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Abstract—In order to solve complex, long-horizon tasks,
intelligent robots need to carry out high-level, abstract planning
and reasoning in conjunction with motion planning. However,
abstract models are typically lossy and plans or policies
computed using them can be unexecutable. These problems are
exacerbated in stochastic situations where the robot needs to
reason about, and plan for multiple contingencies. We present
a new approach for integrated task and motion planning in
stochastic settings. In contrast to prior work in this direction,
we show that our approach can effectively compute integrated
task and motion policies whose branching structures encoding
agent behaviors handling multiple execution-time contingencies.
We prove that our algorithm is probabilistically complete and
can compute feasible solution policies in an anytime fashion so
that the probability of encountering an unresolved contingency
decreases over time. Empirical results on a set of challenging
problems show the utility and scope of our methods.

I. INTRODUCTION

Recent years have witnessed immense progress in research
on integrated task and motion planning [1], [2], [3], [4], [5],
[6]. Research in this direction provides several approaches
for solving deterministic, fully observable task and motion
planning problems. However, the problem of integrated task
and motion planning under uncertainty has been under-
investigated. We consider integrated task and motion plan-
ning problems where the robot’s actions and its environment
are stochastic. This problem is more difficult computationally
because sequential plans are no longer sufficient; solutions
take the form of policies that prescribe an action for every
state that the robot may encounter during execution. For
instance, consider the problem where a robot needs to pick up
a can (black) from a cluttered table (Fig. 1). To achieve this
objective, the robot needs to consider multiple contingencies,
e.g., what if the can slips? What if it tumbles and rolls off
when it is placed?

This example is representative of many real-world prob-
lems such as diffusing IEDs, operating live machinery, or
assisting emergency response personnel. Safe robot execution
in such situations requires pre-computation of truly feasible
policies so as to reduce the need for time-consuming and
error-prone on-the-fly replanning. A naive approach for
solving such problems would be to first compute a high-
level policy using an abstract model of the problem (e.g., a
model written in a language such as PPDDL or RDDL([7]),
and to then refine each “branch” of the solution policy
with motion plans. Such approaches fail because abstract
models are lossy and policies computed using them might not
have any feasible motion planning refinements [8], [9], [6].
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Fig. 1: Left: YuMi robot uses the algorithm developed in this paper to
build a 37 structure using Keva planks despite stochasticity in their initial
locations. Right: A stochastic variant of the cluttered table domain where
robot has to pick up the black can, but pickups may fail.

Furthermore, as the planning horizon increases, computing
complete task and motion policies becomes intractable as
it requires the computation of exponentially many task and
motion plans, one for each branch of the policy.

We present a novel anytime framework for computing
integrated task and motion policies. Our approach continually
improves the quality of solution policies while ensuring that
the versions computed earlier can resolve situations that
are more likely to be encountered during execution. It also
provides a running estimate of the probability mass of likely
executions covered in the current policy. This estimate can be
used to start execution based on the level of risk acceptable in
a given application, allowing one to trade-off precomputation
time for on-the-fly invocation of our planner if an unhandled
situation is encountered. Our approach generalizes methods
for computing solutions for most-likely outcomes during
execution [10], [11] to the problem of integrated task and
motion planning by drawing upon approaches for anytime
computation in Al planning [12], [13], [14]. Our experi-
ments indicate the probability of encountering an unresolved
contingency drops exponentially as the algorithm proceeds.
The resulting approach is the first probabilistically complete
algorithm for computing integrated task and motion policies
in stochastic environments using a powerful relational repre-
sentation for specifying input problems. Our approach uses
arbitrary stochastic shortest path (SSP) planners and motion
planners. This structure allows it to scale automatically with
improvements in either of these active areas of planning
research.

We begin with a presentation of the background definitions
(II) and our formal framework (III). (IV) describes our
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overall algorithmic approach, followed by a description of
empirical results using the Fetch and YuMi robot platforms
(V), and a discussion of prior related work (VI).

