local feature size sizing field
(LFS) [Alliez et al. 2005] to efficiently spend the vertex budget in the
regions with more geometrical details. Figure 21 shows an example
of a model for which [Feng et al. 2018] fails to converge when using
a uniform sizing field, while it succeeds when the sizing field is
used.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:11

Gmsh Fixed Surface Gmsh Free Surface Ours

Fig. 22. Example of a BRep meshed with Gmsh where the optimization fails

to untangle elements when fixing the surface. By allowing the surface to be

modified, the mesh becomes łwigglyž. Our method successfully generates a

positive curved mesh.

Coarse Gmsh Dense Gmsh Ours

Fig. 23. Example of a STEP file meshed with Gmsh where, due to the low

mesh density, the tetrahedralization is not positive. Gmsh manages to

generate a positive mesh by using a denser initial tessellation. Since our

method starts from a dense mesh and coarsen , it can successfully resolve

the geometry.

In contrast, our algorithm can be run automatically on a large
collection of geometrical models, it is guaranteed to have positive
Jacobian (up to the use of floating-point predicates, Section 7), it
preserves features, it automatically controls the density of the output
depending on the desired user-provided distance threshold, and it
provides a bijective map between the input mesh the boundary of
the curved surface. For the model in Figure 21, our result contains
2037 elements, 18 times less than the curved ODT algorithm.

Gmsh. [Geuzaine and Remacle 2009] can only generate curved
meshes from boundary representation (BRep), that is, the input is not
exactly the same as ours. To compare both algorithms, we start from
the BRep, and we generate a dense linear mesh that we use for our
input. The Gmsh algorithm first constructs a curved mesh by fitting
the high-order nodes to the BRep (possibly inverting elements) then
performs mesh optimization to untangle them [Remacle et al. 2013];
thus has no guarantee to generate positive meshes while preserving
the surface (Figure 22, left). Additionally, Gmsh algorithm cannot
control the distance from the input when the untangling allows the
surface to move, and thus the surface is łwigglyž and denser than
our result (Figure 22, center). We also observed that if the initial
surface mesh is not dense enough, Gmsh closes holes and cannot
generate a valid tetrahedral mesh (Figure 23).

6.3 Flexibility

Since the input to our method is a triangle mesh, our method natu-
rally supports a variety of input that can be easily converted into
triangle meshes. For instance,M can be generated from marching
an implicit surface or Catmull-Clark subdivision of a hand-made

quad mesh (Figure 24). The bijective map 𝜙𝑘 is used, for instance,

Implicit microstructure subdivision surface

Fig. 24. Our algorithm processes triangle meshes that can be extracted

from different formats: an implicit microstructure geometry from [Tozoni

et al. 2020] or a subdivision surface from [Crane 2013]. The bijective map

preserved on the surface allows taking advantage of the plethora of surface

algorithms, including polyhedral geodesic computation [Mitchell et al. 1987]

and texture mapping.

Thingi10k ABC CAD

𝐿
2
er
ro
r

6 7 89

0.01
2 3 4 5 6 7 89

0.1
2 3 4

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

3 4 5 6 789

0.01
2 3 4 5 6 789

0.1
2 3 4

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

3 4 5 6 7 8 9

0.1
2 3

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

Average Edge Length

Fig. 25. 𝐿2 error of the solution of the Poisson equation with respect to

model size on our three datasets.

to transfer the geodesic distance field or color information from the
input triangle mesh to the coarse curved mesh.

6.4 Applications

Large Scale Poisson. To show that our meshes are ready for simu-
lation, we solve the Dirichlet problem for the Poisson equation

Δ𝑢 = 𝑓 , 𝑢 |𝜕Ω = 𝑔,

where Ω is the domain (i.e., the mesh), 𝑓 is the right-hand side, and
𝑔 are the Dirichlet boundary conditions. To simplify the setup and
the error measurements, we use fabricated solutions [Salari and
Knupp 2000]. That is, we choose the function 𝑢exact to be

𝑢exact (𝑥1, 𝑥2, 𝑥3) =

3/4𝑒−((9𝑥1−2)
2+(9𝑥2−2)

2+(9𝑥3−2)
2)/4 + 3/4𝑒−(9𝑥1+1)

2/49−(9𝑥2+1)/10−(9𝑥3+1)/10

+ 1/2𝑒−((9𝑥1−7)
2+(9𝑥2−3)

2+(9𝑥3−5)
2)/4 − 1/5𝑒−(9𝑥1−4)

2−(9𝑥2−7)
2−(9𝑥3−5)

2
,

then we plug it in the equation to obtain 𝑓 (𝑔 is simply 𝑢exact).
Figure 25 shows the 𝐿2 error (average) distribution across our three
datasets using our quartic meshes with quadratic approximation of
𝑢 (i.e., we use superparametric elements).

High Accuracy Fluids. Our curved meshes can be directly used
to solve different partial differential equations (PDEs). For instance,
by meshing the part outside the top shell and discarding the rest,

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:12 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Tetrahedral mesh Curved simulation

Fig. 26. By meshing the region between a box and a complicated obstacle,

we are able to perform non-linear fluid simulation on our curved mesh.

we can generate a curved background mesh for the Navier-Stokes
equation (Figure 26).

