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Optimizing Thermoacoustic Characterization Experiments for
Identifiability Improves both Parameter Estimation Accuracy and

Closed-Loop Controller Robustness Guarantees

This article examines the degree to which optimizing a Rijke tube experiment can
improve the accuracy of thermoacoustic model parameter estimation, thereby
facilitating robust stability control. We use a one-dimensional thermoacoustic
model to describe the combustion dynamics in a Rijke tube. This model contains
two unknown parameters that relate velocity perturbations to heat release rate
oscillations, namely, a time delay T and amplification factor 5. The parameters are
estimated from experiments where the system input is the acoustic excitation from
a loudspeaker and the output is the pressure response captured by a microphone.
Our work is grounded in the insight that optimizing an experiment’s design for
higher Fisher identifiability leads to more accurate parameter estimates. The novel
goal of this paper is to apply this insight in the laboratory using a flame-driven
Rijke tube setup. For comparison purposes, we conduct a benchmark experiment
with a broadband chirp signal as the excitation input. Next, we excite the Rijke
tube at two frequencies optimized for Fisher identifiability. Repeats of both
experiments show that the optimal experiment achieves parameter estimates with
uncertainties at least one order of magnitude smaller than the benchmark. With
smaller parameter estimate uncertainties, an LQG controller designed to attenuate
combustion instabilities is able to achieve stronger robustness guarantees,
quantified in terms of closed-loop structured singular values that account for

parameter estimation uncertainty.

Keywords: Optimal experimental design; Fisher identifiability; uncertainty

quantification; linear quadratic Gaussian; robustness guarantees

Introduction

Combustion instability is an issue in many power and propulsion systems, including gas
turbines, rockets, and process furnaces. It manifests itself in the form of large-amplitude
pressure oscillations that can lead to hardware vibrations and, in extreme cases,
combustion system failures (Lieuwen and Yang 2005). The cause of combustion

instability is the coupling between combustor acoustics and unsteady heat release



(Lieuwen et al. 1999). This coupling is problematic for modern power generation gas
turbines operated with lean premixed combustion, where low emissions operation has the
potential to cause combustion instability.

Combustion instability can be mitigated through either passive or active means.
Passive mechanisms include changing combustor acoustic characteristics or heat release
rate dynamics. The former includes the use of acoustic damping resonators to absorb
acoustic oscillations (Dupére and Dowling 2005). The latter adjustment can be achieved
either through a fuel injection strategy (Steele et al. 2000) or fuel staging (Samarasinghe
etal. 2017). Active mitigation (Dowling and Morgans 2005), in contrast, typically utilizes
external actuation signals such as acoustic forcing (Dines 1984, Lang et al. 1987,
Annaswamy et al. 2000, Gelbert et al. 2012) or a secondary heat source (Seume et al.
1997, Murugappan et al. 2003) to suppress the thermoacoustic instability. Regardless of
the techniques of instability suppression used, the availability of an accurately
parameterized model of combustion dynamics can be valuable for system design,
simulation, and evaluation. Additionally, estimating the parameters of a combustion
instability model more accurately has the potential to allow for closed-loop control design
with stronger robustness guarantees.

Combustion instability models can either take the form of a frequency response
of the combustion system (Bernier et al. 2003, Epperlein et al. 2015) or be physics-based,
which capture combustor acoustics and heat release dynamics (Hathout et al. 1998,
Schuller et al. 2003, Heckl 2010, Palies ef al. 2011). Both types of models need to be
fitted to experimental data, a process known as “system identification” or “model
identification”. Much of the model identification literature focuses on one-dimensional
combustors known as Rijke tubes (Balasubramanian and Sujith 2008, Heckl 2010). This

includes both electrically-driven (Heckl 1988, Bittanti et al. 2002, Selimefendigil et al.



2011, Subramanian et al. 2013, Rigas et al. 2016) and flame-driven configurations
(Crocco and Cheng 1956, Dines 1984, Vaudrey 2001, Morgans and Dowling 2005). The
identified parameters include acoustic mode frequency (Rigas et al. 2016), growth rate
(Selimefendigil ez al. 2011, Nair et al. 2013, Subramanian ef al. 2013, Rigas et al. 2016),
and time delay (Murray et al. 1998, Bittanti et al. 2002). The methods applied to achieve
the parameter estimation include correlation-based linear analysis (Bittanti et al. 2002,
Selimefendigil et al. 2011), neural networks (Selimefendigil and Politke 2011), least-
square fitting (Koshigoe et al. 1999, Vaudrey 2001, Huhn and Magri 2020), and data
assimilation (Traverso and Magri 2019, Yu et al. 2020). The uncertainties in parameter
estimates determine the accuracy of a combustion dynamics model. Recent research
explores different methods to quantify uncertainties in combustion instability models.
This includes Monte Carlo analysis (Bauerheim et al. 2014, Ndiaye et al. 2015, Magri et
al. 2016, Silva et al. 2017), adjoint perturbation theory (Boujo and Noiray 2017, Mensah
et al. 2018, Magri 2019), non-intrusive polynomial chaos expansion (Avdonin et al.
2018), and integrated interpolation schemes (Nair ef al. 2013).

Given the importance of accurate parameter identification in a combustion model
for instability control, this work poses two research questions: first, to what extent can
combustion instability experiments be designed to minimize the resulting parameter
uncertainties? Second, to what extent does the improvement in combustion instability
model accuracy affect the robustness of a linear quadratic Gaussian (LQG) controller in
attenuating the combustion instabilities?

