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STABILITY WITHIN T2-SYMMETRIC EXPANDING SPACETIMES

BEVERLY K. BERGER, JAMES ISENBERG, AND ADAM LAYNE

ABSTRACT. We prove a nonpolarised analogue of the asymptotic characterization of T2-symmetric
Einstein Flow solutions completed recently by LeFloch and Smulevici. In this work, we impose a
condition weaker than polarisation and so our result applies to a larger class. We obtain similar rates
of decay for the normalized energy and associated quantities for this class. We describe numerical
simulations which indicate that there is a locally attractive set for T2-symmetric solutions not covered
by our main theorem. This local attractor is distinct from the local attractor in our main theorem,
thereby indicating that the polarised asymptotics are unstable.

1. INTRODUCTION

There exist broad conjectures about the expanding direction behavior of vacuum spacetimes with
closed Cauchy surfaces [2, 9], but currently little is known about some of the most elementary examples.
Recent results [13, 18] have demonstrated that certain vacuum cosmological models demonstrate locally
stable behavior in the expanding direction, but that well-known subclasses are unstable. These results
should be compared to models with matter [16, 23, 22, 21] where spatially homogeneous solutions are
known to be stable. It is also important to note that the behavior of these models in the direction of the
singularity is not sensitive to the presence of most types of matter [3].

In the special case that the spacetime has spatial topology T2, admits two spacelike Killing vector fields
(such spacetimes are called T2-symmetric), and satisfies a further technical condition (that the spacetime
is polarised) results of [13] show that there is a local attractor of the Einstein Flow in the expanding
direction. It is natural to ask whether the condition that the spacetime be polarised is necessary. Do
spacetimes on T2 with two spacelike Killing vector fields necessarily become effectively polarised? Do
they then flow to the polarised attractor?

We partially resolve these questions by analytic and numerical means. Our main theorem states that
solutions which are not polarised have the expanding direction asymptotics of polarised solutions if they
satisfy a certain weaker condition: that one of the two conserved quantities of the flow vanishes. We call
such solutions By or B = 0 solutions. The conserved quantity B vanishes for all polarised solutions; the
set of B = 0 solutions is of codimension one in the space of all solutions in these coordinates while the
set of polarised solutions is of infinite codimension.

It was shown in [6] that T2-symmetric vacuum spacetimes posess a global foliation; all such Einstein
Flows have a metric of the form

(1.1)  g=e~VHr (—d72 + 62(’0_T)d92> + eV [dz + Qdy + (G + QH)dO)* + e~V +? [dy + Hdb)*

where 9, and 9, are the Killing vector fields. The area of the {d,,d,} orbit is €2”, so the singularity
occurs as T — —oo and the spacetime expands as 7 — co. Relative to the coordinates ¢, P, o, A used in
[18], our quantities are given by

log t, pi= —3loga
Vi= P+logt, l:= P+ 3\x—2logt.

\]
|
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FIGURE 1. The classes of Einstein Flow solutions discussed in this paper, and their
inclusions. We have omitted the Gowdy models, which are not the focus of this work.

See the Appendix for a complete concordance of notations between the cited papers and the present
work. In the coordinates (1.1), the Einstein Flow is

(1.2) 0 (ePVy) =0y (27 PVy) + 2V -7)Fr (Qi _ ez(T_p)Qg)
(1.3) ., (€p+2(V_T)QT) —0y (=2Y Q)

(1.4) I+ pr+2 :% [Vf 4 2TPY2 4 2(VT) (QE n eQ(T*ﬁ)Q%)}
(1.5) s — K2

z; =VoV; + eZ(V_T)QGQ‘P

The last equation is the momentum constraint, and it is preserved by the evolution equations. Equation
(1.5) is a consequence of the constraints; p satisfies a wave equation similar to (1.2) which can be derived
as a consequence of (1.4) and (1.5), so we take equations (1.2) through (1.5) to be the evolution equations
instead. There are, in addition, evolution equations for G, H, but these may be integrated once V, @, p,f
have been found, so these latter four functions are the ones of interest. As a consequence of (1.2) and
(1.3), there are two conserved quantities along the flow:

A= /S eP (VT - 62<V*T>QTQ) df

B:= / ePt2V=10 db.
Sl

The condition Q = 0 is often imposed when studying these solutions in the collapsing direction. Such
solutions are called polarised. (Note that all polarised solutions have B = 0, but not all B = 0 solutions
are polarised.) The constant K is, without loss of generality, that “twist constant” which cannot in
general be made to vanish by a coordinate transformation. The T2 Gowdy models [10] are those for
which K = 0. T%-symmetric spacetimes which are polarised, half polarised [11, 8], or Gowdy have been
studied extensively in the contracting direction (e.g. [1]). We are here concerned only with the expanding
direction. N

The Kasner models are those which are spatially homogeneous (I, V, @ are independent of §) and
satisfy K = 0. Let us note that, in our coordinates, polarised Kasner solutions [12] take the form

-~ 1
V=ar+b, I= <2a2—2)7-+c

for some constants a,b,c € R. The Gowdy models contain all Kasners, and in the expanding direction
the dynamics of Gowdy solutions are known [17], [19] and appear to be very different from those of
non-Gowdy solutions. Non-Gowdy solutions such that lA,V7 Q@ are independent of 0 are called pseudo-
homogeneous or PH. This definition appears in [18], where it is shown that the future asymptotics are
of the form

|V — (aT +b)| — 0,

~ 1
= ([2612—2]7—1-0)‘—)07 a € (—2,2).