Fast Animation. Our coarse curved meshes can be used as ani-
mation proxies as in [Mezger et al. 2007; Suwelack et al. 2013]. We
first compute an as-coarse-as-possible curved mesh (i.e., we set 𝜀
to infinity). Then we apply the boundary condition to simulate an
elastic distortion of the curved mesh using linear elements. Finally,
we use our bijective map 𝜑4 to map the displacement back to the
input high-detailed surface mesh (Figure 1). The results are almost
indistinguishable to a classical pipeline (i.e., mesh the input mesh),
but the runtime is 400 times faster (8s versus over 50 minutes).

7 LIMITATIONS AND CONCLUDING REMARKS

We introduce an automatic algorithm to convert dense triangle
meshes into coarse, curved tetrahedral meshes whose boundary
is within a user-controlled distance from the input mesh. Our al-
gorithm supports feature preservation and generates meshes with
bijective geometric maps and high quality, which are directly usable
for FEM simulations.

Limitations. Our algorithm generates meshes with a𝐶0 geometric
map. For most FEM applications, this is not an issue [Luo et al.
2002b; Xia and Qian 2017; Zaide et al. 2015]. However, for geometric
modeling applications, where only the mesh boundary is used, the
𝐶0 geometric map introduces normal discontinuities, which are
undesirable. While the surface looks smooth from far away, plotting
the reflection lines shows the discontinuity between the normals.
We believe an exciting extension of our work would be to study
the feasibility of using geometric maps that are 𝐶1 [Lyche and
Muntingh 2015] or𝐶2 [Lai and Schumaker 2007; Xia and Qian 2017].
A second limitation is that, in our implementation, the validity
conditions (Definition 4.1) are currently checked using floating-
point arithmetic, using heuristic numerical tolerances to account
for rounding errors. While our implementation works on a large
collection of models, it is possible to fail on others due to the inexact
validity predicates. We are not aware of exact predicates for these
conditions, and we believe that developing them is an interesting
and challenging venue for future work.

Future Work. Our current high-order mesh optimization pipeline
is preliminary, as it only supports vertex smoothing, collapse, and

swap with simple validation criteria. We believe adding additional
operations, allowing new nodes to exploit the curved geometric
map, carefully analyze new energies for the high-order settings,
and adapting the curved boundary could not only lead to a further
increase in mesh quality and additional coarsening, but also better
performance in the running time of the algorithms.

Conclusions. We believe that our work will foster the adoption
of curved meshes, and open the door to a new family of geometry
processing algorithms able to take advantage of this highly compact
yet accurate shape representation.

ACKNOWLEDGMENTS

The authors would like to thank Leman Feng and Pierre Alliez
for providing the source code of [Feng et al. 2018] and processing
the models. This work was supported in part through the NYU IT
High Performance Computing resources, services, and staff exper-
tise. This work was partially supported by the NSFAREER award
1652515, the NSFrants IIS-1320635, DMS-1436591, DMS-1821334,
OAC-1835712, OIA-1937043, CHS-1908767, CHS-1901091, a gift from
Adobe Research, a gift from nTopology, and a gift from Advanced
Micro Devices, Inc. The authors thank all the reviewers for their
feedback.

REFERENCES
Remi Abgrall, Cécile Dobrzynski, and Algiane Froehly. 2012. A method for comput-

ing curved 2D and 3D meshes via the linear elasticity analogy: preliminary results.
Research Report RR-8061. INRIA. 15 pages. https://hal.inria.fr/hal-00728850

R. Abgrall, C. Dobrzynski, and A. Froehly. 2014. A method for computing curved
meshes via the linear elasticity analogy, application to fluid dynamics problems.
International Journal for Numerical Methods in Fluids 76, 4 (2014), 246–266.

Noam Aigerman and Yaron Lipman. 2013. Injective and bounded distortion mappings
in 3D. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–14.

Marc Alexa. 2019. Harmonic Triangulations. ACM Trans. Graph. 38, 4, Article 54 (July
2019), 14 pages. https://doi.org/10.1145/3306346.3322986

Marc Alexa. 2020. Conforming weighted delaunay triangulations. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1–16.

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Varia-
tional tetrahedral meshing. In ACM Transactions on Graphics (TOG), Vol. 24. ACM.

Douglas N Arnold, Richard S Falk, and Ragnar Winther. 2000. Multigrid in H (div) and
H (curl). Numer. Math. 85, 2 (2000), 197–217.

I. Babuska and B. Q. Guo. 1988. The h-p Version of the Finite Element Method for
Domains with Curved Boundaries. SIAM J. Numer. Anal. 25, 4 (1988), 837–861.
http://www.jstor.org/stable/2157607

I. Babuška and B.Q. Guo. 1992. The h, p and h-p version of the finite element method;
basis theory and applications. Advances in Engineering Software 15, 3 (1992), 159 –
174. https://doi.org/10.1016/0965-9978(92)90097-Y

Adam W Bargteil and Elaine Cohen. 2014. Animation of deformable bodies with
quadratic Bézier finite elements. ACM Transactions on Graphics (TOG) 33, 3 (2014),
27.

F. Bassi and S. Rebay. 1997. High-Order Accurate Discontinuous Finite Element Solution
of the 2D Euler Equations. J. Comput. Phys. 138, 2 (1997), 251 – 285. https://doi.
org/10.1006/jcph.1997.5454

Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing
of surfaces. Graphical Models 67, 5 (2005), 405–451.

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silv a, M. Tarini, and D. Zorin. 2012. State
of the Art in Quad Meshing. In Eurographics STARS.

John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. 2010. Parallel Poisson disk
sampling with spectrum analysis on surfaces. ACM Transactions on Graphics (TOG)
29, 6 (2010), 1–10.