This work is motivated by these two questions. Specifically, we use Fisher
information analysis to quantify the best-achievable parameter estimation accuracy from
Rijke tube experiments. The parameter estimate accuracy is optimized by maximizing a

scalar Fisher information metric subject to constraints on the experiment’s design. This



metric quantifies the accuracy with which the Rijke tube’s parameters can be estimated
from input-output experimental data (Manchester 2010). A classical time-delay model,
the n-t model (Dowling and Stow 2003), is used in this work to show the utility of the
Fisher information method using both theory and experiment, rather than to innovate in
terms of thermoacoustic model. As such, this methodology could be extended to more
complex models in the future.

Fisher information analysis provides a minimum co-variance matrix bound for the
estimated parameters via the Cramér-Rao inequality (Pronzato 2008, Forman ef al. 2012,
Mendoza et al. 2016). In this work, based on the nominal values of the estimated
parameters, we can apply Fisher information analysis to assess the local identifiability of
a model’s parameters around the nominal values. Previous work by the authors shows, in
simulation, the potential benefits of optimizing a Rijke tube experiment for Fisher
identifiability (Chen et al. 2019). This work provides the experimental validation of the
applicability of Fisher information analysis to combustion stability experiments. The
work shows that optimizing a Rijke tube experiment for Fisher identifiability furnishes
tighter parameter estimates (i.e., smaller estimation uncertainties) compared to a
benchmark experiment where the Rijke tube is excited using a broadband input signal.
This broadband excitation is similar to traditional flame transfer function measurement
methods, where flames are subjected to large ranges of individual frequencies and their
response measured (Freitag ef al. 2006, Kim et al. 2010, Palies et al. 2010); these methods
are time consuming and information-heavy, making them cumbersome to use in control
settings.

To the best of the authors' knowledge, such validation is a novel contribution to
the combustion instability literature, where the focus has been on uncertainty

quantification (Bauerheim et al. 2014, Ndiaye et al. 2015, Magri et al. 2016, Silva et al.



2017) rather than optimizing experimental designs for uncertainty minimization. A
second contribution of this work is to show that the above improvement in parameter
estimation accuracy makes it possible to design a closed-loop LQG combustion stability
controller with stronger robustness guarantees. A control system that is designed using a
simulation model of a given system is “robust” if it continues to operate in a stable and
acceptable manner when implemented on the real physical system. Robustness is
important in the presence of modeling uncertainties, including uncertainties in the given
system’s parameters. One way to achieve robustness is to design a control algorithm
explicitly for robustness: a process that often involves navigating fundamental trade-offs
between performance and robustness. Another way that we ensure robustness is to
maximize model accuracy, thereby minimizing the discrepancies between the

bh)

“simulated” and “true” combustion systems and achieving stronger robustness
guarantees.

The outline of the rest of the article is as follows. The “Combustion Instability
Model” section introduces both the experimental setup for a one-dimensional
thermoacoustic model identification as well as the model that describes the combustion
system. The “Experimental Designs for Model Identification” section presents the
benchmark and optimized experimental designs for identifying the model’s two key
parameters. This section also compares the parameter estimation results from these two
experiments. The last section, titled “Robustness of LQG Controller based on Identified
System”, uses the structured singular value, u, to analyze the robustness of an LQG
controller designed for suppressing the combustion instabilities. This analysis shows the

degree to which tighter parameter estimation errors can enable tighter robustness

guarantees for closed-loop combustion stability control.



Combustion Instability Model

Rijke Tube Experimental Setup

The one-dimensional thermoacoustic system studied in this article is a flame-driven Rijke
tube. This tube’s cross-sectional view is illustrated in Fig. 1. This combustor consists of
two concentric tubes. The diameters of the inner and outer tubes are d;; ;0 = 0.022m
and d, terr = 0.091m, respectively. The outer tube is of length L = 0.875m. The inner
tube delivers the air/fuel mixtures, and a premixed flame at equivalence ratio ¢ = 0.8 is
stabilized on a perforated plate on top of this inner tube. In the outer tube, a co-flow of
air flows in the same direction as the fuel/air mixture in the inner tube. Flows within both
tubes pass through ball bearings and perforated plates before entering the experiment, in
order to achieve a uniform flow profile. A speaker mounted near the Rijke tube inlet
provides acoustic forcing to the system. At the exit, the Rijke tube is open to the
atmosphere. Thermocouples and pressure transducers are placed at discrete locations
along the outer tube to measure local temperatures and pressures.

The inner tube is adjustable vertically such that the flame location can be varied,
where the flame location b is defined as the length from the inlet of the outer tube to the
top of the inner tube. Due to the heat release from the flame, the temperatures in the region
downstream of the flame will be higher than that in the upstream region, resulting in

variations in gas density, flow velocity, and sound speed.
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Figure 1. Cross-sectional view of the Rijke tube experimental setup

One-dimensional Thermoacoustic Model

To describe the thermoacoustic dynamics in the Rijke tube, we use a one-dimensional
combustion instability model. The radial and azimuthal variations of the gas properties in
the Rijke tube are small and hence neglected. The geometry of the modeled system is
shown in Fig. 2. The main difference between the modeled system and the real system is
the temperature distribution along the length of the Rijke tube. In the experimental setup,
the temperature decays downstream of the flame due to the heat loss to the surrounding
environment. In contrast, the model assumes a step temperature change across the flame,
with a spatially uniform temperature T, in the region downstream of the flame. The

temperature of the reactants upstream of the flame is T;.
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Figure 2. One-dimensional thermoacoustic model configuration

In addition to the assumption of a step temperature rise from T; to T, across the
flame, we also assume an isentropic, homogeneous, and steady mean flow in the tube.
Following the work of Dowling and Stow (Dowling and Stow 2003), we describe the
thermoacoustic system with linearized partial differential equations for the conservation

of mass, momentum, and energy, as indicated in Eqn. (1-2).
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These equations assume that: (i) the mean flow Mach number is significantly
smaller than one (i.e., the mean flow velocity u,;, is much smaller than the speed of sound
¢); and (ii) fluctuation amplitudes in the following variables including density p’,
pressure p’, velocity u’, and temperature T' around the equilibrium are much smaller
than the corresponding mean variables J, pgem, €, and T, respectively.