That is, PH solutions have asymptotics of the same form as a Kasner solution, but the value of V, at
T = 00 is restricted.



In contrast to these examples, in [13] the authors find a set of non-Gowdy, polarised solutions such
that

(1.6) IV —b| = 0, ‘T— c‘ 0.

The results in [18] and [13] are much more detailed than the above statements; we give this simple
description only to demonstrate that an instability arises; no polarised Kasner or PH solutions can have
future behavior of the form (1.6). The relationships between these sets of solutions are given in Figure
1.

Previous to this work, numerical simulations conducted by Berger [4, 5] indicated that all 72-
symmetric solutions, without regard to the polarisation or smallness conditions imposed in [13], flowed
toward the polarised attractor (1.6). In addition, in [18] it is shown that within the neighborhood of
each polarised PH solution is a polarised non-PH solution with future asymptotics of the form (1.6).

Before giving a description of our main theorem, let us note the sense in which we use the word
“attractor.” Our technique of proof follows [13]. Let us denote the right side of (1.4) by J. The idea
of the proof is to treat the asymptotic regime of the solution as a wave equation for V, () coupled to
an ordinary differential equation (up to some error terms) for the means in the 6-direction of e, e!,.J.
The smallness assumptions are then used to guarantee that the errors decay, and so the behavior of the
means of e, e!, .J approaches the behavior of the solution of the ODE. When we use the word “attractor”
here, we refer to the dynamics of the e, ¢!, J system; a solution V', Q’, p’,f’ is not generally a proper
attractor of the flow in the sense that

V=V +1Q—Q N+ llp— ol +11=T] —0

in C* norm.

Our main theorem states roughly that the condition B = 0 suffices to ensure that a solution has
polarised asymptotics if it begins sufficiently close to the asymptotic regime. In the latter portion of
the paper, we present numerical evidence that the condition B = 0 is necessary for the solution to have
polarised asymptotics and flow toward the polarised attractor. There appears to be an attractor for
solutions satisfying B # 0, which shares some formal properties with the B = 0 attractor. However, such
solutions flow away from the B = 0 attractor, and so the B = 0 asymptotics appear to be unstable.

Since the future behavior of Gowdy and PH solutions is understood, we are only concerned with
non-Gowdy, non-PH solutions; that is, solutions with K # 0 and |, g1 €7 df unbounded as 7 — co. In this

case, we shift Tby a constant
1:=1+log(K?/2)

so that

%:19, ZAT:lT and pT:el‘
In the rest of the paper, we assume solutions are non-Gowdy and so change variables to [ to avoid writing
factors of K.

Before proceeding with the proof, it is important to note that there is some very interesting work on
the rescaling limits of certain expanding spacetimes [14, 15]. The earlier of these works uses techniques
from the study of Ricci Flow to analyze the rescaling limits of CMC-foliated expanding spacetimes. The
latter work is concerned with the extent to which rescaling limits of the spacetimes considered in [13]
have a nonzero Einstein tensor. It is likely that this result can be generalized to the class of solutions
considered in this paper.
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2. PRELIMINARY COMPUTATIONS

Before proceeding with the proof of the main theorem, we define the energy under consideration and
calculate its evolution. It is useful to have notation for the mean of a function in the #-direction.

Definition 2.1 (S'-mean). For f: S' —» R, let
= [ 10a

Note that in [13], the authors choose to use the volume form e” df for their mean. Our choice is almost
identical to that used in [18], but we normalize so that [, df = 1. Either choice would suffice.
Define the following energy

1
J ;:5 |:V7-2 +62(T_p)‘/:92 + eQ(V—T) (QE— +62(T_p)Qg>:| ’
1
E:= / eI df = o / ePTTVE 4 e VG + eV T2 + 2V Q7 do,
St g1

and the S!-volume

II:=(e’) = / e’ df.
Sl

Note that equation (1.4) now reads I, + p, + 2 = J. We use the terms V-energy and Q-energy loosely
to refer to V2 + 62(T*p)V92 and e2(V—7) (Qz + eQ(T’p)Qg), respectively. One may compute using the
evolution equations for V' and @ that

Oy (ePJ) =2ePJ — prefJ —ePVZ — 2V 7PQ% 4 0y (ezT*pVQVT + e2v*pQ9QT)
so the energy E evolves by

E. = /1 —preP AT — P2 eQ(V_T)_pQg de.
s

The terms —e? =27V 2 — e2(V=")=p Q% appearing here are undesirable for proving energy inequalities. This
necessitates the modification of E by a term which trades V2 for Vi2. This is the main topic of Section
3.