David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Phillips, and Noel Walkington.
2004. A Bézier-based Approach to Unstructured Moving Meshes. In Proceedings
of the Twentieth Annual Symposium on Computational Geometry (Brooklyn, New
York, USA) (SCG ’04). ACM, New York, NY, USA, 310–319. https://doi.org/10.1145/
997817.997864

Siu-Wing Cheng, Tamal K Dey, Herbert Edelsbrunner, Michael A Facello, and Shang-
Hua Teng. 2000. Silver exudation. Journal of the ACM (JACM) 47, 5 (2000), 883–904.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:13

Siu-Wing Cheng, Tamal K Dey, and Joshua A Levine. 2008. A practical Delaunay mesh-
ing algorithm for a large class of domains. In Proceedings of the 16th International
Meshing Roundtable. Springer, 477–494.

L Paul Chew. 1989. Constrained delaunay triangulations. Algorithmica 4, 1-4 (1989),
97–108.

L Paul Chew. 1993. Guaranteed-quality mesh generation for curved surfaces. In Pro-
ceedings of the ninth annual symposium on Computational geometry. ACM, 274–280.

David Cohen-Steiner, Eric Colin De Verdiere, and Mariette Yvinec. 2002. Conforming
Delaunay triangulations in 3D. In Proceedings of the eighteenth annual symposium
on Computational geometry. ACM, 199–208.

Coreform. 2020. Cubit.
Keenan Crane. 2013. Conformal geometry processing. California Institute of Technology.
Sailkat Dey, Robert M O’bara, and Mark S Shephard. 1999. Curvilinear Mesh Generation

in 3D.. In IMR. IMR, 407–417.
Veselin Dobrev, Patrick Knupp, Tzanio Kolev, Ketan Mittal, and Vladimir Tomov. 2019.

The target-matrix optimization paradigm for high-order meshes. SIAM Journal on
Scientific Computing 41, 1 (2019), B50–B68.

Cecile Dobrzynski and Ghina El Jannoun. 2017. High order mesh untangling for complex
curved geometries. Research Report RR-9120. INRIA Bordeaux, équipe CARDAMOM.
https://hal.inria.fr/hal-01632388

Qiang Du and Desheng Wang. 2003. Tetrahedral mesh generation and optimization
based on centroidal Voronoi tessellations. International journal for numerical methods
in engineering 56, 9 (2003), 1355–1373.

Marion Dunyach, David Vanderhaeghe, Loïc Barthe, and Mario Botsch. 2013. Adaptive
remeshing for real-time mesh deformation. In Eurographics 2013. The Eurographics
Association.

Luke Engvall and John A. Evans. 2016. Isogeometric triangular Bernstein–Bézier
discretizations: Automatic mesh generation and geometrically exact finite element
analysis. Computer Methods in Applied Mechanics and Engineering 304 (2016), 378 –
407. https://doi.org/10.1016/j.cma.2016.02.012

Luke Engvall and JohnA. Evans. 2017. Isogeometric unstructured tetrahedral andmixed-
element Bernstein–Bézier discretizations. Computer Methods in Applied Mechanics
and Engineering 319 (2017), 83 – 123. https://doi.org/10.1016/j.cma.2017.02.017

Luke Engvall and John A. Evans. 2018. Mesh Quality Metrics for Isogeometric Bernstein-
Bézier Discretizations. arXiv:1810.06975 (2018).

Darren Engwirda. 2016. Conforming restricted Delaunay mesh generation for piecewise
smooth complexes. CoRR (2016). http://arxiv.org/abs/1606.01289

Patrick E Farrell, Matthew G Knepley, Lawrence Mitchell, and Florian Wechsung.
2019. PCPATCH: software for the topological construction of multigrid relaxation
methods. arXiv preprint arXiv:1912.08516 (2019).

Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun.
2018. Curved optimal delaunay triangulation. ACM Transactions on Graphics (TOG)
(2018).

Meire Fortunato and Per-Olof Persson. 2016. High-order unstructured curved mesh
generation using the Winslow equations. J. Comput. Phys. 307 (2016), 1 – 14.
https://doi.org/10.1016/j.jcp.2015.11.020

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing locally injective mappings
by advanced MIPS. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–12.

Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. 2019. Feature Preserving Octree-Based
Hexahedral Meshing. Computer Graphics Forum 38, 5 (2019), 135–149.

A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. 2015. Optimization of a regularized
distortion measure to generate curved high-order unstructured tetrahedral meshes.
Internat. J. Numer. Methods Engrg. 103, 5 (2015), 342–363. https://doi.org/10.1002/
nme.4888 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4888

Abel Gargallo Peiró, Francisco Javier Roca Navarro, Jaume Peraire Guitart, and Josep
Sarrate Ramos. 2013. High-order mesh generation on CAD geometries. In Adap-
tive Modeling and Simulation 2013. Centre Internacional de Mètodes Numèrics en
Enginyeria (CIMNE), 301–312.

P.L. George and H. Borouchaki. 2012. Construction of tetrahedral meshes of degree
two. Internat. J. Numer. Methods Engrg. 90, 9 (2012), 1156–1182.

Christophe Geuzaine, Amaury Johnen, Jonathan Lambrechts, Jean-François Remacle,
and Thomas Toulorge. 2015. The Generation of Valid Curvilinear Meshes. Springer
International Publishing, Cham, 15–39. https://doi.org/10.1007/978-3-319-12886-
3_2

Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer.
Methods Engrg. 79, 11 (2009), 1309–1331.