II. BACKGROUND

A motion planning problem is a tuple (C, f, py, p:), where
C is the space of possible configurations or poses of a robot,
f(p) is a boolean function which determines whether the
robot at config p € C'is in collision with any object or not,
and pg,p; € C are the initial and final configs. A trajectory
is a sequence of configurations. A collision-free motion plan
solving a motion planning problem is a trajectory in C' from
po to p; such that f is false for any pose in the trajectory.

Stochastic shortest path (SSP) problems are a subclass
of Markov decision processes (MDPs) that have absorbing
states, the discounting factor v = 1 and a finite hori-
zon [15]. An SSP can be defined as a tuple (S, A,T,C,v =
1, H, sg, G) where S is a set of states; A is a set of actions;
Vs,s" € S, ae€ A T(s,a,s) = P(s]s,a); C(s,a) is
the cost for action a € A in a state s € S; H is the
length of the horizon; sg is an initial state; G is the set
of absorbing or goal states. A solution to an SSP is a policy
7w of the foom = : S x {1,...,H} — A that maps all
the states and time steps at which they are encountered to
an action. The optimal policy 7* is a policy that reaches
the goal state with the least expected cumulative cost. SSP
policies need not be stationary because the horizon is finite.
Dynamic programming algorithms such as value iteration or
policy iteration can be used to compute these policies. Value
iteration for finite horizon SSPs can be defined as:

Vo(s) =0
Vi(s) = ming Z T(s,a,s') [C(s,a) + VT (s))]

71 (s) = argming ZT(S, a,s") [C(s,a) + Ay (s")]

III. FORMAL FRAMEWORK

We model stochastic task and motion planning problems
as abstracted SSPs where each action of the SSP (e.g. place)
corresponds to an infinite set of motion planning problems.
The overall problem is to compute a policy for the SSP along
with “refinements” that select, for each action in the policy,
a specific motion planning problem and its solution. E.g., the
“high-level” action for placing a can on a table corresponds
to infinitely many motion planning problems, each defined
by a target pose for the can. The refinement process would
thus need to select the pose that the gripper should be in
prior to opening, and a motion plan for each occurrence of
the pickup action in the computed policy.

Formalization of abstraction functions  To formalize the
necessary abstractions we first introduce some notation. We
denote states as logical models or structures. We use the term
logical structures or structures to distinguish the concept
from SDM models. A structure .S, of vocabulary V, consists
of a universe I/, along with a relation 7 over U for every
relation symbol 7 in V' and an element ¢® € U for every

constant symbol ¢ in V. We denote the value of a term
or formula ¢ in a structure S as ] s.We also extend this
notation so that [r] s denotes the interpretation of the relation
r in S. We consider relations as a special case of functions.

We formalize abstractions using first-order queries [16],
[17] that map structures over one vocabulary to structures
over another vocabulary. In general, a first-order query o
from V; to V}, defines functions in «(S;) using interpreta-
tions of Vp-formulas in Sp: [r]a(s,)(01,...0n) = True iff
[¢&(01,-..0n)]s, = True, where 2 is a formula over V.

We define relational abstractions as first-order queries
where V}, C Vj; the predicates in V}, are defined as identical
to their counterparts in V;. Such abstractions reduce the num-
ber of properties being modeled. Let I/, (U},) be the universe
of Sy (Sp) such that |U},| < |U|. Function abstractions do
not reduce the number of objects being considered.

Let p : U, — 2Y¢ be a collection function that maps
elements in U}, to the collection of U/, elements that they rep-
resent. E.g., p(Kitchen) = {loc : A; loc - BoundaryVector; <
0} where the kitchen has a polygonal boundary.

We define an entity abstraction o, using the collection
function p as [r]a,(s,)(01,-.-0n) = True iff 3o1,...0,
such that o; € p(6;) and [pr?(01,...00)]s, = True.
We omit the subscript p when it is clear from context.
Entity abstractions define the truth values of predicates over
abstracted entities as the disjunction of the corresponding
concrete predicate instantiations (an object is in the abstract
region “kitchen” if it is at any location in that region).
Such abstractions have been used for efficient generalized
planning [18] as well as answer set programming [19].
STAMP Problems  We define STAMP problems using
abstractions as follows.