3. CORRECTIONS AND THEIR BOUNDS

Define the correction

(3.1) A ;=1e—27/ Ve (V= (V) =1)e’ db.
2 51

Corrections to the energy of essentially this form were used previously in the Gowdy case [17] and in
the existing results on T2-symmetric spacetimes [18, 13]. Our definition differs only slightly from those
previously used. Differentiating (3.1) and using integration by parts yields the two components of the
V-energy, but with opposite sign. This allows us to replace time derivatives by space derivatives, which
may be bounded. At the same time, the correction has better decay properties than the energy, and so
we are able to draw conclusions about the energy in the expanding direction.

To trade V2 for V# and Q2 for Q2, it would be more natural to consider the corrections

1 1
56_27— Vo (V—=(V))efdf, and 56_27— / V0. (Q - (Q)) e db
51 St

separately as other authors have done. Then, by differentiating the @Q-correction one would hope to
obtain terms of the form Q2 — 62(7_9)6237 perhaps with a leading factor. Our definition exploits the fact
that (1.2) contains exactly the expression that we would like to obtain from the @Q-correction.

Lemma 3.1. Consider a non-Gowdy T?-symmetric Einstein Flow. The correction defined in (3.1)
evolves by

aTA = — 2A — % <e_pV92> + % <ep—2TVT2> _ % <V7—> <ep—2TVT>
+ 16727/ AV (Q2 = ATIQE) (V- (V) 1) df.
2 o
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Proof. We compute straightforwardly using equations (1.2), (1.3) and integration by parts. From the
definition of A we have

Or A =—2A + %e*’“/ (€’Vy), (V= (V) —1) do + %e*%/ V.0, (V= (V) —1)e” df
Sl

Sl
— _2A
+1 —27 [ 27 ( 7pV) + 2(V—1)+p (Q2 . 2(T*/))Q2>:| (V - <V> . 1) do
26 . e (e b)), T e e ]
1
+ 5e*%/ V.0, (V= (V) —1)e” df
Sl

1 1
=—2A+ 7e*27/ —e2Te PV dO + 76*27/ VZel df
2 S1 2 Sl

Lo / AV (Q2 - POIQR) (V- (V) — 1) do
2 51

— (V) <;e”‘QTVT>

which completes the proof. O
We modify the energy E by A. It is then desirable to know that A has better decay than E. To that
end, note that

1/2
(3.2) V=Wl 5 [ |Ve|d9§< / veepcw)) M2 < (B2,
St S1

As is standard (cf. [20]), we use the notation f < h to mean that there is a universal constant C' > 0
such that f < Ch.
One finds the following bound using Hoélder’s Inequality.

Lemma 3.2 ([18], Lemma 72). Consider a non-Gowdy T?-symmetric Einstein Flow. Then
1 1
(3.3) ’A + <26p2TVT>‘ = ‘2627 Vi (V—(V))e? de‘ <e TIE
S1

For the following bound on the @ correction, cf. [18] Lemma 73, where the author assumes a uniform
bound on IT which we don’t assume here. The proof is essentially the same.

Lemma 3.3. For any a non-Gowdy T?-symmetric Einstein Flow,

/ AVQ, (Q - Q) e df
Sl

hS e~ 2B 1R

Proof. Note that we have already bounded ||V — (V)] ¢, in equation (3.2), and so we may commute out
factors of €” to obtain

[ (@ = {@llw = "=+ @ - @),
=elV=WMlico V) 1@ — () co
1/2
<e2lV=Wlco (/ eQVQEePd9> /2
< .

<e2lV=Wllco g™ (EIT)/2

via Holder’s inequality. So we may compute, using the bound on ||V — (V)||¢,, Holder’s inequality, and

the definition of F
e~ 27 /Sl 62(V—T)Q’T (Q - <Q>) e’ d9’ 56_47 ||eV (Q _ <Q>)||CO ‘/S1 eVQTep de‘
/ eV Q el do'
Sl

<e~T2BD)P11p, O
5

5@2HV7<V>HCO o 3T B1/271/2

<2V =Wllco o= By



We only need the @ correction for the following identity, which follows directly from the definitions
of the conserved quantities A, B:

@V =A+B@Q+ [ V0@ (@) ds
Sl
For By solutions, however, we use the bound on the ) correction to obtain the following bound
(34) |<6P72TVT>| o 672T‘A| S €7T€2(HE)1/2HE

which together with (3.3) yields the desired estimate on the correction.

Proposition 3.4. For any a non-Gowdy, By T?-symmetric Einstein Flow,

—27
(3.5) Al =

-7 (1 T e2<“E>”2) 1E.

The correction A introduces significant new error terms after differentiation. However, these terms
have good bounds, and the modified energy E + A has significantly better properties upon comparison
to E alone. The evolution of this modified energy is the focus of the next chapter.

