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We consider analytic, vacuum spacetimes that admit compact, non-degenerate
Cauchy horizons. Many years ago we proved that, if the null geodesic generators of
such a horizon were all closed curves, then the enveloping spacetime would necessarily
admit a non-trivial, horizon-generating Killing vector field. Using a slightly extended
version of the Cauchy-Kowaleski theorem one could establish the existence of infinite
dimensional, analytic families of such ‘generalized Taub-NUT’ spacetimes and show
that, generically, they admitted only the single (horizon-generating) Killing field
alluded to above. In this article we relax the closure assumption and analyze vacuum
spacetimes in which the generic horizon generating null geodesic densely fills a 2-
torus lying in the horizon. In particular we show that, aside from some highly
exceptional cases that we refer to as ‘ergodic’, the non-closed generators always have
this (densely 2-torus-filling) geometrical property in the analytic setting.

By extending arguments we gave previously for the characterization of the Killing
symmetries of higher dimensional, stationary black holes we prove that analytic, 4-
dimensional, vacuum spacetimes with such (non-ergodic) compact Cauchy horizons
always admit (at least) two independent, commuting Killing vector fields of which

a special linear combination is horizon generating. We also discuss the conjectures



that every such spacetime with an ergodic horizon is trivially constructable from the
flat Kasner solution by making certain ‘irrational’ toroidal compactifications and

that degenerate compact Cauchy horizons do not exist in the analytic case.

PACS numbers: 04.20.Cv, 04.20.Dw

I. INTRODUCTION

To disprove the cosmic censorship conjecture it would suffice to establish the existence
(in a suitable function space topology) of an open set of globally hyperbolic solutions to
the vacuum Einstein equations which are each extendible, through Cauchy horizons, beyond
their maximal Cauchy developments. Analytic examples of such extendible spacetimes in-
clude the Taub metric on S* x R and the flat Kasner metric on 72 x R. Each of these
solutions can be (analytically) extended through a compact Cauchy horizon to include an
acausal region containing closed timelike curves. If this feature were actually stable against
sufficiently small perturbations then cosmic censorship would be false.

To study this stability question, within the convenient framework of (real-)analytic met-
rics, one can employ a straightforward generalization of the Cauchy-Kowalewski theorem
to prove the existence of infinite dimensional families of ‘generalized Taub-NUT’ vacuum
spacetimes, with a variety of spatial topologies, which each, as in the examples mentioned
above, contain a compact Cauchy horizon separating globally hyperbolic and acausal regions
[1, 2]. These families, large though they are, fail to disprove cosmic censorship for several
reasons.

First of all every such generalized Taub-NUT solution admits at least one Killing vec-
tor field—a vector which is spacelike in the globally hyperbolic region, null on the Cauchy
horizon (and hence tangent to the horizon’s null geodesic generators) and timelike in the
acausal extension. Thus these particular families could not possibly fill (even densely) an
open subset of generically non-symmetric solutions in any reasonable function space topol-
ogy. Secondly, even within the circumscribed context of analytic metrics admitting at least
one Killing field they require a further special restriction upon their ‘initial data’ (which,
by exploiting analyticity and the extended Cauchy-Kowalewski theorem can be specified on

the horizon itself) which, roughly speaking, corresponds to a Lagrangian submanifold of the



full set of solutions of the chosen (one-Killing-field) symmetry type. To rigorously treat the
complementary family of one-Killing field metrics (i.e., to relax the Lagrangian submanifold
restriction) has necessitated a still further generalization of the Cauchy-Kowalewski theorem
through the development of so-called Fuchsian methods [3-5] but the spacetimes obtained
by these techniques typically exhibit strong curvature singularities instead of Cauchy hori-
zons and so are inextendable beyond their maximal Cauchy developments. Finally the
generalized-Taub-NUT solutions are all (real) analytic which many might regard as an arti-
ficial restriction to place on any supposedly physically relevant family of vacuum spacetimes.

Since the presence of a Killing field seemed to play a crucial role in the construction
of these generalized Taub-NUT spacetimes it is of interest to ask whether perhaps the
occurrence of such a field was in fact necessary for the existence of a compact Cauchy
horizon, at least in the (vacuum) analytic case. In earlier articles [6-8] we showed that
this was indeed the case provided that the null-generating geodesic curves which foliate the
horizon are all closed. While this might at first seem to be an unduly artificial restriction
upon the geometry of the horizon we now believe that it represents the least constraining
assumption and that the failure of all the null generators to be closed implies the existence
of at least a second Killing field. By contrast the known (analytic) solutions with all closed
generators need only have the single Killing field which is tangent to the horizon’s generators.

In this paper we prove, under certain assumptions, that the occurrence of an (analytic)
compact Cauchy horizon with non-closed generators implies the existence of at least one
Killing field—always tangent to the horizon’s generators—and we have already shown else-
where that the presence of such a Killing field with non-closed integral curves implies the
existence of a second Killing field [8]. We know of examples (see below) in which even a
third Killing field is required by the special nature of the geometry but we do not have a
systematic treatment of this case which are refer to as ‘ergodic’.

The main assumption we need, in addition to analyticity and the imposition of the
vacuum field equations is that the compact Cauchy horizon be non-degenerate in the sense
that at least one (and hence, as we prove, every in the case of a connected horizon) of
its null geodesic generators be incomplete in one direction. In fact we do not know of an
example of a degenerate Cauchy horizon (though compact, degenerate null hypersurfaces
which are not Cauchy horizons can certainly exist for (electro-)vacuum spacetimes) and, in

the case of closed generators we could even prove their non-existence on certain topologies.



We suspect that degenerate compact Cauchy horizons may not exist in general for analytic
(electro-)vacuum spacetimes but do not have a proof of this surmise. The second assumption
we require is that the horizon be non-ergodic in the sense that it not be densely filled by
the orbit of any single geodesic generator. Examples of vacuum spacetimes with ergodic
Cauchy horizons do exist and can be created from the flat Kasner metric through spatial
compactification with an ‘irrational’ shift in the obvious identifications to produce a toroidal
horizon which each null generator densely fills. We suspect that, up to finite covers, these
solutions (which have the extra, third Killing field alluded to above) may exhaust the vacuum
ergodic horizon cases but also have no proof of this conjecture. On the other hand the
ergodic case could, to some extent, be treated by a straightforward generalization of the
techniques developed here provided that the assumed compact Cauchy horizon admits an
analytic foliation with compact (2-dimensional) leaves, transversal to the given the null
geodesic ‘flow’. While we also impose the vacuum field equations it seems quite likely that
our results could be readily generalized to allow for certain types of matter sources. Indeed
the original results for closed generators were derived for the electro-vacuum field equations.

Analyticity is the final restrictive assumption that we make but this hypothesis has a
certain double-edged quality that makes it seem less objectionable than it appears at first
sight. First of all, if a genuine open set (in some suitable function space topology) of vacuum
spacetimes admitting compact Cauchy horizons did exist it would presumably contain a large
(perhaps densely filling) subset of analytic solutions. Thus one could expect to probe such
a set by focusing on its analytic elements. Secondly, analyticity serves, by its very rigidity,
to exclude the occurrence of many exotic types of cosmological boundaries which could oth-
erwise occur through suitable (non-analytic) ‘fine-tuning’ of the ‘initial data’. For example
in the special case of polarized Gowdy metrics on 7% x R one can exploit non-analyticity
to produce a large variety of, highly non-generic, cosmological boundaries involving such
exotica as Kantor sets of curvature singular regions interspersed with complementary sets of
non-singular Cauchy horizon [9]. The fine-tuning of the data needed to produce these exotica
is incompatible with analyticity so that, in concentrating on analytic solutions, one avoids
being distracted by such mathematically allowed but non-generic features. Any truly generic
feature should survive analytic approximations. Thus analyticity is actually an advantage
rather than a liability if only stable properties are of interest.

The main difficulty in treating the problem of non-closed generators considered here, over



and above those already handled for the closed generator case, is a proof that the candidate
vector field for the horizon generating Killing field is in fact analytic. Otherwise much of
the argument goes through in essentially the same way as for the closed generator case. The
hypothetical Killing field, restricted to the horizon, is everywhere parallel to the generators
and so already determined up to a multiplicative factor. We define this factor (in the non-
degenerate case wherein every generator is incomplete to the future) by the requirement
that the future affine length of every null geodesic generator be a fixed positive number 2/k
provided one takes the initial condition for the generator starting at an arbitrary point p
of the horizon to have its tangent vector given by the hypothetical Killing field X (p) at
that point. In other words one adjusts the multiplicative factor until each generator (taken
with these rescaled initial conditions) has future length 2/k. The technical problem is then
to prove that the needed rescaling factor is in fact analytic. In the closed generator case
we found an explicit formula for this factor from which its analyticity was apparent but
here we seem to need a more subtle argument involving the convergence of a sequence of
analytic approximations to the needed rescaling factor. Unfortunately though since real
analytic functions do not form a nice Banach space (with the norm of uniform convergence)
we have had to ‘artificially’ complexify the analytic structure of the horizon and carry out
the convergence argument in the complexified context, extracting the desired analyticity
of the real section at the end of this analysis. While workable this complicating feature is
rather disappointing in comparison with the simplicity of the corresponding closed generator
argument and so one wonders whether perhaps a further simplification could be found for
the present problem.

Our results have some natural correspondences with those for the (Killing) event horizons
of stationary black holes and one can compactify these latter horizons to obtain examples
(in certain cases) of ‘cosmological’ compact Cauchy horizons of the sort we are interested
in. In the black hole case, for which there is a natural normalization of the Killing horizon
generator, the constant k is essentially the so-called surface gravity of the horizon [10].
It might seem that one could produce examples of degenerate Cauchy horizons (having,
by definition, & = 0) by compactifying the event horizons of extreme black holes. The
simplest (electro-vacuum) example however is provided by the extreme Reissner-Nordstrom
metric with horizon generating Killing field given, in standard coordinates, by %. We can

compactify the horizon at r = r, = M to S? x S! by identifying the points labeled {t, 0, o}



with those labeled {t + ¢, 0, ¢} for a fixed constant ¢ # 0. However the extreme black hole
metric has % . % = — (1 — %)2 so that the generating vector field %, tangent to the S!
fibers, has closed timelike orbits on both sides of the compact null surface at » = M which
can therefore not be a Cauchy horizon. A similar phenomenon occurs for the more general
extreme Kerr-Newman solution.

Though the Killing field or fields we produce via the extended Cauchy-Kowalewski the-
orem are possibly only determined by convergent expansions in some neighborhood of the
assumed Cauchy horizon it is straightforward to show that these automatically propagate
(as solutions of Killing’s equation) to the full maximal Cauchy development on the globally
hyperbolic side of the horizon. This follows from the well-known fact that in (for simplicity)

a vacuum spacetime any Killing field satisfies a linear hyperbolic equation which in fact

preserves the vanishing of the Killing form for the propagated vector field [6, 11].

II. CONSTRUCTION OF THE CANDIDATE VECTOR FIELD
A. Geometrical Assumptions and Basic Constructions

We shall be considering real analytic, time orientable, vacuum spacetimes (‘YV, g) which
contain compact Cauchy horizons. More precisely, we assume that WV = M x R, where M
is a compact, connected, analytic and orientable three-manifold without boundary, and that
g is an analytic, Lorentzian, Ricci-flat metric on V. We also assume that (“V, g) admits a
compact, embedded null hypersurface N, which can be realized as a level surface of some real
analytic function 7 with no critical points on a neighborhood of N, and that N is a Cauchy
horizon for one of the two open submanifolds of YV which N separates. Thus we regard YV
as a disjoint union “V, U N U WV_ where WV, = M x Ry (with Ry = {r = 0} and assume
that at least one of the two spacetimes (V. g.), (YV_, g_) (where g, and g_ represent the
restriction of g to WV, and “V_ respectively) is globally hyperbolic. For convenience, we
may assume that the function 7 has been chosen so that N coincides with the level surface
of 7 having the level value 7 = 0.

Since N is null and since by assumption 7 has no critical points on a neighborhood of
N, the vector field WX determined by dr (i.e. given in local charts by WX = ¢%f7 ;) is

non-vanishing on a neighborhood of N, null on the surface N and thus tangent to the null



geodesic generators of that surface. Let X designate the restriction of WX to the null surface
N so that X may be viewed as a vector field defined on N itself.
Since X is non-vanishing and tangent to the null geodesic generators of N, one can always

choose local coordinates {z% 3} on suitable open subsets of N such that the {z% |a =

9

5.5 Wwithin each such local

1,2} are constant along the null generators and such that X =
chart. One can construct such charts in the following way. Choose a two-disk D which is
(analytically) embedded in N and transversal to the flow of X and let {2®} be coordinates
on D. Define coordinates {z%, 23} on a tubular neighborhood =~ D x I of D in N by requiring
that the 2% remain constant along the integral curves of X and that 2® coincide with the
natural integral curve parameter determined by X (after fixing, say, 2® |p = k(z®) for some
real analytic function % defined on D). The range of 23 may, for convenience, be allowed to
vary from generator to generator with, for example, k(z®) — d_(2%) < 23 < k(x®) + §, (2%)
where 04 are two strictly positive real analytic functions. On the connected components of
the domains of intersection of any two such local charts, the two sets of coordinate functions
{z, 23}, {2, 2} are clearly related by a transformation of the form

¥ = 2% + h(z?)
(IL.1)

where h is an analytic function and z% (z) a local (analytic) diffeomorphism defined on
some transversal two manifold which lies in the domains of both charts.

