
ar
X

iv
:1

80
7.

10
14

1v
1 

 [g
r-

qc
]  

25
 Ju

l 2
01

8

Symmetries of Cosmological Cauchy Horizons

with Non-Closed Orbits

Vincent Moncrief

Department of Physics and Department of Mathematics,

Yale University, P.O. Box 208120, New Haven, CT 06520, USA.

E-mail address: vincent.moncrief@yale.edu

James Isenberg

Department of Mathematics,

University of Oregon,

Eugene, OR 97403, USA.

E-mail address: isenberg@uoregon.edu

(Dated: July 27, 2018)

We consider analytic, vacuum spacetimes that admit compact, non-degenerate

Cauchy horizons. Many years ago we proved that, if the null geodesic generators of

such a horizon were all closed curves, then the enveloping spacetime would necessarily

admit a non-trivial, horizon-generating Killing vector field. Using a slightly extended

version of the Cauchy-Kowaleski theorem one could establish the existence of infinite

dimensional, analytic families of such ‘generalized Taub-NUT’ spacetimes and show

that, generically, they admitted only the single (horizon-generating) Killing field

alluded to above. In this article we relax the closure assumption and analyze vacuum

spacetimes in which the generic horizon generating null geodesic densely fills a 2-

torus lying in the horizon. In particular we show that, aside from some highly

exceptional cases that we refer to as ‘ergodic’, the non-closed generators always have

this (densely 2-torus-filling) geometrical property in the analytic setting.

By extending arguments we gave previously for the characterization of the Killing

symmetries of higher dimensional, stationary black holes we prove that analytic, 4-

dimensional, vacuum spacetimes with such (non-ergodic) compact Cauchy horizons

always admit (at least) two independent, commuting Killing vector fields of which

a special linear combination is horizon generating. We also discuss the conjectures
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that every such spacetime with an ergodic horizon is trivially constructable from the

flat Kasner solution by making certain ‘irrational’ toroidal compactifications and

that degenerate compact Cauchy horizons do not exist in the analytic case.

PACS numbers: 04.20.Cv, 04.20.Dw

I. INTRODUCTION

To disprove the cosmic censorship conjecture it would suffice to establish the existence

(in a suitable function space topology) of an open set of globally hyperbolic solutions to

the vacuum Einstein equations which are each extendible, through Cauchy horizons, beyond

their maximal Cauchy developments. Analytic examples of such extendible spacetimes in-

clude the Taub metric on S3 × R and the flat Kasner metric on T 3 × R. Each of these

solutions can be (analytically) extended through a compact Cauchy horizon to include an

acausal region containing closed timelike curves. If this feature were actually stable against

sufficiently small perturbations then cosmic censorship would be false.

To study this stability question, within the convenient framework of (real-)analytic met-

rics, one can employ a straightforward generalization of the Cauchy-Kowalewski theorem

to prove the existence of infinite dimensional families of ‘generalized Taub-NUT’ vacuum

spacetimes, with a variety of spatial topologies, which each, as in the examples mentioned

above, contain a compact Cauchy horizon separating globally hyperbolic and acausal regions

[1, 2]. These families, large though they are, fail to disprove cosmic censorship for several

reasons.

First of all every such generalized Taub-NUT solution admits at least one Killing vec-

tor field—a vector which is spacelike in the globally hyperbolic region, null on the Cauchy

horizon (and hence tangent to the horizon’s null geodesic generators) and timelike in the

acausal extension. Thus these particular families could not possibly fill (even densely) an

open subset of generically non-symmetric solutions in any reasonable function space topol-

ogy. Secondly, even within the circumscribed context of analytic metrics admitting at least

one Killing field they require a further special restriction upon their ‘initial data’ (which,

by exploiting analyticity and the extended Cauchy-Kowalewski theorem can be specified on

the horizon itself) which, roughly speaking, corresponds to a Lagrangian submanifold of the
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full set of solutions of the chosen (one-Killing-field) symmetry type. To rigorously treat the

complementary family of one-Killing field metrics (i.e., to relax the Lagrangian submanifold

restriction) has necessitated a still further generalization of the Cauchy-Kowalewski theorem

through the development of so-called Fuchsian methods [3–5] but the spacetimes obtained

by these techniques typically exhibit strong curvature singularities instead of Cauchy hori-

zons and so are inextendable beyond their maximal Cauchy developments. Finally the

generalized-Taub-NUT solutions are all (real) analytic which many might regard as an arti-

ficial restriction to place on any supposedly physically relevant family of vacuum spacetimes.

Since the presence of a Killing field seemed to play a crucial role in the construction

of these generalized Taub-NUT spacetimes it is of interest to ask whether perhaps the

occurrence of such a field was in fact necessary for the existence of a compact Cauchy

horizon, at least in the (vacuum) analytic case. In earlier articles [6–8] we showed that

this was indeed the case provided that the null-generating geodesic curves which foliate the

horizon are all closed. While this might at first seem to be an unduly artificial restriction

upon the geometry of the horizon we now believe that it represents the least constraining

assumption and that the failure of all the null generators to be closed implies the existence

of at least a second Killing field. By contrast the known (analytic) solutions with all closed

generators need only have the single Killing field which is tangent to the horizon’s generators.

In this paper we prove, under certain assumptions, that the occurrence of an (analytic)

compact Cauchy horizon with non-closed generators implies the existence of at least one

Killing field—always tangent to the horizon’s generators—and we have already shown else-

where that the presence of such a Killing field with non-closed integral curves implies the

existence of a second Killing field [8]. We know of examples (see below) in which even a

third Killing field is required by the special nature of the geometry but we do not have a

systematic treatment of this case which are refer to as ‘ergodic’.

The main assumption we need, in addition to analyticity and the imposition of the

vacuum field equations is that the compact Cauchy horizon be non-degenerate in the sense

that at least one (and hence, as we prove, every in the case of a connected horizon) of

its null geodesic generators be incomplete in one direction. In fact we do not know of an

example of a degenerate Cauchy horizon (though compact, degenerate null hypersurfaces

which are not Cauchy horizons can certainly exist for (electro-)vacuum spacetimes) and, in

the case of closed generators we could even prove their non-existence on certain topologies.
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We suspect that degenerate compact Cauchy horizons may not exist in general for analytic

(electro-)vacuum spacetimes but do not have a proof of this surmise. The second assumption

we require is that the horizon be non-ergodic in the sense that it not be densely filled by

the orbit of any single geodesic generator. Examples of vacuum spacetimes with ergodic

Cauchy horizons do exist and can be created from the flat Kasner metric through spatial

compactification with an ‘irrational’ shift in the obvious identifications to produce a toroidal

horizon which each null generator densely fills. We suspect that, up to finite covers, these

solutions (which have the extra, third Killing field alluded to above) may exhaust the vacuum

ergodic horizon cases but also have no proof of this conjecture. On the other hand the

ergodic case could, to some extent, be treated by a straightforward generalization of the

techniques developed here provided that the assumed compact Cauchy horizon admits an

analytic foliation with compact (2-dimensional) leaves, transversal to the given the null

geodesic ‘flow’. While we also impose the vacuum field equations it seems quite likely that

our results could be readily generalized to allow for certain types of matter sources. Indeed

the original results for closed generators were derived for the electro-vacuum field equations.

Analyticity is the final restrictive assumption that we make but this hypothesis has a

certain double-edged quality that makes it seem less objectionable than it appears at first

sight. First of all, if a genuine open set (in some suitable function space topology) of vacuum

spacetimes admitting compact Cauchy horizons did exist it would presumably contain a large

(perhaps densely filling) subset of analytic solutions. Thus one could expect to probe such

a set by focusing on its analytic elements. Secondly, analyticity serves, by its very rigidity,

to exclude the occurrence of many exotic types of cosmological boundaries which could oth-

erwise occur through suitable (non-analytic) ‘fine-tuning’ of the ‘initial data’. For example

in the special case of polarized Gowdy metrics on T 3 × R one can exploit non-analyticity

to produce a large variety of, highly non-generic, cosmological boundaries involving such

exotica as Kantor sets of curvature singular regions interspersed with complementary sets of

non-singular Cauchy horizon [9]. The fine-tuning of the data needed to produce these exotica

is incompatible with analyticity so that, in concentrating on analytic solutions, one avoids

being distracted by such mathematically allowed but non-generic features. Any truly generic

feature should survive analytic approximations. Thus analyticity is actually an advantage

rather than a liability if only stable properties are of interest.

The main difficulty in treating the problem of non-closed generators considered here, over
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and above those already handled for the closed generator case, is a proof that the candidate

vector field for the horizon generating Killing field is in fact analytic. Otherwise much of

the argument goes through in essentially the same way as for the closed generator case. The

hypothetical Killing field, restricted to the horizon, is everywhere parallel to the generators

and so already determined up to a multiplicative factor. We define this factor (in the non-

degenerate case wherein every generator is incomplete to the future) by the requirement

that the future affine length of every null geodesic generator be a fixed positive number 2/k

provided one takes the initial condition for the generator starting at an arbitrary point p

of the horizon to have its tangent vector given by the hypothetical Killing field X(p) at

that point. In other words one adjusts the multiplicative factor until each generator (taken

with these rescaled initial conditions) has future length 2/k. The technical problem is then

to prove that the needed rescaling factor is in fact analytic. In the closed generator case

we found an explicit formula for this factor from which its analyticity was apparent but

here we seem to need a more subtle argument involving the convergence of a sequence of

analytic approximations to the needed rescaling factor. Unfortunately though since real

analytic functions do not form a nice Banach space (with the norm of uniform convergence)

we have had to ‘artificially’ complexify the analytic structure of the horizon and carry out

the convergence argument in the complexified context, extracting the desired analyticity

of the real section at the end of this analysis. While workable this complicating feature is

rather disappointing in comparison with the simplicity of the corresponding closed generator

argument and so one wonders whether perhaps a further simplification could be found for

the present problem.

Our results have some natural correspondences with those for the (Killing) event horizons

of stationary black holes and one can compactify these latter horizons to obtain examples

(in certain cases) of ‘cosmological’ compact Cauchy horizons of the sort we are interested

in. In the black hole case, for which there is a natural normalization of the Killing horizon

generator, the constant k is essentially the so-called surface gravity of the horizon [10].

It might seem that one could produce examples of degenerate Cauchy horizons (having,

by definition, k = 0) by compactifying the event horizons of extreme black holes. The

simplest (electro-vacuum) example however is provided by the extreme Reissner-Nordstrom

metric with horizon generating Killing field given, in standard coordinates, by ∂
∂t
. We can

compactify the horizon at r = r+ = M to S2 ×S1 by identifying the points labeled {t, θ, ϕ}
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with those labeled {t + ℓ, θ, ϕ} for a fixed constant ℓ 6= 0. However the extreme black hole

metric has ∂
∂t

· ∂
∂t

= −
(

1− M
r

)2
so that the generating vector field ∂

∂t
, tangent to the S1

fibers, has closed timelike orbits on both sides of the compact null surface at r = M which

can therefore not be a Cauchy horizon. A similar phenomenon occurs for the more general

extreme Kerr-Newman solution.

Though the Killing field or fields we produce via the extended Cauchy-Kowalewski the-

orem are possibly only determined by convergent expansions in some neighborhood of the

assumed Cauchy horizon it is straightforward to show that these automatically propagate

(as solutions of Killing’s equation) to the full maximal Cauchy development on the globally

hyperbolic side of the horizon. This follows from the well-known fact that in (for simplicity)

a vacuum spacetime any Killing field satisfies a linear hyperbolic equation which in fact

preserves the vanishing of the Killing form for the propagated vector field [6, 11].

II. CONSTRUCTION OF THE CANDIDATE VECTOR FIELD

A. Geometrical Assumptions and Basic Constructions

We shall be considering real analytic, time orientable, vacuum spacetimes ((4)V, g) which

contain compact Cauchy horizons. More precisely, we assume that (4)V = M × R, where M

is a compact, connected, analytic and orientable three-manifold without boundary, and that

g is an analytic, Lorentzian, Ricci-flat metric on (4)V . We also assume that ((4)V, g) admits a

compact, embedded null hypersurface N, which can be realized as a level surface of some real

analytic function τ with no critical points on a neighborhood of N, and that N is a Cauchy

horizon for one of the two open submanifolds of (4)V which N separates. Thus we regard (4)V

as a disjoint union (4)V+ ∪N ∪ (4)V− where (4)V± = M ×R± (with R± = {r ≷ 0} and assume

that at least one of the two spacetimes ((4)V+, g+), (
(4)V−, g−) (where g+ and g− represent the

restriction of g to (4)V+ and (4)V− respectively) is globally hyperbolic. For convenience, we

may assume that the function τ has been chosen so that N coincides with the level surface

of τ having the level value τ = 0.

Since N is null and since by assumption τ has no critical points on a neighborhood of

N, the vector field (4)X determined by dτ (i.e. given in local charts by (4)Xα = gαβτ,β) is

non-vanishing on a neighborhood of N, null on the surface N and thus tangent to the null
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geodesic generators of that surface. Let X designate the restriction of (4)X to the null surface

N so that X may be viewed as a vector field defined on N itself.

Since X is non-vanishing and tangent to the null geodesic generators of N, one can always

choose local coordinates {xa, x3} on suitable open subsets of N such that the {xa |a =

1, 2} are constant along the null generators and such that X = ∂
∂x3 within each such local

chart. One can construct such charts in the following way. Choose a two-disk D which is

(analytically) embedded in N and transversal to the flow of X and let {xa} be coordinates

on D. Define coordinates {xa, x3} on a tubular neighborhood ≈ D×I of D in N by requiring

that the xa remain constant along the integral curves of X and that x3 coincide with the

natural integral curve parameter determined by X (after fixing, say, x3 |D = k(xa) for some

real analytic function k defined on D). The range of x3 may, for convenience, be allowed to

vary from generator to generator with, for example, k(xa) − δ−(x
a) < x3 < k(xa) + δ+(x

a)

where δ± are two strictly positive real analytic functions. On the connected components of

the domains of intersection of any two such local charts, the two sets of coordinate functions

{xa, x3}, {xa′ , x3′} are clearly related by a transformation of the form

x3′ = x3 + h(xa)

xa′ = xa′(xb)
(II.1)

where h is an analytic function and xa′(xb) a local (analytic) diffeomorphism defined on

some transversal two manifold which lies in the domains of both charts.