4. THE CORRECTED ENERGY

One would like to show that, up to error terms, IT and E satisfy an ODE. While this is true asymp-
totically, it is more useful to compute with an energy which has been modified by the correction.
One computes that

(E+A). :/ —eP 2 J — P 2TY2 2V 2 ) — 20
Sl
1 —27 2T _— 2 1 —27 2
+ e —eTe PV di + —e Vzef do
2 Sl 2 Sl
1
e / 2V =")+r (Qi - e2<T—P>Q5) (V= (V) —1) do
Sl

V>< el 2TV>
( ) (E+A)+ (I_I{ITE - e’ 2. J d9> - (1 - 1_1{;) A
S1
1 —27’/ 2(V T)+p (Q2 2(T—p)Q2> (V _ <V>) do — <V > lep—QTV
T3 51 o T\ 2 A

The leading term on the right leads us to the ansatz that IT (E + A) (and so IIE) should decay like e~ 7.
Accordingly, define the corrected, normalized energy H :=II(E 4+ A). One computes that

O, (e€"TH)=e"H+ eIl (E+A)+eTI(E+A),

=€l ((E +A) (1 + ?{) +(E+ A)T)

I I
T T _ p—2T _ _ T
(4.1) el [( i E . e pTJd9> (1 I ) A
1 —27 2(V—1)+ 2 2(t—p) NH2 1 —27
+oe e P (@2 = ETIQE) (V= (V) db — (Vi) ( 5er 27V,
2 o 2

The ansatz in the local stability proof is that e™ H is of constant order. The proof is via a bootstrap
argument, where we bound all of the terms of 0.(e"H) in terms of II, E, H and 7. The following
Proposition deals with each of these error terms.



Proposition 4.1. Consider the evolution of a By solution with initial data given at time T = so. Let
po = mingeg1 p(0,s0). The following estimates hold.

(4.2) &E — e ¥ p, Jdf| <E e’ Tp,Jdo,
Il o o
(4.3) (1 - %) A| <|Ale~?" (1 + IIII) teT (1 + e2<HE>”2) (1 +11,) E,
(4.4) ‘(VT> <;6”27VT> <emro/2eT <|A| +6762(HE)1/2HE) EV?,
and
(4.5) e=2" /S v (Qi - e2<H>Q§) (V — (V) d0’ <IIV/2ES3/2,

Proof. For (4.2), using Young’s inequality, we note that
|Z9‘ §|V7V9| + ‘eV_TQTeV_TQM
:|e(p*T)/2VTe*(P*T)/2V9| + |6V7T€(p77—)/2Q7—6V7T67(p7T)/2Q9‘
1
§§ |:6p—TVT2 + er—pV92 + 62(V—7—)€p—‘ng + eQ(V—T)eT—[)Qg}
(4.6) =T J.
Thus we may use the Poincaré inequality to compute that
I,
‘E — e"_QTpTJdG‘ =II"1|II,FE — H/ ep_2TpTJd0‘
H Sl Sl
1| [ e 10) or0) = . (0) dqmw‘

<! / / P erO=27 1(0) sup |pr(a) — pr(b)| dpdd
st /gt a,beSt

—n'm / O 1(0)d0 sup |py(a) — pr(B)
St a,beS?t

< [ it
S1

gE/ pre’~TJ do.
Sl

Inequality (4.3) follows directly from inequality (3.5). To prove (4.5), we first commute out the
V-mean.

e [ Vo (@2 d0g) (v - v o)
Sl
< = (Voo [ V(G2 - g ds
Sl

SB_QT(HE)1/2/

eV (Q2 4 2GR ) df
St T

<(IIE)Y/? / P27 7 dh
Sl
:H1/2E3/2.

Lastly, for (4.4) recall that p is increasing and compute that

1/2 1/2 1/2
(V)] < (/ Vel d@) (/ e’ d9) < ePol2eT ( | d9> < ePo/2eT /2
5’1 Sl Sl

and use (3.4). This completes the proof. O

Now that we have an energy satisfying a good differential equation with good bounds on the error,
we proceed to the linearization.
7



5. LINEARIZATION

In [13], the authors present an argument that certain asymptotic rates of II, E should be preferred,
based on the assumption that e” H should be of constant order. In this section we briefly summarize
that argument as it appears in our context.

Definition 5.1. Let Y := <el+”+2T>.

This quantity has been previously considered; see [7] where (modulo factors of e7) it is called the “twist
potential.”

Note that we have defined Y so that Y, = (e/*°27(1. + p, +2)) = (e!TF+27J). We want to form a
system of ordinary differential equations from the means, however. So we distribute the integral over
the product, introducing the error term 2. One computes

(5.1) I, = 2"Y
(5.2) Y, = EYII ' +Q
where

Q= (P2 ) — T EY !
is an error term satisfying
|Q < e E (!PT ) = e"EY;.

Note that our quantity E contains the terms Qg and @, and so is not identical to the energy in [13].
Nonetheless, the quantities II, Y, E satisfy similar relations to the relations that LeFloch and Smulevici’s
quantities do. Normalizing, we compute that

1 i,
87— (e_TH—l/QH) :e_TH—l/QHT _ e—TH—1/2H _ 56—7'1{—1/211F

= (e HVAY )+ (e ) (—1 - 1HT>

o, (€73TH71/2Y> eIy, 33T 2y %67371{71/2}/%

1H
3T 1/2 (T EYT 4 Q) + (6—3TH—1/2Y) (_3 _ T)

—37’H—1/2Y
_ (6 — )e2THE 4 (e"%H’l/zY) <3 _ ) 13T /2()

e STH-Y2Y) TIE 3 1H
S it B3rg-12y)(_3_ -7 —3T1g-1/2Q)
e—rH—1/2H)2 H + (e ) ( 3 2 H ) te

_(
(
STHV2Y 1H
=EZTH1/2H)2 + (e_?”H_l/QY) (—3 — QHT) +eTHTRQ

(e=3"H~1/2Y) <HE B 1) .