We shall often consider local charts of the type described above not only for the fixed
vector field X but also for other analytic vector fields defined on N which are tangent to its
null generators. If K is some non-vanishing vector field on N tangent to the generators of N
and we set up local charts of the type described above based on K (rather than on X'), then
the connected components of the domains of intersection of the new charts (say, {2, 2%}
with K = %) with the old ones {z® 2} for which X = ;% necessarily admit coordinate

transformations of the form

(I1.2)

where, as before, 2% (2%) is a local diffeomorphism and where % # 0.
Let {z% 23} be local coordinates of the type described above defined on some domain

U= D x I lying in N and adapted to some fixed non-vanishing vector field K (i.e., chosen



so that K = % within the chart) which is tangent to the null generators of N. Then one
can always construct a local chart {¢,z% 2%} on some domain U of WV which intersects
N in U, for which the hypersurface U = N N U corresponds to the level value ¢t = 0 and

in terms of which the Lorentzian metric g takes the convenient form

g=dt ®de® +dax® @ dt
+ ¢ d2® @ da® + B,(da* @ d2® + da® ® da®) (IL.3)

+ fhap dz® ® da.

By construction, the coordinates, restricted to the null surface ¢ = 0, coincide with those
of the original chart defined on U and because N is null and ¢ is Lorentzian, the metric

functions obey
¢li=0 = Balt=0 = 0, (I1.4)

with pg, pointwise positive definite (as a 2 X 2 symmetric matrix). The construction of
such local charts on suitable domains in (WV, g) was discussed in detail in section II B of
Ref. [6] and need not be repeated here. The local (analytic) coordinate functions {¢, z%, 23}
are uniquely determined by the local chart {%, 2*} defined on U C N and by the coordinate
conditions implicit in the desired metric form (I1.3).

Because of their resemblance to gaussian normal coordinates (but with % tangent to
null geodesics transversal to N instead of timelike ones), we called the coordinate systems
for which ¢ takes the form (I1.3) and satisfies (I1.4) gaussian null coordinates. In the
present context, when we wish to emphasize that the coordinates have, in addition, been
adapted to some particular vector field tangent to the generators of N (i.e., chosen so that
% ‘ .o coincides with the given vector field) we shall refer to them as adapted gaussian null
coordinates or agn coordinates for brevity.

The Einstein equations are written out in detail in an arbitrary gaussian null coordinate
chart in Section II C of Ref. [6]. As in that reference, we shall often use the notation of
an overhead nought to signify restriction to the null surface N (labeled in gaussian null
coordinates by ¢ = 0). Thus, for example, we shall often write fi, for fie|i—o, etc., and can

therefore reexpress Eqgs. (I1.4) as ¢ =0, ﬁoa =0.



B. Invariance of the Transversal Metric

Consider an arbitrary two-disk D which is analytically embedded in N and which is every-
where transversal to the null generators of that hypersurface. In a gaussian null coordinate

chart which covers D, it is clear that D has a coordinate characterization of the form,
t=0, 2° = f(2%) (I1.5)

for some real analytic function f. (Here the {2} range over those values corresponding to
the generators which intercept D.) From Eqs. (I1.3), (I1.4) and (I1.5) one sees that g induces

a Riemannian metric pup, given by
Up = ,Uab|:c3:f(:cc)dxa X dl’b (116)

on D. If we let D flow along the integral curves of the vector field K = % associated (at
least locally) to the chosen chart, then we get a one-parameter family D, of embeddings of
D in N characterized by

t=0, 2° = f(z*) + X (IL.7)

and a corresponding family of metrics pp, given by

WD, = ,Uab|x3:f(:cc)+)\dxa (%9 dl’b. (118)

Here X ranges over some open interval containing A = 0.

Locally one can always choose a particular vector field K tangent to the null genera-
tors of N such that the integral curves of K coincide with the affinely parametrized null
geodesics generating N (i.e., such that the curves {z%(\)} defined by t(\) = 0,2%(\) =
constant, z3(\) = 2® + X are affinely parametrized null geodesics generating (a portion of)
N, with A an affine parameter). K is of course not unique (since there is no canonical
normalization for A along each generator) but can be fixed by prescribing it at each point
of some transversal two-manifold. In general, K may also not be extendable to a globally
defined vector field on N (since the affinely parametrized generators of N may be incom-
plete wheras the flow of a globally defined vector field on the compact manifold N must be
complete) but this is of no consequence in the following construction. For any point p € N
choose a disk D which contains p and is everywhere transversal to the null generators of N.

Construct, on a neighborhood of D in N, a vector field K of the type described above and



10

let {z*} = {t, 2% 2} be an agn coordinate chart adapted to K (i.e., so that 32 = K is thus
tangent to the affinely parametrized generators of N). Now let D flow along the integral
curves of K to get a one-parameter family of embedded disks D, and a corresponding family
of induced Riemannian metrics p1p, as described above.

In terms of this construction, one can compute the expansion 0 of the null generators at

p by evaluating

i(p) = ((%en(det m) (1L.9)

A=A(p)
2=2%(p)

It is not difficult to verify that this definition is independent of the particular choice of
transversal manifold D chosen through p and of the particular coordinates {z*} used to
label the generators near p. In fact, this definition of 0 is equivalent to the usual definition
of the expansion of the null generators of a null hypersurface.

In our case, however, N is not an arbitrary null surface. It is, by assumption a compact
Cauchy horizon in a vacuum spacetime. For such a hypersurface Hawking and Ellis have
proven the important result that § vanishes at every point p € N [12, 13]. Thus in an agn

coordinate chart adapted to K one has
(det frap) 3], = 0 (I1.10)

at every point of N covered by the chart. However, the Einstein equation R33 = 0, restricted
to N, yields

=0 | (in/n)

)

1
+ 5P (ﬁn\/det ,u) , (I1.11)

)

1 ac
_'_Z:U’ Mbdﬂab,3ﬂcd,3:|
=0
in an arbitrary gaussian null coordinate chart (where (det ) = det (gap)). Combining

Egs. (I1.10) and (II.11), we see that g 3]t—0 = 0 throughout the local chart adapted to
K.

From this result, it follows easily that the metric up induced upon an arbitrary disk
transversal to a given bundle of null generators of N is, in fact, independent of the disk
chosen. To see this one computes, recalling Eqs. (I1.3) and (I1.4), the metric induced upon

an arbitrary such disk D (satisfying ¢ = 0,23 = f(2*)). From the result that s 3= = 0
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it follows that this induced metric is independent of the function f (which embeds D in the
given bundle) and hence of the particular transversal disk chosen. Though this calculation
was carried out using a special family of charts, the definition of the induced metric is a
geometrical one and thus the invariance of this metric (relative to an arbitrary displacement
along the null generators of N) is independent of any choice of charts.

The invariance of this transversal metric will play an important role in the sections to
follow. Notice that if one starts at a transversal disk D and flows along the generators of N,
then one may eventually reach another disk D’ transversal to the same bundle of generators
which partially or completely coincides with D. Indeed, upon application of the Poincaré
recurrence theorem in the next subsection, we shall see that this always happens and that
every null generator of N is either closed or comes arbitrarily close to closing. By the result
of the preceding paragraph, the metric up induced on D’ is isometric to the metric up
induced upon D (since the transversal metric is invariant under the flow which carries D
to D). If the null generators intersecting D were all closed curves this would hardly be
surprising since D would eventually coincide with D’ and the isometry would simply be the
identity map. In the non-closed case of primary interest here, however it leads to non-trivial
restrictions upon the transversal metric pp. For example, suppose U C D is an open subset
of D which, upon translation along the generators of N, reintersects D in another open set
U’. There is a natural diffeomorphism ¢y of U and U’ defined by this translation mapping

and, from the invariance of the transversal metric, it follows that

pplor = ¢y (polv) (I1.12)

i.e., that (U, up|y) and (U’, up|y:) are isometric with oy the isometry. Of course ¢y may
have some fixed points (corresponding to (non-generic) closed null generators) but, for the
cases of interest here, oy is not simply the identity map (even if U = U’) since, generically,
the generators will not be closed. Thus open subsets of (D, ip) will be non-trivially isometric
to other open subsets of this same space and, as we shall see from the recurrence theorem,
there will be infinitely many such local isometries of (D, up) due to the fact that a generic

generator intersecting D will reintersect D in infinitely many distinct points.
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C. Application of the Poincaré Recurrence Theorem

In this subsection we shall show that the Poincaré recurrence theorem [14, 15] can be
applied to the flow on N generated by the vector field X defined in section IT A. Using
this theorem we shall then show that every point p € N, when mapped sufficiently far
(in either direction) along the flow of X, returns arbitrarily closely to its initial position.
When combined with the isometric character of this flow (relative to the transversal metric)
derived in the previous subsection, this result will lead to very stringent restrictions upon
the topological nature of the flow.

Since our spacetime (WV, g) is, by assumption, both non-compact and time-orientable, it
necessarily admits a global, smooth timelike vector field V which, without loss of generality,
we may assume has been normalized to unit length (i.e., to have g(V, V) = —1). Since V is
timelike, it is necessarily transversal to the null surface N. This follows from noting that the

normalization condition, evaluated in a gaussian null coordinate chart, reduces to
—1=g(V,V)|y = {2V'V® + 1V V" } 1= (I1.13)

which clearly implies that V' is nowhere vanishing. Expressed more invariantly this
statement is equivalent to g(X,V)|y # 0 since, in an arbitrary agn chart adapted to
X, g(X,V)|y = V¥i—o. Assume for definiteness that V'|,—g > 0 everywhere on N (i.e.,
in every agn chart adapted to X on N).

Following Hawking and Ellis [16], we define a positive definite metric ¢’ on YV by setting

g, 2)=g(Y,Z) +29(Y,V)g(Z,V) (I1.14)

for any pair of vector fields Y, Z defined on V. This metric induces a Riemannian metric

)¢’ on N given, in an arbitrary gaussian null coordinate chart, by the expressions

(g)gés = (2Vtvt) |t:0
e = 20asV'V") =0 (I1.15)

(3)g(/1b = (,uab + 2,uacvc,ubdvd)‘t:0

and having the natural volume element

v det Gy’ = (21/2Vt\/ det ,u)

(I.16)

t=0
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Since X = % in an agn chart adapted to X, we have

O’ (X, X) = Dy = (2V'V) 1= (IL.17)

as a globally defined, nowhere vanishing function on N. Using this non-vanishing function

as a conformal factor, we define a second Riemannian metric )g on N, conformal to ©®)g/,

2/3
Vt

The natural volume element of )y is thus given by

v det Glg = ( ! ) v det Glg’

Vi o (IL.19)

- (2

Computing the divergence of X with respect to the metric ®g, we find

1 0 .
=~ (4 3 g X"
det ®) g Oz’ ( det g X )

(s ()

=0

by setting
@y (I1.18)

V(a)g - X

(I1.20)

t=0

which vanishes by virtue of the result of Hawking and Ellis cited in the previous section
(i.e., by virtue of the invariance of the transversal metric fiy, relative to the flow along X).

Equation (I1.20) can be equivalently expressed as

Ly (x/det (3)g> —0 (IL.21)

where £ signifies the Lie derivative. Thus the volume element of ()¢ is preserved by the flow
along X.

It follows from the above that if {f*|A € R} is the one-parameter family of diffeomor-
phisms of N generated by X and if D is any measurable region of N with volume (relative to
®)g) vol(D) then vol(f*D) = vol(D) V¥ A € R. Since N is compact and f* is volume preserv-
ing, the Poincaré recurrence theorem may be applied and has the following consequences.
Let p be a point of N and U be any neighborhood of p and, for any Ay # 0, consider the
sequence of iterates f™ (for n = 1,2,...) of f = f* and the corresponding sequence of
(equal volume) domains U, fU, f2U,..., f*U,.... Poincaré’s theorem shows that there al-

ways exists an integer k > 0 such that f*U intersects U and thus that, in any neighborhood
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U of p, there always exists a point ¢ which returns to U under the sequence of mappings
{5}

The above results together with those of the previous subsection show that any point
p € N eventually return to an arbitrarily small neighborhood of p (after first leaving that
neighborhood) when followed along the flow of X. The reason is that since, by construction,
X has no zeros on N, every point p € N flows without stagnation along the integral curves
of X, first leaving sufficiently small neighborhoods of p and then, by Poincaré recurrence,
returning arbitrarily closely to p.

It may happen that a point p may actually flow back to itself, in which case the generator
it lies on is closed, but for the generic points of interest here, the generators will not be closed

and the flow will only take p back arbitrarily closely to itself.