Arash Ghasemi, Lafayette K. Taylor, and James C. Newman, III. 2016. Massively Parallel
Curved Spectral/Finite Element Mesh Generation of Industrial CAD Geometries
in Two and Three Dimensions. Fluids Engineering Division Summer Meeting 50299
(2016). http://dx.doi.org/10.1115/FEDSM2016-7600

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.
Philippe Guigue and Olivier Devillers. 2003. Fast and robust triangle-triangle overlap

test using orientation predicates. Journal of graphics tools 8, 1 (2003), 25–32.
Hao-Xiang Guo, Xiaohan Liu, Dong-Ming Yan, and Liu Yang. 2020. Cut-enhanced

PolyCube-Maps for Feature-aware All-Hex Meshing. ACM Transactions on Graphics

(TOG) 39, 4 (2020), 106:1–106:14.
S. Hahmann and G. . Bonneau. 2003. Polynomial surfaces interpolating arbitrary

triangulations. IEEE Transactions on Visualization and Computer Graphics 9, 1 (2003),
99–109. https://doi.org/10.1109/TVCG.2003.1175100

Joos Heintz, Tomas Recio, and Marie-Françoise Roy. 1991. Algorithms in real algebraic
geometry and applications to computational geometry. Discrete and Computational
Geometry: Papers from the DIMACS Special Year (JE Goodman, R. Pollack and W.
Steiger, Eds.), AMS Press, Providence, RI (1991), 137–163.

Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John Mc-
Donald, Jean Schweitzer, and Werner Stuetzle. 1994. Piecewise smooth surface
reconstruction. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques. 295–302.

Kai Hormann and Günther Greiner. 2000. MIPS: An efficient global parametrization
method. Technical Report. ERLANGEN-NUERNBERG UNIV (GERMANY) COM-
PUTER GRAPHICS GROUP.

Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints.
ACM Trans. Graph. 38, 4, Article 52 (July 2019), 15 pages. https://doi.org/10.1145/
3306346.3323011

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

Alec Jacobson, Daniele Panozzo, C Schüller, O Diamanti, Q Zhou, N Pietroni, et al. 2016.
libigl: A simple C++ geometry processing library, 2016.

A. Jameson, J. Alonso, and M. McMullen. 2002. Application of a non-linear frequency
domain solver to the Euler and Navier-Stokes equations. In 40th AIAA Aerospace
Sciences Meeting & Exhibit.

Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. 2015.
CGALmesh: a generic framework for delaunay mesh generation. ACM Transactions
on Mathematical Software (TOMS) 41, 4 (2015), 23.

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective
projection in a shell. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–18.

Xiangmin Jiao and Duo Wang. 2012. Reconstructing high-order surfaces for meshing.
Engineering with Computers 28, 4 (2012), 361–373.

Amaury Johnen, J-F Remacle, and Christophe Geuzaine. 2013. Geometrical validity of
curvilinear finite elements. J. Comput. Phys. 233 (2013), 359–372.

Patrick M. Knupp. 2000. Achieving finite element mesh quality via optimization of the
Jacobian matrix norm and associated quantities. Part I, A framework for surface
mesh optimization. Internat. J. Numer. Methods Engrg. 48, 3 (2000), 401–420.

Patrick M. Knupp. 2002. Achieving finite element mesh quality via optimization of the
Jacobian matrix norm and associated quantities. Part II, A framework for volume
mesh optimization and the condition number of the Jacobian matrix. Internat. J.
Numer. Methods Engrg. 48, 8 (2002), 1165–1185.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A
Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Venkat Krishnamurthy and Marc Levoy. 1996. Fitting smooth surfaces to dense polygon
meshes. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. 313–324.

Ming-Jun Lai and Larry L Schumaker. 2007. Spline functions on triangulations. Vol. 110.
Cambridge University Press.

Bruno Lévy. 2015. Geogram.
Yufei Li, Yang Liu, Weiwei Xu,WenpingWang, and Baining Guo. 2012. All-HexMeshing

Using Singularity-Restricted Field. ACM Trans. Graph. 31, 6, Article 177 (Nov. 2012),
11 pages. https://doi.org/10.1145/2366145.2366196

Hongwei Lin, Wei Chen, and Hujun Bao. 2007. Adaptive patch-based mesh fitting
for reverse engineering. Computer-Aided Design 39, 12 (2007), 1134 – 1142. https:
//doi.org/10.1016/j.cad.2007.10.002

Yaron Lipman. 2014. Bijective mappings of meshes with boundary and the degree in
mesh processing. SIAM Journal on Imaging Sciences 7, 2 (2014), 1263–1283.

Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar, and Mark W. Beall. 2013. Parallel
Curved Mesh Adaptation for Large Scale High-Order Finite Element Simulations.
In Proceedings of the 21st International Meshing Roundtable, Xiangmin Jiao and Jean-
Christophe Weill (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419–436.

Qiukai Lu, Mark S Shephard, Saurabh Tendulkar, and MarkW Beall. 2014. Parallel mesh
adaptation for high-order finite element methods with curved element geometry.
Engineering with Computers 30, 2 (2014), 271–286.

Xiaojuan Luo, Mark S Shephard, Lie-Quan Lee, Cho Ng, and Lixin Ge. 2008. Tracking
adaptive moving mesh refinements in 3d curved domains for large-scale higher
order finite element simulations. In Proceedings of the 17th International Meshing
Roundtable. Springer, 585–601.

