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ABSTRACT. We present a procedure for asymptotic gluing of hyper-
boloidal initial data sets for the Einstein field equations that preserves
the shear-free condition. Our construction is modeled on the gluing
construction in [10], but with significant modifications that incorporate
the shear-free condition. We rely on the special Holder spaces, and the
corresponding theory for elliptic operators on weakly asymptotically hy-
perbolic manifolds, introduced by the authors in [2] and applied to the
Einstein constraint equations in [3].

1. INTRODUCTION

One of the most useful ways to mathematically define asymptotically flat
spacetimes — solutions to the Einstein field equations that model isolated
gravitational systems — is to require that they admit a conformal compact-
ification; see [12], [9]. Such spacetimes can be foliated by spacelike leaves
intersecting the conformal boundary along future null infinity. The intrinsic
and extrinsic geometry induced on such a leaf comprises a solution to the
Einstein constraint equations, commonly referred to as hyperboloidal in the
literature.

In [3] the authors have constructed constant-mean-curvature hyperboloidal
solutions to the Einstein constraint equations satisfying a boundary condi-
tion, known as the shear free condition, along the conformal boundary. Being
shear-free is a necessary condition on the initial data set for any spacetime
development of that data to admit a regular conformal structure at future
null infinity; see [5].

In this paper we present an asymptotic gluing procedure for vacuum
constant-mean-curvature shear-free hyperboloidal initial data as constructed
in [3]. Previous gluing constructions for the solutions to the Einstein con-
straint equations with asymptotically hyperbolic geometry [8],[10] have not
accounted for the shear-free condition.
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Topologically the gluing construction produces a connected sum of the
conformal boundary. While our construction is independent of the topo-
logical type of the boundary, we note the important special case that the
original data consists of two connected components, each having a spheri-
cal conformal boundary; see Figure 1. In this case, our construction yields
“two-body” initial data sets having a spherical conformal boundary.

FIGURE 1. This diagram, adapted from [10], shows the
boundary gluing construction in the case of two connected
components.

Our construction produces a one-parameter family of shear-free hyper-
boloidal initial data sets. We are able to show, in the limit as the parameter
tends to zero, that the geometry converges to that of the original data set.
Furthermore, the geometry in the center of the gluing region converges to a
portion of the hyperboloid inside the Minkowski spacetime.

1.1. Constant-mean-curvature hyperboloidal data. We now give a
definition of the hyperboloidal data to which our result applies. This type of
initial data has been discussed extensively in [3], which in turn relies heavily
on [2].

First, we briefly review the definitions of the function spaces we work
with; see [2], [11], and §2 below for more details. We assume that M is the
interior of a compact 3-dimensional manifold M having boundary OM and
let p be a smooth defining function on M (meaning p vanishes to first order
on M and is positive in M). Let C**(M) be the intrinsic Hélder space of
tensor fields on M and for § € R let C(I;’O‘(M) = p°C**(M). A covariant
2-tensor field u is defined to be of class €%*™ (M) if

Ly, ... Lxue Cy (M)
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for all 0 < j < m and for all smooth vector fields X7,...,X; on M: here
% denotes the Lie derivative. For example, if v € C™%(M) then u €
%m,a,m(M)'

A complete metric g and a symmetric covariant 2-tensor K (representing
the second fundamental form) form a constant-mean-curvature shear-

free (CMCSF) hyperboloidal data set of class €**?% on M if

(a) g = p~2g for some g € €**%(M) that extends to a metric on M and
is such that |dplg = 1+ O(p);

(b) K = ¥ —g for some traceless tensor ¥ = p~ 1% with ¥ € ¢k~Lal(M);

(c) the shear-free condition holds, meaning that

_ 1
(1) 5|, = [Hesso - 3(8om]

p=0 p=0

and
(d) the vacuum constraint equations hold, meaning that

(1.2) Rlg|+6—[S2=0 and divyE =0,

where R[g] is the scalar curvature of g.

A metric g satisfying condition (a) is said to be weakly asymptotically
hyperbolic of class €% 2.

An important example of CMCSF hyperboloidal data is the data induced
on the unit hyperboloid in the Minkowski spacetime, given in the usual
Cartesian coordinates by {(z%)? = (z)? + (22)? + (23)2 + 1,2° > 0}. The
induced metric for this example is the hyperbolic metric g, while the second
fundamental form is given by K = —g; thus ¥ = 0 for this data.

1.2. Statement of the main result. The asymptotic gluing procedure of
[10] produces data which generically fails to be shear-free (cf. Proposition 3.2
of [5]). Here we present a modification of the gluing method of [10] within
the category of shear-free initial data. We now give a precise statement of
our result.

Theorem 1.1. Suppose that a metric g and a tensor field ¥ give rise to
a CMCSF hyperboloidal data set of class €% on M for some k > 3
and a € (0,1). Fizing p1,p2 € OM, we define for each sufficiently small
e > 0 a manifold M., which is the interior of a compact manifold M. whose
boundary is obtained from a connected sum joining neighborhoods of p1,po.

For each sufficiently small € > 0 there exist a metric g and a tensor field
Y. that give rise to a CMCSF hyperboloidal data set of class €%*? on M.,.
As e — 0, the tensor fields (g-, Xc) converge to (g, %) in the following sense:

Convergence in the exterior region: For each sufficiently small ¢ > 0
we define an open set E. C M, whose closure in M is disjoint from
p1,p2. The sets E. exhaust M in the sense that Uc>0 E.= M.
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For each € < c there exists an embedding 1.: E. — M.. QOur
convergence result in the exterior region is that for fired ¢ we have

(1.3) (P°12ge, priXe) — (g, p%)

in the €%2 x €11 topology on E..

Convergence in the neck: For each sufficiently small ¢ > 0 we define
a subset A. of hyperbolic space H that in the half-space model cor-
responds to a semi-annular region; see (2.1). The sets A. exhaust
hyperbolic space in the sense that | J,.oAc = H.

For each ¢ < ¢ there exists an embedding V.: A. — M. such
that W.(A:) Ne(E.) = 0. Our convergence result in the neck is that
the data converges to the unit hyperboloid of Minkowski space, in the
sense that for fized ¢ we have

(1.4) (P*Vige, pUIS.) — (5°4,0)

in the €52 x €+F=1%1 topology on A.. Here p is a fized defining
function for hyperbolic space; see (2.6).

We emphasize that the above topology is the “right space” for convergence
with regard to the shear free condition in view of the results of [3] that show
that the shear-free condition is continuous in this topology, and the results
of [1], which shows that shear-free data sets are dense with respect to the
weaker C* topology.

We note that the class of initial data sets considered here includes those
with polyhomogeneous regularity along the conformal boundary; see [6],[3].
The observant reader will note that each step in our construction preserves
polyhomogeneity, and thus the application of Theorem 1.1 to initial data
that is both polyhomogeneous and shear-free yields polyhomogeneous data
on M.. We refer the reader to [3], and the references therein, for additional
details concerning polyhomogeneous data.

1.3. Overview of the construction. We begin our construction in the
same manner as in [10]. First, given (g,%) on M, and given the two gluing
points p1,pe € M, we use inversion with respect to half-spheres to con-
struct a manifold M., along with a defining function p.. We then use cutoff
functions to construct a spliced metric A. and spliced tensor field . on M-..
Second, we apply the conformal method of [3] to (Ac, pe) in order to obtain
(ge, 2¢) satisfying the constraint equations (1.2).

The spliced metric A. is obtained from ¢ using a cutoff function. To con-
struct p. we follow the approach of [3], and express the shear-free condition
(1.1) using a tensor Hg(p) that, for the metrics appearing here, agrees with
the traceless Hessian of p along M. The definition and properties of Hg(p)
are detailed in §3. In order to splice the second fundamental forms, we write
¥ = p~'Hz(p) + v and then use a cutoff function to construct a tensor vex*
that agrees with v in the exterior region and vanishes in the neck.
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We require that the metric A\, together with the tensor pu., form a good
approximate solution to the constraint equations. In the middle of the neck
we expect the solution to be very close to data corresponding to a hyper-
boloid in Minkowski space; for such data, ¢ = ¢ and ¥ = 0. However,
while &% = 0 in the neck, the tensor Pe_lHXE (pe) is not small there. Thus

we must correct our approximate data by constructing a tensor l/::leCk that
counteracts the large terms in p;lﬁxs (pe). The result is a family of spliced
data sets, each consisting of the metric A\; together with the tensor

pe = p= " Hy_(pe) + 2 + 12,

which approximately solve the constraint equations (1.2).