+ (e—TH—l/QH)2 H

We insert our ansétze that % — —1, e 3"HY2Q — 0, and (% — 1) — 0, to obtain the ODE

= 1
0,c=d+¢ (—2)

which has a fixed point at

_ 2 7 1
c=——, = —
V10 V10
So we conjecture that the quantities
II Y
c:= — , d:= —



decay and compute the evolution of these quantities using (5.1) and (5.2). We find that

(1) -(4 ) (5)dumern (1)

0
1 2 )
V10 (C+\/%—0)2 o ( )2 37 [J1/2

where f(c,d) = wg — v/10¢d has vanishing linear part. Let

2
%

0
- 1 -2
Q= —287105;(671{)( Vio >+ fe) o (DB ) dg Q
V10 (c+%) H (c+25)  eSTHL/Z

denote the error term of this approximation. In the end, the following estimate is obtained (cf. [13],
Proposition 5.1).

Proposition 5.1. Consider the evolution of a By T?-symmetric solution. Provided the corrected energy

H is positive, one has for s > sq
s 1/2 s r 1/2
c < (so—s)/a [ € H(s0) c (r—s)y/a [ €TH(T)
()| seeomam (SRS () e+ e (SET) T etlar
wl 5 |9

eSH(s)

where

Quickly note a bound on one of the terms appearing in Q.
Lemma 5.2. Consider the evolution of a By T?-symmetric solution. The following estimate holds.

6737—H71/QQ’ <e~¥"|H|"\2EY,.

The proof of this lemma proceeds in the same manner as the proof of inequality (4.2). The remaining
three terms in ) are estimated directly. In the next section, we perform a bootstrap argument to bound
these errors, provided the initial data is sufficiently close to the asymptotic behavior.

6. THE BOOTSTRAP

The technique of proof follows [13]. The idea is to impose some smallness assumptions on the means
of the energy, the S' volume, and their derivatives. We then use a bootstrap argument to show that
these assumptions are improved. The reason for obtaining the estimates of Lemma 4.1 is to bound the
evolution of the corrected energy H. Let us discuss how that proof goes. We have computed 0, (e H)
in equation (4.1). Note that we may bound the right side of that equation by an expression of the form

- IE ~
|0 (eTH)| Se"IIEF + F = eTH?F +F
where, using the results of Lemma 4.1 we can write
6.1) F ::/ " Tp,Jdf+e T (1 + e2<“E>”2) (IT +11,) + (ILE)Y/2 4 e—(s0)/2e2(E) P11 pr1/2
Sl

and
= -7 11 —po/2 1/2
(6.2) F:=|AIl|e 1+ o +e P/CE .

Note that F and F are nonnegative. We are then concerned with the quantities

/ h F(r)dr, and / h F(r)dr

S0 S0
which bound the evolution of e” H in the bootstrap proof.
First, however, we need the following version of Gronwall’s Lemma, the proof of which is straightfor-
ward.



Lemma 6.1 (Gronwall’s Inequality). Let o, 8, f be nonnegative smooth functions on the interval [sg, s].
Suppose f satisfies the differential inequality

If'| <a+Bf.
Then
() = F(50)] < —F(50) + (f(SO) - o) dt) exp ( / B dt) |

Lemma 6.2. There exist constants €,Cy >0, M > 1, a time sqg > 0 depending on €, and an open set of
By FEinstein Flows satisfying the following conditions at time T = sq:

(6.3) |A| <1
(6.4) po = ibl}lfp >0
| <e
|d| <e

IIE
— -1/ <1
7] ‘< ’

1
5671 < €% <2¢7 !

(6.5) e H(so) + C1e'/? < Mee®
1

(6.6) 0< i <e®H(sg) — C1e'/?.
Furthermore, for all T € [sg,00), the following weaker estimates hold:
(6.7) lc| <el/4

|d| <e'/*

IIE
. — —1

(6.5) - ’ <3
(6.9) % (eSOH(sO) - 0161/2) < e H(r) <2 (eSOH(so) + 0161/2)

Remark 1. Assumptions (6.3) and (6.4) are not strictly needed. One could omit these assumptions and
instead gain terms involving A, pg in inequalities (6.5), (6.6), and (6.9). We have added these assumptions
just to simplify the notation.
The technique of proof is a straightforward “open closed” argument:
(1) Suppose estimates (6.7) to (6.9) are satisfied for 7 € [sp, ).
(2) We improve each of the five estimates (6.7) to (6.9) at 7 = s by choosing € small.