We shall often consider local charts of the type described above not only for the fixed

vector field X but also for other analytic vector fields defined on N which are tangent to its

null generators. If K is some non-vanishing vector field on N tangent to the generators of N

and we set up local charts of the type described above based on K (rather than on X ), then

the connected components of the domains of intersection of the new charts (say, {x3′ , xa′}
with K = ∂

∂x3′ ) with the old ones {x3, xa} for which X = ∂
∂x3 necessarily admit coordinate

transformations of the form

x3′ = h(x3, xa)

xa′ = xa′(xb)
(II.2)

where, as before, xa′(xb) is a local diffeomorphism and where ∂h
∂x3 6= 0.

Let {xa, x3} be local coordinates of the type described above defined on some domain

U ≈ D × I lying in N and adapted to some fixed non-vanishing vector field K (i.e., chosen
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so that K = ∂
∂x3 within the chart) which is tangent to the null generators of N. Then one

can always construct a local chart {t, xa, x3} on some domain (4)U of (4)V which intersects

N in U, for which the hypersurface U = N ∩ (4)U corresponds to the level value t = 0 and

in terms of which the Lorentzian metric g takes the convenient form

g = dt⊗ dx3 + dx3 ⊗ dt

+ ϕ dx3 ⊗ dx3 + βa(dx
a ⊗ dx3 + dx3 ⊗ dxa)

+ µab dx
a ⊗ dxb.

(II.3)

By construction, the coordinates, restricted to the null surface t = 0, coincide with those

of the original chart defined on U and because N is null and g is Lorentzian, the metric

functions obey

ϕ|t=0 = βa|t=0 = 0, (II.4)

with µab pointwise positive definite (as a 2 × 2 symmetric matrix). The construction of

such local charts on suitable domains in ((4)V, g) was discussed in detail in section II B of

Ref. [6] and need not be repeated here. The local (analytic) coordinate functions {t, xa, x3}
are uniquely determined by the local chart {xa, x3} defined on U ⊂ N and by the coordinate

conditions implicit in the desired metric form (II.3).

Because of their resemblance to gaussian normal coordinates (but with ∂
∂t

tangent to

null geodesics transversal to N instead of timelike ones), we called the coordinate systems

for which g takes the form (II.3) and satisfies (II.4) gaussian null coordinates. In the

present context, when we wish to emphasize that the coordinates have, in addition, been

adapted to some particular vector field tangent to the generators of N (i.e., chosen so that

∂
∂x3

∣

∣

t=0
coincides with the given vector field) we shall refer to them as adapted gaussian null

coordinates or agn coordinates for brevity.

The Einstein equations are written out in detail in an arbitrary gaussian null coordinate

chart in Section II C of Ref. [6]. As in that reference, we shall often use the notation of

an overhead nought to signify restriction to the null surface N (labeled in gaussian null

coordinates by t = 0). Thus, for example, we shall often write µ̊ab for µab|t=0, etc., and can

therefore reexpress Eqs. (II.4) as ϕ̊ = 0, β̊a = 0.
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B. Invariance of the Transversal Metric

Consider an arbitrary two-disk D which is analytically embedded in N and which is every-

where transversal to the null generators of that hypersurface. In a gaussian null coordinate

chart which covers D, it is clear that D has a coordinate characterization of the form,

t = 0, x3 = f(xa) (II.5)

for some real analytic function f. (Here the {xa} range over those values corresponding to

the generators which intercept D.) From Eqs. (II.3), (II.4) and (II.5) one sees that g induces

a Riemannian metric µD, given by

µD = µab|x3=f(xc)dx
a ⊗ dxb (II.6)

on D. If we let D flow along the integral curves of the vector field K = ∂
∂x3 associated (at

least locally) to the chosen chart, then we get a one-parameter family Dλ of embeddings of

D in N characterized by

t = 0, x3 = f(xa) + λ (II.7)

and a corresponding family of metrics µDλ
given by

µDλ
= µab|x3=f(xc)+λdx

a ⊗ dxb. (II.8)

Here λ ranges over some open interval containing λ = 0.

Locally one can always choose a particular vector field K tangent to the null genera-

tors of N such that the integral curves of K coincide with the affinely parametrized null

geodesics generating N (i.e., such that the curves {xa(λ)} defined by t(λ) = 0, xa(λ) =

constant, x3(λ) = x̊3 + λ are affinely parametrized null geodesics generating (a portion of)

N, with λ an affine parameter). K is of course not unique (since there is no canonical

normalization for λ along each generator) but can be fixed by prescribing it at each point

of some transversal two-manifold. In general, K may also not be extendable to a globally

defined vector field on N (since the affinely parametrized generators of N may be incom-

plete wheras the flow of a globally defined vector field on the compact manifold N must be

complete) but this is of no consequence in the following construction. For any point p ∈ N

choose a disk D which contains p and is everywhere transversal to the null generators of N.

Construct, on a neighborhood of D in N, a vector field K of the type described above and
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let {xa} = {t, x3, xa} be an agn coordinate chart adapted to K (i.e., so that ∂
∂x3 = K is thus

tangent to the affinely parametrized generators of N ). Now let D flow along the integral

curves of K to get a one-parameter family of embedded disks Dλ and a corresponding family

of induced Riemannian metrics µDλ
as described above.

In terms of this construction, one can compute the expansion θ̂ of the null generators at

p by evaluating

θ̂(p) =

(

∂

∂λ
ℓn(detµDλ

)

)
∣

∣

∣

∣ λ=λ(p)
xa=za(p)

. (II.9)

It is not difficult to verify that this definition is independent of the particular choice of

transversal manifold D chosen through p and of the particular coordinates {xa} used to

label the generators near p. In fact, this definition of θ̂ is equivalent to the usual definition

of the expansion of the null generators of a null hypersurface.

In our case, however, N is not an arbitrary null surface. It is, by assumption a compact

Cauchy horizon in a vacuum spacetime. For such a hypersurface Hawking and Ellis have

proven the important result that θ̂ vanishes at every point p ∈ N [12, 13]. Thus in an agn

coordinate chart adapted to K one has

(detµab),3|t=0 = 0 (II.10)

at every point of N covered by the chart. However, the Einstein equation R33 = 0, restricted

to N, yields

R̊33 = 0 =

[

(

ℓn
√

det µ
)

,33

+
1

2
ϕ,t

(

ℓn
√

detµ
)

,3

+
1

4
µacµbdµab,3µcd,3

]
∣

∣

∣

∣

t=0

(II.11)

in an arbitrary gaussian null coordinate chart (where (detµ) ≡ det (µab)). Combining

Eqs. (II.10) and (II.11), we see that µab,3|t=0 = 0 throughout the local chart adapted to

K.

From this result, it follows easily that the metric µD induced upon an arbitrary disk

transversal to a given bundle of null generators of N is, in fact, independent of the disk

chosen. To see this one computes, recalling Eqs. (II.3) and (II.4), the metric induced upon

an arbitrary such disk D (satisfying t = 0, x3 = f(xa)). From the result that µab,3|t=0 = 0
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it follows that this induced metric is independent of the function f (which embeds D in the

given bundle) and hence of the particular transversal disk chosen. Though this calculation

was carried out using a special family of charts, the definition of the induced metric is a

geometrical one and thus the invariance of this metric (relative to an arbitrary displacement

along the null generators of N ) is independent of any choice of charts.

The invariance of this transversal metric will play an important role in the sections to

follow. Notice that if one starts at a transversal disk D and flows along the generators of N,

then one may eventually reach another disk D′ transversal to the same bundle of generators

which partially or completely coincides with D. Indeed, upon application of the Poincaré

recurrence theorem in the next subsection, we shall see that this always happens and that

every null generator of N is either closed or comes arbitrarily close to closing. By the result

of the preceding paragraph, the metric µD′ induced on D′ is isometric to the metric µD

induced upon D (since the transversal metric is invariant under the flow which carries D

to D′). If the null generators intersecting D were all closed curves this would hardly be

surprising since D would eventually coincide with D′ and the isometry would simply be the

identity map. In the non-closed case of primary interest here, however it leads to non-trivial

restrictions upon the transversal metric µD. For example, suppose U ⊂ D is an open subset

of D which, upon translation along the generators of N, reintersects D in another open set

U ′. There is a natural diffeomorphism ϕU of U and U ′ defined by this translation mapping

and, from the invariance of the transversal metric, it follows that

µD|U ′ = ϕ∗

U(µD|U) (II.12)

i.e., that (U, µD|U) and (U ′, µD|U ′) are isometric with ϕU the isometry. Of course ϕU may

have some fixed points (corresponding to (non-generic) closed null generators) but, for the

cases of interest here, ϕU is not simply the identity map (even if U = U ′) since, generically,

the generators will not be closed. Thus open subsets of (D, µD) will be non-trivially isometric

to other open subsets of this same space and, as we shall see from the recurrence theorem,

there will be infinitely many such local isometries of (D, µD) due to the fact that a generic

generator intersecting D will reintersect D in infinitely many distinct points.
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C. Application of the Poincaré Recurrence Theorem

In this subsection we shall show that the Poincaré recurrence theorem [14, 15] can be

applied to the flow on N generated by the vector field X defined in section IIA. Using

this theorem we shall then show that every point p ∈ N , when mapped sufficiently far

(in either direction) along the flow of X, returns arbitrarily closely to its initial position.

When combined with the isometric character of this flow (relative to the transversal metric)

derived in the previous subsection, this result will lead to very stringent restrictions upon

the topological nature of the flow.

Since our spacetime ((4)V, g) is, by assumption, both non-compact and time-orientable, it

necessarily admits a global, smooth timelike vector field V which, without loss of generality,

we may assume has been normalized to unit length (i.e., to have g(V, V ) = −1). Since V is

timelike, it is necessarily transversal to the null surface N. This follows from noting that the

normalization condition, evaluated in a gaussian null coordinate chart, reduces to

− 1 = g(V, V )|N = {2V tV 3 + µabV
aV b}|t=0 (II.13)

which clearly implies that V t is nowhere vanishing. Expressed more invariantly this

statement is equivalent to g(X, V )|N 6= 0 since, in an arbitrary agn chart adapted to

X, g(X, V )|N = V t|t=0. Assume for definiteness that V t|t=0 > 0 everywhere on N (i.e.,

in every agn chart adapted to X on N ).

Following Hawking and Ellis [16], we define a positive definite metric g′ on (4)V by setting

g′(Y, Z) = g(Y, Z) + 2g(Y, V )g(Z, V ) (II.14)

for any pair of vector fields Y, Z defined on (4)V . This metric induces a Riemannian metric

(3)g′ on N given, in an arbitrary gaussian null coordinate chart, by the expressions

(3)g′33 = (2V tV t)|t=0

(3)g′3a = (2µabV
bV t)|t=0

(3)g′ab = (µab + 2µacV
cµbdV

d)|t=0

(II.15)

and having the natural volume element

√

det (3)g′ =
(

21/2V t
√

detµ
)
∣

∣

∣

t=0
. (II.16)
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Since X = ∂
∂x3 in an agn chart adapted to X, we have

(3)g′(X,X) = (3)g′33 = (2V tV t)|t=0 (II.17)

as a globally defined, nowhere vanishing function on N. Using this non-vanishing function

as a conformal factor, we define a second Riemannian metric (3)g on N, conformal to (3)g′,

by setting

(3)g =

(

1

V t

)2/3
∣

∣

∣

∣

∣

t=0

(3)g′. (II.18)

The natural volume element of (3)g is thus given by

√

det (3)g =

(

1

V t

)
∣

∣

∣

∣

t=0

√

det (3)g′

=
(

21/2
√

detµ
)∣

∣

∣

t=0

(II.19)

Computing the divergence of X with respect to the metric (3)g, we find

∇(3)g ·X =
1

√

det (3)g

∂

∂xi

(

√

det (3)gX i
)

=

(

1√
detµ

∂

∂x3

(

√

detµ
)

)∣

∣

∣

∣

t=0

= 0

(II.20)

which vanishes by virtue of the result of Hawking and Ellis cited in the previous section

(i.e., by virtue of the invariance of the transversal metric µ̊ab relative to the flow along X ).

Equation (II.20) can be equivalently expressed as

LX

(

√

det (3)g
)

= 0 (II.21)

where L signifies the Lie derivative. Thus the volume element of (3)g is preserved by the flow

along X.

It follows from the above that if {fλ|λ ∈ R} is the one-parameter family of diffeomor-

phisms of N generated by X and if D is any measurable region of N with volume (relative to

(3)g) vol(D) then vol(fλD) = vol(D) ∀λ ∈ R. Since N is compact and fλ is volume preserv-

ing, the Poincaré recurrence theorem may be applied and has the following consequences.

Let p be a point of N and U be any neighborhood of p and, for any λ0 6= 0, consider the

sequence of iterates fnλ0 (for n = 1, 2, . . .) of f ≡ fλ0 and the corresponding sequence of

(equal volume) domains U, fU, f 2U, . . . , fnU, . . .. Poincaré’s theorem shows that there al-

ways exists an integer k > 0 such that fkU intersects U and thus that, in any neighborhood
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U of p, there always exists a point q which returns to U under the sequence of mappings

{fn}.
The above results together with those of the previous subsection show that any point

p ∈ N eventually return to an arbitrarily small neighborhood of p (after first leaving that

neighborhood) when followed along the flow of X. The reason is that since, by construction,

X has no zeros on N, every point p ∈ N flows without stagnation along the integral curves

of X, first leaving sufficiently small neighborhoods of p and then, by Poincaré recurrence,

returning arbitrarily closely to p.

It may happen that a point p may actually flow back to itself, in which case the generator

it lies on is closed, but for the generic points of interest here, the generators will not be closed

and the flow will only take p back arbitrarily closely to itself.

D. Implications of Poincaré Recurrence for the Transversal Metric

Consider a null generator γ of N which passes through a point p and let D be a disk in

N, containing p, which is (analytically) embedded transversally to the null generators which

intersect it. If we follow γ starting at p then Poincaré recurrence shows that we will either

return to p (in which case γ is closed) or else intersect D in a sequence of points which

approach p arbitrarily closely.

The Riemannian metric µD induced upon D is analytic. Suppose for the moment that it

has non-constant scalar curvature (2)R(µD). By analyticity, (2)R(µD) has non-zero gradient

on an open dense subset of D and thus, by the implicit function theorem, the connected

level set of (2)R(µD) passing through a point p at which (2)R(µD) has non-zero gradient is an

analytic curve in D, at least sufficiently near the point p.