In order to obtain an exact solution to the constraint equations from each
spliced data set (A, pte), we make use of the conformal method; see [3] for a
detailed description of the conformal method in this setting. The first step
of this method is to prove the existence of a vector field W, such that

(1.5) Ly W. = (divy, pe)*.

1>

Here L), = D;E oD, is the vector Laplace operator, defined in terms of
the conformal Killing operator D)_, which acts on vector fields by

1 1,
(1.6) Dyt We = 5w e — g(diva, Wo)Ae.

Note that the adjoint Dj_ acts on symmetric traceless covariant 2-tensors
by

Dy_: pe = —(divy, 1)
and thus L), = —divy, oD,_(-). That W, satisfies (1.5) ensures that the
tensor

O = Ps_lHXE (pe) + V2K + VX 4 Dy W

(1.7)
= e + DAEWS

is divergence-free with respect to A.. Furthermore, we solve for W, in a
weighted function space that implies that the tensor . = p.o. satisfies

Es}pa=0 = 5, (p‘g)‘pe=0‘

This ensures that the resulting data set satisfies the shear-free condition.
Subsequently, we show the existence of a positive function ¢, satisfying
the Lichnerowicz equation

1

1 7 3
(1.8) Ax.¢e = g RI]De + gloeli o7 — 762 =0

and such that ¢. — 1 as p. — 0. Direct computation shows that the
metric g. = ¢2\. and tensor ¥, = ¢- 20, satisfy the constraint equations
(1.2), while a more delicate argument shows that in fact g. and ¥. have
the necessary regularity to give rise to a CMCSF hyperboloidal data set as
defined above.
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In order to control the properties of g. and Y., and thus establish the
main theorem, the above process must be carried out in such a way that
we obtain uniform control (in €) for each step of the process. Quantifying
this uniform control is a somewhat delicate matter, and we make use of
specially weighted function spaces in order to accomplish the task. Among
other things, this requires uniform estimates on the mapping properties of
various elliptic operators arising from A..

Our work is organized as follows. In §2 we define the regularity classes
used, and recall from [2, 3, 11] their basic properties. Subsequently in §3 we
recall from [2] the tensor #, which is used in [3] to characterize the shear-free
condition in a manner compatible with the conformal method. The proof
of Theorem 1.1 begins in §4 with the construction of the spliced manifolds
M. The spliced metrics \. are defined in §5, where their properties are
established. In §6 we construct the spliced tensors p. that give rise to
the tensors o, for which we obtain a number of crucial estimates. We
analyze the Lichnerowicz equation in §7 before assembling the final bits of
the proof in §8. The uniform estimates for mapping properties of various
elliptic operators arising from A. involve a framework more general than our
construction requires, and are placed in the appendix.

2. FUNCTION SPACES

Since the gluing construction uses the fact that the asymptotic geometry
of (M, g) is locally close to that of hyperbolic space, we first fix some no-
tation involving hyperbolic space. Using this, we briefly recall from [2] the
construction of various function spaces on M.

2.1. Hyperbolic space. Let (H, g) denote the upper half space model of
3-dimensional hyperbolic space; in coordinates X = (x,7) € R? x (0, 00) we
have

_ o (da')? + (d2?)? + dy?

g = 72 .

For r > 0 we define the following subsets of H:
ET - {(x,y) : dg((x,y), <07 1)) < 74}7
(2.1) Ve ={(z,y) : 2| <y <r},
Ar = {(z,y) :r? < |2 +y? < 1/r?);

here |z|? = (2!)? + (22)2. We note for later use that, since e < 8 and since
B, is determined by the hyperbolic metric g, we have

(2.2) By C Ayg.

We make use of the fact that the inversion map

(2.3) T (x,y)»—)( v Y )

22 + 42 |z]? + o2
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and the scaling maps
(2.4) Se: (x,y) = (ex,ey), e >0,

are isometries of H. Note that 7 restricts to a map A, — A,.

We identify H with the half space {y > 0} C R? and denote
25) B, = {(z,y) : [« + y* < r*} CH,
| By = {(w,y) : Jof* +12 <} C

We make use of the defining function
2y
2.6 = —
20 P

which is the pullback to the half-space model of the standard defining func-
tion 1(1 — |u[?) for the ball model. On any fixed B, we have

1 y
oY <p<Cuy,
T

for some constant C) depending only on r.
It is convenient to construct an inversion-invariant defining function on
the annular region A.. To accomplish this, we first recall the following.

Lemma 2.1 (Lemma 5 in [10]). There exists a nonnegative and nonde-
creasing smooth cutoff function x: R — R that is identically 1 on [2,00), is
supported in (%, 00), and satisfies the condition
(2.7) x(r)+x(1/r)=1.

We now define the function F': (0,00) — (0,00) by

F(r) = x(r) + ~5x(1/r).
The following is immediate from this definition.
Proposition 2.2. The function F: (0,00) — (0,00) satisfies
F(1/r)=7r?F(r), r€R,
F(r)=1, r>2,

1

F(T):r72>

r<1/2.

The functions x and F' give rise to functions on H, which we denote by
the same symbols, by taking r to be given by r? = |z|? + y2. Using this, we
see that yF is inversion-invariant; i.e., Z*(yF') = yF’; and that on each A,
we have

1 1
(2.8) gyspsCy and Syl <p< C'yF,

for constants C' and C’ depending only on c.
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2.2. Background coordinates and Moébius parametrizations. The con-
struction of function spaces on M given in [2] (see also [11]) relies on iden-
tifying coordinate neighborhoods of M with neighborhoods in hyperbolic
space. Here we slightly modify that construction to be compatible with our
gluing construction.

By choosing a collar neighborhood of M C M and rescaling p by a
constant if necessary, we hereafter identify a neighborhood of OM in M
with OM x [0, 1), and identify p with the coordinate on [0,1).

For each p € OM we choose smooth coordinates 6 taking a neighborhood
U(p) € OM to a ball of radius 1 in R2. We extend these coordinates to
smooth coordinates

(2.9) ©=(0,p): Z(p) = M,

where Z(p) = U(p) x [0,1) and Y} is given by (2.1). We may assume that
O extends smoothly to Z(p). We fix a finite collection of points p such that
the corresponding sets ©71(Y] 5) cover M x [0,1/8). The finite collection
of coordinates © we refer to as background coordinates.

We may assume that the finite collection of points p contains the points
pi, © = 1,2, of the main theorem. About these two points we may further
assume that we have preferred background coordinates ©; = (0;,p)
centered at p; satisfying the following conditions:

o el(pl) = (O’O)v
e the coordinates ©; are defined on the set Z(p;) with

Ou(Z(pi) = {(8.0) : (9])> + (62)° < 1 and p? < 1},

and
e in coordinates ©; the metric g = p?g takes the form g\p_ = 5abd@§d®g’.

Note that we can arrange the preferred background coordinates so that
Z(p1) N Z(p2) = . We also define, for use below, the coordinate half balls

Uir ={a € Z(pi): (0;(0))* + (67())* + p(a)® < r*},
Uir ={a€ Z(pi): (6} (q))* + (67 (q))* + p(q)* < r*}.

We fix a smooth preferred background metric h on M that satisfies
h = §,5dO¢dOY in each of the two preferred background coordinate charts.
Let V denote the Levi-Civita connection of h on M.

For each p € M with p(p) < 1/8 we define a Mébius parametrization
D, By — M as follows. Let © be a background coordinate chart with
p € ©71(Yy5); denote O(p) by (6, pp). Define @, by (6 o ®)(z,y) =
(0p + ppx, ppy). The inclusion (2.2) ensures that @, is well-defined. To this
collection we append an additional finite number of smooth parametrizations
®: By — M ~ {p < 1/16} such that the sets ®(B;) cover M ~ {p < 1/8}
and such that ® extends smoothly to the closure of B,. We denote this
extended collection by {®} and refer to them as Mdbius parametrizations.

(2.10)
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2.3. Holder spaces on M. Holder spaces of tensor fields on M are defined
using the norms

ok ary = 50P 19°ul s

where the C’k’o‘(ég) norm is computed using the Euclidean metric. Uni-
formly equivalent norms are produced by replacing By by B, for any 1 <
r < 2. If U C M is open, the C**(U) norms are defined by appropriately
restricting the domains of the M6bius parametrizations.

In [2], weighted function spaces are defined using p as a weight function.
Here we generalize that construction; see [7]. We say that a smooth function
w: M — (0, 00) satisfies the scaling hypotheses if there exist constants cg
and ¢ such that for every Mobius parametrization ®, we have
(2.11) g tw(p) < Qo w < cow(p) and
‘ Hq);wuck(§2) < Ckw(p)a k> 1.