In Eqn. (2), q' represents the fluctuation of heat release rate per unit volume and
y is the specific heat capacity ratio. We apply a linear time lag model (Crocco and Cheng

1956), as indicated in Eqn. (3), to describe the response of the oscillating heat release per



unit area Q' to acoustic particle velocities for the acoustically compact flame, which is

modeled by a spatial Dirac delta function §(x — b).

460 = Q'8 — 1), Q') = - Luy(t - 7) &)

In Eqn. (3), f is the amplification factor, representing the interaction strength
between the heat release rate and velocity oscillations, and 7 is time delay between the
flame response and the incident velocity perturbation. The variable u; is the acoustic
particle velocity near the upstream margin of the flame. Two boundary conditions shown
in Fig. 2 are in Eqn. (4). The speaker inputs an acoustic particle velocity u/,;..(t) at the
inlet of the Rijke tube. The outlet, in contrast, is a pressure release boundary with zero

pressure oscillations.
u'(0,8) = Ujner (), p" (L, 1) = 0 (4)

By manipulating Eqn. (1) and Eqn. (2), we obtain the governing non-

homogeneous acoustic wave equation, as indicated in Eqn. (5).
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Equation (5) describes the thermoacoustic wave behavior in the Rijke tube with a
flame. The source term on the right-hand side is represented by p; after the manipulation,

which is the pressure oscillation at x = b™, just upstream of the flame.

Transfer Function Representation of the Thermoacoustic System

The governing wave equation describing the thermoacoustic system's behavior is linear
with respect to time, t. As a result, with the assumption of zero initial conditions, we can

apply the Laplace transform to the equation and solve it analytically with the boundary



conditions specified in Eqn. (4). The solution to the differential wave equation in the s
domain is pressure oscillation P'(x, s) along the Rijke tube.

The input to the thermoacoustic system is the acoustic particle velocity from the
speaker at the inlet and the output is the local pressure oscillation along the tube. The
input particle velocity can be estimated using the two-microphone method (TMM)
(Bodén and Abom 1986). Because the input and output variables have different units, we
normalize them before calculating the system transfer function. The nominal particle
velocity and pressure oscillation used for normalization are bulk flow velocity, u;, and
atmospheric pressure, pgtm. The definitions of the normalized transfer function, input,

and output are in Eqn. (6).
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Like the output pressure distribution, the above transfer function also has different

forms in the regions upstream and downstream of the flame, as shown in Eqn. (7-8).
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The transfer function depends not only on experimental design variables such as

flame location b, co-flow velocity u,, sensor placement x, and excitation frequency s,



but also on the parameters to be identified: T and f in the heat release dynamics model.
For any given choice of the experimental design variables, we can estimate the two
parameters by measuring the transfer function’s magnitude versus frequency. To solve
for the two unknown parameters, we need at least two equations based on two different
transfer function magnitudes, measured at two different frequencies. If experimental data
is available at a large set of excitation frequencies, one can use optimization methods to

find the best fit values of the two unknown parameters.

Experiment Designs for Model Identification

We present model identification experiments for two cases with two different flame
locations. The intent is to illustrate the broad applicability of this article’s optimal
experimental design methods. Two experimental design variables, namely, flame location
and co-flow velocity, determine the temperature distribution along the Rijke tube. With
different temperature distributions, the acoustic characteristics of the combustion system
are also different. Thus, our examination of two different cases with different flame
locations makes it possible to illustrate the benefits of optimal experimental design for

combustors with different acoustic characteristics.

We characterize the temperature distribution inside the tube with experimental
measurements obtained via K-type thermocouples. The gas temperature downstream of
the flame decreases in both the positive axial and radial directions due to the co-flow’s
existence and heat loss to the surrounding environment. To match the simplified step
distribution in the model in Fig. 2, we average the downstream temperature
volumetrically to a constant. The resulting step temperature distributions along the Rijke
tube for the two cases are summarized in Table 1. The heat release remains constant for

the two cases because of the same combustion equivalence ratio. The downstream



temperature changes because of the changes in flame location: the higher flame location
causes a slight increase of the temperature by approximately 4°C in the product region
because distance available for heat loss to the environment is shorter when the total length

of the Rijke tube is fixed.

Table 1. Cases with characterized temperature distribution

Variable Case 1 Case 2
b [m] 0.3 0.4
up [m/s] 2 2
T [°C] 21.0 21.0
T> [°C] 67.1 71.0
Experimental Design

For each one of the two experimental cases, we identify the parameters £ and 8 from
measurements of the system’s transfer function magnitudes at multiple frequencies. As
defined in Eqn. (6), we add an acoustic signal as input to the system from a speaker and
measure the output pressure oscillations along the Rijke tube using PCB 113B24 series
pressure transducers. We collect the pressure signal using a dSPACE DS1104 board at a
specified sampling rate f; = 20 kHz and recording duration t;. As indicated in the sub-
sections “Benchmark — Broadband Frequency Response” and “Optimal — Two-Frequency
Response”, data acquisition time lengths are 20 seconds and 4 seconds for the benchmark
case and optimal case, respectively. The measurement uncertainty of the pressure
transducers is 0, = 7 Pa and the number of repeated measurements is N, = 50 (N, =

2.2
Zop

4W2

) to ensure sufficient statistical power with 95% confidence and +2a,, error bounds

(W = 4) in measuring the output pressure oscillations.