If γ is not closed, then it must reintersect D in an infinite sequence of points {pi} which

approach p arbitrarily closely. Furthermore, by invariance of the transversal metric along

the flow, each of the pi must lie on the same level curve of (2)R(µD) that p does. In fact

the recurrences determined by the reintersections of γ with D must densely fill the whole

(connected) level set containing p. This follows from the fact that a recurrence which carries

p to some sufficiently nearby point p′ a metrical displacement δ from p (along the given level

set of (2)R(µD)) carries p
′ (again by invariance of the transversal metric along the flow) to a

point p′′ which is displaced 2δ from p, etc. Thus one gets recurrence by integral multiples of
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δ until eventually the recurrent points ‘run off the edge’ of D. Since, however, by Poincaré

recurrence, δ can be made arbitrarily small by choosing p′ suitably from the sequence {pi}
and since one gets displacements of opposite sign by simply tracking the flow backwards,

it’s clear that the recurrences of p densely fill a (connected) component of the level set of

(2)R(µD) on which p lies. Furthermore, since each of these recurrences is induced by a local

isometry of (D, µD), as described in section IIB, it follows that if p is a point at which

(2)R(µD) has non-zero gradient, then the whole connected level set of (2)R(µD) containing p

consists of points of non-zero gradient of (2)R(µD). Thus this entire level set (and not just a

portion near p) is an analytic curve lying in D.

If, by contrast, γ is a closed generator then, by invariance of µD, points near p have all of

their recurrences a fixed metrical distance from p, and thus all lie on metrical circles centered

at p. These circles are (at least generically) curves on which grad (2)R(µD) is non-zero and

hence are either densely filled by recurrences of points lying on them or else consist of points

which all lie on closed generators. In either case, the interior of such a metric circle (contained

in D and centered at p) is mapped repeatedly to itself by iterations of the isometry defined

by the first recurrence. This isometry either corresponds to a ‘rational’ rotation (in which

each point advances by a rational multiple of the circumference of the circle on which it

lies), in which case every point lies on a closed generator, or to an ‘irrational’ rotation in

which every metrical circle centered at p is densely filled by the recurrences of any single

point lying on it.

Thus, for the case in which (2)R(µD) is non-constant, we find that non-closed generators

densely fill smooth curves lying in D whereas closed generators are either surrounded by

other closed generators which (as a straightforward extension of the above argument shows)

fill D or else are surrounded by non-closed generators which densely fill sufficiently small

circles about the given point of intersection of the closed generator with D.

Using the connectedness and compactness of N and the analyticity and invariance of the

transversal metric it is clear that one can ‘analytically extend’ the above argument to show

that either (i) every generator of N is closed ( a case which we have treated elsewhere), or (ii)

almost every generator densely fills an analytic curve lying in any transversal embedded disk

which that generator intersects. In the latter case, one may also have isolated instances of

closed generators but these will, as we have seen, be surrounded by densely filling generators

which are thus generic.
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Consider the closure in N of any one of these densely filling generators γ. Let cl(γ)

designate this subset of N. Clearly cl(γ) intersects any disk D transversal to γ in an analytic

curve satisfying (2)R(µD) = constant (since γ itself densely fills this curve). Locally, therefore,

cl(γ) is obtained by translating such a transversal, analytic curve along the flow of X and

thus defines an analytic surface embedded in N. Since cl(γ) is a closed subset of the compact

set N, the embedded surface defined by cl(γ) is thus a compact, connected embedded sub-

two-manifold of N. We want first to show that cl(γ) is in fact also orientable and thus, since

it supports a smooth, nowhere vanishing tangent vector field (that induced by X ), that it

must be diffeomorphic to a two-torus.

First, note that the value of (2)R(µD) at a point p ∈ D ⊂ N is (by invariance of the metric

µD under the flow along X ) independent of the choice of disk D. Any other transversal disk

containing p would yield the same value for the scalar curvature function at p. Thus the

transversal metric, though not really defining a metric on N, nevertheless defines an analytic

function, (2)R(µ) : N → R, on N given by setting

(2)R(µ)(p) = (2)R(µD)(p) (II.22)

for any p ∈ N , where D is any transversal disk containing p. By construction, (2)R(µ) is

constant along the generators of N and hence constant on the closure cl(γ) of any such

generator. Indeed, each cl(γ) is just a connected component of a level set of (2)R(µ).

At a generic point p ∈ N , the differential d(2)R(µ)(p), will by analyticity, be non-zero

and, by invariance of µ along the flow of X, this differential will be non-zero at every point

along the generator γ which passes through p. By continuity d(2)R(µ) will thus be non-zero

everywhere on cl(γ) as well. Choosing a Riemannian metric (3)g′ on N (such as that discussed

in section IIC) one computes from d(2)R(µ) an associated vector field, ∇(2)R(µ) which is

everywhere non-zero and everywhere metrically perpendicular to cl(γ). Thus ∇(2)R(µ) is

perpendicular to X at every point of cl(γ). Using the metric (3)g′ and its associated volume

3-form one can define a ‘cross-product’ of X and ∇(2)R(µ) by taking the dual of the wedge

product of the corresponding one-forms and ‘raising the index’ of the resulting one-form.

This yields another smooth vector field which is tangent to cl(γ), nowhere vanishing and

everywhere perpendicular to X. Thus X together with this ‘cross-product’ vector field, define

an orientation for cl(γ) which is thus necessarily orientable.

Therefore, any of the embedded two-manifolds, cl(γ), on which d(2)R(µ) is non-zero is
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(since compact, orientable and supporting a smooth non-vanishing vector field) necessarily

a two-torus. By analyticity these are generic, since d(2)R(µ) can vanish only on isolated

curves (corresponding to closed generators) or two-manifolds. The latter are necessarily tori

as well since they can be shown to be orientable by a different argument.

To see this, we need to show that the compact two-manifold cl(γ) can be assigned a

smooth, nowhere vanishing normal field. Let p be a point in cl(γ) and let D be a disk in N

(transversal to the flow of X as usual) which contains p as an interior point. We know that

cl(γ) intersects D in an analytic curve and that the recurrences of p, followed to the future

along the integral curve of X through p, densely fill this curve in D. Suppose that one of

these future recurrences of p is a point p′ ∈ D ∩ cl(γ) which lies a metrical distance δ (as

measured along the curve D ∩ cl(γ) with respect to the metric µD) from the point p. The

point p′ is uniquely determined by the point p and the distance δ since if, on the contrary,

there were another future recurrence point p′′ of p, an equal distance from p (but on the

opposing side of the curve D∩ cl(γ) from p′), then the same isometry which carries p to the

future to p′ would carry p′′ to the future to p. But this would imply that γ is closed which

is contrary to our assumption that cl(γ) is a closed two-manifold densely filled by γ.

The same isometry which uniquely carries p to p′ carries any point q ∈ D ∩ cl(γ), suf-

ficiently near to p, to a uniquely determined point q′ ∈ D ∩ cl(γ) a metrical distance δ

from q (as measured, as before, along the curve D ∩ cl(γ) by means of the metric µD). It

now follows from translating D along the flow of X and appealing to the invariance of the

transversal metric and the fact that γ densely fills cl(γ) that any point q ∈ cl(γ) lies in a

transversal disk Dq which also contains a uniquely defined future recurrent point q′ which

lies a metrical distance δ along Dq ∩ cl(γ) from q (as measured by the transversal metric).

A unique vector can now be defined at q which is orthonormal (as measured relative

to the Riemannian metric (3)g′ defined on N ) to the embedded two-manifold cl(γ). To see

this, choose a disk Dq containing q (e.g., a translate along the flow of X of the original

disk D) which intersects cl(γ) in an analytic arc which contains the unique future recurrent

point q′ a metrical distance δ from q. By parametrizing this arc with an orientation defined

by the direction leading from q to q′ (along the segment of length δ) we can compute a

vector at q by calculating the tangent vector at this point. This vector depends upon the

choice of disk Dq but, after taking its cross product with X (using the metric (3)g′ as before)

and normalizing to unit length, we get a uniquely defined unit normal vector to cl(γ) at
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the arbitrary point q. That this choice varies smoothly with the choice of point q ∈ cl(γ)

can be seen as follows. The parametrized arc through q has a smoothly varying tangent.

Translating this curve along the flow of X and appealing to the invariance of the transversal

metric we can generate locally (i.e., on a neighborhood of q in cl(γ) a smooth tangent field

to cl(γ) which, together with the cross product and normalization construction described

above, determines a locally smooth unit normal field to cl(γ). However, this normal field is

globally unique and thus, since smooth on a neighborhood of any point of cl(γ), defines a

globally smooth normal direction to cl(γ). Thus cl(γ) is, as before, a compact, orientable

embedded two-manifold in N which supports a nowhere vanishing vector field (e.g., X or

the cross product of X with the normal field). As such it must be a torus.

Thus the level sets of (2)R(µ) in N consist of at most a finite collection of closed generators

(by compactness of N and the fact that these circles are isolated for the cases of interest

here) together with a foliation of the complement of these circles by embedded two-tori.

Each closed generator (if any exist) lies at the core of a family of nested tori. Each torus in

the complement of the closed generators is densely filled by an integral curve of X, i.e., by

the generator γ whose closure cl(γ) defines the chosen torus. In fact, from the invariance of

the transversal metric along the flow of X, it follows that every integral curve of X lying in

cl(γ) is densely filling. Thus there are no fixed points (X is nowhere zero) or periodic orbits

lying in any cl(γ) ≈ T 2.

The only cases which remain to be considered are those for which (2)R(µD) is a constant

on some transversal disk D. By analyticity it follows that (2)R(µ) is necessarily constant

everywhere on N. Evidently, there are three distinct possibilities corresponding to the met-

ric µD (defined on any transversal disk) being spherical ((2)R(µD) > 0), pseudo-spherical

((2)R(µD) < 0), or flat ((2)R(µD) = 0). We shall show for the first two of these cases that

again the closure, cl(γ), of any non-closed generator γ is an embedded, compact two-manifold

diffeomorphic to T 2. For the third case, when µD is flat, another possibility arises, which

we shall call ‘ergodic’, in which a generator γ can densely fill N itself. That such ergodic

Cauchy horizons actually occur in solutions of Einstein’s equations can be seen by taking

the flat Kasner solution and spatially compactifying it, with suitable identifications, to yield

a vacuum spacetime defined on T 3 × R which has a Cauchy horizon N ≈ T 3. The most

obvious identification leads to a Cauchy horizon with all generators being closed but one

can exploit the spatial homogeneity of the Kasner solution to make an ‘irrational shift’ in
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the coordinates of the points being identified in such a way that the null generators of the

Cauchy horizon N now densely fill N. One can of course also do this in such a way that the

generators again only densely fill two-tori instead of T 3. Nevertheless, the ergodic case does

exist. We shall not deal with it here but mention the conjecture that every ergodic solution

is essentially equivalent to (i.e., finitely covered by) one of the ergodic flat-Kasner solutions

described above.

Assume now that (2)R(µ) is a non-zero constant on N, and let p be an arbitrary point of

N. Choose a circular transversal disk Dp(δ) centered at p and having radius δ (as measured

along radial geodesics of the spherical or pseudo-spherical metric µD). Let p flow to the

future along X until it first reintersects Dp(δ) at some interior point p′. By assumption p′ is

the first future recurrence of p to the interior of Dp(δ). Let δ− ε > 0 be the radial distance

from p to p′ and let Dp′(ε/2) ⊂ Dp(δ) be a circular disk of radius ε/2 centered at p′. We

know that there is a unique isometry, determined by the flow along X, which carries the

corresponding disk Dp(ε/2) centered at p to Dp′(ε/2). This isometry is the restriction of

an orientation preserving isometry of the sphere or pseudo-sphere to the subdomain defined

by Dp(ε/2) and, as such, belongs to a uniquely defined one-parameter subgroup of the full

(spherical or pseudo-spherical) orientation preserving isometry group.

The action of this subgroup is generated by a unique Killing field K of the manifold

(D, µD). From Killing’s equation, LKµD = 0, one gets that µD(K,K), the squared length

of K, is constant along the orbits of the one-parameter subgroup generated by K (i.e.,

LK (µD(K,K)) = 0 on D). Since µD(K,K) is analytic and non-constant (since we have

excluded the flat case for the present), its level sets are analytic curves which coincide with

the orbits generated by K. Let cp be the orbit through p generated by K ; this is just a

connected component of the level set of µD(K,K) determined by the value of this function

at p. What we want to show is that every future recurrence of p, sufficiently near p, actually

returns to, and in fact, densely fills, the curve cp. This will guarantee, by arguments similar

to those given above, that the closure of the orbit γ of X through p is in fact a torus

embedded in N as before.

First note that not only is p′ the first future recurrence of p to the disk Dp(δ) but also

the first recurrence of p to the smaller disk Dp(δ − ε/2). Indeed, by choosing η > 0, small

enough it is clear that we can ensure that p′ is the first future recurrence of p to any disk

of the type Dq(δ − ε/2) where the distance d(q, p) from p to q (as measured by the metric



20

µD) is less than η. In particular, we clearly need η < ε/2 but let us take η sufficiently

small so that the disk, Dp(η), of radius η centered at p, intersects the level set of µD(K,K)

corresponding to the level value µD(K,K)(p) only along an arc of cp (i.e., if this level set

includes disconnected components we choose η small enough so that Dp(η) excludes them).

Further require (if necessary) that η < ε/4 so that any point of the disk Dq(δ − ε/2), for

which d(q, p) < η < ε/4, is at least a distance greater than η from the boundary of the

original disk Dp(δ). This ensures that the first recurrence of any point q ∈ Dp(η) to the disk

Dq(δ−ε/2) must be given by that isometry which carried p to p′ (and Dp(ε/2) to Dp′(ε/2)).

The reason is that, if this were not the case, then the distinct isometry which first carries

q to some q′ ∈ Dq(δ − ε/2) would take p to some point p′′ distinct from p′ (since we are

excluding the case of a closed generator through p) which lies within Dp(δ) (since p′′ lies

within a distance η of q′ and every point of Dq(δ − ε/2) is at least a distance η from the

boundary of Dp(δ)). But this contradicts the original assumption that p′ was the first future

recurrence of p to Dp(δ).

Thus the first future recurrence of any q ∈ Dp(η) to the disk Dq(δ − ε/2) is in fact that

q′ which is determined by the unique isometry which carries Dp(ε/2) to Dp′(ε/2) (and, of

course, p to p′).