D. Implications of Poincaré Recurrence for the Transversal Metric

Consider a null generator v of N which passes through a point p and let D be a disk in
N, containing p, which is (analytically) embedded transversally to the null generators which
intersect it. If we follow v starting at p then Poincaré recurrence shows that we will either
return to p (in which case = is closed) or else intersect D in a sequence of points which
approach p arbitrarily closely.

The Riemannian metric pp induced upon D is analytic. Suppose for the moment that it
has non-constant scalar curvature ®R(up). By analyticity, @R(up) has non-zero gradient
on an open dense subset of D and thus, by the implicit function theorem, the connected
level set of @R(up) passing through a point p at which @R(uup) has non-zero gradient is an
analytic curve in D, at least sufficiently near the point p.

If ~ is not closed, then it must reintersect D in an infinite sequence of points {p;} which
approach p arbitrarily closely. Furthermore, by invariance of the transversal metric along
the flow, each of the p; must lie on the same level curve of @R(up) that p does. In fact
the recurrences determined by the reintersections of v with D must densely fill the whole
(connected) level set containing p. This follows from the fact that a recurrence which carries
p to some sufficiently nearby point p’ a metrical displacement § from p (along the given level
set of ®R(pup)) carries p’ (again by invariance of the transversal metric along the flow) to a

point p” which is displaced 2§ from p, etc. Thus one gets recurrence by integral multiples of
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0 until eventually the recurrent points ‘run off the edge’ of D. Since, however, by Poincaré
recurrence, § can be made arbitrarily small by choosing p’ suitably from the sequence {p;}
and since one gets displacements of opposite sign by simply tracking the flow backwards,
it’s clear that the recurrences of p densely fill a (connected) component of the level set of
@R(pp) on which p lies. Furthermore, since each of these recurrences is induced by a local
isometry of (D, up), as described in section IIB, it follows that if p is a point at which
@R(uup) has non-zero gradient, then the whole connected level set of PR(uup) containing p
consists of points of non-zero gradient of ?R(pp). Thus this entire level set (and not just a
portion near p) is an analytic curve lying in D.

If, by contrast, v is a closed generator then, by invariance of up, points near p have all of
their recurrences a fixed metrical distance from p, and thus all lie on metrical circles centered
at p. These circles are (at least generically) curves on which grad ®R(jup) is non-zero and
hence are either densely filled by recurrences of points lying on them or else consist of points
which all lie on closed generators. In either case, the interior of such a metric circle (contained
in D and centered at p) is mapped repeatedly to itself by iterations of the isometry defined
by the first recurrence. This isometry either corresponds to a ‘rational’ rotation (in which
each point advances by a rational multiple of the circumference of the circle on which it
lies), in which case every point lies on a closed generator, or to an ‘irrational’ rotation in
which every metrical circle centered at p is densely filled by the recurrences of any single
point lying on it.

Thus, for the case in which ®)R(up) is non-constant, we find that non-closed generators
densely fill smooth curves lying in D whereas closed generators are either surrounded by
other closed generators which (as a straightforward extension of the above argument shows)
fill D or else are surrounded by non-closed generators which densely fill sufficiently small
circles about the given point of intersection of the closed generator with D.

Using the connectedness and compactness of N and the analyticity and invariance of the
transversal metric it is clear that one can ‘analytically extend’ the above argument to show
that either (i) every generator of N is closed ( a case which we have treated elsewhere), or (ii)
almost every generator densely fills an analytic curve lying in any transversal embedded disk
which that generator intersects. In the latter case, one may also have isolated instances of
closed generators but these will, as we have seen, be surrounded by densely filling generators

which are thus generic.
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Consider the closure in N of any one of these densely filling generators . Let cl(v)
designate this subset of N. Clearly cl(7) intersects any disk D transversal to «y in an analytic
curve satisfying @R(up) = constant (since 7 itself densely fills this curve). Locally, therefore,
cl(y) is obtained by translating such a transversal, analytic curve along the flow of X and
thus defines an analytic surface embedded in N. Since cl(7) is a closed subset of the compact
set N, the embedded surface defined by cl(7) is thus a compact, connected embedded sub-
two-manifold of N. We want first to show that ¢l(7y) is in fact also orientable and thus, since
it supports a smooth, nowhere vanishing tangent vector field (that induced by X), that it
must be diffeomorphic to a two-torus.

First, note that the value of @R (uup) at a point p € D C N is (by invariance of the metric
wp under the flow along X') independent of the choice of disk D. Any other transversal disk
containing p would yield the same value for the scalar curvature function at p. Thus the
transversal metric, though not really defining a metric on N, nevertheless defines an analytic

function, @R(y) : N — R, on N given by setting

OR(u)(p) = PR (jip) (p) (11.22)

for any p € N, where D is any transversal disk containing p. By construction, ®R(u) is
constant along the generators of N and hence constant on the closure cl(y) of any such
generator. Indeed, each cl(7) is just a connected component of a level set of @R(y).

At a generic point p € N, the differential d®R(p)(p), will by analyticity, be non-zero
and, by invariance of u along the flow of X, this differential will be non-zero at every point
along the generator v which passes through p. By continuity d®?R(u) will thus be non-zero
everywhere on cl(7) as well. Choosing a Riemannian metric )¢’ on N (such as that discussed
in section IIC) one computes from d®R(u) an associated vector field, VR(y) which is
everywhere non-zero and everywhere metrically perpendicular to cl(y). Thus V®R(u) is
perpendicular to X at every point of ¢l(v). Using the metric ¥y’ and its associated volume
3-form one can define a ‘cross-product’ of X and V?R(u) by taking the dual of the wedge
product of the corresponding one-forms and ‘raising the index’ of the resulting one-form.
This yields another smooth vector field which is tangent to cl(vy), nowhere vanishing and
everywhere perpendicular to X. Thus X together with this ‘cross-product’ vector field, define
an orientation for ¢l(y) which is thus necessarily orientable.

Therefore, any of the embedded two-manifolds, cl(v), on which d®R(u) is non-zero is
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(since compact, orientable and supporting a smooth non-vanishing vector field) necessarily
a two-torus. By analyticity these are generic, since d®R(p) can vanish only on isolated
curves (corresponding to closed generators) or two-manifolds. The latter are necessarily tori
as well since they can be shown to be orientable by a different argument.

To see this, we need to show that the compact two-manifold cl(v) can be assigned a
smooth, nowhere vanishing normal field. Let p be a point in ¢l(vy) and let D be a disk in N
(transversal to the flow of X as usual) which contains p as an interior point. We know that
cl(7y) intersects D in an analytic curve and that the recurrences of p, followed to the future
along the integral curve of X through p, densely fill this curve in D. Suppose that one of
these future recurrences of p is a point p’ € D N ¢l(y) which lies a metrical distance 0 (as
measured along the curve D N ¢l(y) with respect to the metric pp) from the point p. The
point p’ is uniquely determined by the point p and the distance § since if, on the contrary,
there were another future recurrence point p” of p, an equal distance from p (but on the
opposing side of the curve D Ncl(y) from p’), then the same isometry which carries p to the
future to p’ would carry p” to the future to p. But this would imply that ~ is closed which
is contrary to our assumption that cl() is a closed two-manifold densely filled by ~.

The same isometry which uniquely carries p to p’ carries any point ¢ € D N ¢l(7), suf-
ficiently near to p, to a uniquely determined point ¢ € D N ¢l(y) a metrical distance 0
from ¢ (as measured, as before, along the curve D N cl(y) by means of the metric up). It
now follows from translating D along the flow of X and appealing to the invariance of the
transversal metric and the fact that « densely fills cl(7) that any point ¢ € cl() lies in a
transversal disk D, which also contains a uniquely defined future recurrent point ¢’ which
lies a metrical distance ¢ along D, N cl(y) from ¢ (as measured by the transversal metric).

A unique vector can now be defined at ¢ which is orthonormal (as measured relative
to the Riemannian metric *)g’ defined on N) to the embedded two-manifold cl(7y). To see
this, choose a disk D, containing ¢ (e.g., a translate along the flow of X of the original
disk D) which intersects cl(7) in an analytic arc which contains the unique future recurrent
point ¢’ a metrical distance § from ¢. By parametrizing this arc with an orientation defined
by the direction leading from ¢ to ¢’ (along the segment of length ¢) we can compute a
vector at ¢ by calculating the tangent vector at this point. This vector depends upon the
choice of disk D, but, after taking its cross product with X (using the metric ®)g’ as before)

and normalizing to unit length, we get a uniquely defined unit normal vector to cl(y) at
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the arbitrary point ¢. That this choice varies smoothly with the choice of point ¢ € cl(v)
can be seen as follows. The parametrized arc through ¢ has a smoothly varying tangent.
Translating this curve along the flow of X and appealing to the invariance of the transversal
metric we can generate locally (i.e., on a neighborhood of ¢ in ¢l(y) a smooth tangent field
to cl(y) which, together with the cross product and normalization construction described
above, determines a locally smooth unit normal field to cl(v). However, this normal field is
globally unique and thus, since smooth on a neighborhood of any point of cl(y), defines a
globally smooth normal direction to cl(vy). Thus cl(v) is, as before, a compact, orientable
embedded two-manifold in N which supports a nowhere vanishing vector field (e.g., X or
the cross product of X with the normal field). As such it must be a torus.

Thus the level sets of @R() in N consist of at most a finite collection of closed generators
(by compactness of N and the fact that these circles are isolated for the cases of interest
here) together with a foliation of the complement of these circles by embedded two-tori.
Each closed generator (if any exist) lies at the core of a family of nested tori. Each torus in
the complement of the closed generators is densely filled by an integral curve of X, i.e., by
the generator v whose closure cl(7y) defines the chosen torus. In fact, from the invariance of
the transversal metric along the flow of X, it follows that every integral curve of X lying in
cl(7y) is densely filling. Thus there are no fixed points (X is nowhere zero) or periodic orbits
lying in any cl(y) ~ T2

The only cases which remain to be considered are those for which @R(yup) is a constant
on some transversal disk D. By analyticity it follows that R(u) is necessarily constant
everywhere on N. Evidently, there are three distinct possibilities corresponding to the met-
ric pup (defined on any transversal disk) being spherical (?R(up) > 0), pseudo-spherical
(®R(up) < 0), or flat (PR(up) = 0). We shall show for the first two of these cases that
again the closure, cl(7), of any non-closed generator 7 is an embedded, compact two-manifold
diffeomorphic to T?. For the third case, when pup is flat, another possibility arises, which
we shall call ‘ergodic’, in which a generator v can densely fill N itself. That such ergodic
Cauchy horizons actually occur in solutions of Einstein’s equations can be seen by taking
the flat Kasner solution and spatially compactifying it, with suitable identifications, to yield
a vacuum spacetime defined on 7% x R which has a Cauchy horizon N ~ T3. The most
obvious identification leads to a Cauchy horizon with all generators being closed but one

can exploit the spatial homogeneity of the Kasner solution to make an ‘irrational shift’ in
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the coordinates of the points being identified in such a way that the null generators of the
Cauchy horizon N now densely fill N. One can of course also do this in such a way that the
generators again only densely fill two-tori instead of T°. Nevertheless, the ergodic case does
exist. We shall not deal with it here but mention the conjecture that every ergodic solution
is essentially equivalent to (i.e., finitely covered by) one of the ergodic flat-Kasner solutions
described above.

Assume now that ¥R(p) is a non-zero constant on N, and let p be an arbitrary point of
N. Choose a circular transversal disk D,(J) centered at p and having radius 0 (as measured
along radial geodesics of the spherical or pseudo-spherical metric pup). Let p flow to the
future along X until it first reintersects D,(d) at some interior point p’. By assumption p’ is
the first future recurrence of p to the interior of D,(d). Let 6 —e > 0 be the radial distance
from p to p’ and let D,/(¢/2) C D,(J) be a circular disk of radius /2 centered at p’. We
know that there is a unique isometry, determined by the flow along X, which carries the
corresponding disk D,(e/2) centered at p to D,(c/2). This isometry is the restriction of
an orientation preserving isometry of the sphere or pseudo-sphere to the subdomain defined
by D,(¢/2) and, as such, belongs to a uniquely defined one-parameter subgroup of the full
(spherical or pseudo-spherical) orientation preserving isometry group.

The action of this subgroup is generated by a unique Killing field K of the manifold
(D, up). From Killing’s equation, Lxpup = 0, one gets that pup(K, K), the squared length
of K, is constant along the orbits of the one-parameter subgroup generated by K (i.e.,
Ly (up(K,K)) = 0 on D). Since up(K, K) is analytic and non-constant (since we have
excluded the flat case for the present), its level sets are analytic curves which coincide with
the orbits generated by K. Let ¢, be the orbit through p generated by K this is just a
connected component of the level set of pp(K, K) determined by the value of this function
at p. What we want to show is that every future recurrence of p, sufficiently near p, actually
returns to, and in fact, densely fills, the curve ¢,. This will guarantee, by arguments similar
to those given above, that the closure of the orbit v of X through p is in fact a torus
embedded in N as before.