It is straightforward to see that if functions w; and wy each satisfy the
scaling hypotheses, then so do the functions wjws and wy /ws.

Let U C M be open. Two functions w; and wsy satisfying the scaling
hypotheses are said to be equivalent weight functions on U if there
exists a constant Cp such that

1
(2.12) oy (p) < w2(p) < Cywi(p), pel

For any function w satisfying the scaling hypotheses and for any § € R,
we endow the weighted Holder spaces Cg’a(M;w) = w9Ck*(M) with the
norm

_ -4
lll g agony = N0l gty

Lemma 2.3. Let U C M be open.

(a) Suppose w satisfies the scaling hypotheses. For each Mdbius parametriza-

tion ® set we = w(P®(0,1)). For any 1 < r < 2 we have the norm
equivalence

=
< Sgpwfb ||q)*u||ck,a(éT) < C||“Hc(’;va(U;w)7

1
6”u||0§‘a(U;w)
where the constant C depends only on k, §, and where the constants
€O, - -+, Chr1 appearing in the scaling hypotheses for w.
(b) If wi and wy are equivalent on U then we have the norm equivalence

1 /
UHUHC’(’;’Q(U;UM) < HUHC’?“(UWQ) <C ”uH(j(I;»Q(U;wl)v

where the constant C' depends only the constant C' from part (a) and
the constant Cy in (2.12).

Proof. The first claim is a straightforward generalization of [11, Lemma 3.5],
while the second follows immediately from the first. O
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It follows from [11, Lemma 3.3] that the defining function p satisfies the
scaling hypotheses. We suppress explicit reference to the weight function if
w = p, so that C?’Q(M) = C’f’a(M; 0).

It is straightforward to verify that for any fixed 0 < ¢ < 1 the functions p,
y, and y F satisfy the scaling hypotheses on A, C H. Furthermore, from (2.8)
we see that these functions are equivalent weight functions on A.. Unless
otherwise specified, we use the weight function p. Thus the norms

HUHC’(’;aa(AC)a ||u”0§7&(145;y)7 ||u”0§70<(,45;yp)

are all equivalent.

The following lemma relates Holder spaces on M and M. We define the
wetght of a tensor field to be the covariant rank less the contravariant rank;
thus a Riemannian metric has weight 2.

Lemma 2.4. [11, Lemma 3.7] Suppose u is a tensor field of weight r.
(a) Ifu € CH*(M) and |ulz = O(p®) then u € Cffs(M) with
o <C o(F
el et ary < Cllull g
for some constant C.

(b) Ifue CP, . (M) then u € C* (M) with

ulloraary < Cllullgra

k+a+r (M)

for some constant C.

We now introduce the spaces ¢Fm (M), intermediate between CH< (M)
and C%(M), first defined in [2]. For 0 <m < k and « € (0,1) we say that
a tensor field u having weight r is in €%*™ (M) if

Lx, ... Lxu € CEF (M)
for all 0 < j < m and for all smooth vector fields Xi,...,X; on M. By [2,

Lemma 2.2] this is equivalent to requiring that the norm

(2.13) [

m .
haim (M) = ;O V7 ull sy

be finite; recall that V is the connection associated to the preferred back-
ground metric . We also have occasion to use norms such as ||« [|gk,aim (az;)s

defined by replacing Cf;j]a(M) by Cf;]j’o‘(M; w) in (2.13).
We also define similar norms on H. The Holder norms are defined as above
using the half-space model and the M6bius parametrizations ®: By — H of

the form
(2.14) P (x,y) = (Tx + Yu, Ysy).

On By for any ¢ < 1/4, we define the €*™ norms using FV, the con-
nection associated to the Euclidean metric gg, and the hyperbolic defining
function p.
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The following proposition records several important properties of the func-
tion spaces described above.

Proposition 2.5 ([2, Lemma 2.3]).

(a) The space of tensor fields on M of a specific type and of class €*™
forms a Banach space with the norm (2.13). The space of all ten-
sor fields of class €%™ forms a Banach algebra under the tensor
product, and is invariant under contraction.

(b) If u € Cffm(M) is a tensor field of weight v then u € €%%™(M)
with

Jull vy < Cllulgge gy
(¢) If u € €F>™(M) is a tensor field of weight r and
Vulz = 0andp—0, 0<j<m-—1

then u € C’ffm(M) with [Jul| k.o < Cllu
r+m

(M) cgk,a;m(M).

We record a regularization result that follows from [2, Theorem 2.6].

Proposition 2.6. Suppose 7 € €F™(M) is a tensor field of weight r.
Then there exists a tensor field T such that ¥ € €5 (M) for all 1 and 3,
and such that T — 7 € C’ffm(M).

Furthermore, for eachl and B there exists a constant C such that |7 || g1emary <

CHTHcgk,a;m(M).
Finally, in the case that M = H and 7 is supported in A, then for any
0 < 7 <7 it can be arranged that T is supported in Aj.

We recall also the following version of Taylor’s theorem.

Proposition 2.7 (Lemma 3.2 of [2]). Suppose g is weakly asymptotically
hyperbolic of class €%2. Then for any function u € €*2(M) N C’f’a(M)
we have u — p(dp, du)g € C’gil’a(M) with

= pldp, dulglcg-1.0apy < Clldlnaaqany,

where the constant C' depends only on ||g

(b//k,a;2(M) .

We conclude this section by noting the effects of the scaling maps (2.4)
on weighted Holder norms in hyperbolic space. Direct computation using
the M&bius parametrizations (2.14) shows that for a tensor field u of weight
r we have

. _ 4
”Sa““Cf’a(Bl/c;y) =€ HUHC(’;’Q(Be/c%y)

2.15 . 4 .
(219 IV (SZw) = "INV ull gbsa
]

HCf;j’a(Bl/C;y) (Beyeiy)’
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3. THE SHEAR-FREE CONDITION AND THE TENSOR H

We recall here the tensor Hg(w) introduced in [2] and used in [3] to incor-
porate the shear-free condition into the conformal method. For any metric
g and for any function w we define the tensor Hg(w) by

_ 1 B
(3.1) Hg(w) = |dwfs Dy (|dwl,? aradyew) + Ag(w) (dw ® duw — 3\@,39) |

where .
Ag(w) = 3 |dwlg divg (|dw|z gradg w)

and where Dy is the conformal-Killing operator defined in (1.6). The fol-
lowing properties of this tensor are established in §4 of [2].

Proposition 3.1. For any C' metric § and C? function w we have the
following.

(a) Hg(w) is symmetric and trace-free.

(b) Hg(w)(gradzw,-) = 0.

(¢) Hg(cw) = AHg(w) for all constants c.

(d) For any strictly positive function 0, we have Hgg(w) = 07> Hg(w).

If p is a smooth defining function, we furthermore have the following.

(e) If g € €F*2(M), then Hg(p) € €F 1L M) and divgHg(p) €

k—2,a
C] (M).
(f) If g € €"*%(M) and g = p~2g satisfies R[g] + 6 = CgiZ’Q(M), then

(32) Ha(p) — (Hessgp — 3(Agpg) € 5 (a0)

Due to the property (3.2), the shear-free condition (1.1) is equivalent to
requiring ¥ = Hg(p) along oM.

4. THE SPLICED MANIFOLD M,

We now begin the proof of the main theorem. We consider a CMCSF
hyperboloidal data set (g, K) of class €%%2 on M for fixed k& > 3 and
a € (0,1). As outlined above, the first step of the proof is to construct the
spliced manifold M. and the spliced defining function p., as well as various
function spaces on M-.

4.1. The splicing construction. Recall the definition of B, in (2.5) and
let € > 0 be a small parameter. For each of the gluing points p;, i = 1,2, let
the mapping . ;: By Je = M be given in preferred background coordinates
by

©; = (05, p) = aci(w,y) = (ex,ey).
The mappings o, ; give us scaled parametrizations of neighborhoods of p; €
M. For future use we note that because O = @;1 oS, and ©; is an isometry
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from h to gg, it follows from (2.15) that for any tensor u € %™ (M) of
weight r and any 0 < j < m, we have

Ex\j _ +i 157 _
1B il grs g, < O IV ul s

< Ce™|u

(4.1) ()

@h.osm (M)

where the constant C' depends on ¢, but is independent of ¢.
Recall the sets U;, defined in (2.10). Consider the equivalence relation
~ on

M ~ (ae,l(ge) U as,Z(Es)) =M~ (Ul,s2 U UQ,EQ)
generated by
065’1(1’, y) ~ (04572 o I) (:Ca y)?

where 7 is the inversion map defined in (2.3). Define the spliced manifold
M. as the quotient manifold whose points are the equivalence classes of ~.
It is clear from the construction that M, is a family of smooth manifolds
with boundary. In addition, define M, as the subset of M, consisting of
points whose representatives are elements of M; thus M. is the interior of
M. Denote the underlying quotient map by 7.. The map

VU, =m.0q.,1 =m.00a:p0L: A. — M,

is used throughout this paper to parametrize a region of M, that we refer
to as the neck.