Now, let q ∈ Dp(η) be some subsequent future recurrence of p to Dp(η). We want to

show that q ∈ cp so suppose this is not the case. This would mean that q and its image

q′ (under the isometry which carries Dp(ε/2) to Dp′(ε/2)) lie on some other level set of

µD(K,K) corresponding to a level value different from that determined by cp (i.e., different

from µD(K,K)(p)). This is impossible however, since the point q′ represents the first future

recurrence of q to Dq(δ − ε/2) whereas q is a future recurrence of p. But the invariance

of the transversal metric along the flow of X implies the triple (q, q′, Dq(δ − ε/2)) must be

an isometric copy of the triple (p, p′, Dp(δ− ε/2)) which results from simply translating the

original triple along the flow until p gets mapped to q, etc. However, that means that p and

q (as well as p′ and q′) must both lie on the same level of µD(K,K) and hence both lie on

cp.

Thus all (future) recurrences of p sufficiently near p must lie on the analytic curve cp ⊂
Dp(δ) which contains p. A completely analogous argument shows that the same is true

for past recurrences of p. Since these recurrences must approach p or, in fact, any of its

recurrences on cp arbitrarily closely it is clear that, as before, the recurrences of p densely fill
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the analytic curve cp ⊂ Dp(δ). Translating this curve along the flow generated by X yields

an analytic surface through p defined locally by the foregoing constructions. Thus near any

point p ∈ N the closure cl(γ), of the orbit of X through p is an analytically embedded

two-dimensional submanifold of N. Since cl(γ) is closed in N and N is compact, cl(γ) must

as before be a compact submanifold of N which supports a (smooth) nowhere vanishing

vector field (e.g. X itself). We can now use the same argument as that given above for

those (isolated) manifolds having ∇(2)R(µ) = 0 to show that cl(γ) is orientable and hence a

torus.

This argument breaks down in the case (2)R(µ) = 0 (i.e., when µ is flat) but only if

the isometry carrying p to p′ is a pure translation (since then and only then is µD(K,K)

constant on D). The flat case still allows special cases for which cl(γ) is a two-torus and

in those instances the arguments to follow go through equally well. But the flat case also

allows more general patterns of recurrence in which cl(γ) is not simply a 2-manifold, but

may in fact be all of N. We shall refer to these more general cases as ‘ergodic’ and shall not

deal with them in the following. It is worth noting, however, that if an ‘ergodic’ flow on

N generated by X happened to admit a global transversal foliation with closed leaves (i.e.,

compact embedded two-manifolds everywhere transversal to the flow of X and intersected

by every orbit) then we could treat this case as well by a modification of the arguments to

be given below.

Thus the picture we have developed that N contains, at most, a finite number of closed

generators and that any non-closed generator γ yields an embedded two-torus in N as its

closure applies to every case except the ergodic ones for which (2)R(µ) is necessarily zero.

E. A Connection on N and some associated ‘ribbon arguments’

Let (4)Y and (4)Z be any two smooth vector fields on ((4)V, g) which are tangent to N (i.e.,

for which (4)Y t|t=0 = (4)Zt|t=0 = 0 in an arbitrary gaussian null coordinate chart). Then,

computing the covariant derivative ∇(4)Y
(4)Z, determined by the spacetime metric g, observe

that the resulting vector field is automatically also tangent to N as a consequence of the

invariance property of the transversal metric which was derived in Sect. II B (i.e., of the result

that µ̊ab,3 = 0). This fact, which corresponds to the vanishing of the connection components

Γt
ij|t=0 (for i, j = 1, 2, 3), in turn implies that N is totally geodesic (i.e., that every geodesic
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of g initially tangent to N remains in N through its entire interval of existence).

If Y and Z designate the vector fields on N induced by (4)Y and (4)Z respectively, then we

can, by virtue of the above remarks, define a connection (3)Γ on N by means of the following

defining formula for covariant differentiation

(3)∇YZ ≡
(

∇(4)Y
(4)Z

)
∣

∣

N
. (II.23)

Here the right hand side symbolizes the vector field naturally induced on N by ∇(4)Y
(4)Z. A

straightforward computation in gaussian null coordinate charts (restricted to N ) shows that

(

(3)∇Y Z
)k

= Y jZk
,j +

(3)Γk
ijZ

iY j (II.24)

where

(3)Γk
ij = Γk

ij |t=0 (II.25)

and where Γα
βγ are the Christoffel symbols of gαβ . The components of (3)Γ are given explicitly

by

(3)Γ3
33 = −1

2
ϕ̊,t ,

(3)Γ3
a3 = −1

2
β̊a,t

(3)Γ3
ab = −1

2
µ̊ab,t ,

(3)Γd
33 = 0

(3)Γd
3a = 0, (3)Γd

ab =
(2)̊Γd

ab

(II.26)

where (3)Γk
ij =

(3)Γk
ji and where the (2)̊Γd

ab are the Christoffel symbols of the invariant transver-

sal metric µ̊ab(x
c).

A similar calculation shows that if (4)Ω is a one-form on ((4)V, g) and Ω its pull-back to N

then the pull-back of ∇(4)Y
(4)Ω is given by (3)∇YΩ where, as expected,

(

(3)∇YΩ
)

i
= Y jΩi,j − (3)Γk

ijY
jΩk. (II.27)

Now, recall the fixed vector field X which was introduced in Sect. IIA, and, for simplicity,

work in agn charts adapted to X so that X = ∂
∂x3 . For an arbitrary vector field Z defined

on N we find, by a straightforward computation, that

(3)∇ZX = (ωX(z))X (II.28)

where ωX is a one-form given, in the agn charts adapted to X, by

ωX = −1

2
ϕ̊,tdx

3 − 1

2
β̊a,tdx

a. (II.29)
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The exterior derivative of ωX is readily found to be

dωX =− 1

2
(ϕ̊,ta − β̊a,t3)dx

a ∧ dx3

− 1

2
β̊a,tbdx

b ∧ dxa.
(II.30)

However, the Einstein equation R3b = 0, restricted to N and reduced through the use of

µ̊ab,3 = 0, becomes (c.f. Eq. (3.2) of Ref. [6]):

ϕ̊,ta − β̊a,t3 = 0. (II.31)

Thus dωX reduces to

dωX = −1

2
β̊a,tbdx

b ∧ dxa. (II.32)

In subsequent sections, we shall be studying integrals of the form
∫

γ

ωX =

∫

γ

(

−1

2
ϕ̊,t

)

dx3 (II.33)

along segments γ of integral curves of X. We shall be interested in comparing the values

of these integrals for nearby integral curves. For that purpose, the following sort of ribbon

argument will prove indispensable.

Let p and p′ be any two points of N which can be connected by a smooth curve which

is everywhere transversal to the flow of X. Let c : I → N be such a curve defined on the

interval I = [a, b] with c(a) = p and c(b) = p′ and let ℓ : I → R be a smooth, strictly positive

function on I. Now consider the strip or ribbon generated by letting each point c(s) of the

curve c flow along X through a parameter distance ℓ(s) (i.e., through a lapse of ℓ(s) of the

natural curve parameter defined by X ). This construction gives an immersion of the ribbon

r =
{

(s, t) ∈ R
2|s ∈ I, 0 ≤ t ≤ ℓ(s)

}

(II.34)

into N which consists of connected segments of integral curves of X. In particular, the

integral curves starting and p and p′ form the edges of the ribbon whereas the initial curve

c together with its image after flow along X form the ends of the ribbon.

If i : r → N is the mapping which immerses r in N according to the above construction

and i∗ωX and i∗dωX are the pull-backs of ωX and dωX to r respectively, then one sees from

Eq. (II.32) and the tangency of the ribbon to the integral curves of X, that i∗dωX = 0.

Therefore, by means of Stokes’ theorem, we get
∫

∂r

ωX =

∫

r

dωX = 0 (II.35)
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for any ribbon of the type described above. Thus if γ and γ′ designate the two edges of r

(starting from s = a and s = b respectively and oriented in the direction of increasing t) and if

σ and σ′ designate the two ends of r defined by σ = {(s, 0)|s ∈ I} and σ′ = {(s, ℓ(s)) |s ∈ I}
respectively (and oriented in the direction of increasing s) then we get, from

∫

∂r
ωX = 0,

that
∫

γ

ωX −
∫

γ′

ωX =

∫

σ

ωX −
∫

σ′

ωX . (II.36)

Equation (II.36) will give us a means of comparing
∫

γ
ωX with

∫

γ′
ωX provided we can

estimate the contributions to
∫

∂r
ωX coming from the ends of the ribbon. As a simple

example, suppose (as we did in Ref. [6]) that every integral curve of X is closed and choose

r and i : r → N so that the image of r in N consists of a ribbon of simply closed curves. In

this case, the end contributions cancel and we get that
∫

γ
ωX =

∫

γ′
ωX . This result played

a key role in the arguments of Ref. [6].

III. ELEMENTARY REGIONS AND THEIR ANALYTIC FOLIATIONS

In the sections to follow we shall define a ‘candidate’ vector field K on N by rescaling X

appropriately, prove its analyticity and eventually show that K propagates into the envelop-

ing spacetime as an analytic Killing vector field. If, for some reason, we knew a priori that

N admitted a global, analytic foliation with closed leaves that are everywhere transverse to

the flow of X then we could proceed with this analysis much as we did for the (higher di-

mensional) stationary black holes of Ref. [10], working ‘globally’ on N by directly exploiting

the special structure provided by its ‘pre-existing’ analytic foliation. Here however no such

analytic foliation has been presumed to exist and indeed the very possibility of global, closed,

transversal leaves might be excluded for purely topological reasons.1 On this account we

shall decompose N, as needed, into a finite collection of elementary regions that will each be

shown to admit an analytic, transversal foliation and carry out the aforementioned analysis

first on the individual elementary regions, much as we did for the case of closed generators

in Ref. [6]. Finally, after verifying the consistency of these constructions on overlapping

domains of definitions, we shall assemble the resulting components and ultimately arrive at

1 For example, even for the case of closed generators of N the integral curves of X might well be the fibers

of a non-trivial S1-bundle as is indeed the case for the Taub-NUT family of spacetimes.
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a globally defined, analytic ‘candidate’ vector field K on N.

Consider any one of the analytically embedded 2-tori discussed in Sect. (IID) that is

realized as the closure, cl(γ), of a (non-closed but densely-torus-filling) generator γ. This

torus supports the flow of a nowhere-vanishing, analytic vector field, namely that induced

from X which, by construction, is tangential to the chosen embedded torus.

Thanks to a theorem due to M. Kontsevic (of which the proof is sketched below in the

Appendix) one knows that such a torus always admits an analytic foliation with closed leaves

that are everywhere transverse to the flow generated by X. We now wish to ‘thicken’ such

an embedded torus to obtain an embedded 3-manifold diffeomorphic to A × S1 (where A
is an open annulus), consisting entirely of generators of N, and to show that this thickened

torus will itself admit an analytic foliation (with leaves each diffeomorphic to A) that is

everywhere transverse to the flow generated by X. Such a thickened torus, together with its

analytic, transverse foliation, will be the first of two types of elementary regions that we

shall define.

The second type of elementary region will only be needed to cover a ‘tubular neighborhood

in N ’ of any particular closed generator γ that might, exceptionally, occur. In this case

we shall ‘thicken’ γ to a solid torus diffeomrophic to D × S1 (where D is an open disk),

consisting entirely of generators sufficiently close to γ, and show that such a solid torus

admits an analytic, transversal of foliation with leaves diffeomorphic to D. For the case of a

non-ergodic flow (as defined in Sect. (IID)) every generator of N is either closed or densely

fills an embedded 2-torus. By the compactness of N such a null hypersurface can clearly be

covered by a finite collection of such elementary regions with those of the second type only

needed in the presence of closed generators.

To construct such elementary regions we shall need an analytic, Riemannian metric on

N. To define such a metric we slightly modify the argument in Sect. (IIC) by now insisting

that the (normalized, timelike) vector field V, which is transverse to N in ((4)V, g), be itself

analytic. Since the timelike condition is an open one and since the normalization of such an

analytic vector field will not disturb its analyticity there is no loss of generality involved in

assuming that the induced Riemannian metric (3)g is in fact analytic on N. Recall that the

metric so defined (via Eqs. (II.13)–(II.18) in fact satisfies

LX

(

√

det (3)g
)

= 0 (III.1)
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on N.

As discussed in the Appendix one constructs an analytic, transversal foliation with closed

leaves for any one of such embedded 2-tori by showing that it always admits an analytic,

closed one-form λ with integral periods that, moreover, satisfies λ(X) > 0. Since any such

λ is locally expressible as λ = dω for some analytic function ω, the level sets of ω define the

leaves of the foliation. Thus ω provides an analytic coordinate function that is constant of

the leaves so-defined. The closure of these leaves and their transversality to X is ensured

by the integrality of the periods of λ and by the condition that λ(X) > 0 everywhere on the

torus. Any two such coordinate functions, ω and ω′, will of course only differ by a constant

on their overlapping domains of definition.

We now ‘thicken’ the chosen 2-torus by flowing along the normal geodesics of the metric

(3)g on N, much as we would in constructing a gaussian-normal neighborhood of the given

torus. By restricting the range of the (normal geodesic) flow parameter suitably one can

ensure that the resulting thickened torus is diffeomorphic to A × S1, where A is an open

annulus corresponding to a thickened leaf of the original torus, and consists entirely of

integral curves of X. By continuity, if this thickening is sufficiently restricted the annular

leaves of the foliated 3-manifold will be globally transverse to X.

We now extend the domain of definition of the analytic, coordinate function ω by requiring

it to be everywhere constant on any one of the thickened leaves. Choosing complementary,

analytic coordinates {xa} = {x1, x2} on one of these annular leaves and holding these fixed

along the flow generated by X while setting x3 = ω one gets a convenient adapted coordinate

chart for the thickened torus ≈ A × S1. Any two such coordinate systems {xa, x3} and

{xa′ , x3′} will be related, on their overlapping domains of definition by a transformation of

the form

x3′ = x3 + constant

xa′ = fa(x1, x2)
(III.2)

where the {fa} define an analytic diffeomorphism of the annulus A. Thus this first type

of elementary region consists of a thickened 2-torus foliated, on the one hand, by the (non-

closed) integral curves of X and, on the other, by annuli transverse to the flow of X.