First note that not only is p’ the first future recurrence of p to the disk D,(d) but also
the first recurrence of p to the smaller disk D,(6 —¢/2). Indeed, by choosing 7 > 0, small
enough it is clear that we can ensure that p’ is the first future recurrence of p to any disk

of the type D,(6 — ¢/2) where the distance d(g¢,p) from p to ¢ (as measured by the metric
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ip) is less than n. In particular, we clearly need n < €/2 but let us take 7 sufficiently
small so that the disk, D,(n), of radius n centered at p, intersects the level set of pp(K, K)
corresponding to the level value pp(K, K)(p) only along an arc of ¢, (i.e., if this level set
includes disconnected components we choose 1 small enough so that D,(n) excludes them).
Further require (if necessary) that n < /4 so that any point of the disk D,(6 — ¢/2), for
which d(q,p) < n < /4, is at least a distance greater than n from the boundary of the
original disk D,(9). This ensures that the first recurrence of any point ¢ € D,(n) to the disk
D,(d —e/2) must be given by that isometry which carried p to p’ (and D,(g/2) to Dy (/2)).
The reason is that, if this were not the case, then the distinct isometry which first carries
q to some ¢’ € D,(d —¢/2) would take p to some point p” distinct from p’ (since we are
excluding the case of a closed generator through p) which lies within D,(J) (since p” lies
within a distance 1 of ¢’ and every point of D,(d — ¢/2) is at least a distance n from the
boundary of D,(0)). But this contradicts the original assumption that p’ was the first future
recurrence of p to D,(6).

Thus the first future recurrence of any ¢ € D,(n) to the disk D,(6 — ¢/2) is in fact that
¢’ which is determined by the unique isometry which carries D,(¢/2) to Dy(¢/2) (and, of
course, p to p').

Now, let ¢ € D,(n) be some subsequent future recurrence of p to D,(n). We want to
show that ¢ € ¢, so suppose this is not the case. This would mean that ¢ and its image
¢ (under the isometry which carries D,(¢/2) to D,(¢/2)) lie on some other level set of
pp (K, K) corresponding to a level value different from that determined by ¢, (i.e., different
from pp(K, K)(p)). This is impossible however, since the point ¢’ represents the first future
recurrence of ¢ to D,(0 — €/2) whereas ¢ is a future recurrence of p. But the invariance
of the transversal metric along the flow of X implies the triple (¢, ¢, D,(0 — ¢/2)) must be
an isometric copy of the triple (p,p’, D,(6 —¢/2)) which results from simply translating the
original triple along the flow until p gets mapped to ¢, etc. However, that means that p and
q (as well as p’ and ¢') must both lie on the same level of pp(K, K) and hence both lie on
Cp-

Thus all (future) recurrences of p sufficiently near p must lie on the analytic curve ¢, C
D, () which contains p. A completely analogous argument shows that the same is true
for past recurrences of p. Since these recurrences must approach p or, in fact, any of its

recurrences on ¢, arbitrarily closely it is clear that, as before, the recurrences of p densely fill
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the analytic curve ¢, C D,(9). Translating this curve along the flow generated by X yields
an analytic surface through p defined locally by the foregoing constructions. Thus near any
point p € N the closure cl(v), of the orbit of X through p is an analytically embedded
two-dimensional submanifold of N. Since ¢l(7) is closed in N and N is compact, cl(7y) must
as before be a compact submanifold of N which supports a (smooth) nowhere vanishing
vector field (e.g. X itself). We can now use the same argument as that given above for
those (isolated) manifolds having V®R(u) = 0 to show that cl(«y) is orientable and hence a
torus.

This argument breaks down in the case ®R(u) = 0 (i.e., when p is flat) but only if
the isometry carrying p to p’ is a pure translation (since then and only then is pup(K, K)
constant on D). The flat case still allows special cases for which ¢l(v) is a two-torus and
in those instances the arguments to follow go through equally well. But the flat case also
allows more general patterns of recurrence in which ¢l(y) is not simply a 2-manifold, but
may in fact be all of N. We shall refer to these more general cases as ‘ergodic’ and shall not
deal with them in the following. It is worth noting, however, that if an ‘ergodic’ flow on
N generated by X happened to admit a global transversal foliation with closed leaves (i.e.,
compact embedded two-manifolds everywhere transversal to the flow of X and intersected
by every orbit) then we could treat this case as well by a modification of the arguments to
be given below.

Thus the picture we have developed that N contains, at most, a finite number of closed
generators and that any non-closed generator ~ yields an embedded two-torus in N as its

closure applies to every case except the ergodic ones for which ®R(u) is necessarily zero.

E. A Connection on N and some associated ‘ribbon arguments’

Let WY and WZ be any two smooth vector fields on (‘YV, g) which are tangent to N (i.e.,
for which Wy*|,_g = W2,y = 0 in an arbitrary gaussian null coordinate chart). Then,
computing the covariant derivative V(1 (Y7, determined by the spacetime metric g, observe
that the resulting vector field is automatically also tangent to N as a consequence of the
invariance property of the transversal metric which was derived in Sect. II B (i.e., of the result
that fiap3 = 0). This fact, which corresponds to the vanishing of the connection components

F§j|t:0 (for i,7 = 1,2,3), in turn implies that N is totally geodesic (i.e., that every geodesic
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of g initially tangent to N remains in N through its entire interval of existence).
If Y and Z designate the vector fields on N induced by Y and WZ respectively, then we
can, by virtue of the above remarks, define a connection ®I' on N by means of the following

defining formula for covariant differentiation

BNy Z = (VayW2)| (11.23)

N
Here the right hand side symbolizes the vector field naturally induced on N by Vi, YZ. A

straightforward computation in gaussian null coordinate charts (restricted to N) shows that
(O 2)" = YIZ*, + Ok Ziy (I1.24)

where

By =T% |- (11.25)

ij
and where I'j are the Christoffel symbols of go5. The components of G are given explicitly
by

1 1

(3>F§3 - _585,157 (3)F23 = _§Ba,t

L.
O, = g Havt BIrg, =0 (11.26)
g, =0, Oy, = Py,

where @I = @'t and where the @4, are the Christoffel symbols of the invariant transver-
sal metric fiq(z¢).
A similar calculation shows that if (X2 is a one-form on (‘YV, ¢) and Q its pull-back to N

then the pull-back of VX is given by GV Q where, as expected,

GV, Q) =YIQ,  — CrkyiQ,. 11.27
5] 1)

Now, recall the fixed vector field X which was introduced in Sect. IT A, and, for simplicity,

work in agn charts adapted to X so that X = %. For an arbitrary vector field Z defined
on N we find, by a straightforward computation, that

OV, X = (wx(2)) X (11.28)

where wy is a one-form given, in the agn charts adapted to X, by

1 1-
Wx = —§¢,tdl'3 — §5a7tdl'a. (1129)
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The exterior derivative of wy is readily found to be

1 °
d(A)X = — 5(%5715& - ﬁa,tg)dflfa N d.flfg

1. (I1.30)
- §Ba7tbd$b A dx®.
However, the Einstein equation Rs, = 0, restricted to N and reduced through the use of

ftabs = 0, becomes (c.f. Eq. (3.2) of Ref. [6]):
0 — Bagz = 0. (I.31)

Thus dwyx reduces to

1o
dwyx = —iﬁmtbd:cb A dz®. (11.32)

In subsequent sections, we shall be studying integrals of the form

L wx = L <—%¢7t) dz? (11.33)

along segments 7 of integral curves of X. We shall be interested in comparing the values
of these integrals for nearby integral curves. For that purpose, the following sort of ribbon
argument will prove indispensable.

Let p and p’ be any two points of N which can be connected by a smooth curve which
is everywhere transversal to the flow of X. Let ¢ : I — N be such a curve defined on the
interval I = [a, b] with ¢(a) = p and ¢(b) = p’ and let £ : I — R be a smooth, strictly positive
function on I. Now consider the strip or ribbon generated by letting each point ¢(s) of the
curve ¢ flow along X through a parameter distance ¢(s) (i.e., through a lapse of £(s) of the

natural curve parameter defined by X). This construction gives an immersion of the ribbon
r={(s,t) eR*s € I,0<t < {(s)} (11.34)

into N which consists of connected segments of integral curves of X. In particular, the
integral curves starting and p and p’ form the edges of the ribbon whereas the initial curve
¢ together with its image after flow along X form the ends of the ribbon.

If7:7r — N is the mapping which immerses 7 in N according to the above construction
and *wx and 7*dwx are the pull-backs of wy and dwyx to r respectively, then one sees from
Eq. (I1.32) and the tangency of the ribbon to the integral curves of X, that i*dwyx = 0.

Therefore, by means of Stokes’ theorem, we get

/ Wx = /de =0 (1135)
or r
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for any ribbon of the type described above. Thus if v and ' designate the two edges of r
(starting from s = a and s = b respectively and oriented in the direction of increasing ¢) and if
o and o’ designate the two ends of r defined by 0 = {(s,0)|s € I} and ¢’ = {(s,4(s))|s € I}

respectively (and oriented in the direction of increasing s) then we get, from | arwx =0,

that
/WX—/ WX:/WX—/ wx. (1136)
¥ v o o

Equation (I1.36) will give us a means of comparing fy wyx with fv’ wy provided we can
estimate the contributions to fé)r wx coming from the ends of the ribbon. As a simple
example, suppose (as we did in Ref. [6]) that every integral curve of X is closed and choose
rand ¢ : r — N so that the image of r in N consists of a ribbon of simply closed curves. In
this case, the end contributions cancel and we get that f,y wy = fﬁ{, wyx. This result played

a key role in the arguments of Ref. [6].

III. ELEMENTARY REGIONS AND THEIR ANALYTIC FOLIATIONS

In the sections to follow we shall define a ‘candidate’ vector field K on N by rescaling X
appropriately, prove its analyticity and eventually show that K propagates into the envelop-
ing spacetime as an analytic Killing vector field. If, for some reason, we knew a priori that
N admitted a global, analytic foliation with closed leaves that are everywhere transverse to
the flow of X then we could proceed with this analysis much as we did for the (higher di-
mensional) stationary black holes of Ref. [10], working ‘globally’ on N by directly exploiting
the special structure provided by its ‘pre-existing’ analytic foliation. Here however no such
analytic foliation has been presumed to exist and indeed the very possibility of global, closed,
transversal leaves might be excluded for purely topological reasons.! On this account we
shall decompose N, as needed, into a finite collection of elementary regions that will each be
shown to admit an analytic, transversal foliation and carry out the aforementioned analysis
first on the individual elementary regions, much as we did for the case of closed generators
in Ref. [6]. Finally, after verifying the consistency of these constructions on overlapping

domains of definitions, we shall assemble the resulting components and ultimately arrive at

! For example, even for the case of closed generators of N the integral curves of X might well be the fibers

of a non-trivial S'-bundle as is indeed the case for the Taub-NUT family of spacetimes.
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a globally defined, analytic ‘candidate’ vector field K on N.

Consider any one of the analytically embedded 2-tori discussed in Sect. (IID) that is
realized as the closure, cl(7), of a (non-closed but densely-torus-filling) generator 7. This
torus supports the flow of a nowhere-vanishing, analytic vector field, namely that induced
from X which, by construction, is tangential to the chosen embedded torus.

Thanks to a theorem due to M. Kontsevic (of which the proof is sketched below in the
Appendix) one knows that such a torus always admits an analytic foliation with closed leaves
that are everywhere transverse to the flow generated by X. We now wish to ‘thicken’ such
an embedded torus to obtain an embedded 3-manifold diffeomorphic to A x S' (where A
is an open annulus), consisting entirely of generators of N, and to show that this thickened
torus will itself admit an analytic foliation (with leaves each diffeomorphic to A) that is
everywhere transverse to the flow generated by X. Such a thickened torus, together with its
analytic, transverse foliation, will be the first of two types of elementary regions that we
shall define.

The second type of elementary region will only be needed to cover a ‘tubular neighborhood
in N’ of any particular closed generator + that might, exceptionally, occur. In this case
we shall ‘thicken’ v to a solid torus diffeomrophic to D x S' (where D is an open disk),
consisting entirely of generators sufficiently close to 7, and show that such a solid torus
admits an analytic, transversal of foliation with leaves diffeomorphic to D. For the case of a
non-ergodic flow (as defined in Sect. (IID)) every generator of N is either closed or densely
fills an embedded 2-torus. By the compactness of N such a null hypersurface can clearly be
covered by a finite collection of such elementary regions with those of the second type only
needed in the presence of closed generators.

To construct such elementary regions we shall need an analytic, Riemannian metric on
N. To define such a metric we slightly modify the argument in Sect. (IIC) by now insisting
that the (normalized, timelike) vector field V, which is transverse to N in (‘V, g), be itself
analytic. Since the timelike condition is an open one and since the normalization of such an
analytic vector field will not disturb its analyticity there is no loss of generality involved in
assuming that the induced Riemannian metric )y is in fact analytic on N. Recall that the

metric so defined (via Eqgs. (II1.13)—(I1.18) in fact satisfies

Ly (x/det (3)g> —0 (IIL.1)
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on N.