Benchmark - Broadband Frequency Response

Thermoacoustic systems are typically identified by measuring the frequency-
domain response of the system at a range of frequencies (Epperlein ef al. 2015). Based
on the measured frequency response, researchers usually choose a rational transfer
function with an appropriate order to represent the identified system. Then they determine
the coefficients in the transfer function expression using the least-mean-squares (LMS)
method over the frequency range of interest. In our work, we apply this method as a
benchmark to identify the two parameters. The frequency response range we select for
the benchmark cases is from 400 Hz to 800 Hz, which avoids low frequencies that can
blow off the flame easily but still covers the third and fourth acoustic modes of the system.
The frequency of the input signal varies linearly for 20 seconds, at a variation rate of 20
Hz/s, and a fast Fourier transform is used for obtaining an empirical transfer function
from the resulting time series with a frequency resolution of 5 Hz. Then there are 81
points in showing the frequency response of the transfer function magnitude in the
frequency range from 400 Hz to 800 Hz, with an increment of frequency 5 Hz. For the
sensor placement, the optimal location for the pressure transducer is the location closet to
the Rijke tube inlet, which is concluded in the following sub-section “Optimal

Experimental Design — Two-Frequency Response”.

Optimal Experimental Design — Two-Frequency Response

In the previous sub-section, we apply a broad band signal as the input to identify the
thermoacoustic model parameters in a Rijke tube combustion system. As a comparison,
we conduct an optimal model identification experiment based on the designs achieved
from Fisher information analysis. The optimization problem aims to minimize the
resulting parameter estimation uncertainties. We apply Fisher identifiability analysis to

obtain a quantification of the lower bound of parameter estimation uncertainty. In this



case, the determinant of the Fisher information matrix is the scalar objective for
optimization, subject to constraints on input frequencies and sensor placement along the
Rijke tube.

Fisher identifiability analysis has been commonly used to estimate uncertainties
of system characteristics such as initial conditions, state variables, or certain parameters
when measurements are limited (Sharma and Fathy 2014, Mendoza et al. 2016). Prior to
using Fisher identifiability analysis, we make the following assumptions. First, we
assume a constant variance of output pressure measurements no matter where the pressure
transducer is placed and what excitation frequencies are used. The second assumption is
that there is no uncertainty in the measurement of input particle velocity. As a result, the
magnitude of the measured system transfer function, which is defined as the ratio of
pressure to particle velocity, is only affected by uncertainties from pressure magnitude
measurement. Third, we assume that the estimation process furnishes unbiased estimates
of the unknown parameters (Tg = Tq rye Bo = Bo true)- Lastly, we assume independent,
identically distributed errors in measuring the transfer function magnitude, as indicated

in Eqn. (9).
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The subscript “m” in Hy, ,, (x, s) denotes measurements. The function G(x, s, 5)
describes the modelled transfer function magnitude |H, (x, s)| based on the estimated

parameter vector 8, with definitions in Eqn. (10) and Eqn. (11).
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In the thermoacoustic model, the two estimated parameters have different units
and orders of magnitude. To make them comparable, we define a normalized parameter
estimates vector 8 in Eqn. (10) with each parameter normalized by its corresponding
nominal value. The definitions of the nominal values are in Eqn. (11). In this equation,
the nominal flame location, by, is 0.25 m and the nominal bulk flow velocity, u,, is the
same as co-flow velocity u;,.

In Eqn. (9), the probability density function represents the likelihood that
observed discrepancies between the estimated and measured system transfer functions are
mere outcomes of measurement noise. Maximum likelihood estimation methods,
including least squares estimation, attempt to maximize this likelihood function. The idea
is to minimize systematic errors in system identification by finding those parameter
estimates for which the estimation residuals are most likely to be consequences of
measurement noise. When such maximum likelihood estimation is performed, the
expected value of the Hessian of the likelihood function with respect to the unknown
parameters is called the Fisher information matrix, F (5) Intuitively, the larger this
expected value, the “sharper” the likelihood function will be around the maximum
likelihood estimation results, which implies more accurate parameter estimation. This
intuitive result is formalized mathematically through the Cramér-Rao theorem, which
states that the best-achievable unbiased parameter estimation covariance is equal to the
inverse of the Fisher information matrix, assuming this inverse exists. Stated
mathematically, the Cramér-Rao lower bound (CRLB) is given by Eqn. (12).

-1
var(e) l [ 2Inp( |Hn,m|;0) l (12)

20; 69

The Fisher information matrix is strongly influenced by the sensitivity of the

likelihood function to the underlying unknown parameters. Intuitively, the more sensitive



the likelihood function is to the underlying unknown parameters, the more accurately they
can be determined via maximum likelihood estimation. Mathematically, this insight
translates into the following relationship between the Fisher information matrix and the

sensitivity of the likelihood function with respect to the underlying parameters:
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Given the definition of the likelihood function, one can rewrite the Fisher
information matrix in terms of the thermoacoustic system’s transfer function G (x, S, é),

as follows:
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In Eqgn. (15), w is the acoustic excitation frequency, N is the number of model
identification tests, each test occurring at an individual frequency. According to Eqn. (12),
the covariance matrix Cg quantifying the parameter estimates uncertainties is no smaller
than the Fisher information matrix inverse, as expressed in Eqn. (16).