The second type of elementary region results from thickening a closed generator γ to get

a solid torus with γ at its core. To construct this choose an analytic, ‘angle’ coordinate x3
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to label the points of the chosen generator γ. At each point p of γ we have a corresponding,

orthogonal 2-plane in the tangent space, TpN , defined by the metric (3)g (i.e., the orthogonal

complement to the tangent vector to γ at p). By flowing along the geodesics of (3)g in N we

may thus ‘thicken’ each such point p ∈ γ to a disk Dp which, by construction, is orthogonal

to γ at p. By restricting the geodesic flow parameter suitably (in its dependence upon p and

the orthogonal direction to γ at p) we may ensure that the γ so thickened is diffeomorphic

to D×S1, consists entirely of integral curves of X and is such that each thickened leaf, Dp,

is transverse to the flow generated by X.

By defining an analytic coordinate x3 on D×S1 by holding the chosen angular coordinate

for γ constant on each leaf and by choosing complementary, analytic coordinates {xa} =

{x1, x2} for any one of the transversal disks and holding these constant along the flow of X

we generate an adapted analytic coordinate system for this second type of elementary region.

Any two such coordinate systems, {xa, x3} and {xa′ , x3′}, will be related by a transformation

of the form

x3′ = x3 + constant

xa′ = ga(x1, x2)
(III.3)

on their overlapping domains of definition where now the {ga} define an analytic diffeomor-

phism of the disk.

In the following sections it will be convenient to let the symbol H designate an arbitrary

elementary region of either of the two types. By the compactness of N it is clear that we

can cover N by a finite collection of such elementary regions.

IV. NONDEGENERACY AND GEODESIC INCOMPLETENESS

In this section we shall show, using a ribbon argument, that each null geodesic generator

of N is either complete in both directions (the ‘degenerate’ case) or else that each generator

is incomplete in one direction (the non-degenerate case). More precisely, we shall prove that

if any single generator γ is incomplete in a particular direction (say that defined by X ) then

every other generator of the (connected) hypersurface N is necessarily incomplete in the

same direction. It will then follow that if any generator is complete in a particular direction,

then all must be since otherwise one could derive a contradiction from the first result. We

shall see later that, in the non-degenerate case, the generators which are all incomplete in



28

one direction (say that of X ) are however all complete in the opposite direction (that of

−X).

As usual we work in adapted charts for an arbitrary fundamental region H ⊂ N . For the

calculations to follow however, it is convenient to work with charts induced from adapted

charts on the covering space Ĥ ≈ Σ × R of H 2 for which the {xa | a = 1, 2} are constant

along any given generator and the range of the ‘angle’ coordinate x3 is unwrapped from say

[̊x3, x̊3 + s∗), where s∗ is the ‘recurrence time’ for x3 on H, to cover the interval (−∞,∞).

Projected back to H these induce families of charts {x3, xa}, {x3′, xa′}, etc. related, on their

regions of overlap, by analytic transformations of the form

x3′ = x3 + constant

xa′ = fa(x1, x2).
(IV.1)

By working on the covering space we simplify the notation by keeping the {xa} constant and

letting x3 range continuously over (−∞,∞) in following a given generator as it repeatedly

sweeps through the leaves of the chosen foliation of H. However, one should keep in mind

that this is just an artifice to represent calculations carried out on the elementary region H
in a simplified notation since the compactness of the closure, cl(H), of H in N will play a

key role in the arguments to follow.

Consider a null generator of H developed from ‘initial’ conditions specified at a point

p ∈ H having coordinates {x3(p) = x̊3, xa(p) = x̊a}. The affine parametrization of this

generator is determined by solving the geodesic equations which, for the class of curves in

question, effectively reduce to

d2x3

dη2
− ϕ̊,t

2
(x3, xa)

(

dx3

dη

)2

= 0

xa(λ) = x̊a = constant

(IV.2)

where η is an affine parameter. To complete the specification of initial conditions one needs,

of course, to give an initial velocity dx3

dη
|η̊ (taking dxa

dη
|η̊= 0).

Solving the first order equation
dv

dη
=

ϕ̊,t

2
v2 (IV.3)

2 Where either Σ ≈ A or Σ ≈ D depending upon the type of the elementary region H.
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for v := dx3

dη
to get an integral formula for v and then integrating dη

dx3 = 1
v
with respect to x3

one derives an expression for the affine length of a segment of this null geodesic defined on

the interval [̊x3, x3]:

η(x3, x̊a)− η̊(̊x3, x̊a)

=
1

(dx
3

dη
)

∣

∣

η̊(̊x3 ,̊xa)

x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

dξ(
ϕ̊,t

2
(ξ, x̊a)].

(IV.4)

Thus incompleteness of this generator, in the direction of X = ∂
∂x3 , would correspond to the

existence of the limit

lim
x3→∞

x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

dξ(
ϕ̊,t

2
(ξ, x̊a))]

= (
dx3

dη
)
∣

∣

η̊(̊x3 ,̊xa)
(η(∞, x̊a)− η̊(̊x3, x̊a)) < ∞

(IV.5)

whereas completeness (in this direction) would correspond to the divergence of this limit.

Recalling Equation (II.33), note that the integral of the one-form ωX along the segment γ

defined above is given by
∫

γ

ωX =

x3
∫

x̊3

(−1

2
ϕ̊,t (ξ, x̊

a))dξ (IV.6)

which thus provides an invariant representation of the basic integral arising in the above

formulas.

Suppose that the generator ‘beginning’ at p ∈ H is incomplete in the direction of X. We

want to establish convergence of the corresponding integral for any other generator of H.

Since incompleteness is an asymptotic issue (the relevant integrals being automatically finite

on any compact domain of integration) there is no essential loss of generality in comparing

only those generators that ‘start’ in the slice defined by p. Thus we want to consider

generators ‘beginning’ at points q, having x3(q) = x̊3, and establish their incompleteness

by using a suitable ribbon argument. Furthermore, to have a ‘canonical’ way of defining

our comparison ribbons it will be convenient to localize the calculations somewhat by first

looking only at generators sufficiently near to the ‘reference’ generator. Thus, given a point

p in the initial slice defined by x3(p) = x̊3, we consider only those points q lying in this slice

which, additionally, lie within a closed geodesic ball (relative to the invariant transversal
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metric µ induced on this slice) centered at p and contained within a normal neighborhood of

this point. Any such q can be connected to p by a unique geodesic lying within this geodesic

ball and such points can be conveniently labeled by normal coordinates defined at p (i.e.,

the points of a corresponding, closed ball in the tangent space to the slice at p).

The unique geodesic connecting q to p provides a canonical ‘starting end’ to our compar-

ison ribbon for geodesics emanating from points p and q (in the direction of X ) and, from

invariance of the transversal metric along the flow of X, we get an isometric image of this

connecting geodesic induced on any subsequent slice traversed along the flow.

Let γ be the segment of the null generator beginning at p and defined on the interval

[̊x3, x3], for some x3 > x̊3, and let γ′ be a corresponding segment of the generator beginning

at q and defined on the same interval. From the argument given in Section II E it follows

that
∫

γ

ωX −
∫

γ′

ωX =

∫

σ

ωX −
∫

σ′

ωX (IV.7)

where σ is the geodesic end defined in the starting slice and σ′ its isometric image at the

ending slice.

For fixed p the integral
∫

σ
ωX varies continuously with q as q ranges over a compact set

(the closed geodesic ball centered at p described above) and thus is bounded for all q in this

ball. Furthermore the integral
∫

σ′
ωX varies continuously with q and x3 but, as x3 increases,

the image of p under the flow ranges only over (some subset of) the compact set given by

the closure of H in N whereas the image of q remains always a fixed geodesic distance from

the image of p in the corresponding slice. Since the product of the closure of H with this

(closed) ball is compact the continuously varying integral
∫

σ′
ωX (regarded as a function of q

and x3 for fixed p) is necessarily bounded no matter how large the “unwrapped” coordinate

x3 is allowed to become.

It follows from the forgoing that for any fixed p and q as above, there exists a bounded,

continuous (in fact analytic) real-valued function δp,q(x
3) such that

∫

γ′

ωX =

∫

γ

ωX + δp,q(x
3) (IV.8)
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for arbitrary x3 > x̊3. But this implies that

x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(q))dξ]

=

x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ + δp,q(ρ)]

=

x3
∫

x̊3

dρ exp[δp,q(ρ)] exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ].

(IV.9)

From the boundedness of δp,q

−∞ < b1 ≤ δp,q(ρ) ≤ b2 < ∞, ∀ρ ∈ [̊x3,∞) (IV.10)

it follows that

eb1
x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ]

≤
x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(q))dξ]

≤ eb2
x3
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ]

(IV.11)

∀x3 ∈ [̊x3,∞). But this implies that if the limit

lim
x3→∞

∫ x3

x̊3

dρ exp[−
∫ ρ

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ] (IV.12)

exists, then so must the limit of the monotonically increasing function
∫ x3

x̊3 dρ exp[−
∫ ρ

x̊3

ϕ̊,t

2
(ξ, x̊a(q))dξ] exist as x3 → ∞. Conversely, if the affine length of

γ diverges, then so must that of γ′ by virtue of the forgoing bounds.

So far we have only considered those null generators starting within a geodesic ball cen-

tered at a point p in the initial slice. But from the compactness and connectedness of N

it’s clear that any of its null generators can be thus compared to the original ‘reference

generator’ through a finite collection of such ribbon arguments and thus all of them shown

either to be incomplete in the direction X or else to be complete in this direction. Clearly
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the same argument can be applied in the opposite direction (i.e., that of −X) with a cor-

responding conclusion. However, as we shall see later, the non-degenerate case will always

be characterized by generators that are all incomplete in one direction but complete in the

opposite direction, whereas the degenerate case will be characterized by generators that are

complete in both directions.

V. A CANDIDATE VECTOR FIELD IN THE NON-DEGENERATE CASE

In this section, we focus on the non-degenerate case and, if necessary, change the sign of

X so that it points in a direction of incompleteness for the null generators of N. We now

define a vector field K on N, also tangent to the generators of this hypersurface, by setting

K = uX where u is a positive real-valued function on N chosen so that, for any point

p ∈ N , the null generator determined by the initial conditions (p,K(p) = u(p)X(p)) has a

fixed (i.e., independent of p) future affine length given by 2
k
where k is a constant > 0. At

the moment there is no preferred normalization for k so we choose its value arbitrarily.

From Equation (IV.5) upon putting (η(∞, x̊a) − η̊(̊x3, x̊a)) = 2
k
, we see that u(x3, xa) is

necessarily expressible, in an arbitrary ‘unwrapped’ elementary region Ĥ for N, by

u(x3, xa) =
k

2

∞
∫

x3

dρ exp



−
ρ

∫

x3

ϕ̊,t
2
(ξ, xa)dξ



 . (V.1)

By the results of the previous section, the needed integral converges for every generator and

clearly u > 0 on Ĥ. What is not clear however, in view of the limiting procedure needed

to define the outer integral over a semi-infinite domain, is whether u is in fact analytic

and we shall need to prove that it is. We shall do this below by showing that a sequence

{ui : H → R+ | i = 1, 2, . . .} of analytic ‘approximations’ to u defined by

ui(x
3, xa) =

k

2

x3+is∗
∫

x3

dρ exp



−
ρ

∫

x3

ϕ̊,t
2
(ξ, xa)dξ



 , (V.2)

where s∗ is the recurrence time introduced in Section IV, does indeed have an analytic limit

as i → ∞.

For the moment however, let us assume that we know that K is analytic and introduce

new agn coordinates {x3′ , xa′ , t′} which are adapted to K rather than to X = ∂
∂x3 . Thus
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we seek a transformation of the form {x3′ = h(x3, xa), xa′ = xa} which yields K = ∂
∂x3′ . A

straightforward calculation shows that h must satisfy

∂h(x3, xa)

∂x3
=

1

u(x3, xa)
=

{

1
k
2

∫

∞

x3 dρ exp[−
∫ ρ

x3 dξ
ϕ̊,t

2
(ξ, xa)]

}

(V.3)

which, since the denominator is analytic by assumption and non-vanishing, yields an analytic

h upon integration.

As was shown in Sect. IIIA of Reference [6], a transformation of the above type connects

the primed and unprimed metric functions ϕ̊,t and ϕ̊′

,t′ via

2
∂

∂x3

(

∂h

∂x3

)

+
∂h

∂x3
ϕ̊,t =

(

∂h

∂x3

)2

ϕ̊′

,t′. (V.4)

Computing ∂2h
∂x3 2 from Equation (V.3) above and substituting this and ∂h

∂x3 into the above

formula one finds that the transformed metric has

ϕ̊′

,t′ = k = constant (V.5)

throughout any agn chart adapted to K. This argument is somewhat the reverse of that

given in Reference [6], for the case of closed generators, wherein we set ϕ̊′

,t′ = k and solved

Equation (V.4) for ∂h
∂x3 and then h.

In the new charts one still has ϕ̊′ = β̊ ′
α = 0 since these hold in any agn coordinate system

and, upon repeating the argument of Section IIB above, with K in place of X, we obtain

µ̊′

a′b′,3′ = 0 as well. Now evaluating the Einstein equation R3b = 0 at t = t′ = 0 and using

the foregoing, together with the new result that ϕ̊′

,t′ = k in the primed charts, one finds that

β̊ ′

b′,t′,3′ = 0.

Deleting primes to simplify the notation, we thus find that in agn charts adapted to K,

the metric functions obey

ϕ̊ = β̊a = µ̊ab,3 = 0, ϕ̊,t = constant 6= 0, (β̊a,t),3 = 0. (V.6)

These are the main results we shall need for the inductive argument of Section VII to prove

that there is a spacetime Killing field Y such that Y |N= K.

Referring to Equation (IV.4) and evaluating the integrals in the new charts in which

ϕ̊,t = k = constant > 0 one sees easily that though the null generators are all incomplete

towards the ‘future’ they are in fact all complete towards the ‘past’ (where here future and
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past designate simply the directions of K and −K respectively). It may seem strange at

first glance to say that any generator could have a fixed future affine length (= 2
k
) no matter

where one starts along it, but the point is that this length is here always being computed

from the geodesic initial conditions (p,K(p)). If one starts with say (q,K(q)) and later

reaches a point p on the same generator, then the tangent to the (affinely parametrized)

geodesic emanating from q will not agree with K(p) but will instead equal cK(p) for some

constant c > 1, Only upon ‘restarting’ the generator with the initial conditions (p,K(p))

will it be found to have the same future affine length that it had when started instead

from (q,K(q)). Indeed, if the tangent to an affinely parametrized geodesic did not increase

relative to K then the generator could never be incomplete on a compact manifold N where

the integral curves of a vector field K are always complete.