As discussed in the Appendix one constructs an analytic, transversal foliation with closed
leaves for any one of such embedded 2-tori by showing that it always admits an analytic,
closed one-form A\ with integral periods that, moreover, satisfies A(X) > 0. Since any such
A is locally expressible as A = dw for some analytic function w, the level sets of w define the
leaves of the foliation. Thus w provides an analytic coordinate function that is constant of
the leaves so-defined. The closure of these leaves and their transversality to X is ensured
by the integrality of the periods of A and by the condition that A(X) > 0 everywhere on the
torus. Any two such coordinate functions, w and w’, will of course only differ by a constant
on their overlapping domains of definition.

We now ‘thicken’ the chosen 2-torus by flowing along the normal geodesics of the metric
®)g on N, much as we would in constructing a gaussian-normal neighborhood of the given
torus. By restricting the range of the (normal geodesic) flow parameter suitably one can
ensure that the resulting thickened torus is diffeomorphic to A x S!, where A is an open
annulus corresponding to a thickened leaf of the original torus, and consists entirely of
integral curves of X. By continuity, if this thickening is sufficiently restricted the annular
leaves of the foliated 3-manifold will be globally transverse to X.

We now extend the domain of definition of the analytic, coordinate function w by requiring
it to be everywhere constant on any one of the thickened leaves. Choosing complementary,
analytic coordinates {2} = {z', 22} on one of these annular leaves and holding these fixed
along the flow generated by X while setting 2° = w one gets a convenient adapted coordinate
chart for the thickened torus ~ A x S'. Any two such coordinate systems {z? z3} and
{2 2%} will be related, on their overlapping domains of definition by a transformation of

the form

3 _ .3
x° = z° + constant

(I11.2)
2 = fo(at, 2?)
where the {f®} define an analytic diffeomorphism of the annulus A. Thus this first type
of elementary region consists of a thickened 2-torus foliated, on the one hand, by the (non-
closed) integral curves of X and, on the other, by annuli transverse to the flow of X.
The second type of elementary region results from thickening a closed generator v to get

a solid torus with 7 at its core. To construct this choose an analytic, ‘angle’ coordinate z°



27

to label the points of the chosen generator . At each point p of v we have a corresponding,
orthogonal 2-plane in the tangent space, T, N, defined by the metric ®)g (i.e., the orthogonal
complement to the tangent vector to v at p). By flowing along the geodesics of ®)g in N we
may thus ‘thicken’ each such point p € « to a disk D, which, by construction, is orthogonal
to vy at p. By restricting the geodesic flow parameter suitably (in its dependence upon p and
the orthogonal direction to v at p) we may ensure that the - so thickened is diffeomorphic
to D x S', consists entirely of integral curves of X and is such that each thickened leaf, D,,
is transverse to the flow generated by X.

By defining an analytic coordinate 2 on D x S! by holding the chosen angular coordinate
for v constant on each leaf and by choosing complementary, analytic coordinates {z*} =
{z', 2%} for any one of the transversal disks and holding these constant along the flow of X
we generate an adapted analytic coordinate system for this second type of elementary region.
Any two such coordinate systems, {2, 2°} and {2%, 2%}, will be related by a transformation
of the form

3 _ .3
x° = z° + constant

(I11.3)
27 = g%(zt, 22)
on their overlapping domains of definition where now the {g*} define an analytic diffeomor-
phism of the disk.
In the following sections it will be convenient to let the symbol H designate an arbitrary
elementary region of either of the two types. By the compactness of N it is clear that we

can cover N by a finite collection of such elementary regions.

IV. NONDEGENERACY AND GEODESIC INCOMPLETENESS

In this section we shall show, using a ribbon argument, that each null geodesic generator
of N is either complete in both directions (the ‘degenerate’ case) or else that each generator
is incomplete in one direction (the non-degenerate case). More precisely, we shall prove that
if any single generator «y is incomplete in a particular direction (say that defined by X') then
every other generator of the (connected) hypersurface N is necessarily incomplete in the
same direction. It will then follow that if any generator is complete in a particular direction,
then all must be since otherwise one could derive a contradiction from the first result. We

shall see later that, in the non-degenerate case, the generators which are all incomplete in
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one direction (say that of X) are however all complete in the opposite direction (that of
-X).

As usual we work in adapted charts for an arbitrary fundamental region H C N. For the
calculations to follow however, it is convenient to work with charts induced from adapted
charts on the covering space H ~ ¥ x R of H 2 for which the {z° | a = 1,2} are constant
along any given generator and the range of the ‘angle’ coordinate 2% is unwrapped from say
(23, 2% + s*), where s* is the ‘recurrence time’ for 2* on H, to cover the interval (—oo, c0).
Projected back to H these induce families of charts {z%, 2%}, {z%, 2%}, etc. related, on their

regions of overlap, by analytic transformations of the form

3 _ .3
xr° = z° + constant

(IV.1)
2 = fo(zt, z?).

By working on the covering space we simplify the notation by keeping the {x} constant and
letting x3 range continuously over (—oo, o) in following a given generator as it repeatedly
sweeps through the leaves of the chosen foliation of H. However, one should keep in mind
that this is just an artifice to represent calculations carried out on the elementary region H
in a simplified notation since the compactness of the closure, cl(H), of H in N will play a

key role in the arguments to follow.
Consider a null generator of H developed from ‘initial’ conditions specified at a point

3 x%(p) = 2°}. The affine parametrization of this

p € H having coordinates {z3(p) =
generator is determined by solving the geodesic equations which, for the class of curves in

question, effectively reduce to

d*z® ¢ o (da\?
d 5 —7715(563,1’ )(d—) =0
0 0 (IV.2)

z%(\) = 2% = constant

where 7 is an affine parameter. To complete the specification of initial conditions one needs,
of course, to give an initial velocity %73 |5 (taking ddi: l;=0).
Solving the first order equation

dU . gé,t 2
= (IV.3)

2 Where either ¥ ~ A or ¥ ~ D depending upon the type of the elementary region H.
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for v := %73 to get an integral formula for v and then integrating % = % with respect to 23
one derives an expression for the affine length of a segment of this null geodesic defined on

the interval [23, 23]:

77(93 >ja) - ﬁ(j a‘%a)

v P
: 2 (IV.4)
= (di;g) ‘ﬁ(fS,ja) /dp eXp[—/dg(%(&ia)]'
dn A J

Thus incompleteness of this generator, in the direction of X = %, would correspond to the
existence of the limit

23

i [ expl— [ de(SH(e.a)

z3—00

53 33 (IV.5)
da? vn ere3 ea

= (d—n) ‘ﬁ(i,Bj;a) (77(007$ ) - 77(517 » L )) <00
whereas completeness (in this direction) would correspond to the divergence of this limit.
Recalling Equation (I1.33), note that the integral of the one-form wy along the segment ~

defined above is given by
ZBS
L, ca
Juox = [-geuteaas (v 6)
v &3

which thus provides an invariant representation of the basic integral arising in the above
formulas.

Suppose that the generator ‘beginning’ at p € H is incomplete in the direction of X. We
want to establish convergence of the corresponding integral for any other generator of H.
Since incompleteness is an asymptotic issue (the relevant integrals being automatically finite
on any compact domain of integration) there is no essential loss of generality in comparing
only those generators that ‘start’ in the slice defined by p. Thus we want to consider
generators ‘beginning’ at points ¢, having z3(q) = 23, and establish their incompleteness
by using a suitable ribbon argument. Furthermore, to have a ‘canonical’” way of defining
our comparison ribbons it will be convenient to localize the calculations somewhat by first
looking only at generators sufficiently near to the ‘reference’ generator. Thus, given a point

3

p in the initial slice defined by x?(p) = @3, we consider only those points ¢ lying in this slice

which, additionally, lie within a closed geodesic ball (relative to the invariant transversal
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metric p induced on this slice) centered at p and contained within a normal neighborhood of
this point. Any such ¢ can be connected to p by a unique geodesic lying within this geodesic
ball and such points can be conveniently labeled by normal coordinates defined at p (i.e.,
the points of a corresponding, closed ball in the tangent space to the slice at p).

The unique geodesic connecting ¢ to p provides a canonical ‘starting end’ to our compar-
ison ribbon for geodesics emanating from points p and ¢ (in the direction of X) and, from
invariance of the transversal metric along the flow of X, we get an isometric image of this
connecting geodesic induced on any subsequent slice traversed along the flow.

Let v be the segment of the null generator beginning at p and defined on the interval
(23, 23], for some z® > 23, and let 7/ be a corresponding segment of the generator beginning

at ¢ and defined on the same interval. From the argument given in Section ITE it follows

/WX_/WX:/WX_/WX (IV-7)

where o is the geodesic end defined in the starting slice and ¢’ its isometric image at the

that

ending slice.
For fixed p the integral fg wy varies continuously with ¢ as ¢ ranges over a compact set
(the closed geodesic ball centered at p described above) and thus is bounded for all ¢ in this

ball. Furthermore the integral fo, wyx varies continuously with ¢ and z? but, as 2*

increases,
the image of p under the flow ranges only over (some subset of) the compact set given by
the closure of H in N whereas the image of ¢ remains always a fixed geodesic distance from
the image of p in the corresponding slice. Since the product of the closure of H with this
(closed) ball is compact the continuously varying integral fo, wy (regarded as a function of ¢
and 22 for fixed p) is necessarily bounded no matter how large the “unwrapped” coordinate
23 is allowed to become.

It follows from the forgoing that for any fixed p and ¢ as above, there exists a bounded,

continuous (in fact analytic) real-valued function §,,(z*) such that

Jux =[x+ b (IV.8)
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for arbitrary 2® > 3. But this implies that

23

[ a0 esol- / 20e,3#(q))de]

3

T p

= [dp exol= [ A6 e + 3,000 (v-9)

3 3

3

z p

= /dp exp[op.q(p)] exp[—/%(&fa@))dg]-

3 @3

From the boundedness of ¢, ,
— 00 < by < ,4(p) < by < 00,Vp € [7°,00) (IV.10)

it follows that

3

z P

eb1/dp exp[—/%(&ia@?))dﬂ

&3 &3

3

T P

< [dpexvl- [ Hiei(@)ag (V1)

&3 &3

x3 P

< [dpexpl- [ (e i)
Va? € [#3,00). But this implies that if the limit
3

tim [ dp exp[- / i (¢, 5(p))de] (Iv.12)

z3—=00 J53 3 2

exists, then so must the limit of the monotonically increasing function
f;: dp exp[— [, %1(€,4%(q))d€] exist as 2° — oo. Conversely, if the affine length of
~ diverges, then so must that of 4" by virtue of the forgoing bounds.

So far we have only considered those null generators starting within a geodesic ball cen-
tered at a point p in the initial slice. But from the compactness and connectedness of N
it’s clear that any of its null generators can be thus compared to the original ‘reference

generator’ through a finite collection of such ribbon arguments and thus all of them shown

either to be incomplete in the direction X or else to be complete in this direction. Clearly
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the same argument can be applied in the opposite direction (i.e., that of —X) with a cor-
responding conclusion. However, as we shall see later, the non-degenerate case will always
be characterized by generators that are all incomplete in one direction but complete in the
opposite direction, whereas the degenerate case will be characterized by generators that are

complete in both directions.

V. A CANDIDATE VECTOR FIELD IN THE NON-DEGENERATE CASE

In this section, we focus on the non-degenerate case and, if necessary, change the sign of
X so that it points in a direction of incompleteness for the null generators of N. We now
define a vector field K on N, also tangent to the generators of this hypersurface, by setting
K = uX where u is a positive real-valued function on N chosen so that, for any point
p € N, the null generator determined by the initial conditions (p, K(p) = u(p)X(p)) has a
fixed (i.e., independent of p) future affine length given by % where k is a constant > 0. At
the moment there is no preferred normalization for k& so we choose its value arbitrarily.

From Equation (IV.5) upon putting (n(co,2%) — 7(*, &) = 2, we see that u(z?, 27) is
necessarily expressible, in an arbitrary ‘unwrapped’ elementary region # for N, by

00 p

u(z?,2%) = g/dp exp —/%t(g,xa)dg . (V.1)

3 3

By the results of the previous section, the needed integral converges for every generator and
clearly v > 0 on 7. What is not clear however, in view of the limiting procedure needed
to define the outer integral over a semi-infinite domain, is whether u is in fact analytic
and we shall need to prove that it is. We shall do this below by showing that a sequence
{u; : H—R"|i=1,2,...} of analytic ‘approximations’ to u defined by

3 4is* p
i o
ula®,a%) = & / dp exp | - / e 0 | (V.2)

where s* is the recurrence time introduced in Section IV, does indeed have an analytic limit
as 1 — 00.
For the moment however, let us assume that we know that K is analytic and introduce

new agn coordinates {z%, 2% #'} which are adapted to K rather than to X = 2. Thus
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we seek a transformation of the form {2z = h(z® 2), 2% = 2} which yields K = ;% A

straightforward calculation shows that h must satisfy

Oh(x®, x*) 1 B 1
oOx3 - u(x?),xa) o {gf;; dp eXp[— xPB df%(f,x“)]} (V.3>

which, since the denominator is analytic by assumption and non-vanishing, yields an analytic
h upon integration.
As was shown in Sect. IITA of Reference [6], a transformation of the above type connects

the primed and unprimed metric functions ¢, and ¢/, via

o ([ oh oh on\?
e <8x3) e (%) i (V-4)

Computing % from Equation (V.3) above and substituting this and % into the above

formula one finds that the transformed metric has
¢'y = k = constant (V.5)

throughout any agn chart adapted to K. This argument is somewhat the reverse of that
given in Reference [6], for the case of closed generators, wherein we set ¢/, = k and solved
Equation (V.4) for 2% and then h.