Proof. Initial Estimates: From assumptions (6.7) to (6.9), we have that

-7 So—T
e "< H<See ,

and
II 2 1/4 Y 1 ’ 1/4
——| =] <€’ ———| =d <€/
v v = orvi vl
SO
2 2
(6.10) < ( +el/4) emgl/2 < (= 4 el/A) /26(s0+7)/2 < 61/2650/267/27
1 1
(6.11) I =Y < ( 4/t BSTHYZ < 4 €M/ €1/2(57+50)/2 < (1/250/257/2
~ V10 ~ V10 ~

Note that (6.8) implies that IIE < H on this interval, which implies that

E <ee® " <e, and 14 2B/ <1+ e’ <1
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for sufficiently small e. The bound on II and the fact that II,Y > 0 together imply that, for
a <0,

/s OV gy <¢M/2gt0/2 /S O dr < C(a)eM2eleH1/ D50
S0 So

and similarly

/ ea=8/7y dr §e(a_5/2)sY(s) — e(“_5/2)S°Y(so) —(a— 5/2)/ a8y qr

S0 S0

561/2 eas+so/2 _ (Cl _ 5/2)650/2/ 7 dT:l
L S0

561/2 _eas+so/2 _a- 5/2 (eas+so/2 o e(a+1/2)50):|
a

561/2 _eas+so/2 +C’(a)e(“+1/2)50}
,SC(a)el/Ze('”'%)s".

Bound on A: To improve inequality (6.8), first note that |% — 1| = %|A| Then we may use the
estimate of the correction in inequality (3.5) to obtain

II I
TS5 [e‘ZTlAI +e T (1 + e“”E’”z) HE}
IT —27 —T
SE [6 +e HE:I
<€1/2650/263T/2 [6727' +65072T€}
<61/26s0/26—7/2 + 63/26380/26—7'/2
<€1/2+63/2680
<61/2
since H~! < e7. Thus we may ensure

IIE
— -1 <2
7o)<

for € small.
An Upper and Lower Bound on H: For the energy H we have the following estimate:

IE ~ ~
|0 (eTH)| < eTHﬁF +F<e"HF+F
That is, there is a constant C' > 0 such that
19, (e H)| <C (eTHF + F) .

The quantities F and F' are the nonnegative quantities defined in equations (6.1) and (6.2). We
then apply Lemma 6.1 to obtain the upper bound

(6.12) e H(s) < <eS“H(so) + C/ ﬁdf) exp (c / Fd’l')

and the lower bound
(6.13) e’H(s) >2e*°H(sg) — (eSOH(so) + C/ ﬁdT) exp (C’/ FdT) .
S0 S0

What we want, then, is for f;;o F dr to be bounded and for f;;o Fdr —0ase—0.
Recall that we have assumed e ?°/2 < 1 and |A| < 1. We compute

~ I,

F :‘A|H (e—T (1 + H) + e—ﬂ0/2E1/2>
<e T (I +1I,) + IY3(IE)Y/?
<€1/2650/2677/2 +€3/46350/4677/4

11



SO

(6.14) / Fdr Se'/? 4 e/4e0/2 < /4,

S0
Let C; be the product of C' and the constant associated to the < in inequality (6.14).
Inequality (6.12) becomes

e*H(s) < (eSOH(so) + 0161/4) exp (C/ Fd’l')
and the lower bound (6.13) becomes
e’H(s) >2e®°H(sg) — (eSOH(So) + 0161/4) exp (C/ Fd7'>

Now we turn to the bound on F'.

F :/ e Tprd A+ e (14 M) (I T1,) 4 (TLE)1/2 o 00 /2200
Sl

HE1/2

56737'/ ep+l+27(]d9+677' (H+HT)+(HE)1/2+HE1/2
S’l
<e—37'YT +€1/2650/2€_T/2 +63/4e380/4e—T/4

We have previously bounded the integral of the latter terms in time by €!/4, so it remains to
compute

/ e 3TY, dr < €2,

S0

So
/ Fdr < eV,

S0

Thus, in total for H, we have
e’H(s) < g (eSOH(so) + 0161/4)

when we choose € small enough that exp (C’ f; F dT) < %

Turning to the lower bound, it is useful to define N := e*0H(so) and L := Ce'/*. Note
assumption (6.6) implies that

1

4N+1L)

so we take e small enough that

1
BN 430) > 14— >4 —
GN+3L) > 1+ N+~ e

1 S
e >exp<C/SOFdT>.

The lower bound from Gronwall’s inequality takes the form

1+

s 1
e’H(s) >2N — (N + L) exp (C/ FdT) > 2N — 1(5N+3L) = Z(N—L)
S0

which improves the lower bound on e™ H(7).
Bounds on II,Y: Let us determine what the smallness assumptions of Lemma 6.2 imply for the
error term of the ODE system of Section 5. Recall the conclusion of Proposition 5.1: if H > 0,

then
where

Wl 59| = —;aflong)(

ﬁ‘h\ﬁ‘w
ol ©

0
> + f(d,c) IIE 1 d+\/%—0 Q
H

(+)" \H ) ()" STH

12



and
‘efngfl/QQ‘ <e~¥"|H|"\2EY,.