Let us now return to the question of the analyticity of the ‘scale factor’ u(x3, xa). First

note that, upon combining Equations (V.3), (V.4) and (V.5), u satisfies the linear equation

with analytic coefficients
∂u

∂x3
− ϕ̊,t

2
u = −k

2
(V.7)

provided one takes, as initial condition specified at some x̊3,

u(̊x3, xa) =
k

2

∞
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, xa)dξ]. (V.8)

More precisely, using an appropriate integrating factor for Equation (V.7), namely

exp[−
∫ x3

x̊3 dξ ϕ̊,t

2
(ξ, xa)], one easily shows that the solution to Equation V.7) determined by

the initial condition (V.8) is given by Equation (V.3). But Equation (V.7) can be viewed

as a (linear, analytic) partial differential equation to which the Cauchy Kowalewski theo-

rem applies [17] and guarantees the analyticity of the solution on domains corresponding

(because of linearity) to those of the coefficients (in this case ϕ̊,t(x
3, xa)) provided that the

initial condition u(̊x3, xa) is analytic with respect to the {xa}. In other words, our problem

reduces to that of proving that Equation (V.8) for fixed x̊3, defines an analytic function of

the {xa}. Thus we only need to show that the sequence of ‘approximations’

ui(̊x
3, xa) :=

k

2

x̊3+is∗
∫

x̊3

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, xa)dξ],

i = 1, 2, . . .

(V.9)
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converges to an analytic function of the {xa} for fixed x̊3.

However, a (pointwise) convergent sequence of analytic functions could easily converge

to a limit which is not even continuous much less analytic. On the other hand, the set of

continuous functions on a compact manifold forms a Banach space with respect to the C0

norm (uniform convergence) so that one could hope at least to establish the continuity of

the limit by showing that the sequence {ui(̊x
3, xa)} is Cauchy with respect to this norm.

A much stronger conclusion is possible however, if one first complexifies the slices

x3 = constant of an arbitrary elementary region H ⊂ N (which are each diffeomorphic

to a manifold Σ of the type defined previously) and extends the analytic metric functions

defined on N to holomorphic functions defined on this complex ‘thickening’ of H in the {xa}
directions which extend continuously to the boundary of its closure. The space of holo-

morphic functions on such a complex manifold (with boundary) forms a Banach space with

respect to the C0 norm so that the limit of any Cauchy sequence of holomorphic functions

(which extend continuously to the boundary) will in fact be holomorphic and not merely

continuous [18, 19]. In the following section, we shall define a certain complex ‘thickening’

of N with respect to all of its dimensions (a so-called ‘Grauert tube’) but then, in view of

the discussion in the preceding paragraph, restrict the integration variable x3 defined on an

aribtrary elementary region H to real values so that, in effect, only the leaves of the foliation

of H ≈ Σ× S1 are thickened.

Let us temporarily remain within the real analytic setting to sketch out the basic idea of

the argument to be given later in the holomorphic setting. This detour, though it cannot

yield more than the continuity of u(̊x3, xa) in the {xa} variables, will be easier to understand

at a first pass and will require only straightforward modification for its adaptation to the

holomorphic setting.

For any point p in the slice determined by x3(p) = x̊3 the monotonically increasing,

convergent sequence of real numbers

ui(̊x
3, xa(p)) =

k

2

x̊3+is∗
∫

x̊3

dρ exp[−
ρ

∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(p))]

i = 1, 2, . . .

(V.10)

is clearly a Cauchy sequence which converges to u(̊x3, xa(p)). Thus for any ε′ > 0 there
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exists a positive integer Q such that

| um(̊x
3, xa(p))− uℓ(̊x

3, xa(p)) |< ε′ ∀ m, ℓ > Q. (V.11)

Now consider an arbitrary point q in the initial slice (i.e., having x3(q) = x̊3) that lies within

a closed geodesic ball in this slice which is centered at p (i.e., a ball of the type used in the

ribbon argument of the previous section). By the ribbon arguments given in this last section,

one easily finds that

| um(̊x
3, xa(q))− uℓ(̊x

3, xa(q)) |

=

∣

∣

∣

∣

k

2

x̊3+ms∗
∫

x̊3+ℓs∗

dρ exp[−
ρ

∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(q))]

∣

∣

∣

∣

=

∣

∣

∣

∣

k

2

x̊3+ms∗
∫

x̊3+ℓs∗

dρ exp[δp,q(ρ)]exp[−
ρ

∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(p))]

∣

∣

∣

∣

≤ eb2
∣

∣

∣

∣

k

2

x̊3+ms∗
∫

x̊3+ℓs∗

dρ exp[−
ρ

∫

x̊3

ϕ̊,t

2
(ξ, xa(p))dξ]

∣

∣

∣

∣

= eb2
∣

∣ um(̊x
3, xa(p))− uℓ(̊x

3, xa(p))
∣

∣

(V.12)

for all q in this ball where b2 is a constant that depends upon p and the radius of the chosen

ball. Thus for any ε > 0 we get by choosing ε′ = e−b2ε in Equation (V.11), that

∣

∣ um(̊x
3, xa(q))− uℓ(̊x

3, xa(q))
∣

∣ < ε ∀m, ℓ > Q (V.13)

and for all q in the compact set defined by the chosen (closed) geodesic ball. Thus the

sequence of (real-valued) continuous functions {um(̊x
3, xa(q)) | m = 1, 2, . . .} defined on

this ball is a Cauchy sequence relative to the C0-norm and hence its limit u(̊x3, xa(q)) is

necessarily continuous. By covering the initial slice by a collection of overlapping such balls,

we deduce that u(̊x3, xa(q)) is globally continuous on the initial slice.

VI. ANALYTICITY OF THE CANDIDATE VECTOR FIELD

Recall from Section IIC that one can define a Riemannian metric (3)g on the horizon

manifold N that satisfies LX

√

det (3)g = 0. From the discussion in Section III it is clear

that this metric can always be chosen to be analytic so that in fact (N, (3)g) is a compact,

analytic, Riemannian 3-manifold.
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There is a canonical way of complexifying a compact, analytic Riemannian manifold such

as (N, (3)g)through the introduction of its so-called Grauert tubes [20]. One identifies N with

the zero section of its tangent bundle TN and defines a map ℓ : TN → R such that ℓ(v) is

the length of the tangent vector v ∈ TN relative to the Riemannian metric (3)g. Then, for

sufficiently small s > 0, the manifold (‘Grauert tube’ of thickness s)

T sN = {v ∈ TN | ℓ(v) < s} (VI.1)

can be shown to carry a complex structure for which holomorphic coordinates {zi} can be

defined in terms of analytic coordinates {xi} for N by setting zk = xk+ iyk where y = yk ∂
∂xk

represents a vector in TN . Analytic transformations between overlapping charts for N

extend to holomorphic transformations between corresponding charts for T sN provided that,

as we have assumed, N is compact and s is sufficiently small. For non-compact manifolds

such a holomorphic thickening need not exist for any s, no matter how small, and further

restrictions upon the manifold are in general needed in order to define its Grauert tubes.

When defined, Grauert tubes have an anti-holomorphic involution σ : T sN → T sN given

by v 7→ −v.

It will be convenient to define an auxiliary, analytic Riemannian metric, gH, on each

elementary region of interest H by writing on Ĥ ≈ Σ× R,

gH = (gH)ijdx
i ⊗ dxj

= dx3 ⊗ dx3 + µab(x
1, x2)dxa ⊗ dxb

(VI.2)

and then, as before, identifying the slice at x3 with that at x3 + s∗ via the aforementioned

analytic isometry of (Σ, µ). This metric is adapted to the chosen slicing of H in that each

x3 = constant slice is a totally geodesic submanifold of (H, gH) and furthermore the integral

curves of X = ∂
∂x3 , which is evidently a Killing field of gH, coincide with the geodesics of

(H, gH) normal to the x3 = constant slices.

From the special properties of the metric gH and its geodesics, it is easy to see that if

{xa | a = 1, 2} are normal coordinates for (Σ, µ) centered at a point q ∈ Σ (with, therefore,

xa(q) = 0) then, holding these constant along the flow of X and, complementing them

with the function x3, we get normal coordinates {xi} = {(xa, x3) | a = 1, 2} defined on a

tubular domain in H centered on the orbit of X through q. By shifting x3 by an additive

constant, one can of course arrange that the origin of these normal coordinates for this
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tubular domain lies at any chosen point along the orbit through q. It follows from the

aforementioned property of Grauert tubes that the functions

{zk} = {(zk = xk + iyk) | (y3)2 + µab(x
1, x2)yayb < s} (VI.3)

will provide, for s sufficiently small, holomorphic coordinates on a corresponding complex

thickening of H which we shall denote by T sH.

In the application to follow, as already mentioned in the previous section, we shall set

y3 = 0 and thus focus our attention on ‘thickenings’ of H of the restricted form T sΣ × S1

which are foliated by curves of the type

za(λ) = xa(λ) + iya(λ) = x̊a + i̊ya

= constant,

z3(λ) = x̊3 + λ, y3(λ) = 0,

(VI.4)

with

µab(̊x
1, x̊2)̊yaẙb < s. (VI.5)

The closure T sΣ× S1 ≈ T sΣ × S1, of this manifold results from attaching a boundary to

T sΣ×S1 characterized locally by µab(x
1, x2)yayb = s at all points (x1, x2) ∈ Σ and will also

play a role in the considerations to follow.

Analytic tensor fields defined on N can always, in view of its compactness, be lifted

to define holomorphic fields on thickenings of the type T sH which, furthermore, extend

continuously to the boundary of T sH provided s > 0 is taken to be sufficiently small. The

needed limitation on the size of s arises from considering the radii of convergence of the

local series representations of these fields on the original analytic manifold N but, since

it is compact, a finite collection of such representations suffices to define the field globally

on N and hence a choice of s > 0 is always possible so that a given field on N extends

holomorphically to T sN . Upon restricting such a field to the manifold T sΣ×S1, as defined

by setting y3 = 0, one obtains a corresponding field that is holomorphic with respect to

the {za | a = 1, 2}, real analytic with respect to x3 and which extends continuously to the

boundary of T sΣ× S1 ≈ T sΣ × S1. From our point of view, the important thing is that

such fields form a Banach space with respect to the C0 norm and hence a Cauchy sequence

with respect to this norm will necessarily converge to a holomorphic field with respect to

the {za}.
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To carry out ribbon arguments on the associated complex thickenings over H, we need

to lift the one form ωX , defined in Section II E, to its holomorphic correspondent (c)ωX ,

(c)ωX =− 1

2
(c)ϕ̊,t(z

1, . . . , z3)(dx3 + idy3)

− 1

2
(c)β̊a,t(z

1, . . . , z3)(dxa + idya)
(VI.6)

with

(c)ϕ̊,t(x
1, . . . , x3) = ϕ̊,t(x

1, . . . , x3)

(c)β̊a,t(x
1, . . . , x3) = β̊a,t(x

1, . . . , x3),
(VI.7)

defined on a suitable T sH, where the components (c)ϕ̊,t(z
1, . . . , z3) and (c)β̊a,t(z

1, . . . , z3)

each satisfy the Cauchy-Riemann equations (ensuring their holomorphicity)

∂

∂zk
(c)ϕ̊,t(z

1, . . . , z3)

=
1

2
(
∂

∂xk
+ i

∂

∂yk
)(c)ϕ,t(x

1, . . . , x3, y1, . . . , y3)

= 0 k = 1, . . . , 3

(VI.8)

and similarly for ∂
∂zk

(c)
β̊a.t(z1, . . . , z

3). As a holomorphic one-form (c)ωX has exterior deriva-

tive

d(c)ωX = −1

2
[
∂

∂za
(c)ϕ̊,t −

∂(c)

∂z3
β̊a,t]

· (dxa + idya) ∧ (dx3 + idy3)

− 1

2

∂(c)β̊a,t

∂zb
(dxb + idyb) ∧ (dxa + idya)

(VI.9)

which, in view of the complexified Einstein equation (c.f., Equation (3.2) of Reference [6]),

∂(c)ϕ̊,t

∂za(z)
− ∂(c)βa,t(z)

∂z3
= 0, (VI.10)

reduces to

d(c)ωX = −1

2

∂(c)β̊a,t

∂zb
dzb ∧ dza. (VI.11)

For our purposes, it is convenient to regard Equation (VI.11) as an equation for an

ordinary, complex-valued, one form defined on a real analytic manifold of 6 dimensions with

local coordinates

{wµ | µ = 1, . . . , 6} = {x1, . . . , x3, y1, . . . , y3} (VI.12)
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and with (c)ωX decomposed into its real and imaginary parts as

(c)ωX = {((c)ω(r)
X (w))µ + i((c)ω

(i)
X (w))µ}dwµ. (VI.13)

By appealing to the Cauchy-Riemann equations satisfied by the components, it is easy

to show that the left hand side of Equation (VI.11) is equal to the ‘ordinary’ exterior

derivative of (c)ωX , as rewritten above, with respect to its 6 real coordinates {wµ} =

{x1, . . . , x3, y1, . . . , y3}. The right hand side of this equation can of course be expressed

in the analogous way — as a complex-valued two-form in the same real variables.

We are now in a position to apply Stokes’s theorem much as in the previous section,

the only real difference being that now the one-form in question, (c)ωX is complex and its

domain of definition is a 6-real-dimensional Grauert tube defined over H. We shall want

to compare integrals of (c)ωX over different curves of the type (VI.4) extending from some

‘initial’ slice having x3 = constant to another such ‘final’ slice. For convenience, let us

always take one such curve (which will provide a reference ‘edge’ for our comparison ribbon)

to lie in the real section (i.e., to have ya(λ) = y3(λ) = 0) and choose normal coordinates for

(Σ, µ) so that points on this reference curve have xa(λ) = 0. As in the previous section, we

restrict the domain of definition of these normal coordinates to a geodesic ball relative to

the metric µ. Let p be the starting point of this curve so that, in the chosen coordinates

{xa(p) = ya(p) = y3(p) = 0, x3(p) = x̊3}.
Now suppose that q ∈ T sH is a point lying in the domain of the corresponding (complex)

chart and having x3(q) = x̊3, y3(q) = 0, µab(x
1(q), x2(q))ya(q)yb(q) < s where {x1(q), x2(q)}

represents a point in the aforementioned geodesic ball centered at p. We want a canonical

way of connecting q to p within the initial slice x3 = x̊3 and, for this purpose, first connect

q to its projection in the real section with the ‘straight line’

xi(σ) = xi(q) = constant

ya(σ) = −σya(q), σ ∈ [−1, 0]

y3(σ) = 0.