Definition 1: A stochastic task and motion planning prob-
lem (STAMPP) (M, cy, o, [M]) is defined using a concrete
SSP M, its abstraction [M] obtained using a composition of
function and entity abstractions, denoted as «, and the initial
concrete configuration of the environment cg.

Solutions to STAMPPs, like solutions to an SSP, are
policies with actions from the concrete model M.

Let S be the set of abstract states generated when an
abstraction function « is applied on a set of concrete states
X. For any s € S, the concretization function T'n(s) =
{zr € X : a(x) = s} denotes the set of concrete states
represented by the abstract state s. For a set C C X, [C],
denotes the smallest set of abstract states representing C.
Generating the complete concretization of an abstract state
can be computationally intractable, especially in cases where
the concrete state space is continuous. In such situations, the
concretization operation can be implemented as a generator
that incrementally samples elements from an abstract argu-
ment’s concrete domain.

Example  Consider the specification of a robot’s action
of placing an item as a part of an SSP. In practice, low-
level accurate models of such actions may be expressed
as generative models, or simulators. Fig. 2 helps identify
the nature of abstract representations needed for expressing
such actions. For readability, we use a convention where
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Place(obji, configi, configs, target_pose, traji)
precon  RobotAt(con fig), holding(obji ),
IsValidMP(traji, configr, configz),
IsPlacementConfig(obji1, configa,
target_pose)
concrete effect  —holding(obj1),
Vtraj intersects(vol(obj ,target_pose),
sweptVol(robot, traj)— Collision(obji, traj),
probabilistic:
0.8 [RobotAt(configg),
at(obji, target,pose)]
0.2 {RobotAt( around_con figz),
at(obj1,around,target,pose)]
—holding(obji1),
Vtraj @ Collision(obji, traj),
probabilistic:
0.8 {RobotAt(con fig2),
at(obji, target,pose)]
0.2 [RobotAt( around_con figz),
at(objl,around,target,pose)]

abstract effect

Fig. 2: Concrete (above) and abstract (below) effects of a one-handed
robot’s action for placing an object.

preconditions are comma-separated conjunctive lists and uni-
versal quantifiers represent conjunctions over the quantified
variables. Numbers represent the probability of that outcome.

The concrete, unabstracted, description of this action
(Fig. 2) requires action arguments representing the object to
be placed (obj,), the initial and final robot configurations
(config,, config,), the target pose for the object (farget_pose),
and the motion planning trajectory (fraj;) to be used. These
arguments represent the choices to be made when placing
an object. The preconditions of Place express the conditions
that the robot is in config,; it is holding the object 0bj,; traj;
is a motion plan which moves robot from config, to config,
(IsValidMP); config, corresponds to the object being at the
target pose in the gripper (IsPlacementConfig). We ignore
the gripper open configuration for ease in exposition.

This action model specifies two probabilistic effects. The
robot moves to configs and places the object successfully
at rarget_pose with probability 0.8. It moves to some other
configuration around_config, and places the object at a
location around_target_pose with probability 0.2. In both
cases, the robot is no longer holding the object and it collides
with objects that lie in the volume swept by the robot while
following the trajectory. The intersects predicate is static as it
operates on volumes, while Collision changes with the state.

We use entity abstraction to replace each continuous action
argument with a symbol denoting a region that satisfies the
precondition subformulas where that argument occurs. This
may require Skolemization as developed in prior work [6].
Effects of abstract actions on symbolic arguments cannot
be determined precisely; their values are assigned by the
planning algorithm. E.g., it is not possible to determine in
the abstract model whether the placement trajectory will be
in collision. Such predicates are annotated in the set of effects
with the symbol (?) (see the abstract effect in Fig.2). This
results in a sound abstract model [6], [20].

IV. ALGORITHMIC FRAMEWORK

A. Overall Approach

We now describe our approach for computing task and
motion policies as defined above. For clarity, we begin
by describing certain choices in the algorithm as non-
deterministic. Variants of our overall approach can be con-
structed with different implementations of these choices; the
versions used in our evaluation are described in IV-B.

Recall that abstract grounded actions [a] € [M]
(e.g., Place(cup, configl _cup, config2_cup, target_pose_cup,
trajl _cup)) have symbolic arguments that can be instantiated
to yield concrete grounded actions a € M.