Xiaojuan Luo, Mark S Shephard, and Jean-Francois Remacle. 2001. The influence of
geometric approximation on the accuracy of high order methods. Rensselaer SCOREC

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:14 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

report 1 (2001).
Xiaojuan Luo, Mark S. Shephard, Jean-François Remacle, Robert M. O’Bara, Mark W.

Beall, Barna A. Szabó, and Ricardo Actis. 2002a. p-Version Mesh Generation Issues.
In IMR.

Xiaojuan Luo, Mark S Shephard, Jean-François Remacle, Robert M O’Bara, Mark W
Beall, Barna A Szabó, and Ricardo Actis. 2002b. p-Version Mesh Generation Issues..
In IMR. 343–354.

Tom Lyche and Georg Muntingh. 2015. Simplex Spline Bases on the Powell-Sabin
12-Split: Part I. arXiv preprint arXiv:1505.01798 (2015).

Julian Marcon, Joaquim Peiró, David Moxey, Nico Bergemann, Henry Bucklow, and
Mark R Gammon. 2019. A semi-structured approach to curvilinear mesh generation
around streamlined bodies. In AIAA Scitech 2019 Forum. 1725.

Zoë Marschner, David Palmer, Paul Zhang, and Justin Solomon. 2020. Hexahedral Mesh
Repair via Sum-of-Squares Relaxation. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 133–147.

Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2007.
A Finite Element Method for Interactive Physically Based Shape Modelling with
Quadratic Tetrahedra. (2007).

Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straśer. 2009.
Interactive physically-based shape editing. Computer Aided Geometric Design 26,
6 (2009), 680 – 694. https://doi.org/10.1016/j.cagd.2008.09.009 Solid and Physical
Modeling 2008.

Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete
geodesic problem. SIAM J. Comput. 16, 4 (1987), 647–668.

D.Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, and J. Peiró. 2016. High-order curvilinear
meshing using a thermo-elastic analogy. Computer-Aided Design 72 (2016), 130 – 139.
https://doi.org/10.1016/j.cad.2015.09.007 23rd International Meshing Roundtable
Special Issue: Advances in Mesh Generation.

D. Moxey, M.D. Green, S.J. Sherwin, and J. Peiró. 2015. An isoparametric approach
to high-order curvilinear boundary-layer meshing. Computer Methods in Applied
Mechanics and Engineering 283 (2015), 636 – 650. https://doi.org/10.1016/j.cma.2014.
09.019

Dave Moxey, Michael Turner, Julian Marcon, and Joaquim Peiro. 2018. Nekmesh: An
open-source high-order mesh generator. (2018).

Michael Murphy, David M Mount, and Carl W Gable. 2001. A point-placement strategy
for conforming Delaunay tetrahedralization. International Journal of Computational
Geometry & Applications 11, 06 (2001), 669–682.

J.Tinsley Oden. 1994. Optimal h-p finite element methods. Computer Methods in Applied
Mechanics and Engineering 112, 1 (1994), 309 – 331. https://doi.org/10.1016/0045-
7825(94)90032-9

David Palmer, David Bommes, and Justin Solomon. 2020. Algebraic Representations for
Volumetric Frame Fields. ACM Trans. Graph. 39, 2, Article 16 (April 2020), 17 pages.
https://doi.org/10.1145/3366786

Abel Gargallo Peiró, Eloi Ruiz Gironés, Francisco J Navarro, and Josep Sarrate Ramos.
2015. On curving high-order hexahedral meshes.

Abel Gargallo Peiró, Xevi Roca, Jaime Peraire, and Josep Sarrate. 2014. Defining Quality
Measures for Validation and Generation of High-Order Tetrahedral Meshes. In
Proceedings of the 22nd International Meshing Roundtable, Josep Sarrate and Matthew
Staten (Eds.). Springer International Publishing, Cham, 109–126.

Joaquim Peiró, Spencer J. Sherwin, and Sergio Giordana. 2008. Automatic reconstruction
of a patient-specific high-order surface representation and its application to mesh
generation for CFD calculations. Medical & Biological Engineering & Computing 46,
11 (01 Nov 2008), 1069–1083. https://doi.org/10.1007/s11517-008-0390-3

Per-Olof Persson and Jaime Peraire. 2009. Curved Mesh Generation and Mesh Re-
finement using Lagrangian Solid Mechanics. In 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace Exposition. https:
//arc.aiaa.org/doi/10.2514/6.2016-3178

Pointwise. 2018. High Order Mesh Generation at Pointwise. Accessed: 2018-11-14.
Roman Poya, Ruben Sevilla, and Antonio J. Gil. 2016. A unified approach for a posteriori

high-order curvedmesh generation using solid mechanics. Computational Mechanics
58, 3 (01 Sep 2016), 457–490. https://doi.org/10.1007/s00466-016-1302-2

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (April
2017), 16 pages. https://doi.org/10.1145/2983621

Jean-François Remacle, Thomas Toulorge, and Jonathan Lambrechts. 2013. Robust
untangling of curvilinear meshes. In Proceedings of the 21st International meshing
roundtable. Springer, 71–83.

Xevi Roca, Abel Gargallo-Peiró, and Josep Sarrate. 2012. Defining Quality Measures
for High-Order Planar Triangles and Curved Mesh Generation. In Proceedings of
the 20th International Meshing Roundtable, William Roshan Quadros (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 365–383.