In the new charts one still has ¢’ = B{l = ( since these hold in any agn coordinate system
and, upon repeating the argument of Section II B above, with K in place of X, we obtain
flyy 5 = 0 as well. Now evaluating the Einstein equation Ry, = 0 at ¢t = ¢’ = 0 and using
the foregoing, together with the new result that ', = k in the primed charts, one finds that
By =0

Deleting primes to simplify the notation, we thus find that in agn charts adapted to K,

the metric functions obey

o= Ba = flap3 = 0, ¢, = constant # 0, (ﬁoa,t);), =0. (V.6)

These are the main results we shall need for the inductive argument of Section VII to prove
that there is a spacetime Killing field Y such that YV |y= K.

Referring to Equation (IV.4) and evaluating the integrals in the new charts in which
¢ = k = constant > 0 one sees easily that though the null generators are all incomplete

towards the ‘future’ they are in fact all complete towards the ‘past’ (where here future and



34

past designate simply the directions of K and —K respectively). It may seem strange at

2

first glance to say that any generator could have a fixed future affine length (= £

) no matter
where one starts along it, but the point is that this length is here always being computed
from the geodesic initial conditions (p, K(p)). If one starts with say (¢, K(q)) and later
reaches a point p on the same generator, then the tangent to the (affinely parametrized)
geodesic emanating from ¢ will not agree with K (p) but will instead equal cK (p) for some
constant ¢ > 1, Only upon ‘restarting’ the generator with the initial conditions (p, K (p))
will it be found to have the same future affine length that it had when started instead
from (q, K(q)). Indeed, if the tangent to an affinely parametrized geodesic did not increase
relative to K then the generator could never be incomplete on a compact manifold N where
the integral curves of a vector field K are always complete.

Let us now return to the question of the analyticity of the ‘scale factor’ u(x®, z%). First
note that, upon combining Equations (V.3), (V.4) and (V.5), u satisfies the linear equation
with analytic coefficients

ou ¢y k

a2 YT 73 (V-7)
3

provided one takes, as initial condition specified at some x°,

00 P

ui®,a®) = 5 [ dp essl- [ Zheadel (V.8)

&3 &3
More precisely, using an appropriate integrating factor for Equation (V.7), namely
exp|— f;g dg %(f ,x%)], one easily shows that the solution to Equation V.7) determined by
the initial condition (V.8) is given by Equation (V.3). But Equation (V.7) can be viewed
as a (linear, analytic) partial differential equation to which the Cauchy Kowalewski theo-
rem applies [17] and guarantees the analyticity of the solution on domains corresponding
(because of linearity) to those of the coefficients (in this case ¢ (z3,2%)) provided that the
initial condition u(2?, 2%) is analytic with respect to the {z}. In other words, our problem
reduces to that of proving that Equation (V.8) for fixed Z?, defines an analytic function of
the {x}. Thus we only need to show that the sequence of ‘approximations’

S4is p

k ’ D i
w@)=5 [ dpesl- [ S,

3 3
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converges to an analytic function of the {z¢} for fixed 3.

However, a (pointwise) convergent sequence of analytic functions could easily converge
to a limit which is not even continuous much less analytic. On the other hand, the set of
continuous functions on a compact manifold forms a Banach space with respect to the C°
norm (uniform convergence) so that one could hope at least to establish the continuity of
the limit by showing that the sequence {u;(#3, %)} is Cauchy with respect to this norm.

A much stronger conclusion is possible however, if one first complexifies the slices
x3 = constant of an arbitrary elementary region H C N (which are each diffeomorphic
to a manifold 3 of the type defined previously) and extends the analytic metric functions
defined on N to holomorphic functions defined on this complex ‘thickening’ of H in the {x®}
directions which extend continuously to the boundary of its closure. The space of holo-
morphic functions on such a complex manifold (with boundary) forms a Banach space with
respect to the C° norm so that the limit of any Cauchy sequence of holomorphic functions
(which extend continuously to the boundary) will in fact be holomorphic and not merely
continuous [18, 19]. In the following section, we shall define a certain complex ‘thickening’
of N with respect to all of its dimensions (a so-called ‘Grauert tube’) but then, in view of
the discussion in the preceding paragraph, restrict the integration variable 2® defined on an
aribtrary elementary region H to real values so that, in effect, only the leaves of the foliation
of H ~ ¥ x S! are thickened.

Let us temporarily remain within the real analytic setting to sketch out the basic idea of
the argument to be given later in the holomorphic setting. This detour, though it cannot
yield more than the continuity of u(z3, %) in the {2} variables, will be easier to understand
at a first pass and will require only straightforward modification for its adaptation to the
holomorphic setting.

For any point p in the slice determined by x3(p) = &3 the monotonically increasing,

convergent, sequence of real numbers

i34is*
a _ k d “
(@, (p) = 3 x[ dp exp[—x[‘lg 5 &2 ) (V.10)
i=12..

is clearly a Cauchy sequence which converges to u(z®,2%(p)). Thus for any & > 0 there
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exists a positive integer () such that
| U (2%, 2%(p)) — we(2®, 2%(p)) |< &' ¥V m, > Q. (V.11)

Now consider an arbitrary point ¢ in the initial slice (i.e., having x3(q) = z*) that lies within
a closed geodesic ball in this slice which is centered at p (i.e., a ball of the type used in the
ribbon argument of the previous section). By the ribbon arguments given in this last section,

one easily finds that

| um (2%, 2%(q)) — ue(3®, 2(q)) |

#3+ms* p
k D4 o
|5 [ aewt [ aeZerw]
B +es* i3
#34+ms* P
k Dt
-5 [ doesbient [ @S] (v.12)
Z34+-Ls* @3
I #34ms* b
<o |y [ avewl [ 2w
23 4-Ls* 3

= " | u (5%, 2%(p)) — w (&, 2 (p)) |
for all ¢ in this ball where b, is a constant that depends upon p and the radius of the chosen

ball. Thus for any € > 0 we get by choosing &’ = e~*¢ in Equation (V.11), that
| wn (2, 2%(q)) — ue(@®,2%(q)) | <& Vm, > Q (V.13)

and for all ¢ in the compact set defined by the chosen (closed) geodesic ball. Thus the
sequence of (real-valued) continuous functions {u,,(z%,z%(¢)) | m = 1,2,...} defined on
this ball is a Cauchy sequence relative to the C%-norm and hence its limit u(z3, 2%(q)) is
necessarily continuous. By covering the initial slice by a collection of overlapping such balls,

we deduce that u(23, 2%(q)) is globally continuous on the initial slice.

VI. ANALYTICITY OF THE CANDIDATE VECTOR FIELD

Recall from Section IIC that one can define a Riemannian metric ®)g on the horizon
manifold N that satisfies Lx+/det ®)g = 0. From the discussion in Section III it is clear
that this metric can always be chosen to be analytic so that in fact (N, ®)g) is a compact,

analytic, Riemannian 3-manifold.
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There is a canonical way of complexifying a compact, analytic Riemannian manifold such
as (N, ®)g)through the introduction of its so-called Grauert tubes [20]. One identifies N with
the zero section of its tangent bundle TN and defines a map ¢ : TN — R such that ¢(v) is
the length of the tangent vector v € T'N relative to the Riemannian metric ®)g. Then, for

sufficiently small s > 0, the manifold (‘Grauert tube’ of thickness s)
T°N ={veTN |l(v) < s} (VL1)

can be shown to carry a complex structure for which holomorphic coordinates {z'} can be
defined in terms of analytic coordinates {z'} for N by setting z* = 2* +iy* where y = yk%
represents a vector in T'N. Analytic transformations between overlapping charts for N
extend to holomorphic transformations between corresponding charts for 7N provided that,
as we have assumed, N is compact and s is sufficiently small. For non-compact manifolds
such a holomorphic thickening need not exist for any s, no matter how small, and further
restrictions upon the manifold are in general needed in order to define its Grauert tubes.
When defined, Grauert tubes have an anti-holomorphic involution ¢ : T*N — T*N given
by v — —wv.
It will be convenient to define an auxiliary, analytic Riemannian metric, gy, on each
elementary region of interest H by writing on H~Y xR,
gn = (gn)ijdz’ ® da’ (V12)
= do® @ da® + pgy (2t %) da® @ da
and then, as before, identifying the slice at 2® with that at 2 + s* via the aforementioned
analytic isometry of (X, ). This metric is adapted to the chosen slicing of H in that each

23 = constant slice is a totally geodesic submanifold of (H, g3) and furthermore the integral

curves of X = %, which is evidently a Killing field of g4, coincide with the geodesics of
(H, gy ) normal to the 2® = constant slices.

From the special properties of the metric gy and its geodesics, it is easy to see that if
{z%| a = 1,2} are normal coordinates for (X, ut) centered at a point g € ¥ (with, therefore,
x%(q) = 0) then, holding these constant along the flow of X and, complementing them

3 we get normal coordinates {z'} = {(z% 23) | a = 1,2} defined on a

with the function x
tubular domain in H centered on the orbit of X through ¢. By shifting 2% by an additive

constant, one can of course arrange that the origin of these normal coordinates for this
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tubular domain lies at any chosen point along the orbit through ¢. It follows from the

aforementioned property of Grauert tubes that the functions
(M ={G" = 2"+ ") | (47)° + pa(a, 2%)y"y" < s} (VL3)

will provide, for s sufficiently small, holomorphic coordinates on a corresponding complex
thickening of H which we shall denote by T%H.

In the application to follow, as already mentioned in the previous section, we shall set
y> = 0 and thus focus our attention on ‘thickenings’ of H of the restricted form T°% x S!

which are foliated by curves of the type
24(A) = a®(\) +ay*(N) = 2 + iy®
= constant, (VI4)
2N =2+ N, y*(\) =0,
with
(2, 22590 < s. (VL5)

The closure 753 x St ~ T*X x S!, of this manifold results from attaching a boundary to
T°Y x S' characterized locally by (2!, 22)y%y® = s at all points (z!, 2?) € ¥ and will also
play a role in the considerations to follow.

Analytic tensor fields defined on N can always, in view of its compactness, be lifted
to define holomorphic fields on thickenings of the type T°H which, furthermore, extend
continuously to the boundary of T5H provided s > 0 is taken to be sufficiently small. The
needed limitation on the size of s arises from considering the radii of convergence of the
local series representations of these fields on the original analytic manifold N but, since
it is compact, a finite collection of such representations suffices to define the field globally
on N and hence a choice of s > 0 is always possible so that a given field on N extends
holomorphically to T*N. Upon restricting such a field to the manifold 7°% x S', as defined
by setting y®> = 0, one obtains a corresponding field that is holomorphic with respect to

the {2% | a = 1,2}, real analytic with respect to z* and which extends continuously to the

boundary of 753 x S! ~ T5% x S'. From our point of view, the important thing is that
such fields form a Banach space with respect to the C° norm and hence a Cauchy sequence

with respect to this norm will necessarily converge to a holomorphic field with respect to

the {z%}.
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To carry out ribbon arguments on the associated complex thickenings over H, we need

to lift the one form wy, defined in Section I E, to its holomorphic correspondent Dwy,

L. .
@y = — 3 ©p (2. .., 2%) (de? + idy®)
1 . (VL.6)
b (C)Bmt(zl, o2 (d2 4 idy®)
with
(¢) 2 1 3\ _ o 1 3
Oi(at, . o x7) = a2
. . (VL.7)
(C)5a7t(x1, o @) = Baslat, 2,
defined on a suitable 7%, where the components ©@ (2!, ..., 2%) and ©G,,(z', ..., 2%)
each satisfy the Cauchy-Riemann equations (ensuring their holomorphicity)
a c 1 3
ﬁ ( )QD t(Z y . , 2 )
1,0 0
— (= -~ (o) 1 3 .1 3
_2(8$k+Z8yk) gp,t(x77x7y77y) (VIS)
=0 k=1,....3
and similarly for %(C) ﬁoa.t(zl, ..., 2%). As a holomorphic one-form (©wy has exterior deriva-
tive
1. 0 9 .
A9y = -2 @5, 975
wx 2 [8za Pt 8z3ﬁ g
- (dx® +idy™) A (da® + idy?) (VL9)
1003,
-5 fb L(da® +idy®) A (dz® + idy®)

which, in view of the complexified Einstein equation (c.f., Equation (3.2) of Reference [6]),

3(6)95,t B 3(0)5a,t(2)

pumy :[.1
029(2) 023 0 (VL.10)
reduces to ©
c Lo ﬁa,t b a
d9wy = 3 g0 dz’ N dz". (VL.11)

For our purposes, it is convenient to regard Equation (VI.11) as an equation for an
ordinary, complex-valued, one form defined on a real analytic manifold of 6 dimensions with
local coordinates

{w' | p=1,...,6} ={z', ..., 2% y', ...,y (VI.12)
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and with Ywy decomposed into its real and imaginary parts as
g = {(Dw () + (D (w)),Jduw. (VL.13)

By appealing to the Cauchy-Riemann equations satisfied by the components, it is easy
to show that the left hand side of Equation (VI.11) is equal to the ‘ordinary’ exterior
derivative of (Dwy, as rewritten above, with respect to its 6 real coordinates {wh} =
{zt, ... 2%,y ... y3}. The right hand side of this equation can of course be expressed
in the analogous way — as a complex-valued two-form in the same real variables.