_ iy o2 [Fa —Fpp
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Minimizing this lower bound will, in theory, furnish better (i.e., more accurate)
bounds on the best-achievable parameter estimation accuracy levels for the two unknown

combustion model parameters. This explains the frequent use of Fisher information



maximization as a tool for optimal experimental design in the literature. One common
optimization metric is the determinant of the Fisher information matrix, but other
optimization metrics are possible, including maximizing the trace and/or eigenvalues of
this matrix (Mehra 1974, Pronzato 2008), respectively. This article uses D-optimality,
i.e., the optimization of the determinant of the Fisher information matrix, as its optimal

experimental design criterion. This determinant is given by Eqn. (17) below:

1 2
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In Eqn. (17), the Fisher information matrix is calculated based on two excitation
frequencies w; and w,. The Fisher information matrix determinant depends not only on
the case definition parameters - flame location b and co-flow velocity u,, but also on the
experimental design variables - acoustic excitation frequency f,,, and sensor placement
x . This article particularly considers the optimization of the parameter estimation
accuracy by varying the following key experimental design variables: excitation
frequencies f,, and sensor placement x.

We describe the experimental design optimization problem with the statement in
Eqn. (18). The objective of the optimization is to maximize the determinant of the Fisher
information matrix, where G is the modeled transfer function magnitude based on the
estimated parameters, £,and f,,. The subscript “prior” refers to the nominal parameter

values obtained from prior work in the literature (Dowling and Stow 2003).
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The excitation frequency constraint between 400 and 800 Hz is derived from the
fact that longitudinal instabilities in gas turbine technologies are typically found in this
range. Additionally, this frequency range covers two acoustic modes of the
thermoacoustic system, which are the third and fourth modes near 500 Hz and 700 Hz.
An additional frequency constraint is related to the difference between the two test

frequencies, where f;, p and f, ; Tepresent the mf and nf acoustic modes, respectively.

This means that the difference between the two excitation frequencies should be at least
larger than the minimum difference between any two of the first four acoustic modes,
which guarantees that the two frequencies are distinct. Constraints on sensor placement
are dependent on the geometry of the experiment; the closest placement to the Rijke tube
inlet is at 0.041 m (xp,iy ), and it is better to place the sensor upstream of the flame with a

distance of at least 5 cm avoiding high temperature radiation on the sensor.

Parameter Estimates

Benchmark - Broadband Frequency Response

With time series data acquisition of both input acoustic particle velocity and output
pressure, we apply the fast Fourier transform to achieve the frequency response of the

system as the ratio between the normalized pressure spectrum P,(w) and normalized



acoustic velocity spectrum U, (w). The definitions of the normalized input and output are
the same as the definitions in Eqn. (6). Fig. 3 shows one of the repeats of the identified
frequency responses in the two benchmark cases. The co-flow velocity is 2 m/s for both
cases and the flame locations are 0.3 m and 0.4 m. With a chirp signal over frequency
range of 400 to 800 Hz, we capture the third and fourth acoustic resonance modes of the
system. As mentioned earlier, different flame locations cause differences in temperature
distribution and different acoustic characteristics as a result, which can be seen from the
difference of the two modes between the two cases in Fig. 3. The case with a higher flame
location generates a fourth mode approximately 20 Hz lower than that with a lower flame
location. This difference in the system transfer function will be reflected by different

groups of parameters we need to identify.
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Figure 3. Frequency response of the system transfer function magnitude from a

broadband chirp signal input

Based on the measured transfer function magnitudes, we minimize the root-mean-
squares (RMS) of the errors between estimated and measured transfer functions to
identify the parameters £ and f at the frequencies displayed in Fig. 3. The parameter

estimation is stated as the optimization problem in Eqn. (19).



min A|Hy (x, 5)| = j LS (i, @] = 6, (2. B)]

Ny

(11ms < £ <12ms,01 < <5

Af=5HZ,Nf=w+1 (19)
subject to < _ Pn(x,wif)
|Hm'if(x)| - Un(x,wif)
kGif(x,'f,B\) = |H‘n (X,j(l)if,'f,,é)|

The objective of this optimization problem A|H,(x, s)| is the root mean square of

the transfer function magnitude difference between experimental measurements

|Hm'l- ; (x)| and modeling results G; ; (x, t, 8 ) based on estimated parameters. The ranges

of the estimated parameters £ and 8 are 11 to 12 ms and 0.1 to 5, respectively. In the
literature (Dowling and Stow 2003), it was suggested that the range of £ is from 0 to 10,
T is typically the convection time from fuel injection to its combustion. We observed
periodic distributions of time delay estimates and select the current range based on our
experimental setup. The smaller range of f is selected because we found there are no
estimated values of [ greater than 5 in the initial estimation with a larger range from 0 to
10.

The parameter estimation problem in Eqn. (19) is non-convex because of the
periodic dependence of the transfer function magnitude on the time delay in acoustic
systems. There exist multiple local optimal parameter groups to match the measured
transfer function magnitudes. So, we apply a genetic algorithm (GA) solver to find the
estimates of time delay % and amplification factor §. The genetic algorithm uses the
settings outlined in Table 2. Fig. 4 shows the distribution of the estimated time delay 7

and amplification factor 8 from 50 repeated experiments in the two cases.

Table 2. GA settings for parameter estimates in the benchmark case



Options Values

Generation number 300

Population size 2000

Crossover fraction 0.85

Crossover function crossoverarithmetic
Selection function selectionroulette
Function tolerance 0.001

Mutation function mutationadaptfeasible
Computational time [s] 185

The bottom two histograms in Fig. 4 show the distribution of the RMS difference
between modeled and measured non-dimensional transfer function magnitudes. The RMS
values of the difference for the two cases are mainly around 0.02, which are at the same
order of magnitude as the absolute normalized transfer function magnitude, as shown in
Fig. 3. This indicates that the parameter estimation based on a chirp signal excitation does

not ensure a gOOd accuracy.
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Figure 4. Parameter estimates from a broadband chirp signal in the benchmark case