Recall the definition of U, in (2.10). For each sufficiently small ¢ > 0 we
define the exterior region E. C M by

E.= M~ (Ul,c U UQVC) .
Note that U; . = am(EC/S) and thus
E.= M~ (05571(§C/8) U as’Q(EC/a)) .

Clearly J o Ec = M.
For the rest of this paper we assume

1
4.2 0 <<=,
(4.2) <e<c Gl

In particular, this implies that the map ¢, = 7|, : F. — M, is an embed-

ding. Note that W71 (E.) = A. \ A,

In establishing the main theorem, it is important to obtain estimates
that are uniform in e; thus we adopt the following notational convention.
For quantities X and Z, both depending on ¢ and ¢, we write X < Z to
mean that X < CZ for some constant C' that may depend on ¢, but is
independent of € satisfying (4.2). We write X ~ Z when both X < Z and
Z < X.

5.
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4.2. The defining function p.. We now introduce a family of defining
functions p. on M.. These functions agree with the original defining function
p away from the neck W.(A.), while on W (A;.) they are determined by

(4.3) UZp. = eyF.
Thus
(4.4) W), = g p where 7 > 2,
' = (epoZ)*p  where r < 1/2.

Furthermore, since yF' satisfies the scaling hypotheses on A, the functions
pe satisfy the scaling hypotheses on M..

Lemma 4.1. Provided (4.2) holds we have the following.

(a) On E. we have tfp: = p.
(b) On A. the weight functions

Vip. = eyF, ey, ep,
are all equivalent, uniformly in €.

Proof. Part (a) is due to (4.4), while part (b) is a consequence of (2.8). O

4.3. Function spaces on M.. In order to define function spaces on M., we
first construct a collection of Mobius parametrizations for M. of two types:

e parametrizations of the form w0 ®: By — M., where ® is a Mobius
parametrization for M such that

(I)(BQ) C M~ (ULEQ UU2’€2) ,
and
e parametrizations of the form W, o d: By — M., where d: By 5 H
is a Mobius parametrization of H such that ®(By) C A..
The second type of parametrizations allow us to compare the geometry of the
neck with that of hyperbolic space. It is easy to see that these parametriza-
tions cover all of M., and that this remains true if restricted to ET for any
1<r<2.
This collection of Mobius parametrizations is used to define the intrinsic
Holder spaces C*(M.) with norms

Jull vy = 50 102l 5,
as before, we obtain alternate norms, uniformly equivalent in ¢, by replacing
ég with ér for any 1 <r < 2.

Suppose that ®,: By — M is a Mébius parametrization arising from
one of the preferred background coordinate charts ©; such that ®,(Bz) N
B.2(p;) = 0. Then the corresponding Mdbius parametrization .o ®p,: By —
M, coincides with the parametrization \ligoi): Eg — M. centered at X, with
ac;(X,) = p. Such parametrizations, which can be viewed as arising either
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from hyperbolic space or from the manifold M, cover the the transitional
region of M, between the exterior region t-(E.) and the neck region ¥.(A.).
The following is immediate.

Lemma 4.2. For any l and 8 we have

(@) lullcvs. ey = llttullcrse.
() ullersw.any) = IWZullonsa,)-

Notice that W¥lp. ~ ey becomes degenerate as ¢ — 0. In order to
avoid difficulties associated with this degeneracy, we define weighted Holder
spaces and intermediate spaces on M, using an alternate defining function
pe that scales better in the neck as € — 0. In order to accomplish this, let
¥: (0,00) — (0, 1] be a smooth, nondecreasing function such that

20 f0<z<i
M@_{l it o > 3.

We subsequently define a smooth function w. on M. by setting w. = 1
outside W.(A;) and requiring that

(4.5) Viw, = ¢(er+¢/r)
on A.. Note that

(4.6) W, = 2 (ET + ;) on Ase,
1 on A: \ Ays.

Note also that in preferred background coordinates ©; = (6, p) we have
mrwe = Y([(0, p)| + €%[(6, p)|~1), while outside the domain of those coordi-
nates we have mfw, = 1. Thus on E, we have (fw. = w, ~ 1.

With the function w, in hand we define

(4.7) Pe = Pe/wa-

Direct computation shows that both p. and w., and hence p., satisfy the
scaling hypotheses (2.11). Furthermore, for each fixed ¢, on A, we have

- yr y
4.8 Up. = ~yF ~y~)p,
(4.8) P =Sy SUE RSP

T

together with analogous uniform estimates for all derivatives of WZp., while
on E. we have ¢} p, ~ p. Combining this with Lemma 4.2 yields the following.

Lemma 4.3. For any l, B, and § we have
(a) HUHC’é’ﬁ(LE(EC);ﬁE) ~ ”L:uHC’é’B(ECV

(b) HuHc'é’ﬁ(\Ile(Ac);ﬁs) ~ H\I’:“”cg’f’(Ac)'

For any region U C M, we note that C’é"g (Us; pe) and C(l;’ﬁ (U; pe) coincide
as sets; thus we only indicate the weight function p. if we are referring to
the corresponding norms.
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In order to define the intermediate spaces ¢’ k.esm on M., we construct a
family of smooth background metrics he. Recall the preferred background
metric h defined in §2.2 and note that h = p~2h satisfies

alih == (a2 o T)'h.

Thus h descends to a metric h. on M. under the quotient map m.. We set
he = p2h.. Note that on A, we have

U*h, = F2gp ~ gg.

Using he and p., we define the intermediate norm €*®™ of a tensor field
u having weight r as follows:

m
[ —v—_— Z IV ull s ar oy
]:

where ¢V is the connection associated to he.
The following lemma follows directly from the various definitions involved.

Lemma 4.4. For anyl, B, and m we have

(@) Nlullgrsm . (kyp) = lttullgrom g,
() Mullgrsm . (ao)p) = 1PEullgrsma,)-

5. THE SPLICED METRICS

For each 0 < ¢ < 1/64, we define the spliced metric . to be the metric
on M, that agrees with (7.).g away from the neck W.(A.), while on W_(A;)
it satisfies

(5.1) UIN = x(r)[(ae,) ")+ x (1/7) [(aez 0 T)"g)

here x is the cutoff in (2.7). The reason for splicing cometrics rather than
metrics is that it is easier to verify that the asymptotic hyperbolicity prop-
erty holds if we work with cometrics; see Proposition 5.6 below. We set
Ae = pg)\e. Note that

€

(5.2) Ui = az g where r > 2,
(aep0Z)*g where r < 1/2.
In order to establish estimates for the spliced metric A, we first analyze
the pullback metrics o} ;g. Following [10], we write
oz 9= Y 2(g8 + me;)
for tensors m. ;; here gg represents the Euclidean metric on the half space.
We furthermore define the contravariant 2-tensor fields j.; by

(QE + me,z‘)il = 9151 + je,i‘

Recall that throughout we let ¢ be a fixed constant less than 1/8 and
assume that € satisfies (4.2).

Proposition 5.1. The tensors m.; and j.; are in EF2(A.) and satisfy
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(@) [[meillgraza,) S e
(b) [l7e,illgmaziany S e
Proof. Note that g = p?g satisfies
(5.3) 0l = (g8 + me).

Since § € €%*%(M) and gg € ‘5’“’0‘52(B1/C), we immediately have m.; €
€r2(By /c)- This inclusion, however, does not come with an estimate uni-
form in €.

The preferred background coordinates are constructed so that m.; = 0
at (z,y) = (0,0). Thus the mean value theorem implies that

E
Imeilloym, o) S IFVmeillcys, .-
As a consequence
. < ||E )
meilosags, ) S 1PVmeilostogs, )

Using this, (5.3), and (4.1) we find

e illgr.a2a,)

E
S Vme ”05*170‘(31/6)

+ [PV

E 2
ety T ICV meillgrzog, )

E
S Vms,iHcé“fl’a(Buc;y) + ”(EV)QmEvi”0572"1(31/&3;)

2B _ —2(E _
= vo‘:,z‘gHog—La(Bl/c;y)"‘e 2”( v)2a:,i9"o§—2ﬁa(31/c;y)

S ellgllgr.ez(ary

which establishes the first claim. The second claim follows from similar
reasoning, together with the fact that g € CH1(M) (see [2, Lemma 2.2]),
from which we easily obtain a uniform invertibility bound. ]

Proposition 5.2. Along y = 0 we have
Jeildy,dy) =0 and  (I%je;)(dy, dy) = 0.
Proof. In view of (5.3) we have
aZi(ldpl3) = ledy e g vm. ) = WY gurm.., = (95" + Jei) (dy, dy).