To begin with, note that e” H(7) has both upper and lower bounds, and so both terms of the

e" H(T) 1/2
form (ESH(S)> can be bounded above by a constant:

619 (5 (+)

56—1—/ e/ 0(7)| dr.
S0

(5) <€(5075)/4

(s0) + / =/ \uy(r)| dr

50

To finish the bootstrap, we must bound the right side of this inequality strictly below e'/%. We
deal with each of the 4 summands in w in the remainder of the proof.
The contribution to the right side of (6.15) from the error term e =37 H~1/2Q) is

/ (r— s>/4‘ 3T f— 1/29’ dr <e~ 8/4/ *77/4‘1&1 1211~ ’HEY dr

S0

1
75/4/ 67117/4 H Y, dr
+ r
75/4/ —117/4 |-~ dr
—9/4/ (~1/4-5/27y g7
Sel/Qe(so s)/4
<€l/2
where we have used the fact that ¢ f Y2 — 1! and the bootstrap assumptions.
755
d+ L
The contribution from (% — ) % is
(e+ %)
° 4| (1IE d+ % ° 4,1/2
/ =3/ ( _1> Vi dfg/ o(T=)/41/2 g
S0 H (C + L) S0
V10
<61/2 (1 _ e(so—s)/4>
<€1/2.
Turning to %, we recall that f has vanishing linear part, so
C+ﬁ)

/ Tetr—oa| SO o / T2 g < (12 (1= eleom2rt) < /2
50 <C+ \/%) s0

To bound 9, log (e™ H), note that e™ H has a lower bound, and use the estimates on F' and F
obtained above to compute

|0 log (e" H)| = (e H))
<

THF F)
~eTH (e +

<SF+F
<673TYT +€1/2650/2677/2 _'_63/46350/4677‘/4
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So the contribution to (6.15) is

/s o(r—5)/4 (efngT 1 el/2gs0/2=T/2 | 63/46350/464/4) dr 561/2 L ems/4 /5 e T/A5/2Ty g

50 S0

561/2 + 6(80_8)/461/2
<€1/2.

Combining these estimates, we have from inequality (6.16) that

( 2) ( i ) o)+ [ e ot

S0

(5) Seleom/t

<e 4 €l/?
<el/2,

This improves the bootstrap inequality on ¢, d.
Thus we have improved all of the bootstrap inequalities, and the proof is complete. (I

7. ASYMPTOTIC BEHAVIOR

We are now in a position to present the By version of the main result of [13]. In particular, for T2-
symmetric vacuum spacetimes satisfying B = 0, we find rates of growth/decay in the expanding direction
for the f-direction volume, the normalized energy, and their derivatives. In going from the polarised to
By case, we appear to lose some of the fine grained asymptotics of V' and its mean. Forthcoming work
will describe the behavior of V' and @, and the dependence of that behavior on the conserved quantity
B. Given our estimates above, the proof of the theorem is nearly identical to the polarised case.

Theorem 7.1. There exists an €y such that if 0 < € < €, for any By initial data set satisfying the
smallness conditions of Lemma 6.2, the associated solution satisfies for T € [sg, 00).

C
< —7/4

(7.1) ( d ) <e
(7.2) le"H — C2| Sem™/*

2
7.3 el — ——Co| Se” T/t
(7.3) Ti50| 3

1
7.4 e TRy - O | e /4
7.0 | culs
(7.5) T2 — @cm <e T/
(7.6) (1) =1 Se™7/?

1

(7.7) el — B <e /4
(7.8) (V) =VI+1]e" (@) - Q)] Se™™?
(7.9) ’H_le” - ep°°{ <e /2

for some Cso > 0 and pos: Sl 5 R.
Proof. The proof proceeds as in [13]. First, observe that inequalities (6.10) and (6.11) imply that
e I +e I, +e 37y < e /2,
Furthermore, ITE < e~ and e™ H is bounded above and below by positive constants. On the other hand
0, (€"H)| <eTHF + F<F+F <e ™/t 473y,
The right side is integrable in 7, so let Cso := lim_ VeTH. Then

L —eH S [ o (@H) dss e
giving (7.2).
14



Note that (6.15) now reads

(5@ [[erruman

S0

and that all of the terms of j:) e(T=9)/4|w(7)| dr are now bounded by e~*/* with the exception of

2 s
(i) s [l ()]

[

I R L e e
S 2 s
° (C + \/TT)) 0

(5@ sers e rtumyar

S0
c
< d )‘ dr.
Applying the integral version of Gronwall’s inequality gives

<e_5/4 _|_‘/S 6(7'—3)/4
S
( 2 > (s) Sefs/4+/ e/ 469/ oxp (/ o(r=s)/4 dr) dr

since |(¢,d)| < 1. So

0
S0
<e s/t 4 675/4/ exp </ e(r=)/4 dr) dr
S0 T

<e—s/4 + 86—5/4

1

5@(571)5

for any § > 0. Inserting this improved estimate into (7.10) and applying Gronwall’s inequality again
gives (7.1). Combining this with (7.2) yields (7.3) and (7.4).
Recall that H =TI(E + A) and

Al Se A 4e 7 (1 + eQ(HE)l/z) ME <e .