Eloi Ruiz-Gironés, Abel Gargallo-Peiró, Josep Sarrate, and Xevi Roca. 2017. An aug-
mented Lagrangian formulation to impose boundary conditions for distortion
based mesh moving and curving. Procedia Engineering 203 (2017), 362 – 374.
https://doi.org/10.1016/j.proeng.2017.09.820 26th International Meshing Roundtable,
IMR26, 18-21 September 2017, Barcelona, Spain.

Eloi Ruiz-Gironés, Xevi Roca, and Jose Sarrate. 2016a. High-order mesh curving by dis-
tortion minimization with boundary nodes free to slide on a 3D CAD representation.
Computer-Aided Design 72 (2016), 52 – 64. https://doi.org/10.1016/j.cad.2015.06.011
23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation.

Eloi Ruiz-Gironés, Josep Sarrate, and Xevi Roca. 2016b. Generation of Curved High-
order Meshes with Optimal Quality and Geometric Accuracy. Procedia Engineering
163 (2016), 315 – 327. https://doi.org/10.1016/j.proeng.2016.11.108 25th International
Meshing Roundtable.

Jim Ruppert. 1995. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of algorithms 18, 3 (1995), 548–585.

Kambiz Salari and Patrick Knupp. 2000. Code Verification by the Method of Manufactured
Solutions. Technical Report. https://doi.org/10.2172/759450

N Schlömer. 2020. nschloe/meshio: Input/output for many mesh formats. Zenodo. doi
10 (2020).

Mark S. Shephard, Joseph E. Flaherty, Kenneth E. Jansen, Xiangrong Li, Xiaojuan Luo,
Nicolas Chevaugeon, Jean-François Remacle, Mark W. Beall, and Robert M. O’Bara.
2005. Adaptive mesh generation for curved domains. Applied Numerical Mathematics
52, 2 (2005), 251 – 271. https://doi.org/10.1016/j.apnum.2004.08.040 ADAPT ’03:
Conference on Adaptive Methods for Partial Differential Equations and Large-Scale
Computation.

SJ Sherwin and J Peiró. 2002. Mesh generation in curvilinear domains using high-order
elements. Internat. J. Numer. Methods Engrg. 53, 1 (2002), 207–223.

Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997),
305–363.

Jonathan Richard Shewchuk. 1998. Tetrahedral mesh generation by Delaunay refine-
ment. In Proceedings of the fourteenth annual symposium on Computational geometry.
ACM, 86–95.

Jonathan Richard Shewchuk. 2002. Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery.. In IMR. 193–204.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages.

Hang Si and Klaus Gärtner. 2005. Meshing Piecewise Linear Complexes by Constrained
Delaunay Tetrahedralizations.. In IMR. Springer, 147–163.

Hang Si and Jonathan Richard Shewchuk. 2014. Incrementally constructing and up-
dating constrained Delaunay tetrahedralizations with finite-precision coordinates.
Eng. Comput. (Lond.) 30, 2 (2014), 253–269.

C. Sorger, Felix Frischmann, Stefan Kollmannsberger, and Ernst Rank. 2014.
TUM.GeoFrame: automated high-order hexahedral mesh generation for shell-like
structures. Eng. Comput. 30, 1 (2014), 41–56. https://doi.org/10.1007/s00366-012-
0284-8

Mike Stees and Suzanne M. Shontz. 2017. A high-order log barrier-based mesh
generation and warping method. Procedia Engineering 203 (2017), 180 – 192.
https://doi.org/10.1016/j.proeng.2017.09.806 26th International Meshing Roundtable,
IMR26, 18-21 September 2017, Barcelona, Spain.

Ryan S. Glasby Steve L. Karman, J T. Erwin and Douglas Stefanski. 2016. High-Order
Mesh Curving Using WCN Mesh Optimization. In 46th AIAA Fluid Dynamics Con-
ference, AIAA AVIATION Forum. https://arc.aiaa.org/doi/10.2514/6.2016-3178

Stefan Suwelack, Dimitar Lukarski, Vincent Heuveline, Rüdiger Dillmann, and Stefanie
Speidel. 2013. Accurate Surface Embedding for Higher Order Finite Elements.
In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Anaheim, California) (SCA’13). ACM, New York, NY, USA, 187–192.
https://doi.org/10.1145/2485895.2485914

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and
Markus H Gross. 2003. Optimized spatial hashing for collision detection of de-
formable objects.. In Vmv, Vol. 3. 47–54.

The CGAL Project. 2020. CGAL User and Reference Manual (5.0.3 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.0.3/Manual/packages.html

Wei-hua Tong and Tae-wan Kim. 2009. High-order approximation of implicit surfaces
by G1 triangular spline surfaces. Computer-Aided Design 41, 6 (2009), 441–455.

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lam-
brechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013),
8 – 26. https://doi.org/10.1016/j.jcp.2013.07.022

Thomas Toulorge, Jonathan Lambrechts, and Jean-François Remacle. 2016. Optimizing
the geometrical accuracy of curvilinear meshes. J. Comput. Phys. 310 (2016), 361 –
380. https://doi.org/10.1016/j.jcp.2016.01.023

Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving
Delaunay refinement and optimization for practical isotropic tetrahedron mesh
generation. ACM Transactions on Graphics 28, 3 (2009), Art–No.

Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo, and
Denis Zorin. 2020. A low-parametric rhombic microstructure family for irregular
lattices. ACM Transactions on Graphics (TOG) 39, 4 (2020), 101–1.