Thus the assumption that |dplz = 1 along OM implies that j. ;(dy,dy) =0
where y = 0. The second claim follows from the first and the fact that
T.dy = r~2dy + O(y). O

We now obtain uniform bounds on the metric A¢; these give rise to uniform
bounds for geometric differential operators on M.. We subsequently obtain
stronger estimates in the neck region W.(A.).

Proposition 5.3.

(@) A loraqar) 1.
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(b) [Aellerann) ST

Proof. Due to (5.2) it suffices to establish the estimates on W.(A;/). Since
Ay € A by (4.2), we use Lemma 4.2 and (5.1) to estimate

1A lemo .,z < 1IN loraa,
Sllateg™ ek ay
+l(aze 0 T)* g ok (a,)
S g Hieraan,

which is finite due to the fact that § = p?g € €%*2(M), and therefore
§_1 c %k’aQ(M).

Proposition 5.1 implies that WZ )\, is uniformly invertible on A., and thus
the desired bound on ). follows from the corresponding bound on A-t. O

The bounds in the previous proposition imply estimates for differential
operators arising from A.. We say that a differential operator P = P[g]
is a geometric operator of order | determined by the metric ¢ if in
any coordinate frame the components of Pu are linear functions of v and
its partial derivatives, whose coefficients are universal polynomials in the
components of g, their partial derivatives, and (det gij)*l/ 2. We furthermore
require that the coefficients of the j* derivatives of u involve no more than
I — j derivatives of the metric. Examples of geometric operators include
the scalar Laplacian A,4, the divergence operator, and the conformal Killing
operator Dy. The mapping properties of geometric operators arising from
asymptotically hyperbolic metrics are studied systematically in [11] (see also
[4]); the extension of that work to the weakly asymptotically hyperbolic
setting appears in [3]. From these works we deduce the following.

Proposition 5.4. Let P be a geometric operator of order | and suppose that
[<j<kanddeR.

(a) If u € CP¥(Me.;p.) then
1PPJullegteq, ) < Tullge iz

(b) Furthermore, if P is an elliptic operator and u € C§(M.; pe) with
P\ ]u € Cg_l’a(Ma;ﬁa) then u € CY(Me; ps) with

el gz ar iy S WPl cmtoar iy + ldlcpian, o

Proof. The statements follow directly from [11, Lemmas 4.6 and 4.8], making
use of the uniform bounds established in Proposition 5.3. O

The previous proposition immediately implies the following.

Proposition 5.5.
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(a) The conformal Killing operator Dy_ defined in (1.6) satisfies
‘|D>\5W||C§71’Q(Ms7ﬁs) S ||W||C§’Q(Ms7ﬁ5)

for any vector field W € C'g’a(Ma,ﬁE).
(b) The divergence operator satisfies

I div, Tlls—zeyy oy S 1T ose

Mc,pe (Me,pe)

for any covariant 2-tensor field T € Cg_l’a(Mg, Pe)-

(c) Let Ly, be the vector Laplace operator defined in (1.5). For any
vector field W € C (M., p.) with Ly.W € 05_2’O‘(M5,/35) we have
W e CP*(M., p.) with

HWHC;“»Q(M&m) S ”LeWHCg—?’a(ME’ﬁS) + HWHCS(Mg,ﬁe)'

(d) Suppose the functions f. € C¥=2%(M.) satisfy [ fellor—2.a0ay < K.
Let P-. = A\, + f-. For any function u € CY(M., p.) with P.u €
CS_Z’Q(ME,;?S) we have

HUH(;;Q(M&,;E) S ||P€UH(/~§—2701(M€755) + |’uHCg(M57ﬁs)a
where the implicit constant depends on K.

We now use Proposition 5.1 to obtain additional estimates for A. in the
neck region. To accomplish this, we write

(5.4) TN =y %(gg +m.) and (TIN)!= yz(gg1 + je).
Since T*y = y/r?, the tensor j. takes the form

) . 1/r) .
(5.5) Je = x(1)jeq + X(TL{ )1 Je2

The following proposition uses (5.1) and (5.4) to show that A. satisfies
the regularity and boundary conditions necessary to be part of a CMCSF
hyperboloidal data set of class €%%2 on M,. In particular, ). satisfies the
hypotheses of the conformal method in [3].

Proposition 5.6. For each ¢ satisfying (4.2) the metric A\. satisfies
(a) Ae = p2A. € €F42(M,) and
(b) ]dpg\i =1 along OM..

Furthermore,

(c) in the exterior region E. we have (). = g, while
(d) in the neck region we have

192 (WEAe — ) llgrazia,) = lImellgraca,y Se
and thus
||y2\I/:)\€ Ghai2(A,) <1 and ||y_2(\112)\5)_1 Ghai2(A,) <1.
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Proof. Note that the cutoff functions in (5.1) extend smoothly to M. Thus
Proposition 5.1 implies that \. € €%*2(M,).
Using Proposition 5.2 and (5.5) we have that
(5.6) |dy|3E+mE =1 where y=0.
This, together with the computation
U(Jdpel2 ) = |dYF) F2 g 1m.)

/ /

2 F 2 (F ? 2
:]dy|gE+mE+2Fy<dy,dr>gE+ms+y yal [

shows that |dps|% = 1 where p. = 0.

The identity in the exterior region is immediate from the construction.
The estimate in the neck region follows from Proposition 5.1 and the fact
that the coordinate expression for Z*j. o is

(T%je2)™ = Q25 (jie2)

for some rational functions Q‘C‘g that are uniformly bounded on A.; see equa-
tions (36)—(37) of [10]. O

Finally, we obtain the following estimates in the neck region.

Proposition 5.7.

() 11— |dyls . Nghonay Se
(b) HyAgE“rmsy”‘ﬁk*Iao‘?Q(Ac) Se,
(c) [[R[gE + me]ller—200a,) S €,
(d) 11— !dy\gEereHCf,a(AC) Se,

)

—~

e) HyAgE+msy||Cf*1!a(Ac) N

Proof. The first three claims follow directly from Proposition 5.6(d), while
the latter two also make use of part (c) of Proposition 2.5. O

6. THE SECOND FUNDAMENTAL FORM

In this section we obtain, for each ¢ > 0 satisfying (4.2), a symmet-
ric covariant 2-tensor o such that the pair (A, 0.) satisfies the shear-free
condition (1.1), approximately solves the constraint equations (1.2), and
satisfies estimates compatible with the convergence statements in the main
theorem. Our construction differs significantly from that used in [10], as the
procedure there does not account for the shear-free condition.

6.1. The spliced second fundamental form. Recall that we express the
second fundamental form of the original initial data as K = ¥ — g. We
decompose the traceless part X as

S = p " Hglp) +v.

By hypothesis, ¥ = p¥ € €+~ 1%L (M), and by Proposition 3.1 Hg(p) €
%k—lﬂa;l(M). Thus pv € ‘5’“‘17"“1(M). The shear-free condition implies



ASYMPTOTIC GLUING OF SHEAR-FREE DATA 21

that pv vanishes on OM; thus by part (c) of Proposition 2.5 we have v €
Cy (M),

We splice the tensor v using a cutoft function to construct a tensor /¢

that agrees with v in the exterior region and vanishes inside the neck so as

to ensure that v is trace-free with respect to A.. More precisely, we set
ext

vt = ()4 outside of W.(A;), and on W.(A,) require

£

ext

(6.1) Urpext = X(%) (aen)'v+ X(#)(Oésg oZ)*v.
Note that

(aen)*v where r > 4,
(6.2) Uit = 20 where £ <7 <2,

(a2 0Z)*v  where r < 1.

Furthermore, we have the following.

Lemma 6.1. The tensor vE is trace-free with respect to \c and is an ele-

k—1, ; t
ment of Cy (M¢) with ||vg® Hc;“*l’“(ME) Sl

Proof. We may view vX' as the pushforward under the projection 7. of the
tensor field x.v on M, where the function x. is identically equal to 1 except

in the vicinity of the gluing points where, for ¢ = 1,2, we have

(6.3) alixe = x(r*/8).
In preferred background coordinates ©; on M we have

03] L_mer_,
X:(©i) = x < 2 where 5 < 2 <2

otherwise x. is constant. From this it follows that

(6.4) Ixellerary S 1.