The top two subplots in Figure 4 show the distribution of the two estimated
parameters for the two cases, separately. A 95% confidence ellipse is also plotted to show
the covariance of the two estimated parameters. The ellipse in case 1 with » = 0.3 m is
slightly more inclined compared with that in case 2 with b = 0.4 m, which means that the
two parameters are more correlated in cases 1 than those in case 2. For both cases, the
standard deviations of amplification factor estimate f are around 0.4. The standard
deviations of time delay estimate 7 are slightly different between the two cases. For the
case with lower flame height at 0.3 m, the time delay estimate 7 achieves a larger standard
deviation of 0.25 ms compared with the standard deviation of 0.07 ms in the case with
higher flame height. Considering the dimensionless uncertainties normalized by the

estimated nominal parameter values B, = 1.5 and £, = 11.5 ms, the standard deviation



of the estimated time delay is at least one order of magnitude smaller than that of the
estimated amplification factor. This difference implies that the system's transfer function
magnitude has a stronger dependence on time delay than amplification factor, as indicated
by Figure 5 in the authors’ previous work (Chen et al. 2019), and other works earlier in

the literature (Venkataraman ef al. 1999, Lieuwen ef al. 2001).

Optimal Experimental Design - Two-Frequency Response

In the last sub-section, we apply a chirp signal as an input to identify the thermoacoustic
model parameters in a Rijke tube combustion system. The large difference between the
experimentally-observed and modeled transfer function magnitudes indicates inaccurate
parametric identification in this benchmark case. As a comparison, we conduct an optimal
model identification experiment based on the optimization process outlined in section
3.1.2. To make a more direct and fair comparison between the benchmark and optimal
experimental designs, we do not use the nominal parameters identified from benchmark
case as the prior nominal values for optimal experimental design, otherwise we will have
different prior information between benchmark and optimal cases. Instead, we start with
the same prior information as that in benchmark case and adopt the nominal values of the
two parameters from the current literature as the reasonable prior information of the
system we work on. For experimental design optimization, the prior nominal values of
the two parameters in the literature (Dowling and Stow 2003) are: , = 0.5 and 75 =
2 ms. In the Fisher information matrix determinant optimization with prior nominal
values of the two parameters, we achieve an optimal experimental design for the
thermoacoustic model identifiability in the optimal case. Because both the excitation
frequencies and sensor placements are discretized with finite numbers, we apply a grid

search method to achieve the optimal combination of the three design variables that leads



to the largest Fisher information matrix determinant.

The experimental design variables for the two cases are shown in Table 3. The
two optimal excitation frequencies in the two cases are close to the third and fourth
acoustic modes in the system. At the two optimal frequencies, we achieve higher signal-
to-noise ratios when measuring the magnitude of the frequency response, which helps to
decrease the parameter estimate uncertainties. The optimal sensor location is always at
0.041 m, which is the sensor placement closest to the Rijke tube inlet. This optimal sensor
placement is located near the acoustically closed boundary where the acoustic reflection
coefficient is nearly 1, resulting in a pressure anti-node with highest oscillation amplitude.

After achieving the optimal experimental designs, we implement them in the
laboratory. We apply two sinusoidal waves with two frequencies as the input and measure
the output pressure at optimal sensor placement to estimate the two parameters of the
thermoacoustic model. The data acquisition takes four seconds for a single repetition and
we use the same number of repetitions as the benchmark case (namely, 50 repetitions) in

order to achieve a fair comparison of results.

Table 3. Optimal experimental design for thermoacoustic model identifiability

Variable Case 1 Case 2
fex,1 [HZ] 501 525
Jex2 [Hz] 710 726
Xo [m] 0.041 0.041

We apply the same optimization technique as in the benchmark case to estimate
the two parameters. The only difference lies in number of frequencies in the objective
function (namely, two frequencies instead of 81). To solve the optimization problem, we

also apply a genetic algorithm with the same settings as in the benchmark case in Table



2. The computational time for the optimal case is approximately 18 seconds for one
repetition, which is nearly 10% of that of the benchmark case due to the reduction in the
number of excitation frequencies. In each case, 50 repetitions of the model identification

experiments generate 50 groups of the two parameter estimates.
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Figure 5. Parameter estimates from the optimal experimental design

The two histograms in Figure 5 provide the RMS of the difference between
modeled and measured transfer function magnitudes in the two cases, where the
differences are both close to zero. This means that the parameter estimates accurately
describe the combustion instability in the Rijke tube for the two cases. We show the
distribution of the estimated parameters in the top two subplots in Fig. 5. A 95%

confidence ellipse is also included to show the covariance of the two estimated



parameters. Nominal values of the estimated time delay 7, are between 11 and 12 ms for
both cases. However, changing the flame location from 0.3 m to 0.4 m significantly
impacts the amplification factor S, due to the relative position change of the flame to the
pressure node. Whether the heat release location is near the pressure node/anti-node
affects the interaction strength between the oscillations of heat release rate and acoustic
waves. In terms of the estimation accuracy, the standard deviations of both amplification
factor § and £ are both on the order of 1073, The uncertainty levels in estimating /3
and T are comparable, in contrast to the benchmark experiments, where § was estimated
with significantly lower accuracy levels. A detailed summary of both nominal values and
variances of the parameter estimates from benchmark and optimal experimental designs

is presented in the following section.

Parameter Estimates Comparison

Table 4 summarizes the parameter estimation accuracies from all experiments conducted
in this work. The nominal values of the parameter estimates are similar between the
optimal and benchmark cases. The optimal experimental design improves the estimate
accuracy by at least one order of magnitude compared to the benchmark cases, especially
for the amplification factor. The method of optimizing experimental design for parameter
estimates has two main advantages. First, experimental time is significantly reduced from
20 to 4 seconds, with a commensurate reduction in the computational time for parameter
estimation. Second, optimal experimental design improves the accuracy of parameter

estimates by one order of magnitude at least.