Our overall algorithm interleaves computation among the
processes of (a) concretizing an abstract policy, (b) updating
the abstraction to include predicate valuations for a fixed
concretization, and (c) computing an abstract policy for
an updated abstract state. This is done using the plan
refinement graph (PRG). Every node u in the PRG represents
an abstract model [M],, an abstract policy [r], in the
form of a tree whose vertices represent states and edges
represent action applications, the current state of the search
for concretizations of all actions a; € [r],, and a partial
concretization o,, for a topological prefix of the policy tree
[7]. Each edge (u,v) between nodes u and v in the PRG
is labeled with a partial concretization o, and the failed
preconditions for the first abstract action in a root-to-leaf
path in [r],, which doesn’t have a feasible refinement under
Ou,»- Recall that this occurs because the abstract model is
lossy and doesn’t capture precise action semantics. [M], is
the version of [M], where the predicates corresponding to
the failed preconditions (corresponding to effects with (2),
created due to the abstraction discussed in Sec. III) have been
replaced with their literal versions that are true under o, .

ATM-MDP algorithm (Alg.1) carries out the interleaved
search outlined above as follows. It first initializes the PRG
with a single node containing an abstract policy for the
abstract SSP (line 1). In every iteration of the main loop,
it selects a node in the PRG and extracts an unrefined root-
to-leaf path from the policy for that node (lines 3-5). It then
interleaves the three processes as follows.

a) Concretization of an available policy: Lines 7-
13 search for a feasible concretization (refinement) of
the partial path by instantiating its symbolic action argu-
ments with values from their original non-symbolic do-
mains. Trajectory symbols like ¢raj; are refined using mo-
tion planners. A concretization cg,aq,cy,...,ak,cx of the
path [sol,[a1], [s1],- .., [ax], [sk] is feasible starting with a
concrete initial state ¢ iff ¢;11 € ai41(c;) and ¢ |
PRECOND(a;41) for ¢ = 0,...,k — 1. However, it is
possible that [7] admits no feasible concretization because
every instantiation of the symbolic arguments violates the
preconditions of some action in {m;}. For example, an
infeasible path would have the robot placing a cup on the
table in the concrete state cy, when every possible motion
plan for doing so may be in collision with some object(s).
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b) Update abstraction for a fixed concretization: Lines
16-20 fix a concretization for the partially refined path
selected on line 6, and identify the earliest abstract state
in this path whose subsequent action’s concretization is
infeasible. This abstract state is updated with the true forms
of the violated preconditions that hold in this concretization,
using symbolic arguments. E.g., Collision(teapot, traj_cup).
The rest of the policy after this abstract state is discarded.
A state update is immediately followed by the computation
of a new abstract policy (see below).

c) Computation of a new abstract policy: Lines 21-
22 compute a new policy with the updated information
computed under (b). The SSP solver is invoked to compute
a new policy from the updated state; its solution policy is
unrolled as a tree of bounded depth and appended to the
partially refined path. This allows the time horizon of the
policy to be increased dynamically.

Several optimizations can be made while selecting a PRG
node to concretize or update in line 3. We used iterative-
broadening depth-first search on the PRG with the max
breadth incremented by 5 in each iteration.

In our implementation the Compute variable on line 6
is set to either Concretization or UpdateAbstraction with
probability 0.5. The explore parameter on line 9 needs to
be set with non-zero probability for a formal guarantee of
completeness, although in our experiments it was set to False.

B. Optimizations and Formal Results

We develop the basic algorithm outlined above (Alg. 1)
along two major directions: we enhance it to facilitate
anytime computation and to improve the search for con-
cretizations of abstract policies.