Thus

el sty < Il ity S 1

As v& = (7).« (xev), this implies the desired estimate.
Note that the support of v&*! is contained in the region where . = (7.).g.
Xt is trace-free with

Since v is trace-free with respect to g, it follows that /¢
respect to . (Il

Since V&t € C’g _l’a(ME), one could for each sufficiently small € > 0 apply
the results of [3] to the pair (A, v*") and obtain a shear-free initial data set
via the conformal method. However, the resulting solutions to the constraint
equations might not satisfy the convergence statements of the main theorem.
This is because the term pngxg (pe) is generally of significant size in the
neck, and thus corrections arising from the conformal method are generally
not small. For this reason we add a correction term, supported in WU, (A.),

to the tensor vt
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It follows from (5.4) that W\, = e2F?(gg + m.). Direct computation
using parts (¢) and (d) of Proposition 3.1 shows

(6.5) V(o= Hx (pe) = (yE) " M2 (g rme) (W F).

Thus our plan is to approximate \Ifz(pa_l’}-[xg (p=)) by (yF) "H 2y, (yF). We
note the following properties of this approximating tensor.

Lemma 6.2.
(a) Hpag,(yF) is supported on Ay o,
(b) Hp2g,(yF') vanishes at y = 0, and
() (WF) "Hpag,(yF) € Cy (A o).

Proof. Note that Hpzg, (yF) = F~4H 4. (yF). Thus to establish the first
property, it suffices to consider Hg, (yF). Where r > 2 we have Hg, (yF) =
H gy, (y) = 0, while for r < 1/2 we have

How(yF) = rig’HTﬂ;gE (y/r2) = riB’HZ*gE (IZ*y) = r*BI*’HgE (y) =0.

This establishes the first claim.

For the second claim, we compute and estimate the various terms appear-
ing in (3.1), restricting to the domain A; /5, where My (y[") is supported.
First note that

F/
d(yF) = Fdy +ydF and dF = 7@ (z'da® + 2°da® + ydy) .

Thus
gu(dy,dF) =0(y) and [|d(yF)|7, = F*+ O(y°).
Direct computation shows that

(6.6) BV (Jd(yF)|,2d(yF)) = F~? (dy ® dF — dF ® dy) + O(y).

Since Dy (|d(yF)|,2 grad,, (yF)) is the symmetric and traceless part of
(6.6), we conclude that Dy, (]d(yF)]g_E2 grad, (yF)) = O(y). We further-
more compute
(Y F)]ge Ags (yF) = O(y).

Thus we establish the second claim.

Since Mgy, (yF) is a smooth covariant 2 tensor on M. and vanishes at the
boundary we have Hg, (yF) € C;’ffl’a(ME) by Lemma (2.4). This establishes
the third claim. O

Lemma 6.2 implies that we may obtain a well-defined C;c ~19 tensor field
approx o
Ve on M. by requiring

WLy = —(yF) " H oy (yF),
approx

and by setting v2PP"* = 0 outside ¥.(A.). However, the tensor v? is
neck

not trace-free with respect to A.. Thus we define the correction term v/}
by

1
(6.7) 2k = PEPPIO (b, pEPPEON) )
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We note the following basic properties of v2¢ck.
Lemma 6.3. We have v ¢ Cg_l’a(Me) with Hz/g‘“k||ck_1,a(M) S L
2 e
neck

Furthermore, v

2% is supported in We(Ay o), where we have

*_ nec — 1 .q
\Ijays b= _(yF) ! (HFQQE(Z/F) - 3(]ngF2gE(yF)ab)(gE+ms)> .

Proof. Lemma 6.2 yields an e-independent estimate for v2PP***. Together

with Proposition 5.1, this implies the C’g ~1 egtimate. The remaining claims
follow directly from the definition and from the fact that tr,, Hg,(yF) =

0. ]

We now define, as discussed in the introduction, the spliced second fun-
damental form p. by

(6.8) pe = = Hy (pe) + V2K + 2%
It is important to note that pe = (7.).% outside of W.(A,4).

6.2. Estimates for y.. Lemmas 6.1 and 6.3 indicate that 12 + 1% has
the regularity required for using the results of [3] in order to obtain a shear-
free initial data set from each pair A., . according to the procedure outlined
in the introduction.

We now establish estimates on p. needed for the convergence results of
the main theorem. Recall that we are assuming (4.2) throughout.

Proposition 6.4. For all € satisfying (4.2) we have

(@) llpeller-ramn) S 1.
Furthermore, in the neck and exterior regions we have

(b) [[yPZpellgr-r1an(ay S €
(c) tiue =X%.

Proof. Due to Lemmas 6.1 and 6.3, the first claim is established once we
have estimated pngX€ (pe). From (4.4) and (5.2), we see that both p. and
Ae agree with the projections of p and g, respectively, outside of W.(4,/5) C
U (A:). Thus it suffices to obtain an estimate in the neck region. Noting
that each term in p;l”HXE (pe) is a contraction of p-1(®3A\.7!) ® (®%dp.) ®
Hessy_pe, we see that the last estimate in Proposition 5.6 implies the desired
uniform bound.

We now establish the estimate in the neck region. First we consider
yUrvet. Since x(r?/8), x(1/8r?) are smooth and uniformly bounded on
A, it suffices to estimate ya? ;v and y(ae 2 0 Z)*v. Note that

1
ya:,ﬂ/ = ga:,l(ﬁ”/)-

Since pr € €+~ (M), it follows from (4.1) that

||y0[;711/ Eh—1a51(A,) 5 E.
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A similar computation, relying on uniform estimates on A, for the inversion
map, yields a corresponding estimate for y(ae 20Z)*v. This gives the desired
estimate for yW¥pext

In order to estimate y¥}(p_ 1er(p5) + v2°%) we make use of [3, Lemma
7.5(b)], which implies that A — Hx(p) is a locally Lipschitz mapping ¢%*2 —
¢*~1e1 . Thus the boundedness of F' and its derivatives on A, implies that

1" P2 (g tme) WF) — Hp2ge (WF)[lgr—10104,) S [Imellgrazia,)-

Furthermore, we have
.ab .
(" H p2gs (YF)ab) (98 + me) lgn—1.01(a,) S [ldellgran(a,)-
Thus Proposition 5.1 implies the desired estimate. O

We now show that p. is close to being divergence-free as measured by the
weight function pg; see (4.7) and (4.8).

~

Proposition 6.5. || div,_ MEHCS_Q,Q(MEﬁE) <ge

Proof. If restricted to the complement of W (A /4), we have 7\, = ¢g and
mipe = M. Thus, as divy X = 0 by hypothesis, divy, p. is supported on
Ve (Ay)s) € We(Ae). From Lemma 4.3 we have

|| diva, MEHCS’Q’D‘(\IJE(AC);;?E) ~ [|WZ(diva, IUE)HCS*?’D‘(AC)'
Using (5.4), (6.5), and (6.7), and adding and subtracting a term, we write

WE(diva, pe) = divy2(ggrm.) (UF) T Hp2 (gppme) (0F))
— divy2gy ((yF) " Hpzg, (yF))
+ divy 2,4, ((yF)ilHFQgE (?JF))
— divy-2(gn ) (UF) M2y (yF))

1 o
3 divy—2(gy+m.) ((?JF) LG8 H g2 gy, (Y )ab) (98 + me))

+ U (divy, ).