Michael Turner. 2017. High-order mesh generation for CFD solvers. Ph.D. Dissertation.
Imperial College London.

Michael Turner, Joaquim Peiró, and David Moxey. 2016. A Variational Framework for
High-order Mesh Generation. Procedia Engineering 163 (2016), 340 – 352. https:

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

Bijective and Coarse High-Order Tetrahedral Meshes • 157:15

//doi.org/10.1016/j.proeng.2016.11.069 25th International Meshing Roundtable.
S Pratap Vanka. 1986. Block-implicit multigrid solution of Navier-Stokes equations in

primitive variables. J. Comput. Phys. 65, 1 (1986), 138–158.
RuiminWang, Ligang Liu, Zhouwang Yang, KangWang, Wen Shan, Jiansong Deng, and

Falai Chen. 2016. Construction of manifolds via compatible sparse representations.
ACM Transactions on Graphics (TOG) 35, 2 (2016), 1–10.

Songtao Xia and Xiaoping Qian. 2017. Isogeometric analysis with Bézier tetrahedra.
Computer Methods in Applied Mechanics and Engineering 316 (2017), 782 – 816.
https://doi.org/10.1016/j.cma.2016.09.045 Special Issue on Isogeometric Analysis:
Progress and Challenges.

Zhong Q. Xie, Ruben Sevilla, Oubay Hassan, and Kenneth Morgan. 2013. The generation
of arbitrary order curved meshes for 3D finite element analysis. Computational
Mechanics 51, 3 (01 Mar 2013), 361–374. https://doi.org/10.1007/s00466-012-0736-4

Yuxuan Yu, Xiaodong Wei, Angran Li, Jialei Ginny Liu, Jeffrey He, and Yongjie Jessica
Zhang. 2020. HexGen and Hex2Spline: Polycube-based Hexahedral Mesh Generation
and Spline Modeling for Isogeometric Analysis Applications in LS-DYNA. (2020).
arXiv:2011.14213 [cs.CG]

Alex Yvart, Stefanie Hahmann, and Georges-Pierre Bonneau. 2005a. Hierarchical
Triangular Splines. ACM Trans. Graph. 24, 4 (Oct. 2005), 1374–1391. https://doi.
org/10.1145/1095878.1095885

Alex Yvart, Stefanie Hahmann, and G-P Bonneau. 2005b. Smooth adaptive fitting of 3D
models using hierarchical triangular splines. In International Conference on Shape
Modeling and Applications 2005 (SMI’05). IEEE, 13–22.

Daniel W Zaide, Qiukai Lu, and Mark S Shephard. 2015. A comparison of C0 and G1
continuous curved tetrahedral meshes for high-order finite element simulations.
Proc. 24th International Meshing Roundtable. Elsevier, New York (2015).

Paul Zhang, Josh Vekhter, Edward Chien, David Bommes, Etienne Vouga, and Justin
Solomon. 2020. Octahedral Frames for Feature-Aligned Cross Fields. ACM Trans.
Graph. 39, 3, Article 25 (April 2020), 13 pages. https://doi.org/10.1145/3374209

S. Zhang, Z. Li, H. Zhang, and J. Yong. 2011. Multi-resolution Mesh Fitting by B-
spline Surfaces for Reverse Engineering. In 2011 12th International Conference on
Computer-Aided Design and Computer Graphics. 251–257. https://doi.org/10.1109/
CAD/Graphics.2011.65

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

V.S. Ziel, H. Bériot, O. Atak, and G. Gabard. 2017. Comparison of 2D boundary curving
methods with modal shape functions and a piecewise linear target mesh. Procedia
Engineering 203 (2017), 91 – 101. https://doi.org/10.1016/j.proeng.2017.09.791 26th
International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain.

Denis Zorin. 2000. Subdivision for modeling and animation. SIGGRAPH2000 course
notes (2000).

A THE GEOMETRIC MAP IS BIJECTIVE

Consider a connected 3-dimensional compact manifold (curved)
tetrahedral mesh M = {𝜎𝑖 }, 𝑖 = 1, . . . , 𝑛 with 𝜎𝑖 = 𝑔𝑖 (𝜏), 𝜏 a regular
unit tetrahedron, det(𝐽𝑔𝑖) > 0 at all points including the boundary,
and𝜎𝑖 and𝜎 𝑗 agree on a shared face. LetM𝐷 be the domain obtained
by copies of 𝜏 and identifying 𝜏𝑖 along common faces.We then define
the map

𝜎 : 𝑀𝐷 → R3,

by setting 𝜎 |𝜏𝑖 = 𝜎𝑖 .

Proposition A.1. Suppose 𝜎 |𝜕M𝐷
is injective. Then 𝜎 is injective

on the whole domainM𝐷 .

Proof. Our argument closely follow from [Aigerman and Lipman
2013, Appendix B] and [Lipman 2014, Theorem 1].