(VI.14)

We complete the connection to p along the geodesic

xa(σ) = (1− σ)xa(q), σ ∈ [0, 1]

x3(σ) = x3(p) = x3(q) = x̊3

ya(σ) = y3(σ) = 0.

(VI.15)
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This broken curve provides the starting end (at x3 = x̊3) for our comparison ribbon. We

complete the specification of such a ribbon by letting each point on the starting end defined

above, flow along the corresponding curve of the form (VI.4) (i.e., holding xa and ya constant,

y3 = 0 and letting x3 = x̊3 + λ vary until the final slice is reached). It is easy to see, from

the special form of the right hand side of Equation (VI.11) that the corresponding two-form

pulled back to such a ribbon vanishes identically and thus that Stokes’s theorem applies to

integrals of (c)ωX over its edges and ends in essentially the same way that we discussed in

Section V for ribbons confined to the real section. In other words, the integral of (c)ωX over

the edge beginning at q, differs from that over the reference edge beginning at p only by the

(difference of) the integrals over the ribbon ends lying in the ‘initial’ and ‘final’ slices.

For our purposes, the contribution from the starting end, connecting q and p, will be fixed

whereas the contribution from the ‘final’ end (connecting the images of q and p induced

on the final slice) will vary continuously but only over a compact set (determined by the

endpoint of the edge through q which necessarily lies in T sΣ× S1). Thus, if as before, we

designate the edges through p and q by γ and γ′ respectively and the initial and final ribbon

ends by σ and σ′ respectively, then we obtain, as in the real setting,

∫

γ′

(c)ωX =

∫

γ

(c)ωX − (

∫

σ

(c)ωX −
∫

σ′

(c)ωX)

=

∫

γ

(c)ωX + (c)δp,q(x
3)

(VI.16)

with

|(c) δp,q(ρ) |≤ b < ∞ ∀ ρ ∈ [̊x3,∞). (VI.17)

The integrals of course are now in general complex in value but, given the bound above, we

are in a position to apply ribbon arguments to the complex setting in complete parallel to

those we gave in the real setting at the end of the last section. The arguments needed are

so similar to those given previously that we shall only sketch their highlights below.

For any q within the domain characterized above, we define a sequence

(c)ui(̊x
3, za(q))

=
k

2

x̊3+is∗
∫

x̊3

dρ exp[−
ρ

∫

x̊3

dξ
ϕ̊,t

2
(ξ, za(q))]

(VI.18)
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of holomorphic extensions (to T sΣ × S1) of the approximations given earlier in Equation

(V.9) for the normalizing function u. Using ribbon arguments to compare the integrals
∫

γ′

(c)ωX with those for the reference curves
∫

γ
(c)ωX we derive, as before, a bound of the

form

| (c)um(̊x
3, za(q))− (c)uℓ(̊x

3, za(q)) |

≤ eb | (c)um(̊x
3, za(p))− (c)uℓ(̊x

3, za(p)) |

= eb | um(̊x
3, xa(p))− uℓ(̊x

3, xa(p)) |

∀ ℓ,m ≥ 0,

(VI.19)

where, in the final equality, we have exploited the fact that (c)um(̊x
3, za(p)) = um(̊x

3, xa(p))

by virtue of our choice that the point p always lies in the real section.

As before, it follows immediately that for any ε > 0 there exists an integer Q > 0 such

that

| (c)um(̊x
3, za(q))− (c)uℓ(̊x

3, za(q)) |< ε ∀ m, ℓ > Q (VI.20)

and thus that the sequence {(c)um(̊x
3, za(q)) | m = 1, 2, . . .} is Cauchy with respect to

the C0 norm. Thus the sequence of approximations converges to a holomorphic limit on

the domain indicated. Repeating this argument for a (finite) collection of such domains

sufficient to cover T sΣ we conclude that

(c)u(̊x3, za) =
k

2

∫

∞

x̊3

dρ exp[−
∫ ρ

x̊3

dξ
ϕ̊,t

2
(ξ, za)] (VI.21)

is a well-defined holomorphic function on T sΣ (which extends continuously to its boundary)

and that, by construction, this function reduces to the real-valued function u(̊x3, xa) defined

in the previous section. The latter is therefore necessarily a real-valued analytic function on

Σ which is the result we were required to prove.

The analytic functions thus defined on tubular neighborhoods of arbitrary null generators

of N necessarily coincide on overlapping domains of definition. This follows from the fact

that each such u was uniquely determined by the geometrical requirement that it ‘renormal-

ize’ the corresponding generators to all have the same, fixed future affine length 2/k. We

may thus regard u as a globally defined analytic function on N and thus arrive at a globally

defined, analytic, candidate vector field K := uX .
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VII. EXISTENCE OF A KILLING SYMMETRY

We have shown that there exists a non-vanishing, analytic vector field K on N, tangent

to the null generators of N such that, in any gaussian null coordinate chart adapted to K

(i.e., for which K has the local expression K = ∂
∂x3

∣

∣

t=0
), the metric functions {ϕ, βa, µab} of

that chart obey

ϕ̊ = β̊a = µ̊ab,3 = 0,

ϕ̊,t = k = constant 6= 0,
(

β̊a,t

)

,3
= 0.

(VII.1)

We shall show momentarily that (µ̊ab,t),3 also vanishes and thus that all the metric functions

and their first time derivatives are independent of x3 on the initial surface t = 0 (signified

as before by an overhead ‘nought’). In the following, we shall prove inductively that all the

higher time derivatives of the metric functions are independent of x3 at t = 0 and thus that

the corresponding analytic, Lorentzian metric,

g = dt⊗ dx3 + dx3 ⊗ dt+ ϕdx3 ⊗ dx3

+ βadx
a ⊗ dx3 + βadx

3 ⊗ dxa + µabdx
a ⊗ dxb,

(VII.2)

has ∂
∂x3 as a (locally defined) Killing field throughout the gaussian null coordinate chart

considered. Finally, we shall show that the collection of locally defined Killing fields, obtained

by covering a neighborhood of N by adapted gaussian null (agn) coordinate charts and

applying the construction mentioned above, fit together naturally to yield a spacetime Killing

field Y which is analytic and globally defined on a full neighborhood of N and which, when

restricted to N, coincides with the vector field K.

Some of the results to be derived are purely local consequences of Einstein’s equations

expressed in an agn coordinate chart (such as, e.g., the observation that ϕ̊,t = k implies

(β̊a,t),3 = 0). Others, however, require a more global argument and thus demand that we

consider the transformations between overlapping, agn charts which cover a neighborhood

of N in (4)V . For example, by considering the Einstein equations Rab = 0 restricted to t = 0

and reduced through the use of ϕ̊,t = k = constant , µ̊ab,3 = 0 and (β̊a,t),3 = 0 one can

derive (as in the derivation of Eq. (3.26) of Ref. [6]) the local equation for µ̊ab,t given by

0 = −(µ̊ab,t),33 +
k

2
(µ̊ab,t),3. (VII.3)
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Roughly speaking, we want to integrate this equation along the null generators of N and

show, as in Ref. [6], that it implies that (µ̊ab,t),3 = 0. Now, however, since the null generators

are no longer assumed to be closed curves, this argument requires a more invariant treatment

than was necessary in Ref. [6].

First, let {xµ} = {t, x3, xa} and {xµ′} = {t′, x3′ , xa′} be any two gaussian null coordinate

charts which are adapted to K (i.e., for which K = ∂
∂x3 |t=0 and K = ∂

∂x3′ |t′=0 on the

appropriate domains of definition of the given charts). It is not difficult to see that, if the

two charts overlap on some region of N, then within that region the coordinates must be

related by transformations of the form

x3′ = x3 + h(xa)

xa′ = xa′(xb)
(VII.4)

where t = t′ = 0 since we have restricted the charts to N. Here h is an analytic function

of the coordinates {xa} labeling the null generators of N and xa′(xb) is a local analytic

diffeomorphism allowing relabeling of those generators within the region of overlap of the

charts.

We let {ϕ, βa, µab} designate the agn metric functions of the unprimed chart,

g = gµνdx
µ ⊗ dxν

= dt⊗ dx3 + dx3 ⊗ dt+ ϕdx3 ⊗ dx3

+ βadx
a ⊗ dx3 + βadx

3 ⊗ dxa + µabdx
a ⊗ dxb,

(VII.5)

and {ϕ′, β ′
a, µ

′

ab} designate the corresponding functions in the primed chart.

In the region of (4)V in which the charts overlap, we have of course,

gµ′ν′ =
∂xα

∂xµ′

∂xβ

∂xν′
gαβ (VII.6)

and, because of the gaussian null metric form,

gt′t′ = 0 =
∂xα

∂t′
∂xβ

∂xt′
gαβ

gt′3′ = 1 =
∂xα

∂t′
∂xβ

∂x3′
gαβ

gt′a′ = 0 =
∂xα

∂t′
∂xβ

∂xa′
gαβ

(VII.7)

By virtue of the form of (VII.4), we also have, of course, that ∂
∂x3 |t=0 = ∂

∂x3′ |t′=0 on the

region of overlap (since both charts were adapted to K by assumption).



45

Writing out Eqs. (VII.7) in more detail, using the explicit form of gαβ, restricting the

result to the surface t′ = t = 0 and making use of the transformations (VII.4) which hold

on that surface, one readily derives that
(

∂t

∂t′

)
∣

∣

∣

∣

t′=0

= 1,

(

∂xa

∂t′

)
∣

∣

∣

∣

t′=0

= (µabh,b)
∣

∣

t=0

(

∂x3

∂t′

)
∣

∣

∣

∣

t′=0

=

(

−1

2
µabh,ah,b

)
∣

∣

∣

∣

t=0

.

(VII.8)

Differentiating these equations with respect to x3′ and using the fact that µ̊ab,3 = 0 one finds

that
(

∂2xα

∂x3′∂t′

)
∣

∣

∣

∣

t′=0

= 0. (VII.9)

The remaining metric transformation equations (VII.7), restricted to the initial surface, yield

the covariance relation

µa′b′

∣

∣

∣

∣

t′=0

=

(

∂xc

∂xa′

∂xd

∂xb′
µcd

)
∣

∣

∣

∣

t=0

(VII.10)

as well as reproducing equations such as ϕ′|t′=0 = 0, and βa′ |t′=0 = 0 which are common to

all gaussian null coordinate systems.

Now take the first t′ derivative of the transformation Eqs. (VII.6), restrict the results to

the surface t′ = t = 0 and make use of Eqs. (VII.1) to derive expressions for

{ϕ′

,t′, βa′,t,, µa′b,t′}
∣

∣

∣

∣

t′=0

(VII.11)

in terms of unprimed quantities. Differentiating the resulting equations with respect to x3′

leads to the covariance relation

µa′b′,t′x3′

∣

∣

∣

∣

t′=0

=

(

∂xc

∂xa′

∂xd

∂xb′
µcd,t3

)
∣

∣

∣

∣

t=0

(VII.12)

as well as reproducing known results such as βa′,t′3′ |t′=0 = 0 which hold in all agn coordinate

systems.

Now in any agn coordinate chart restricted to N, we have the locally defined analytic

functions

D ≡ det (̊hab)

det (µ̊ab)

T ≡ µ̊ab̊hab

(VII.13)
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where h̊ab ≡ µ̊ab,t3 and where det ( ) signifies determinant. From the covariance relations

(VII.10) and (VII.12), however, it follows that D and T transform as scalar fields in passing

from one agn chart to another in the initial surface N (i.e., that T = T ′ and D = D′

in the regions of overlap). Thus D and T may be regarded as globally defined analytic

functions on N. From the Einstein equations Rab = 0, restricted to N and reduced by means

of ϕ̊,t = k, µ̊ab,3 = 0 and β̊a,t3 = 0, one can derive Eq. (VII.3) in any agn chart, which in turn

implies the following differential equations for D and T :

D,3 = kD, T,3 =
k

2
T. (VII.14)

The latter can be written more invariantly as LKD = kD and LKT = k
2
T where LK

represents Lie differentiation along the vector field K.

Equations (VII.14) show that (since k 6= 0) both D and T grow exponentially along

the integral curves of K in N. However, the Poincaré recurrence argument of Sect. II C has

shown that each integral curve γ of K, when followed arbitrarily far in either direction from

any point p on γ, reapproaches p arbitrarily closely. Since D and T are globally analytic

(hence continuous) on N, their values, when followed along γ, would have to reapproach

arbitrarily closely their values at p. But this is clearly incompatible with their exponential

growth along γ. The only way to avoid this contradiction arises if D and T vanish globally

on N. We thus conclude that D = T = 0 on N and therefore, from the defining equations

(VII.13) and the fact that µ̊ab is positive definite, that

h̊ab = µ̊ab,t3 = 0 (VII.15)

on N.

Now, computing the first t′ derivatives of Eqs. (VII.7), restricting the results to the initial

surface t = t′ = 0 and differentiating the resulting equations with respect to x3′ one finds,

upon making use of Eqs. (VII.1), (VII.9), and (VII.15), that

∂3xα

∂x3′∂t′∂t′

∣

∣

∣

∣

t′=0

= 0 (VII.16)

whereas Eqs. (VII.1), (VII.2) and (VII.15) show that

(gαβ,t3)

∣

∣

∣

∣

t=0

= 0. (VII.17)
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We now proceed inductively to extend the above results to the case of time derivatives

of arbitrarily high order. As an inductive hypothesis, suppose that, for some n ≥ 1 and for

all k such that 0 ≤ k ≤ n, we have

(

∂

∂x3

(

∂kgαβ
∂tk

))
∣

∣

∣

∣

t=0

= 0,

(

∂

∂x3′

(

∂k+1xα

∂t′ k+1

))
∣

∣

∣

∣

t′=0

= 0,

(VII.18)

and recall that we also have

∂t

∂x3′

∣

∣

∣

∣

t′=0

=
∂xa

∂x3′

∣

∣

∣

∣

t′=0

= 0,
∂x3

∂x3′

∣

∣

∣

∣

t′=0

= 1. (VII.19)

Our aim is to prove that

(

∂

∂x3

(

∂n+1gαβ
∂tn+1

))
∣

∣

∣

∣

t=0

= 0,

(

∂

∂x3′

(

∂ n+2xα

∂t′n+2

))
∣

∣

∣

∣

t′=0

= 0.