We are now in a position to apply Stokes’s theorem much as in the previous section,
the only real difference being that now the one-form in question, Ywy is complex and its
domain of definition is a 6-real-dimensional Grauert tube defined over ‘H. We shall want
to compare integrals of (dwy over different curves of the type (VI.4) extending from some
‘initial’ slice having #® = constant to another such ‘final’ slice. For convenience, let us
always take one such curve (which will provide a reference ‘edge’ for our comparison ribbon)
to lie in the real section (i.e., to have y*(\) = y>(\) = 0) and choose normal coordinates for
(3, 1) so that points on this reference curve have x*(\) = 0. As in the previous section, we
restrict the domain of definition of these normal coordinates to a geodesic ball relative to
the metric u. Let p be the starting point of this curve so that, in the chosen coordinates
{z9(p) = y°(p) = ¥°(p) = 0,2°(p) = 2°}.

Now suppose that ¢ € T*H is a point lying in the domain of the corresponding (complex)
chart and having 2%(¢) = 2%, 4*(q) = 0, pas(2'(9), 2*())y*(0)y"(q) < s where {z'(q), 2*(¢)}
represents a point in the aforementioned geodesic ball centered at p. We want a canonical
way of connecting ¢ to p within the initial slice 2® = #* and, for this purpose, first connect

q to its projection in the real section with the ‘straight line’

7'(c) = 2'(q) = constant
—oy*(q), 0 € [-1,0] (VL.14)
y*(o) = 0.

We complete the connection to p along the geodesic

<
S}
—~

Q
N~—

I

(o) =(1—0)x%(q), o € [0,1]
*(p) = 2°(q) = 7° (VL15)

8
w
—
2
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This broken curve provides the starting end (at 2® = Z*) for our comparison ribbon. We
complete the specification of such a ribbon by letting each point on the starting end defined
above, flow along the corresponding curve of the form (VI.4) (i.e., holding * and y* constant,
y> = 0 and letting 23 = 2 + X\ vary until the final slice is reached). Tt is easy to see, from
the special form of the right hand side of Equation (VI.11) that the corresponding two-form
pulled back to such a ribbon vanishes identically and thus that Stokes’s theorem applies to
integrals of (Dwy over its edges and ends in essentially the same way that we discussed in
Section V for ribbons confined to the real section. In other words, the integral of Ywy over
the edge beginning at ¢, differs from that over the reference edge beginning at p only by the
(difference of) the integrals over the ribbon ends lying in the ‘initial” and ‘final’ slices.

For our purposes, the contribution from the starting end, connecting ¢ and p, will be fixed
whereas the contribution from the ‘final’ end (connecting the images of ¢ and p induced
on the final slice) will vary continuously but only over a compact set (determined by the
endpoint of the edge through ¢ which necessarily lies in T5% x ST). Thus, if as before, we
designate the edges through p and ¢ by v and ' respectively and the initial and final ribbon

ends by o and o’ respectively, then we obtain, as in the real setting,

/(e)wx:/ (%X—(/ (C)wx—/ ©y)

!

v ! ’ i (VL16)
_ / O+ 95, ()
b
with
) 6,4(p) |[<b <00 Vpel[i? 00). (VL.17)

The integrals of course are now in general complex in value but, given the bound above, we
are in a position to apply ribbon arguments to the complex setting in complete parallel to
those we gave in the real setting at the end of the last section. The arguments needed are
so similar to those given previously that we shall only sketch their highlights below.

For any ¢ within the domain characterized above, we define a sequence

ui(,2%(q))

&3 4is* P
’ ., (VI.18)
5 [ doewl- [ae @)

3 @3
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of holomorphic extensions (to 7Y x S') of the approximations given earlier in Equation
(V.9) for the normalizing function w. Using ribbon arguments to compare the integrals
f,y, ©wy with those for the reference curves f,y ©wyx we derive, as before, a bound of the

form
| Qu (2, 2%(q)) = Dug(#,2°(q)) |
< e | Cu (i, 2%(p)) = Qug(d®, 2(p)) |

= & un(#,2°(0) — uel@®, 2 () |

Vi,m >0,

(VL19)

where, in the final equality, we have exploited the fact that u,, (2%, 2%(p)) = um(2*, 2%(p))

by virtue of our choice that the point p always lies in the real section.
As before, it follows immediately that for any € > 0 there exists an integer () > 0 such
that
| Qup (23, 2%(q)) — Que(2®,2%(q)) |[< e Vm,l>Q (VI.20)

and thus that the sequence {@u,, (2%, 2%(¢)) | m = 1,2,...} is Cauchy with respect to
the C° norm. Thus the sequence of approximations converges to a holomorphic limit on
the domain indicated. Repeating this argument for a (finite) collection of such domains
sufficient to cover 7% we conclude that

o a k > p 07 a
(i, ) = © / " dp esol- / R (V1.21)

is a well-defined holomorphic function on 7°% (which extends continuously to its boundary)
and that, by construction, this function reduces to the real-valued function u (%, 2%) defined
in the previous section. The latter is therefore necessarily a real-valued analytic function on
> which is the result we were required to prove.

The analytic functions thus defined on tubular neighborhoods of arbitrary null generators
of N necessarily coincide on overlapping domains of definition. This follows from the fact
that each such u was uniquely determined by the geometrical requirement that it ‘renormal-
ize’ the corresponding generators to all have the same, fixed future affine length 2/k. We
may thus regard u as a globally defined analytic function on N and thus arrive at a globally

defined, analytic, candidate vector field K := uX.
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VII. EXISTENCE OF A KILLING SYMMETRY

We have shown that there exists a non-vanishing, analytic vector field K on N, tangent

to the null generators of N such that, in any gaussian null coordinate chart adapted to K

2]

(i-e., for which K has the local expression K = 57| _

), the metric functions {p, 8., ftap } of
that chart obey

95 = Ba = ,&ab,i’) = 0,
¢ =k = constant # 0, (VIL.1)

(Ba’t) 3 =0

We shall show momentarily that (fia.:) s also vanishes and thus that all the metric functions
and their first time derivatives are independent of 3 on the initial surface t = 0 (signified
as before by an overhead ‘nought’). In the following, we shall prove inductively that all the
higher time derivatives of the metric functions are independent of z° at ¢t = 0 and thus that

the corresponding analytic, Lorentzian metric,

g =dt ®@dr® + dr® @ dt + pda® @ dx®
(VIL2)

+ Bodz® @ da® + Budx® @ dx® + pgpdr® @ dab,
has % as a (locally defined) Killing field throughout the gaussian null coordinate chart
considered. Finally, we shall show that the collection of locally defined Killing fields, obtained
by covering a neighborhood of N by adapted gaussian null (agn) coordinate charts and
applying the construction mentioned above, fit together naturally to yield a spacetime Killing
field Y which is analytic and globally defined on a full neighborhood of N and which, when
restricted to N, coincides with the vector field K.

Some of the results to be derived are purely local consequences of Einstein’s equations
expressed in an agn coordinate chart (such as, e.g., the observation that ¢, = k implies
(Baﬂg)f, = 0). Others, however, require a more global argument and thus demand that we
consider the transformations between overlapping, agn charts which cover a neighborhood
of N in WV. For example, by considering the Einstein equations Ry, = 0 restricted to t = 0
and reduced through the use of ¢, = k = constant , fi3 = 0 and (Ba7t>73 = 0 one can

derive (as in the derivation of Eq. (3.26) of Ref. [6]) the local equation for jiq,¢ given by

. k.
0= —(flabs) 33 + i(uab,t),& (VIL3)
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Roughly speaking, we want to integrate this equation along the null generators of N and
show, as in Ref. [6], that it implies that (fap+) 3 = 0. Now, however, since the null generators
are no longer assumed to be closed curves, this argument requires a more invariant treatment
than was necessary in Ref. [6].

First, let {z*} = {t,2% 2%} and {z*} = {t', 2%, 2"} be any two gaussian null coordinate
charts which are adapted to K (i.e., for which K = -2|,.o and K = %\yzo on the
appropriate domains of definition of the given charts). It is not difficult to see that, if the
two charts overlap on some region of N, then within that region the coordinates must be
related by transformations of the form

2% = 2% 4+ h(2?)
(VIL.4)
27 = 2% ()
where ¢ = t' = 0 since we have restricted the charts to N. Here h is an analytic function
of the coordinates {z°} labeling the null generators of N and z® (") is a local analytic
diffeomorphism allowing relabeling of those generators within the region of overlap of the

charts.

We let {p, Ba, ftap} designate the agn metric functions of the unprimed chart,
g = guda' @ dx”
= dt ® d2® + d2® ® dt + pds® @ da® (VIL5)
+ B,dz® @ da® + Buda® @ da® + pgpdz® @ dab,

and {¢', B, p.,} designate the corresponding functions in the primed chart.
In the region of WV in which the charts overlap, we have of course,

B ox® OxP

=, VII.6
g# 825“ ax,/ g B ( )
and, because of the gaussian null metric form,
- 0z 0z
gy = U= ot Ox 9op
oz 08
g =1=—-——""—g, VIL.7
gus o 5 9 (VILT)
- 0x® O
Joa =2 = g g I8

By virtue of the form of (VIL4), we also have, of course, that +2|—g = % v—o on the

region of overlap (since both charts were adapted to K by assumption).
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Writing out Egs. (VIL7) in more detail, using the explicit form of g,g, restricting the
result to the surface ¢ = ¢t = 0 and making use of the transformations (VII.4) which hold

on that surface, one readily derives that

().
ot )|,

Oz “
(), = 6ol Vit

oz? 1
= [ —=pu"hh
(5], = (anans)

Differentiating these equations with respect to z* and using the fact that ftab3 = 0 one finds

that
82Ia
ox3 ot

The remaining metric transformation equations (VIL.7), restricted to the initial surface, yield

(o o
o — 825'&, 8xbl Hed

as well as reproducing equations such as ¢'|y—o = 0, and 5y |y—¢ = 0 which are common to

t=0

= 0. (VIL9)

t'=0

the covariance relation

Ha'b (VIIlO)

t=0

all gaussian null coordinate systems.
Now take the first ¢’ derivative of the transformation Eqs. (VIL.6), restrict the results to

the surface t' = ¢ = 0 and make use of Egs. (VIIL.1) to derive expressions for

{0, Bar s tarr } (VIL11)

t'=0

in terms of unprimed quantities. Differentiating the resulting equations with respect to

[ Ox° Oz
vo - aza/ a{[fbl ,ucd,t?)

as well as reproducing known results such as 3 v3|v—¢ = 0 which hold in all agn coordinate

leads to the covariance relation

(VIL12)

/J“a’b’,t’l‘gl

t=0

systems.
Now in any agn coordinate chart restricted to N, we have the locally defined analytic

functions

o

det (hab)
det (ftab) (VIL13)
T = ,&abil'ab

D =
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where ;Lab = [iaps3 and where det () signifies determinant. From the covariance relations
(VIL.10) and (VIIL.12), however, it follows that D and T transform as scalar fields in passing
from one agn chart to another in the initial surface N (i.e., that 7" = 7" and D = D’
in the regions of overlap). Thus D and 7 may be regarded as globally defined analytic
functions on N. From the Einstein equations R,, = 0, restricted to N and reduced by means
of o1 =k, fiars = 0 and Bmtg = 0, one can derive Eq. (VIL.3) in any agn chart, which in turn

implies the following differential equations for D and T

k
Ds=kD, Ts= §T. (VIL.14)
The latter can be written more invariantly as LxD = kD and LgT = gT where Lx

represents Lie differentiation along the vector field K.

Equations (VII.14) show that (since k& # 0) both D and T grow exponentially along
the integral curves of K in N. However, the Poincaré recurrence argument of Sect. IT C has
shown that each integral curve v of K, when followed arbitrarily far in either direction from
any point p on 7, reapproaches p arbitrarily closely. Since D and T are globally analytic
(hence continuous) on N, their values, when followed along -, would have to reapproach
arbitrarily closely their values at p. But this is clearly incompatible with their exponential
growth along 7. The only way to avoid this contradiction arises if D and T vanish globally
on N. We thus conclude that D =T = 0 on N and therefore, from the defining equations
(VIL.13) and the fact that fi,, is positive definite, that

hab = frapes = 0 (VIL15)

on N.