Table 4. Summary of parameter estimates in benchmark and optimal cases

Nominal Value Case 1 Case 2

ﬁBenchmark [1] 0.782 2.116




Boptimar [1] 0.827 1.337
Tpenchmark [MS] 11.690 11.514
Toptimal [MS] 11.897 11.724
STD Case 1 Case 2
Beenchmark [11 0.082 0.123
Boptimar [1] 0.003 0.007
Tgenchmark [MS] 0.084 0.069
Toptimar [ms] 0.0065 0.0043

Robustness of LQG Controller based on Identified System

The goal of combustion instability control is to attenuate the pressure oscillation
amplitude when the instability grows. We can apply optimal control with the pressure
oscillation amplitude as the cost to minimize. Linear quadratic Gaussian (LQG) control
is one of the optimal control techniques that can be used for combustion stability control
in the presence of noisy measurement and actuation signals. There have been a number
of applications of LQG control technique to attenuate the combustion instability in the
literature (Hathout ef al. 1998, Annaswamy et al. 2000, Murugappan et al. 2003).

LQG controllers are optimal, in the sense of minimizing combustion instability
oscillations assuming that the system models used for LQG design are accurate. This
optimality comes at a price in terms of robustness: an LQG controller designed to stabilize
a combustion process for a nominal plant may become unstable if the dynamics of the
true plant are sufficiently different from nominal. One pathway for ensuring greater
robustness is to design a control algorithm explicitly for robustness, using methods such
as loop transfer recovery (LTR), H,, control, etc. Optimal experimental design offers an

important complementary pathway: by reducing parameter estimation errors, one can



reduce the uncertainty in the dynamics of the nominal plant model used for control design.
Regardless of the control design scheme used, LQG or otherwise, reductions in plan
model uncertainties lead to greater mathematical assurances (i.e., ‘robustness
guarantees”) for the stability of the resulting controller in the presence of uncertainty. The
goal of this section is to examine this important connection between optimal experimental
design and combustion stability controller robustness.

Specifically, we analyze the robustness guarantees of an LQG controller designed
to attenuate the combustion instability with model uncertainties. The model used for
controller design is identified with the parameters £ and £ estimated from the last section.
Before designing the LQG controller for the nominal plant, we reduce the order of the
original time-delayed thermoacoustic model. Model order reduction generates
approximation errors. However, when we analyze the controller's robustness, we only
consider the uncertainties from parameter estimation and neglect the uncertainties caused
by order reduction errors. We evaluate the robustness of the controller using the structured
singular values of the closed-loop system with the LQG controller designed for the
nominal plant. The smaller parameter estimation uncertainties achieved from the optimal
experimental design should help to design an optimal controller with stronger robustness

guarantees compared to the benchmark case.

Model Order Reduction

The model parameters for the LQG controller design and robustness analysis are from
Table 4. We apply multipoint Padé approximation (Celik ef al. 1995) on the identified
transfer functions to obtain order-reduced models with finite dimensions. In the
approximation, the moment-matching points are near the four acoustic modes and the

order of each moment matching point is two, which means that the approximated model



has an order of eight. The frequencies of the matching points are 108, 311, 535, and 709
Hz for case 1 and 110, 313, 477, and 732 Hz for case 2. As indicated in Fig. 6, the
approximated models keep the original systems' characteristics with small transfer
function magnitude differences, especially near the four acoustic modes. With the
nominal transfer function magnitude around 0.15, the relative differences of the

approximated systems to original systems are not greater than 10% at most frequencies.
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Figure 6. Magnitude error of Padé approximation for the original transfer functions in

both benchmark and optimal cases
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The approximated models maintain the instability characteristics at the same modal
frequencies as the original models. To suppress the combustion instabilities at those
frequencies, we design an LQG controller based on the nominal plant after the multipoint
Pad¢ approximation. The cost function of the LQG controller design J is defined as Eqn.

(20).

J = [T a1 [ ] at (20)



The weighting matrix Q,,, determines the tradeoff between inputs u and states x.
The definition of Q,,, depends on the objective of the LQG controller and we aim to
suppress the pressure oscillation, also as the output of the system. So, the definition of
Q. 1s in Eqn. (21).

0= O Qu=[2] wr w1 =" 0]

We assume that no correlation exists between states and inputs, so the off-
diagonal elements are 0 in matrix Q,,,. The bottom-right element R is selected to be 1
and C in the upper-left element is the output matrix in the state space form. In this
equation, another weighting matrix Q,,, describes the covariance from the two noise
sources: w for processing noise and v for measurement noise. The intensities of Gaussian
white noise sources w and v are selected to be 7 X 1075, which is the uncertainty level
of the normalized pressure measurement, approximately the ratio of the pressure
transducer measurement uncertainty 7 Pa to the atmospheric pressure 1.013 x 10° Pa.

The two noise sources are assumed to be statistically independent.

Multiplicative Uncertainty Weighting Matrix

A closed-loop control system is robust if it retains desirable performance and stability
properties in the presence of modeling errors and uncertainties. One potential source of
modeling errors is the discrepancy between the true order of a system’s dynamics versus
the order of the system model used for control design. This discrepancy can arise from
model order reduction methods, such as Padé approximation. A second potential source
of uncertainty is the potential inaccuracy in estimating the parameters of the system from
experimental data. The robustness analysis in this paper focuses on the latter source of

uncertainty — namely, parameter estimation uncertainty. One important reason for this



focus is that higher-order Rijke tube dynamics tend to be damped in practice: a fact that
is often captured through the addition of a low-pass filter to the n-tau model in the
literature (Bloxsidge et al. 1988, Dowling 1997, Ducruix et al. 2000, Li and Morgans
2015, Zhao and Li 2015). Parameter estimation uncertainties, in contrast, can have a non-
trivial impact on LQG controller robustness. For instance, as illustrated in Table 4, both
of the n-tau model’s two parameters have significant uncertainties from the system
identification tests. We quantify the model's resulting uncertainty by evaluating the

relative difference between the perturbed model G,, and nominal model G,. The definition

of the multiplicative uncertainties is in Eqn. (22).