_l’_

We now invoke [3, Lemma 7.5(c)], which implies that A — divp_zx(p_l’)'-[;(p))
is a locally Lipschitz mapping €**? — C’;“' ~2% Thus

| divy72(9E+ms) ((yF)_lHFQ(gEJrTns)(yF))
— diVyfng ((yF)_l}[Fng (yF)) HC§72,O¢(A )

c

S lImellgrana, S €
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Next, we apply [3, Proposition 7.9] to the divergence operator, concluding
that

H diVyfng ((yF)_l'HFng(yF))
— divy—2(gptm.) ((yF)_lHFQgE (yF)) ||C§72,Q(AC)
S Imellgraza,) S e

Since divy_(uA:) = du for any function w,

divy (g5 1me) (UF) ™ (G2 H g (U F)at) (95 + o))
= d (VW) G Mgy (0F )

Using this, together with Lemma 6.2(3), we easily see that

. —1/ -ab
| vy ~2(ge-sme) ((WF) ™ G2 Mg (0F)ab) (g1 + ) ) ll g2 .
S lldellgrazay S e
Thus it remains only to estimate

10 (iva, 72|tz -

By inversion symmetry, it suffices to consider the set where r > 2. On this
set we have

Ui (divy, v) = divesa. (x(r*/8)a 1v)
= X(TQ/S)Q:,l(dng v) +af jv(grady: x(r?/8),-)
due to (5.2). As the cutoff function is smooth and uniformly bounded, we
may use (4.1) with the indices m and j set to zero, together with Proposition
5.5, to conclude that
102 v, ) | o, ) S N0f tllgposina, ) + N0 et llgpmtaa,

2
Se HV‘|C§*1@(M)

2. O

N

6.3. The tensor o.. The metric \. and tensor pu. satisfy regularity and
boundary conditions suitable to apply the conformal method in order to ob-
tain CMCSF hyperboloidal solutions to the constraint equations as outlined
in the introduction. The first step in that procedure is to solve

(6.9) Ly W, = (div)\g Ms)ﬁ

£

for a vector field W, and subsequently define a tensor field o. by (1.7).
We now establish that this process can be accomplished with appropriate
uniform estimates in €.
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Lemma 6.6. For each ¢ satisfying (4.2) there exists a unique vector field

We € Cg’a(ME;ﬁE) satisfying (6.9). Furthermore we have the uniform esti-
mates

HWaHC;a(Ma;ﬁs) Se
IDAWel| 10
HﬁsD/\aWzs

<
ME?ﬁE) ~ &

%(/kfl,a;l(ME;ﬁe) ,S e.

Proof. Since \. € €%*2(M.) and vk 4 Xt ¢ 0571,04(M€) we may apply
Proposition 6.3 of [3] to conclude that there exists a unique vector field
W. € C¥(M,) satisfying (6.9).

To obtain the uniform estimates we first use Proposition A.1 to obtain

HWEHC';“»Q( ) ,S HL)\EW5||C§—2,Q(

Mc,pe Me,pe)

= [1(diva, pe)llgs-2.ag, )

Using Propositions 5.3 and 6.5 we have
I(iva, )l cp-2epr. 5y < AT lomaai | diva, pell g2 a5y S €

which proves the first estimate. The second estimate then follows from
Proposition 5.5, and the third from Proposition 2.5(b) . O

Using W;, we define the symmetric, trace-free tensor o. by

O = PQlHXS (ps) + V;leCk + V§Xt + ,D)\Ewa
= N5+DA5W£-

Proposition 6.7. We have

(a) G- = peo. € CF L (M),

(b) divy, 0. =0, and

(c) oc = Hx_(pe) along OM..
Furthermore we have the global estimate

(d) lloeller-ramn) S 1

Finally, in the neck and exterior regions we have the uniform estimates
(e) [ly¥Zo.
(£) lp(tioe = E)llgr-ran(p,) S €

(gkfl,a;I(Ac) S 5, and

Proof. The first three claims are direct consequences of the construction and
regularity involved; see also [3, Theorem 8.2]. The remaining claims follow
from Proposition 6.4 and Lemma 6.6. (|

The following additional estimates on |ag|§\6 are required in our analysis
of the Lichnerowicz equation.
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Proposition 6.8. We have

(6.10) lloel3. lerreae) S 14
(6.11) lezloel3, = 125l ge-ra s,y S &
(6.12) H‘*I’:’Ue’ig||o§—1’amc) Se
(6.13) lNoel® = lue*llgp-raar, oy S &

Proof. Note that [o.|3_ is a contraction of

Moo oo..

This, together with Propositions 5.3 and 6.7, yields (6.10). For (6.12), we
view \I/:|a€|?\6 as a contraction of

y A TIN) T @ yUio. ® yTio.

and use Propositions 5.6 and 6.7. Analogous reasoning yields (6.11). For
the final estimate we note that |o.|? — |uc|? is a contraction of

MA@ (0c 4+ pe) ® (00 — pe) = AP @A @ (00 + p1e) ® Dy, We.
Using Propositions 5.3, 6.4, and 6.7, together with Lemma 6.6, we have
2 _ 2
[[|o| | e H(Jgfl"l(ME;ﬁg)
< |’)‘;1Hék,a(ME)||ae + /~L€HC’€—17Q(ME) HDAEW‘EHC;—M(ME@S)
< g,

which concludes the proof. O

7. ANALYSIS OF THE LICHNEROWICZ EQUATION

As discussed in §1.3, the results of [3] (see also [2]) imply that for each A,
and o, there exists a positive solution ¢. to the Lichnerowicz equation (1.8);
the solution ¢, is the unique such function satisfying ¢. — 1 € Cf “(M,). In
this section we establish the following estimates for ¢, in the exterior region
E. and gluing region A..

Proposition 7.1. Suppose that (4.2) holds. There exists €, > 0, depending
on ¢, such that for 0 < e < g, we have

(7.1) [e2¢e — Ulgraz () S €
' [WZpe —1 <

(gk,a;Q(Ac) ~ e

The proof of Proposition 7.1 appears in §7.3 below.

The proof of Theorem 1.1 makes use of the following, which is an imme-
diate consequence of ¢Z¢. and ¥!¢. being uniformly bounded close to 1, and
thus away from zero.
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Corollary 7.2. For any integer p we have
[e2(02 — 1)
W2 (g2 —1)

The proof of Proposition 7.1, which is completed at the end of §7.3 below,
follows the arguments in [10] and [1], and makes use of a function . that
approximately solves the Lichnerowicz equation (1.8). We then use the
linearization of (1.8) at 6. to estimate the difference ¢. — 0. by means of a
fixed-point argument, and thus establish (7.1).

Ck,a;2 5 6,
(7.2) )

(b//k,a;Q(Ac) 5 E.

7.1. The approximate solution .. For ¢ satisfying (4.2) we define the
Lichnerowicz operator L. to act on a function 6 by

1 1
L(0) = Ax.0 — =R[\JO + gyag\igeﬂ — 395,

8 4
so that the Lichnerowicz equation (1.8) can be written L.(¢.) = 0. In this
subsection we establish the following.

Proposition 7.3. For each ¢ there exists a positive function 0. with 6. —1 €
Cf’a(ME) such that

(7.3) |6 — IHC{“’“(ME;ﬁs) Se,

(7.4) ”EE(GE)HC?‘Q’O‘(Mg;ﬁg) <eCs, §€{0,2},

for constants Cs independent of € satisfying (4.2). Furthermore we have
improved regqularity in the exterior and neck regions:

(7.5) |ez0: — 1
(7.6) w0, — 1

Gho2(E) S

Cgk,aﬁ(Ac) 5 E.

To prove Proposition 7.3 we need to establish a number of lemmas. We
first show that in the exterior region, it suffices to take the constant function
1 as the approximate solution 6..

Lemma 7.4. We have
1£:(1)

« - <e.
HC;’ (Ms\‘I’S(Al/4)3Ps) ~

Proof. On M. \ W.(A;,) we have A\ = (7:).g and p. = (7c).X. Since g
and ¥ satisfy the constraint equations (1.2), we have

R[)\s] =—6+ |Ms|§\g'
Thus on M. \ W.(A4;,,) we have
1
£.1) = g (1oeR. — e.)

The desired estimate now follows from Proposition 6.8. (|
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In the neck region we cannot simply set 6. equal to 1 because the scalar
curvature of the spliced metric A; need not be close to —6 in Cg —2a (Mg; pe).
Rather, we seek an approximate solution . that is a perturbation of the
constant function 1, with the perturbation supported in the neck region.
Before giving a careful definition of 6., we establish some preliminary results.

Observe that for any function v we have

1
(7.7) Lo(14+v)=A\v—3v— g(R[)\e] +6) + Z-(v),
where the remainder term %.(v) is given by

Fe(v) =~ (R 4 6)0 + loeR (1 4+0) T =2 (1)~ 1-5v).

Using U\, = y~2(gg+me.), the formula for how the scalar curvature changes
under a conformal change of the metric yields

(7.8) U R[\] 4 6 = 6v. + 32 Rlgg + me],
where

2
(7.9) ve=1-— ’dy|52m+ms + §9A9E+ms@/-

Note that Proposition 5.3 implies that R[gg + m.] € C*~2%(A.) with
(7.10) ly* Rlge + melll gr-2.a () & I RIgE + mellor-2.0(a,) S e

Lemma 7.5. We have that

(a) ve vanishes where y =0,

(b) Ve € %k—l,aﬂ(Ac) with vaHgk—l,a;Q(Ac) § g,

k-1, ,

(c) ve € C}C 2“(AC) with H'l}chf—l,a(Ac) Se,
(d) ve € Cy~ ’a(AC ~ Al/g) with HU€HC§72,Q(AC\A1/2) Se
Proof. From Proposition 5.7 we have v, € C’f _l’a(Ac), which implies that
ve vanishes where y = 0. The second and third claims also follow directly
from Proposition 5.7.