Now, computing the first ¢’ derivatives of Eqs. (VIL.7), restricting the results to the initial
surface t = ¢’ = 0 and differentiating the resulting equations with respect to z* one finds,
upon making use of Egs. (VIL.1), (VIL9), and (VIL.15), that

P

t'=0

whereas Eqs. (VIL.1), (VIL.2) and (VIIL.15) show that

=0. (VIL17)

t=0

(gaﬁ,t?:)
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We now proceed inductively to extend the above results to the case of time derivatives
of arbitrarily high order. As an inductive hypothesis, suppose that, for some n > 1 and for

all £ such that 0 < k£ <n, we have

(5 ()
Ot \ O ] )l (VIL18)

a ak—i—lxa
(o (Gr))]., =

and recall that we also have

ot ox* ox®
— = =0, — =1. (VIIL.19)
ox3 |,_y 0% |,_, 0% |, _,
Our aim is to prove that
(5 ()|,
Ox3 o+l —0 e
- I1.2
i an+2xo¢ 0 (V O)
o3 \ gtz e
Note that the above imply that
0 8kga5
=0 VII.21
(8:63 (8:671 Ox72 ... 0z )) -0 ( )

for all 0 < k < n and for arbitrary 7y, 7, ..., Furthermore, note that of the quantities
, may be non-zero. Now differentiate the

0 8n+1g 5 F) 6n+1g 3
(W (amWL“axL}Y'n«rl t_O? Only W athr? =0

Einstein equation R;3 = 0, n—1 times with respect to ¢t and set t = 0 to derive an expression

for (%ap) ‘ in terms of z3-invariant quantities. Differentiate the equation Ry, = 0, n—1
t=0

times with respect to t and set t = 0 to derive an expression for (%ﬁb) li=0, in terms of

x3-invariant quantities. Next, differentiate the equation Ry, = 0, n times with respect to ¢,

8n+1 8n+1

set t = 0 and use the above results for (Wgo) ‘ and (Wﬁb> ‘ , together with those
=0 t=0
given in Eqs. (VIL.1) and (VIIL.15) to derive an equation of the form

an
O == <—nRab>
ot t=0
0 < an+1 )
= ~a.3 | a01 Hab
Ox? \ o170 ) g (VIL.22)
positive \ ¢, [ O™t
+ - | AT Hab
constant / 2 \ otn 1T

+ {terms independent of x3} .
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Differentiate this equation with respect to 23 to thus derive

an—l—l
0=~ (G,
t=0/ ,33
t:O),3

Wﬂab
VII.23
N positive \ k& [/ o"F! ( )
constant / 2 \ ggnrite
which holds in an arbitrary agn coordinate chart.

Now define

det (ioz((lzﬂ))

det (fiea) (VIL24)
T(n+1) = I&abing‘f‘l)

D(n+1) =

Ox3

where AT = (i (%uab)) ‘t:o so that Eq. (VIL.23) becomes
0= bt | (Positve ) Ky (VI1.25)
ab3 constant / 2" '

and D™V and T+ satisfy

D(gﬂ) _ (positive ) D+

constant
... (VII.26)
) _ positive ﬁT("H)
3 constant / 2

in any agn coordinate chart. To extend the Poincaré recurrence argument to the quantities
D+ and T+ we must first show that they are globally defined analytic functions on N.

Differentiate the transformation equation

0z® 0xP
a'b! = at = =57~ 7Y9a8, VII27
Jay = Ha = 525 g Jas ( )

n + 1 times with respect to t', set ' = 0 and differentiate the result with respect to z%.

Use the inductive hypothesis and the vanishing of (% %gp) ‘ and (%gj—ﬁﬁa) to
t=0 t=0
show that this calculation yields the covariance relation
( 0 an+1
g Harly
01'3 at/n—i-l ) .
=0 (VIL.28)

[ Ox° oxd (9 ot
~ 027 927 \ 9B gnrited

From this and Eq. (VIL.10) it follows that D™*Y and TV transform as scalar fields in

t=0

the overlap of agn charts in N and thus that these quantities are globally defined analytic



49

functions on N. Equations (VII.26) can thus be reexpressed in the invariant form

LD — positive o D)
constant

LT+ — positive ﬁT("“)
constant / 2

(VIIL.29)

and show that DY and T+ grow exponentially (unless they vanish) when followed
along the integral curves of K in N (i.e., along the null generators of N). Repeating the
Poincaré recurrence argument given previously for D and T now yields a contradiction unless

DD and T4+ vanish globally in N. This in turn implies that

o 8"+1
in every agn chart on N and, together with the results obtained above for the other metric
components, shows that

o 8"+1

in every such chart.

Applying the technique of the previous paragraph to the transformation equations for
¢ and B! merely produces covariance relations for the quantities (% (g;—:lap>> L:O and
(a%g (g;—:lﬁa)> o which are consistent with the (already established) vanishing of these

quantities in every agn chart. To complete the inductive proof, we differentiate the remaining

transformation equations (VIL.7) n + 1 times with respect to ¢, set ¢’ = 0, use the inductive

hypothesis and the new results summarized in Eq. (VIL.31) to show that

8 8n+2 N

This result, together with that of Eq. (VIL.31), completes the proof by induction.

= 0. (VIL.32)

t'=0

It follows from the analyticity of g and the inductive proof given above that (% gaﬁ)
vanishes throughout any agn coordinate chart and thus that Y = 8%3 is a (locally defined)
analytic Killing field throughout the given chart. In the region of overlap of any two such
charts we have the two locally defined Killing fields Y = % and Y’/ = afg, and we wish

to show that, in fact, they coincide. By construction both Y and Y’ coincide with K on

their appropriate domains of definition within the null surface N. Therefore X = Y' - Y
is an analytic Killing field of ¢ defined locally on the region of overlap of the two charts
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which vanishes on the intersection of this region with the null surface N. This implies that

X vanishes throughout its domain of definition, however, since the Killing equations
X + Xeyy — 2900, X, =0 (VII1.33)

determine X uniquely from data X|;—o (in the analytic case) and have only the trivial
solution X = 0 if X|,—9 = 0.

It follows from the above that there exists a unique analytic Killing field Y, globally
defined on a full neighborhood of N in (V, g) which, when restricted to N, coincides with
the vector field K and this is tangent to the null generators of N. In fact, one can prove that
Y extends to a Killing field defined throughout the maximal Cauchy development of the
globally hyperbolic region of (', g) whose Cauchy horizon is N. The techniques for proving
this were discussed at the end of section III of Ref. [6] and need not be repeated here. One

can also show, by a straightforward computation that

=0 (VIL.34)

N

{YWWY“ + gya}

which suggests that the constant (—%) is the analogue, for cosmological Cauchy horizons,
of the surface gravity defined for stationary black hole event horizons [10, 12].

We have thus proven:

Theorem 1 Let (YV,g) be a real analytic, time orientable, vacuum spacetime which ad-
mits a compact, connected Cauchy horizon N that separates (YV,g) into open Lorentzian
submanifolds (“WV.,,g.) and (YV_,g_) of which one is globally hyperbolic and the other
acausal. Assume that N is realized as a level set of some analytic function 7 : DV — R hav-
ing no critical points in a neighborhood of N. The vector field VX = grad, 7 will therefore be
non-vanishing on this neighborhood, null on the hypersurface N and thus tangent to its null
geodesic generators and will naturally induce (by restriction of WX to N) a corresponding
tangent vector field X on the Cauchy horizon itself.

In the cases referred to here as ‘non-ergodic’ the null generators of N are either closed
curves or densely fill 2-tori embedded in N and every such generator is either complete in
both the directions of X and —X (the ‘degenerate’ case) or else every generator is incomplete
in one direction (say that of X) and complete in the opposite direction (the ‘non-degenerate’

case).



51

Compact, non-degenerate, non-ergodic Cauchy horizons in analytic, vacuum spacetimes
(V, g) are Killing horizons in that there always exists a non-trivial, analytic Killing field
Y, globally defined on a full neighborhood of the horizon manifold N C (‘WV, g) which, when
restricted to N, is everywhere tangent to the null generators of this hypersurface. Y extends
(at least smoothly) to a Killing field defined throughout the maximal Cauchy development of
the globally hyperbolic region of (W, g) whose Cauchy horizon is N.

By applying the results of our earlier work (cf. Ref. [8] and Sect. VIII of Ref. [10]) it is
straightforward to prove that if the null generators of N, to which the horizon generating
Killing field Y is tangent, are not all closed curves then the globally hyperbolic region of
(V, g) necessarily admits at least one additional, non-trivial Killing field. This additional
Killing field commutes with Y so that the full isometry group of this (globally hyperbolic)
spacetime includes a 2-dimensional toral action.

Thus whereas non-degenerate Cauchy horizons having only closed (null geodesic) gener-
ators are, in a geometrical sense, less ‘general’ than those admitting non-closed generators
they are, nevertheless, far less constrained analytically in that they can bound (analytic,
vacuum) globally hyperbolic spacetimes having only one-dimensional isometry groups. Fur-
thermore, if our conjecture for the (non-degenerate) ergodic case is correct then the solution
set for these is much smaller still, consisting uniquely of certain ‘irrational’ compactifications
of the flat Kasner spacetime.

Finally, though we could only rule out the existence of degenerate (compact, analytic)
Cauchy horizons in some (closed-orbit) special cases [6] we conjecture that such horizons do

not exist at all.

Acknowlegements

The authors would especially like to thank the Université Paris VI, the Institut des
Hautes Etudes Scientifique in Bures-sur-Yvette, France, the Albert Einstein Institute in
Golm, Germany, the Erwin Schrodinger Institute in Vienna, Austria, the Isaac Newton
Institute in Cambridge, England, the Kavli Institute for Theoretical Physics in Santa Bar-
bara, California, the Mathematical Sciences Research Institute in Berkeley, California and
the Mittag-Leffler Institute in Djursholm, Sweden for their warm hospitality and gener-

ous support during visits over the years when portions of this research were carried out.



52

We are particularly grateful to Maxim Kontsevich for providing the theorem quoted in the

Appendix. We also thank Lars Andersson for valuable discussions.

Appendix

To show that each of our embedded 2-tori admits an analytic foliation, with closed leaves,
that is everywhere transverse to the (nowhere vanishing) flow field X it would suffice to
prove that it always admits a closed, analytic one-form A with integral periods such that
AX) = A\ X® > 0 everywhere on the given torus. The closure of A ensures that, locally, it
is expressible as A = du for some analytic function u the level curves of which locally define
the leaves of the desired foliation. That these leaves all close, globally, is ensured by the
integrality of the periods of A\ whereas their transversality to X corresponds simply to the
condition that A(X) > 0.

The following proof that such a A always exists is due to M. Kontsevich who kindly pro-
vided it to us in response to a question about a somewhat related theorem of Kolmogorov’s.
Note that analyticity is not needed for some of the intermediate steps of Kontsevich’s argu-
ment but that it will be ‘reinstated” during the final stage of the construction.

First choose a smooth Siegel curve T that is closed, non-self-intersecting and everywhere
transverse to the flow of X. The existence of such curves follows from a standard argument
which is given, for example, in [21] together with a discussion of some of their fundamental
properties. The aim will be to construct an analytic foliation whose leaves are each homo-
topic to I (and transversal to X). By translating I along the flow generated by X one can
produce a curve, homotopic to I, that passes through any particular point of the given torus
and that is, of course, also transversal to X.

Any one of such Siegel curves, I', can by systematically ‘thickened’ to yield a smooth
‘ribbon’, rp, diffeomorphic to I' x I+ ~ S' x Ir where It is an open interval. Coordinatize
this ribbon by choosing an ‘angle’ coordinate 6r along I', with 0r € [0, 27), and letting t be
the flow parameter along the transversal flow generated by X, with t € Iy := (—er, er) for
some ep > 0, taking ¢ = 0 to correspond to the given ‘source curve’ I'.

Now define a smooth one-form ar on the torus by setting ar = 0 on the complement of
the ribbon rr but taking ar = dur within the ribbon where ur is a smooth function of ¢ alone

(i.e., independent of fr) that smoothly and monotonically interpolates between the value 0



93

for t € (—er, —er/2) and the value 1 for ¢ € (er/2,er) with derivative satisfying &pup > 0
for t € (—er,er) and %up > 0 for t € (—er/2,er/2). The one-form ar so-constructed will
be closed, have integral periods and satisfy ar(X) > 0 everywhere on the chosen torus.

In view of the compactness of the torus a finite collection, {rr,;i = 1,...,k}, of such
ribbons, together with their associated closed one-forms, {ar,;;i = 1,..., k} will suffice to

cover the torus in such a way that
k
Q= Z Qar,
i=1

satisfies dav = 0, a(X) > 0 everywhere and has integral periods (since each of the ar, does).
It will not however be analytic since none of the individual ar,’s are more than smooth.

Taking, however, a Hodge decomposition of o with respect to an analytic (Riemannian)
metric on the torus will result in

a=h+do

where h is harmonic and thus analytic but where the function ¢ is only smooth. The integral
periods of a will all be ‘carried” by h since of course those of do all vanish. Now, however,
since the condition a(X) > 0 is open one can always preserve it by approximating ¢ with

an analytic function w. Thus defining
A=h+dw

one arrives at a closed, analytic one-form with integral periods that globally satisfies the
transversality condition A(X) > 0 and thereby determines an analytic foliation of the torus

of the type desired.
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