Anytime computation for task and motion policies: The
main computational challenge for the algorithm is that the
number of root-to-leaf (RTL) branches grows exponentially
with the time horizon and the contingencies in the domain.
Each RTL branch has a certain probability of being encoun-
tered; refining it incurs a computational cost. Waiting for
a complete refinement of the policy tree results in wasting
a lot of time as most of the situations have a very low
probability of being encountered. The optimal selection of
the paths to refine within a fixed computational budget can
be reduced to the knapsack problem. Unfortunately, we do
not know the precise computational costs required to refine
a path. However, we can approximate this cost depending
on the number of actions and the size of the domain of
the arguments in those actions. Furthermore, the knapsack
problem is NP-hard. However, we can compute provably
good approximate solutions to this problem using a greedy
approach: we prioritize the selection of a path to refine
based on the probability of encountering that path p and the
estimated cost of refining that path ¢. We compute p/c ratio
for all the paths and select the unrefined path with largest
ratio for refinement.

Search for concretizations: Sample-based backtracking
search for concretization of symbolic variables [6] suffers
from a few limitations in stochastic settings that are not

Algorithm 1: ATM-MDP Algorithm

Input: model [M], domain D, problem P, SSP Solver SSP,
Motion Planner M
Output: anytime, contingent task and motion policy
1 Initialize PRG with a node with an abstract policy ] for P
computed by SSP;
2 while solution of desired quality not found do
3 PRNode < GetPRNode();
4 [7] < GetAbstractPolicy([M], PRNode, D, P, SSP);
5
6

path_to_refine < GetUnRefinedPath([r]);
Compute <— NDChoice{ Concretization,

UpdateAbstraction};
7 if Compute = Concretization then
8 while [7] has an unrefined path and resource limit is
not reached do
9 if explore// non-deterministic
10 then
11 replace a suffix of partial_path with a
random action;
12 end
13 search for a feasible concretization of
path_to_refine;
14 end
15 end
16 if Compute = UpdateAbstraction then
17 partial_path <— GetUnrefinedSuffix(PRNode,
path_to_refine);
18 o < ConcretizeLastUnrefinedAction([n]);
19 failure_reason «— GetFailedPrecondition([r], o );
20 updated_state «— UpdateState([], failure_reason);
21 ['] + merge([r], solve(updated_state, G, [M)]));
2 generate_new_pr_node([n'], [M]);
23 end
24 end

Fig. 3: Left: Backtracking from node B invalidates the refinement of subtree
rooted at A. Right: Replanning from node B.

present in deterministic settings. Fig. 3 illustrates the prob-
lem. In this figure, grey nodes represent actions in the policy
tree that have already been refined; the refinement for B
is being computed. White nodes represent the nodes that
still require refinement. If backtracking search changes the
concretization for B’s parent (Fig.3, left) it will invalidate
the refinements made for the entire subtree rooted at that
node. Instead, it may be better to compute an entirely new
policy for B (effectively jumping to the UpdateAbstraction
mode of computation on line 16 from line 13).

Thm.1 formalizes the anytime performance of ATM-
MDP and Thm.2 shows that our solution to this problem
is probabilistically complete. Additional details about these
results are available in the extended version of the paper [21].

Theorem 1: Let t be the time since the start of the
algorithm at which the refinement of any RTL path is
completed. If path costs are accurate and constant then the
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total probability of unrefined paths at time ¢ is at most
1 — opt(t)/2, where opt(t) is the best possible refinement
(in terms of the probability of outcomes covered) that could
have been achieved in time ¢.

Proof:  (Sketch) Let c be the cost of refining some
RTL path and ¢ be an approximation of it. The proof
follows from the fact that the greedy algorithm achieves
a 2-approximation for the knapsack problem and that for
all RTL paths, ¢ > c. So the priority queue will never
underestimate the relative costs, and algorithm’s coverage
of high-probability contingencies will be no further from the
optimal than the bound suggested in the theorem. [ ]

Theorem 2: 1If there exists a proper policy that reaches the
goal within horizon h with probability p, and has feasible
low-level refinement, then Alg. 1 will find it with probability
1.0 in the limit of infinite samples.