Then combine (7.2) and (7.3) to obtain (7.5). The estimate (7.6) follows from (4.6) and (7.5). Estimate
(7.8) follows directly from the Poincaré inequality and the bound on E.
To estimate e! let us note that

(7.11) [Tle' — e 7Y | =

/ P (P)H() <61<w>4<9> _ 1) d@‘ <e vy
Sl

One can then combine (7.11), (7.3), and (7.4) to find that supg: €' is bounded by a constant. Then, we
estimate again

(7.12) e — ey | = / e (ez«a) _ ezw)) dsp’ <m (Sup 61) <

g1 g1
and combine (7.12), (7.3), and (7.4) to obtain (7.7). The proof of (7.9) is identical to the one in [13],
since we have the same bounds on pg,. O

8. NUMERICAL EVIDENCE

The full Einstein Flow is a large, quasilinear system of partial differential equations about which it is
difficult even to make conjectures. This remains true even in the simplified T2-symmetric case considered
in this work. It has been crucial to this work to base our conjectures on evidence garnered from numerical
simulations of T2-symmetric Einstein Flows. We summarize this numerical work in this section. A more
detailed discussion of the numerical methods and results is the subject of a forthcoming paper.

Our code is a reimplementation of one previously developed by Berger to simulate T2-symmetric
spacetimes in the contracting direction [7], and then later in the expanding direction. We reimplemented
this code in OCaml!, and made a number of modifications to improve the accuracy and speed. Most
importantly, we developed code to produce solutions of the T2-symmetric constraint equation via a
random process, which allowed us to probe the behavior of generic T?-symmetric Einstein Flows.

loCaml is a general purpose programming language developed primarily at INRIA. See https://ocaml.org/.
15



We have developed code which samples the constraint submanifold for the 7T2-symmetric Einstein
Field Equations in a fairly generic manner. We have then evolved these initial data using a finite
difference method. This generic sampling has been a crucial element allowing us to determine that the
assumption B = 0 was necessary for our main theorem, and otherwise develop our intuition about the
solutions. The simulations have the expected convergence properties upon refining the spatial resolution
so we are confident that they are accurate approximations of solutions. To obtain confidence that our
simulations depict behavior which is generic for the class under consideration, we simulated on the order
of 20 randomly chosen initial constraints solutions in each of the following classes: polarised, By, and
B # 0 T?-symmetric. The qualitative behavior depicted in Figures 2 through 4 is observed to be the
same for all simulations in that class.

It has been useful to plot the evolution of the following quantities along each of the numerical solutions.

S:=08, | ler~™2d0, T:=0, | pe’~7/2db,
St St

Ey = / |:VT2 + eQ(T—p)VveZ:| ep—7-/2d97 EQ ::/ e2(V—T) (Qi + 62(7'—9)@3) ep—T/Qde’
g1

Sl
/ V, eP~7/ 2d9'
Sl

These are not the quantities that were used in the proof of our main theorem, but they capture the
dynamics of the system. The volume form e”~7/2df is used to smooth out the graphs (the integrals
generally oscillate without this normalization).

W = log

T p T

. s L G s <® .\ s

o1 01 Kw 05 i) 05 )
(A) polarised (B) B=0 (c) B#£0

FIGURE 2. S and T flow toward a spiral sink, regardless of polarisation or the value of
B. Although [,, p,; converge to the same values in all cases, the volume form e?~7/2 df
causes the variables used in the plots to flow toward different values.

05 0.5

0 10 0

(A) polarised (c) B#0
FI1GURE 3. For polarised solutions, £ = Ey which converges to a constant. For B =0
solutions, F and the V and @ energies all converge to constants. For B # 0 solutions,
however, although the total energy converges, Eyy and Eg do not; they oscillate with
amplitude which does not decay and period matching the period of the sink in Figure
2.
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(A) polarised (B) B=0 (c) B#0

FIGURE 4. For B = 0 solutions (including polarised), V, — 0 exponentially. For B # 0
solutions, however, V, appears to converge to a nonzero constant.

In [13], the authors are able to determine the first order behavior of the energy and II, but also the
first order behavior of V' and the rate of its decay to the mean value. We have generalized their results
on the asymptotic values of the energy, Il as well as the decay of V' and @ to their means to the By case,
but so far have been unable to derive other estimates for V' and (. However, the numerical solutions
that we have found have the property that there are constants a, Cy such that

(V) = Cyr —al = O0(e™™/?)

CV{O if B=0

and that

3 fB#0

More detailed descriptions of the numerical results will be given in future work.

APPENDIX A. CONCORDANCE OF NOTATIONS BETWEEN [6], [7], [18], AND [13]

The Einstein Flows under consideration in the this work have been studied extensively, including many
important special subsets of solutions. Unfortunately, authors have used many different coordinates for
exactly the same set of spacetimes, and this document adds yet another set of coordinates. As an aid to
the reader who wishes to read the cited works together, we provide in this appendix a concordance of
notations used in the most frequently cited of these works.

To the best of our knowledge, all of the works in the table rely on the foliation and equations derived
in [6]. This paper, [6], [7] and [18] use coordinates for 7%-symmetric Einstein Flows which are completely
general. The analysis in [13] applies only to polarised T2-symmetric Einstein Flows, and so relies on
the assumption that some metric components vanish identically. In [17], future asymptotics of Gowdy
solutions are derived. The notation used there is exactly the notation of [18] if one imposes the conditions
a =1,K = 0 so we omit it from the table.

In the table below, each column uses the notation internal to the document named in the first row. All
of the expressions in a given row are equal. For example, the function called P in [18] has the expression
2U — log R in [13]. Since [13] only deals with polarised flows, the expressions in this column are only
equal to those in other documents if the polarization condition is imposed.

17
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