(VII.20)

Note that the above imply that

(

∂

∂x3

(

∂kgαβ
∂xγ1∂xγ2 . . . ∂xγk

))
∣

∣

∣

∣

t=0

= 0 (VII.21)

for all 0 ≤ k ≤ n and for arbitrary γ1, γ2, . . . , γk. Furthermore, note that of the quantities
(

∂
∂x3

(

∂n+1gαβ

∂xγ1 ...∂xγn+1

))
∣

∣

∣

t=0
, only

(

∂
∂x3

(

∂n+1gαβ

∂tn+1

))
∣

∣

∣

t=0
, may be non-zero. Now differentiate the

Einstein equation Rt3 = 0, n−1 times with respect to t and set t = 0 to derive an expression

for
(

∂n+1

∂tn+1ϕ
)
∣

∣

∣

t=0
in terms of x3-invariant quantities. Differentiate the equation Rtb = 0, n−1

times with respect to t and set t = 0 to derive an expression for
(

∂n+1

∂tn+1βb

)

|t=0, in terms of

x3-invariant quantities. Next, differentiate the equation Rab = 0, n times with respect to t,

set t = 0 and use the above results for
(

∂n+1

∂tn+1ϕ
)
∣

∣

∣

t=0
and

(

∂n+1

∂tn+1βb

)
∣

∣

∣

t=0
, together with those

given in Eqs. (VII.1) and (VII.15) to derive an equation of the form

0 =

(

∂n

∂tn
Rab

)
∣

∣

∣

∣

t=0

= − ∂

∂x3

(

∂n+1

∂tn+1
µab

)
∣

∣

∣

∣

t=0

+

(

positive

constant

)

ϕ̊,t

2

(

∂n+1

∂tn+1
µab

∣

∣

∣

∣

t=0

)

+ {terms independent of x3} .

(VII.22)
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Differentiate this equation with respect to x3 to thus derive

0 = −
(

∂n+1

∂tn+1
µab

∣

∣

∣

∣

t=0

)

,33

+

(

positive

constant

)

k

2

(

∂n+1

∂tn+1
µab

∣

∣

∣

∣

t=0

)

,3

(VII.23)

which holds in an arbitrary agn coordinate chart.

Now define

D(n+1) ≡
det

(

h̊
(n+1)
ab

)

det (µ̊cd)

T (n+1) ≡ µ̊ab̊h
(n+1)
ab

(VII.24)

where h̊
(n+1)
ab ≡

(

∂
∂x3

(

∂n+1

∂tn+1µab

))
∣

∣

∣

t=0
so that Eq. (VII.23) becomes

0 = −h̊
(n+1)
ab,3 +

(

positive

constant

)

k

2
h̊
(n+1)
ab (VII.25)

and D(n+1) and T (n+1) satisfy

D
(n+1)
,3 =

(

positive

constant

)

kD(n+1)

T
(n+1)
,3 =

(

positive

constant

)

k

2
T (n+1)

(VII.26)

in any agn coordinate chart. To extend the Poincaré recurrence argument to the quantities

D(n+1) and T (n+1) we must first show that they are globally defined analytic functions on N.

Differentiate the transformation equation

ga′b′ ≡ µa′b′ =
∂xα

∂xa′

∂xβ

∂xb′
gαβ , (VII.27)

n + 1 times with respect to t′, set t′ = 0 and differentiate the result with respect to x3′ .

Use the inductive hypothesis and the vanishing of
(

∂
∂x3

∂n+1

∂tn+1ϕ
)
∣

∣

∣

t=0
and

(

∂
∂x3

∂n+1

∂tn+1βa

)
∣

∣

∣

t=0
to

show that this calculation yields the covariance relation
(

∂

∂x3′

∂n+1

∂t′n+1
µa′b′

)
∣

∣

∣

∣

t′=0

=

{

∂xc

∂xa′

∂xd

∂xb′

(

∂

∂x3

∂n+1

∂tn+1
µcd

)}
∣

∣

∣

∣

t=0

(VII.28)

From this and Eq. (VII.10) it follows that D(n+1) and T (n+1) transform as scalar fields in

the overlap of agn charts in N and thus that these quantities are globally defined analytic



49

functions on N. Equations (VII.26) can thus be reexpressed in the invariant form

LKD
(n+1) =

(

positive

constant

)

kD(n+1)

LKT
(n+1) =

(

positive

constant

)

k

2
T (n+1)

(VII.29)

and show that D(n+1) and T (n+1) grow exponentially (unless they vanish) when followed

along the integral curves of K in N (i.e., along the null generators of N ). Repeating the

Poincaré recurrence argument given previously for D and T now yields a contradiction unless

D(n+1) and T (n+1) vanish globally in N. This in turn implies that

(

∂

∂x3

∂n+1

∂tn+1
µab

)
∣

∣

∣

∣

t=0

= 0 (VII.30)

in every agn chart on N and, together with the results obtained above for the other metric

components, shows that
(

∂

∂x3

∂n+1

∂tn+1
gαβ

)
∣

∣

∣

∣

t=0

= 0 (VII.31)

in every such chart.

Applying the technique of the previous paragraph to the transformation equations for

ϕ′ and β ′
a merely produces covariance relations for the quantities

(

∂
∂x3

(

∂n+1

∂tn+1ϕ
))

∣

∣

∣

t=0
and

(

∂
∂x3

(

∂n+1

∂tn+1βa

))
∣

∣

∣

t=0
which are consistent with the (already established) vanishing of these

quantities in every agn chart. To complete the inductive proof, we differentiate the remaining

transformation equations (VII.7) n+1 times with respect to t′, set t′ = 0, use the inductive

hypothesis and the new results summarized in Eq. (VII.31) to show that

(

∂

∂x3′

∂n+2

∂t′ n+2
xα

)
∣

∣

∣

∣

t′=0

= 0. (VII.32)

This result, together with that of Eq. (VII.31), completes the proof by induction.

It follows from the analyticity of g and the inductive proof given above that
(

∂
∂x3 gαβ

)

vanishes throughout any agn coordinate chart and thus that Y ≡ ∂
∂x3 is a (locally defined)

analytic Killing field throughout the given chart. In the region of overlap of any two such

charts we have the two locally defined Killing fields Y = ∂
∂x3 and Y ′ = ∂

∂x3′ and we wish

to show that, in fact, they coincide. By construction both Y and Y ′ coincide with K on

their appropriate domains of definition within the null surface N. Therefore X ≡ Y ′ − Y

is an analytic Killing field of g defined locally on the region of overlap of the two charts
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which vanishes on the intersection of this region with the null surface N. This implies that

X vanishes throughout its domain of definition, however, since the Killing equations

Xµ,t +Xt,µ − 2(4)Γν
µtXν = 0 (VII.33)

determine X uniquely from data X|t=0 (in the analytic case) and have only the trivial

solution X = 0 if X|t=0 = 0.

It follows from the above that there exists a unique analytic Killing field Y, globally

defined on a full neighborhood of N in ((4)V, g) which, when restricted to N, coincides with

the vector field K and this is tangent to the null generators of N. In fact, one can prove that

Y extends to a Killing field defined throughout the maximal Cauchy development of the

globally hyperbolic region of ((4)V, g) whose Cauchy horizon is N. The techniques for proving

this were discussed at the end of section III of Ref. [6] and need not be repeated here. One

can also show, by a straightforward computation that

{

Y β(4)∇βY
α +

k

2
Y α

}
∣

∣

∣

∣

N

= 0 (VII.34)

which suggests that the constant
(

−k
2

)

is the analogue, for cosmological Cauchy horizons,

of the surface gravity defined for stationary black hole event horizons [10, 12].

We have thus proven:

Theorem 1 Let ((4)V, g) be a real analytic, time orientable, vacuum spacetime which ad-

mits a compact, connected Cauchy horizon N that separates ((4)V, g) into open Lorentzian

submanifolds ((4)V+, g+) and ((4)V−, g−) of which one is globally hyperbolic and the other

acausal. Assume that N is realized as a level set of some analytic function τ : (4)V → R hav-

ing no critical points in a neighborhood of N. The vector field (4)X := gradgτ will therefore be

non-vanishing on this neighborhood, null on the hypersurface N and thus tangent to its null

geodesic generators and will naturally induce (by restriction of (4)X to N) a corresponding

tangent vector field X on the Cauchy horizon itself.

In the cases referred to here as ‘non-ergodic’ the null generators of N are either closed

curves or densely fill 2-tori embedded in N and every such generator is either complete in

both the directions of X and −X (the ‘degenerate’ case) or else every generator is incomplete

in one direction (say that of X) and complete in the opposite direction (the ‘non-degenerate’

case).
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Compact, non-degenerate, non-ergodic Cauchy horizons in analytic, vacuum spacetimes

((4)V, g) are Killing horizons in that there always exists a non-trivial, analytic Killing field

Y, globally defined on a full neighborhood of the horizon manifold N ⊂ ((4)V, g) which, when

restricted to N, is everywhere tangent to the null generators of this hypersurface. Y extends

(at least smoothly) to a Killing field defined throughout the maximal Cauchy development of

the globally hyperbolic region of ((4)V, g) whose Cauchy horizon is N.

By applying the results of our earlier work (cf. Ref. [8] and Sect. VIII of Ref. [10]) it is

straightforward to prove that if the null generators of N, to which the horizon generating

Killing field Y is tangent, are not all closed curves then the globally hyperbolic region of

((4)V, g) necessarily admits at least one additional, non-trivial Killing field. This additional

Killing field commutes with Y so that the full isometry group of this (globally hyperbolic)

spacetime includes a 2-dimensional toral action.

Thus whereas non-degenerate Cauchy horizons having only closed (null geodesic) gener-

ators are, in a geometrical sense, less ‘general’ than those admitting non-closed generators

they are, nevertheless, far less constrained analytically in that they can bound (analytic,

vacuum) globally hyperbolic spacetimes having only one-dimensional isometry groups. Fur-

thermore, if our conjecture for the (non-degenerate) ergodic case is correct then the solution

set for these is much smaller still, consisting uniquely of certain ‘irrational’ compactifications

of the flat Kasner spacetime.

Finally, though we could only rule out the existence of degenerate (compact, analytic)

Cauchy horizons in some (closed-orbit) special cases [6] we conjecture that such horizons do

not exist at all.
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Appendix

To show that each of our embedded 2-tori admits an analytic foliation, with closed leaves,

that is everywhere transverse to the (nowhere vanishing) flow field X it would suffice to

prove that it always admits a closed, analytic one-form λ with integral periods such that

λ(X) = λaX
a > 0 everywhere on the given torus. The closure of λ ensures that, locally, it

is expressible as λ = dµ for some analytic function µ the level curves of which locally define

the leaves of the desired foliation. That these leaves all close, globally, is ensured by the

integrality of the periods of λ whereas their transversality to X corresponds simply to the

condition that λ(X) > 0.

The following proof that such a λ always exists is due to M. Kontsevich who kindly pro-

vided it to us in response to a question about a somewhat related theorem of Kolmogorov’s.

Note that analyticity is not needed for some of the intermediate steps of Kontsevich’s argu-

ment but that it will be ‘reinstated’ during the final stage of the construction.

First choose a smooth Siegel curve Γ̃ that is closed, non-self-intersecting and everywhere

transverse to the flow of X. The existence of such curves follows from a standard argument

which is given, for example, in [21] together with a discussion of some of their fundamental

properties. The aim will be to construct an analytic foliation whose leaves are each homo-

topic to Γ̃ (and transversal to X ). By translating Γ̃ along the flow generated by X one can

produce a curve, homotopic to Γ̃, that passes through any particular point of the given torus

and that is, of course, also transversal to X.

Any one of such Siegel curves, Γ, can by systematically ‘thickened’ to yield a smooth

‘ribbon’, rΓ, diffeomorphic to Γ× IΓ ≈ S1 × IΓ where IΓ is an open interval. Coordinatize

this ribbon by choosing an ‘angle’ coordinate θΓ along Γ, with θΓ ∈ [0, 2π), and letting t be

the flow parameter along the transversal flow generated by X, with t ∈ IΓ := (−ǫΓ, ǫΓ) for

some ǫΓ > 0, taking t = 0 to correspond to the given ‘source curve’ Γ.

Now define a smooth one-form αΓ on the torus by setting αΓ = 0 on the complement of

the ribbon rΓ but taking αΓ = dµΓ within the ribbon where µΓ is a smooth function of t alone

(i.e., independent of θΓ) that smoothly and monotonically interpolates between the value 0
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for t ∈ (−ǫΓ,−ǫΓ/2) and the value 1 for t ∈ (ǫΓ/2, ǫΓ) with derivative satisfying ∂
∂t
µΓ ≥ 0

for t ∈ (−ǫΓ, ǫΓ) and
∂
∂t
µΓ > 0 for t ∈ (−ǫΓ/2, ǫΓ/2). The one-form αΓ so-constructed will

be closed, have integral periods and satisfy αΓ(X) ≥ 0 everywhere on the chosen torus.

In view of the compactness of the torus a finite collection, {rΓi
; i = 1, . . . , k}, of such

ribbons, together with their associated closed one-forms, {αΓi
; i = 1, . . . , k} will suffice to

cover the torus in such a way that

α :=
k

∑

i=1

αΓi

satisfies dα = 0, α(X) > 0 everywhere and has integral periods (since each of the αΓi
does).

It will not however be analytic since none of the individual αΓi
’s are more than smooth.

Taking, however, a Hodge decomposition of α with respect to an analytic (Riemannian)

metric on the torus will result in

α = h+ dσ

where h is harmonic and thus analytic but where the function σ is only smooth. The integral

periods of α will all be ‘carried’ by h since of course those of dσ all vanish. Now, however,

since the condition α(X) > 0 is open one can always preserve it by approximating σ with

an analytic function ω. Thus defining

λ = h+ dω

one arrives at a closed, analytic one-form with integral periods that globally satisfies the

transversality condition λ(X) > 0 and thereby determines an analytic foliation of the torus

of the type desired.
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