Proof: (Sketch) Let m, be a proper policy. For some
policy 7 in PRG, let k£ denote the minimum depth up to
which 7, and 7 match. If there are no feasible refinements
possible for an action at depth k + 1 in 7, then the explore
step (line 11) would replace that action such that it matches
the action at depth £+-1 in 7, with some non-zero probability
(given that actions are finite). Once the algorithm finds policy
m which matches m,, the backtracking search will find a
feasible refinement if the measure of these refinements under
the probability density of generators is non-zero. [ ]

V. EMPIRICAL EVALUATION

We implemented the presented framework using an open-
source implementation from MDP-Lib github repository
[22] of LAO* [23] as the SSP solver, the OpenRAVE [24]
robot simulation system along with its collision checkers,
CBiRRT implementation from PrPy suite [25] for motion
planning. Since there are no common benchmarks for eval-
uating stochastic task and motion planning problems, we
evaluated our algorithm on 7 diverse and challenging test
problems over 4 domains and evaluated 5 of those problems
with physical robot systems. In practice, fixing the horizon
h a priori can render some problems unsolvable. Instead, we
implemented a variant that dynamically increases the horizon
until the goal is reached with probability greater than 0. We
evaluated our approach on a variety of problems where com-
bined task and motion planning is necessary. The source code
and the videos for our experiments experiment can be found
at https://aair-lab.github.io/stamp.html.

Cluttered Table: In this problem, we have a table
cluttered with cans having different probabilities of being
crushed when grabbed by the robot. Some cans are delicate
and are highly likely to be crushed when the robot grabs
them, incurring a high cost (probability for crushing was
set to 0.1, 0.5 & 0.9 in different experiments in Fig. 6(a)),
while others are normal and are less likely to be crushed
(with probability set to 0.05). The goal of the robot is to
pick up a specific can. We used different numbers of cans
(15, 20, 25), and different random configurations of cans to
extensively evaluate the proposed framework. We also used

Problem % Solved | Avg. Time (s)
Cluttered-15 95 1093.71
Cluttered-20 79 1144.85
Cluttered-25 74 1392.83
Aircraft Inspection 100 1457.08
37 100 1312.83
Tower-12 100 1899.73
Twisted-Tower-12 98 1984.29
Domino (n = 10,k = 2) 100 98.64
Domino (n = 10,k = 3) 100 350.63
Domino (n =15,k = 2) 100 179.60
Domino (n = 15,k = 3) 100 631.91
Domino (n = 20,k = 2) 100 350.60
Domino (n = 20,k = 3) 100 590.60

Fig. 4: Summary of times taken to solve the test problems. Timeout for
cluttered table, aircraft inspection, and Domino: 2400 seconds, building
Keva stuctures: 4000 seconds.

this scenario to evaluate our approach in the real-world (Fig.
5(a)) using the Fetch mobile manipulation robot [26].

Aircraft Inspection: In this problem, an unmanned
aerial vehicle (UAV) needs to inspect possibly faulty parts of
an aircraft. Its goal is to locate the fault and notify the super-
visor about it. However, its sensors are not accurate and may
fail to locate the fault with some non-zero probability (failure
probability was set to 0.05, 0.1, & 0.15 for experiments in
Fig. 6(b)) while inspecting the location; it may also drift to
another location while flying. Charging stations are available
for the UAV to dock and charge itself. All movements use
some amount of battery charge depending on the length of
the trajectory, but the high-level planner cannot determine
whether the current level of the battery is sufficient for an
action as it doesn’t have access to precise trajectories. This
makes it necessary for the high-level to obtain feedback from
the low-level to solve the problem.

Domino: In this problem, the YuMi robot [27] needs to
pick up a domino from a table that has n dominos on it. It has
to notify the human about toppled dominos. While trying to
pick up a domino, k¥ domino’s on each side can topple adding
up to 22* contingencies that might need refinement.

Building structures using Keva planks: In this problem,
the YuMi robot [27] needs to build different structures using
Keva planks. Keva planks are laser cut wooden planks with
uniform geometry. Fig.5(b) and Fig.1 show some of the
target structures. Planks are placed one at a time by a user
after each pickup and placement by the YuMi. Each new
plank may be placed at one of a few predefined locations,
which adds uncertainty in the planks’ initial location. For
our experiments, two predefined locations were used to
place the planks with a probability of 0.8 for the first
location and a probability of 0.2 for the second location.
In this problem, hand-written goal conditions are used to
specify the desired target structure. The YuMi [27] needs
to create a task and motion policy for successively picking
up and placing planks to build the structure. There are
infinitely many configurations in which one plank can be
placed on another, but the abstract model blurs out different
regions on the plank. The put-down pose generator uses the
target structure to concretize each plank’s target put-down
pose. State-of-the-art SSP solvers fail to compute abstract
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(a) The Fetch mobile manipulator uses a STAMP policy to pickup a target bottle while
avoiding those that are likely to be crushed. It replaces a bottle that wasn’t crushed
(left), discards a bottle that was crushed (center) and picks up the target bottle (right).