We consider point 𝑦 ∈ R3 in general position, but not in the faces,
edges, vertices, or any plane spanned by a linear face of M. For

each tetrahedron 𝜏 , we construct the map Ψ̂ as a composition of
𝜎 |𝜕𝜏𝑖 (restricted to the triangular faces of the regular tetrahedron)
and the projection map 𝜒 to the unit sphere centered around 𝑦.
For each triangular face 𝛿 of 𝜕𝜏𝑖 , we parametrize the image of

𝜎 |𝛿 as 𝑥 (𝑢, 𝑣) (note that since det 𝐽𝑔𝑖 > 0, the image is a non-
degenerate surface homeomorphic to a disk). Construct the normal
field 𝑛(𝑢, 𝑣) =

𝜕
𝜕𝑢 𝑥 × 𝜕

𝜕𝑣𝑥 and note that 𝑥 (𝑢, 𝑣), 𝑛(𝑢, 𝑣) are poly-
nomial functions. The algebraic curve 𝑛(𝑢, 𝑣) · (𝑥 (𝑢, 𝑣) − 𝑦) = 0

partitions the surface into finite number of patches, where on each

patch the orientation of Ψ̂ is constant. We can further triangulate
such semi-algebraic sets [Heintz et al. 1991, ğ5.7].
Similar to [Aigerman and Lipman 2013, Appendix B], we count

the number of pre-images of𝑦, which equals to the degree in general
positions,

deg(𝜎) (𝑦) =
𝑛∑︁

𝑖=1

deg(Ψ̂|𝜏𝑖) = deg(Ψ̂|𝜕M).

Since 𝜎 |𝜕M𝐷
is injective, and furthermore

deg(Ψ̂|𝜕M) = deg𝜒 |𝜕M =

{
1, 𝑦 ∈ M

0, 𝑦 ∉ M .

Thus we have shown the map is injective for the general positions
for𝑦, and it remains to be shown that the map is an open map, which
follows from the same argument of [Lipman 2014, Lemma 2].

□

B LOCAL OPERATIONS

[Jiang et al. 2020, Fig. 11] introduces a set of valid local operations
to modify the shell, including edge split, edge collapse, edge flip
and vertex smoothing. The operations are an revanalog of the trian-
gle mesh edit operations [Dunyach et al. 2013], by simultaneously
editing the shared connectivity of the bottom, middle, and top sur-
face of the shell. [Jiang et al. 2020, Theorem 3.7] outlines invariant
conditions, which maintains the shell projection to be bijective.
Our algorithm follows and extends the local operations therein

to the high order setting. In addition to the existing conditions, we
also validate the curved volumetric mesh in the shell. The algorithm
maintains the global intersection free bottom (top) surface with a
dynamic hash grid [Teschner et al. 2003]. Then for each prism, we
check the positivity (defined by the determinant of Jacobian of the
geometric map) of the prismatic element (each decomposed into
three tetrahedra).
In the presence of feature annotation and feature straightening

(Section 5), more care is taken to maintain the valid correspondence
between the grouped feature chains and the curved edges: edge
flip is disabled on the edges annotated as features; collapse is only
allowedwhen it does not degenerate the chain and the two endpoints
of the edge are on the same chain. Since we require a map from
the original input edges, we insert additional degrees of freedom
in the input mesh. When performing edge split, the new inserted
vertex is chosen from the existing vertices from the input, which lie
in the pre-image of the current edge. For vertex smoothing (more
specifically pan), the target location is again limited to the set of
input vertices.

C BOUNDARY PRESERVING TETGEN COMPARISON

We compared our conforming tetrahedral meshing algorithm (Sec-
tion 4.3) with TetGen on the linear shells (triangle meshes) of 3522
models from the Thingi10k dataset, giving each model sufficient
computing resources (2 hours maximum running time and 32GB
memory usage). Inheriting the robustness from TetWild, our method

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

157:16 • Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Mean Max

M
o
d
el
C
o
u
n
t

4 5 10 20 50 100

0

250

500

750

1000
TetGen

Ours

10 1e2 1e3 1e4 1e5 1e6 1e7 1e8

0

100

200

300

400

500 TetGen

Ours

AMIPS Energy

Fig. 27. Histogram of the mean andmaximum conformal AMIPS energy [Ra-

binovich et al. 2017] of the output of our method and TetGen.

M
o
d
el
C
o
u
n
t

3k 5k 10k 20k 50k 100k

0

200

400

600

800

1000

1200
TetGen

Ours

Tetrahedra Number

Fig. 28. Histogram of output tetrahedra number for TetGen and our method.

successfully processed all the inputs while preserving the trian-
gulation, while TetGen fails on 224 models (215 models are not
conforming, and 9 models have no output).

In Figure 27, we show the average and maximum element quality
of the output of our method and TetGen. Our method has a better
average and maximum output quality than TetGen. Note that in
the quality plot, the łtailž of TetGen’s distribution is longer than
ours. The maximum average energy of TetGen’s output and ours
are 3 × 10

8 and 3 × 10
5 respectively. The largest maximum energy

of TetGen’s output and ours are 3 × 10
12 and 7 × 10

6 respectively.
Our method generates denser output (Figure 28), but our focus is
on robustness instead of efficiency in this step.

ACM Trans. Graph., Vol. 40, No. 4, Article 157. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Curved Tetrahedral Mesh Generation
	2.2 Curved Structured Mesh Generation
	2.3 Boundary Preserving Tetrahedral Meshing
	2.4 Curved Surface Fitting

	3 Shell Preliminaries
	3.1 Variation from the Original Algorithm

	4 Curved Tetrahedral Mesh Generation
	4.1 High-order Shells
	4.2 Distance Bound
	4.3 Tetrahedral Meshing

	5 Feature Preserving Curved Shell
	5.1 Feature straightening.

	6 Results
	6.1 Large Scale Validation.
	6.2 Comparisons
	6.3 Flexibility
	6.4 Applications

	7 Limitations and Concluding Remarks
	Acknowledgments
	References
	A The geometric map is bijective
	B Local Operations
	C Boundary preserving TetGen comparison