_ Gp=Go
Go

Ay , G, = (1+4,)G (22)

The multiplicative uncertainty A,, can be replaced by an upper bound weighting

matrix W, (s) , as in Eqn. (23).
Ay (s) =W ()4, Al =1 (23)

Assuming both parameters have an uncertainty of one standard deviation level,
that 7 varies within [f, — 0z, To + 03] and f varies within [ B, — 0ps Bo + op], the
multiplicative weighting matrix W, has a frequency response indicated in Fig. 7 for the
two cases with both benchmark and optimal system identification conditions. Similar to
the parameter estimate uncertainties comparison in Table 4, the multiplicative uncertainty
weights for the benchmark cases are about one order of magnitude higher than those for

optimal cases.
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Structured Singular Value

The multiplicative transfer function H,,,,;; has the corresponding form in Eqn. (24).

0 Wu]

e @4

The output y and input u are connected by the feedback LQG controller. The
uncertain closed-loop system M with feedback control is achieved with a lower linear

fractional transform as in Eqn. (25).
M = Fl(Hmult' _Klqg) (25)

The robustness of the controller can be evaluated by the structured singular
value pup (M) of the closed-loop system M, which describes the gain from disturbance to
error. We apply the MATLAB robust control toolbox to calculate the structured singular

values.



LOG Robustness Comparison

In this section, we compare the robustness of the LQG controller, represented by the
structured singular value of the closed-loop system, between models identified from
benchmark and optimal conditions. The frequency response of the singular value y is

illustrated in the Fig. 8.

~ 10° = . . . . : .

;; 1-benchmark

o == == = 2_benchmark i

E‘ P S I-optimal | ]

————— 2-optimal

s optima “

= / \

=11]

k= N\ R 4

L0t sl B LA

= s> AN RN Rk

8 \‘ﬂ"'l,..h_./.”: ‘_. Mot ".\ -_‘ .:I s

2 R R R e ity

= A R

v 10 L 1 1 E il it 1
100 200 300 400 500 600 700

Frequency f'(Hz)

Figure 8. Frequency response of LQG robustness metric structured singular value u

The structured singular value of a closed-loop dynamic system (i.e., a system with
an active controller) is a function of frequency, as shown in Figure 8. The magnitude of
the structured singular value is an indication of (the lack of) robustness: a larger
magnitude corresponds to weaker robustness guarantees. If the structured singular value
exceeds 10°, at any frequency, for a given closed-loop system, this is an indication of
very poor controller robustness. In such a case, uncertainties in the underlying system’s
dynamics are highly likely to result in instability, even for a nominally stable controller.
As shown in Fig. 8, the optimal experimental design results in lower structured singular
values, for both of the two flame locations considered in this work, at all frequencies.
This shows the degree to which optimal experimental design can furnish stronger
robustness guarantees compared to the benchmark experiment. This improvement in

robustness guarantees is particularly important for the second case (i.e., the second flame



location), where the structured singular value exceeds 1.0 neat 480Hz, indicating very
poor robustness. The use of optimal experimental design mitigates this issue, achieving a

much stronger robustness guarantee.

Conclusions

In this paper, we consider a thermoacoustic model identification and build an experiment
to validate the hypothesis of improving model identification accuracy with applications
of optimal experimental designs. We start from the derivation of a thermoacoustic model
including a linear time-lag model that describes the heat release dynamics in a premixed
flame in a Rijke tube.

As a benchmark case, we apply a linear chirp signal with slowly varying
frequencies as the input to achieve the frequency response of the system. Using the least
mean square method, we estimate parameters £ and £ from experiments by minimizing
the RMS of the magnitude error between measured and estimated transfer functions. It
turns out that it is difficult to achieve an accurate structured model identification with the
chirp signal because the estimated thermoacoustic model fails to describe the system
dynamics accurately at every single frequency within the interested frequency range.

For a comparison to the benchmark case, we apply Fisher identifiability analysis
to optimize the experimental designs for parameter estimates accuracy improvement.
Optimal experimental design outputs two frequencies and one sensor placement for
model identification. We use the same method as that for the benchmark case to estimate
the time lag T and amplification factor § with uncertainties quantified. The optimal
experiment indeed achieves more accurate parameter estimates with smaller

uncertainties. Additionally, it saves 75% of time in model identification experiments and



90% of the computational time in estimating parameters as compared to the benchmark
case.

A negative correlation exists between the system's model uncertainties and the
robustness of the optimal LQG controller, which is within expectation. The system
identification with optimal uncertainty can lead to a controller design with more
confidence in terms of the robustness.

The spirit of this article is to show, using a laboratory experiment, the degree to
which optimal experimental design can lead to more accurate combustion instability
models, and therefore stronger robustness guarantees for active combustion stability
controllers. To the best of the authors’ knowledge, this article is the first contribution to
the literature that uses laboratory experiments to illustrate these important insights. By
necessity, we perform this illustration for a specific combustion stability model (namely,
the so-called “n-tau” model), a specific stability controller (namely, LQG control), and a
specific combustor (namely, a flame-driven Rijke tube). However, the primary tool
illustrated in the paper (namely, Fisher information-based optimal experimental design)
is applicable to other combustion stability control problems, and has been widely adopted
in the literature for experimental design problems beyond the field of combustion stability

control.
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