(b) ABB YuMi builds Keva structures using a STAMP
policy: 12-level tower (left), twisted 12-level tower (cen-
ter), and 3-towers (right).

Fig. 5: Photos from our evaluation using the Fetch and YuMi robots. Videos are available at https://aair—-lab.github.io/stamp.html.
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Fig. 6: Anytime performance of ATM-MDP, showing the time in seconds
(x-axis) vs. probability mass refined (y-axis).

solution policies for structures of height greater than 3 for
this problem. However, these structure-building problems
exhibit repeating substructure every 1-2 layers that reuse
minor variants of the same abstract policy. We used this
observation to develop an SSP solver that incrementally calls
LAO* to compute iterative policies. The results for Keva
structures use this solver. In addition to the test problems
shown in Fig. 4 this allows our approach to scale to more
complex problems such as 3-towers (Fig.5). Approaches for
generalized planning [28], [29], [30], [18] could be used
to automatically extract and utilize such patterns in other
problems with repeating structures.

A. Analysis of Results

Fig. 6 shows the anytime characteristics of our approach in
all of the test domains. The y-axis shows the probability with
which the policy available at any time during the algorithm’s
computation will be able to handle all possible execution-
time outcomes, and the x-axis shows the time (seconds)
required to refine that probability mass.

These results indicate that in all of our test domains,
the refined probability mass increases rapidly with time so
that about 80% of probable executions are covered within
about 30% of the computation time. Fig. 6 also shows that
refining the entire policy tree requires a significant time. This
reinforces the need for an anytime solution in such problems.

Fig.4 shows average times taken to compute complete
STAMP policies for our test problems. These values are
averages of 50 runs for cluttered table, 20 runs for aircraft
inspection and 15 runs for Keva structures. Aircraft inspec-
tion problems and Keva structure problems required fewer

runs because their runtimes showed negligible variance.

VI. OTHER RELATED WORK

There has been a renewed interest in integrated task and
motion planning algorithms. Most research in this direction
has been focused on deterministic environments [8], [31],
[32], [9], [33], [34], [35]. Kaelbling and Lozano-Perez [36]
consider a partially observable formulation of the problem.
Their approach utilizes regression modules on belief fluents
to develop a regression-based solution algorithm. While
they address the more general class of partially observable
problems, their approach follows a process of online, incre-
mental discretization and does not address the computation
of branching policies, which is the focus of this paper. Sucan
and Kavraki [37] use an explicit multigraph to represent the
problem for which motion planning refinements are desired.
Other approaches [10] address problems where the high-level
formulation is deterministic and the low-level is determinized
using most likely observations. Our approach uses a compact,
relational representation; it employs abstraction to bridge
SSP solvers and motion planners and solves the overall
problem in anytime fashion. Preliminary versions of this
work [38], [39] were presented at non-archival venues and
did not include the full formalization and optimizations
required to solve the realistic tasks prsented in this paper.

Several approaches utilize abstraction for solving
MDPs [40], [41], [42], [43]. However, these approaches
assume that the full, unabstracted MDP can be efficiently
expressed as a discrete MDP. Marecki et al. [44] consider
continuous-time MDPs with finite sets of states and actions.
In contrast, our focus is on MDPs with high-dimensional,
uncountable state and action spaces. Recent work on
deep reinforcement learning (e.g., [45], [46]) presents
approaches for using deep neural networks in conjunction
with reinforcement learning to solve short-horizon MDPs
with continuous state spaces. These approaches can be
used as primitives in a complementary fashion with task
and motion planning algorithms, as illustrated in recent
promising work by Wang et al. [47].
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