To establish the final claim we first note that by assumption we have
pY € CH (M) and g~* € CF(M). Thus (1.2) implies that

Rlg] +6 = |2 € C3~ (M)
Since Ae = (mc)«g on Wo(Ae N Aj2), this implies that
ERIA] +6 € O " (AN Ay o).

Taken together with (7.10) and (7.8), this implies that v. € C§72’O‘(Ac ~
Ayj). Thus v — 0 and 1BV ve|gs — 0 as y — 0, which, in view of Proposi-
tion 2.5(c), yields

HUEHCSQ,Q(AC\AI/Q) < CH’UEH%A,Q;Q(AC).

The final claim now follows from the second. O
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We use Lemma 7.5 to estimate the remainder term %.(v) in (7.7).

Lemma 7.6. Ifv € C’f’O‘(ME) and if v satisfies

1
— <
lv| < 5 and Hv”cf’a(Ms;ﬁg) Se
then
||\I':,%E(U)HC§_2,Q(AC) Se.
Proof. 1t is easy to see that
H(l + U)5 —-1- 57)”05—2’@(]\/15;%) < 26||1)Héf’a(]\/ls;ﬁs) S €.

Since |v| < % we have
12 +0)Tllor-20(r5.) S 1.
Thus (6.12) implies that
NoeB (14 0) Tl g2 ) S 2
To estimate the scalar curvature term we use (7.8) to write
(R[A] + 6)v = 6vv + ¥ RgE + me]v.
Thus Lemma 7.5 and (7.10) imply that
IR + 6)vll g4,

S ellgp-2eay Vllep-22(a,)

+ Hy2 Rlge + mg]HC§72,04(AC)H’UHClcfla(Ac)
Se. 0

~

We construct a regularization of v. that is supported in A.. Let n be a
smooth cutoff function on A. that is supported on A; /5 and such that n =1
on Ay 4. We now apply Proposition 2.6 in order to obtain a function 7. that
approximates nAg. ..y in the following sense:

Lemma 7.7. There exists 7. € €% (H) such that
(a) 7c is supported in Ay g,
(b) [elhpeey <
(c) [I7e — nAgE-&-mayHCf—l,a(H) <e.

Proof. 1t follows from the definition of n and from Proposition 5.6 that
NAgptm.y € €F~L%1(H) is supported in Ay /6 and satisfies

[MAgg+m. Yllgr—1.00 @) S €
We obtain 7. by applying Proposition 2.6 to the function nAg, 4. y. Propo-
sition 2.6 immediately implies the first and second claims, and also implies
that 7. — nAgy 1 m.y € CF"*(H; 5). In view of part (c) of Proposition 2.5,
this latter fact, together with the second claim, implies the third claim. [
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We now define 9., the regularization of nu., by
- 2 .
0. = (1l — ]dy|§E+mE) + gyTa.
Lemma 7.8. The function 0. satisfies

(a) 0. vanishes where y =0,

(b) o € C€F*2(H) with ||oc || grozm S €
(c)

(d)

(e)

e

B. € CPO(H) with ||o|| chogm S €

S

2

nve — 7. € Cy~ Y (H) with ||nuv. — Tel gty S €
Se.

T € Cy M (Ae Ay o) with Bell 1.0

H)
Ac\Al/z)

Proof. The first claim follows from (5.6) and the boundedness of 7.. The
second and third claims follow from analogous estimates in Proposition 5.7
and Lemma 7.7. For the fourth claim we note that

- 2 -
NVe — Ve = gy(nAgE—&-may —T);

thus the desired estimate follows from Lemma 7.7. For the last claim we
write 0. = (U — nves) + nue and apply the final statements of Lemmas 7.7
and 7.5. 0

We now define the approximate solution 6. by requiring that 6. = 1
outside W.(A;/3) and that W70, = 1 — %ﬁg; note that 0. is well-defined
since ¥ is supported on A; /5. With this definition in hand, we may use
Lemmas 7.4 through 7.8 to prove Proposition 7.3, showing that 6. is in fact

an approximate solution to the Lichnerowicz equation.

Proof of Proposition 7.3. The estimate (7.3) follows from Lemmas 7.8 and
4.3, and the fact that 0. is supported in Ajg.

We next establish (7.4). In view of Lemma 7.4, it suffices to estimate
H\I!jgﬁe(@E)HCgfa,a . Using (7.7) and (7.8) we have

(Ac)
* 3 - 3 -
(7.11) VIL.(6:) = 16 (Ay—Q(gE+ma)U€ + 0c) + 1 (Ve — ve)
1 » 3
- ¥ Rloe + ] + 2 ().

The final two terms in (7.11) are easily estimated in C§ “2%(A,) using (7.10)

and Lemmas 7.6 and 7.8. Since n =1 on A;,4 we can estimate the second
term in (7.11) by
1 = ”6”05*2*6*(&) < ”f’E”c;“*Q’O‘(Ac\AI/Q)
+ HUEHCS*ZQ(AC\AI/Q) + [Imve — @EHCS*%&(AC)a

which in turn is controlled by Lemmas 7.5 and 7.8.
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In order to estimate [|Ay-2(gy 1 m. )0 + UEHCS’Z’”‘(AC) we use the identity

(712) Ay—Q(gE_,_mE)ﬁg + v, = y2AgE+m€2~)€ + v — y<d1~)g, dy)gE+m8.
Using Lemma 7.8 and Proposition 5.6 we estimate the first term in (7.12)
as follows
2 ~ ~ -
152 A g el o220y ~ gt Fellcnosna
S Nvellgr.az a,)
Se.

Note that Lemma 7.8 implies that the expression

e — y(die, dy) gg-+m.
satisfies the hypotheses of Proposition 2.7 and thus

Hf)s - y<d1~)€7 dy>9E+me Hcg—zv&(,qc) S Hf)EH%kaa?Q(AC) 5 €.

Thus (7.4) is established for ¢ = 2.
Note that for any function v we have

lullor-2acar) = 1l ez y S 120020 (a1l gtz

and thus the 0 = 0 estimate in (7.4) follows from the estimate with 6 = 2.
Finally, (7.6) follows from the second claim of Lemma 7.8, while (7.5)
holds trivially due to our definition that 6. = 1 outside W.(4;g). O

7.2. Linearization of the Lichnerowicz equation. Let P.[f] denote the
linearization of the Lichnerowicz operator L. at a function 6. We have

(7.13) Pol0)u = Ayu— é (RN + T/oe2.07% + 306%) u.

Proposition 7.9. Suppose —1 < § < 3 and let O be the function given by
Proposition 7.3. Then there exists e, > 0 such that if 0 < € < &y, then the
operator

P [‘95] : C(lsc’a(Maz; [)E) - C§72’Q(Me§ ,55)
is invertible, and there exists a constant Kj independent of € such that the
operator norm of P[]~ C§_2’O‘(M5; Pe) — C(l;’a(ME; pe) satisfies
(7.14) P[0 ls < K.

Proof. From Proposition A.1 we know that P.[1] is uniformly invertible.
Thus it remains to show that

(7.15) | Pe[1]u — PE[HE]UHc?*?ﬂ(Ms;ﬁE) S 5Hu‘|0§va(M€;ﬁE)

for all u € C’g’a(ME; pe). We have

Pelllu—P.lodu = (GloR (1= 0%+ a0 )u
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Recall that from (6.10) we have ”|O‘5|§€||Ck72,a(ME) < 1. From (7.3) we can
choose ¢, small enough that

11— 0200y S and [T =02l or-20(ar) S €

from which (7.15) follows. O

We define the error term Q. (u) by
(7.16) L0 +u) = L(0:) + PelO:](u) + Qc(u).
In order to describe the mapping properties of Q., we use the following.

Proposition 7.10. There exist r. > 0, e, > 0, and D, such that for each
60 >0 and 0 < e < e, we have

(717) 1Qe(u1) = Qe(u2)ll gt ag i
< Duflur = wallgro .y (Illere ) + luelloreqn )

for all functions uy,us € C’(’;’a(Mg;ﬁg) with ||u;l| ok < T

Proof. Note that

(7'18) Qs(u) = f(96 + u) - f(es) - f’(Hs)u,
where
1 _ 3
flx) = §|ag|§\sa: T 13:5.

We now make use of the integral form of Taylor’s remainder formula
1

(7.19) F(b) = f(a) = (b—a)f'(a) + (b— a)2/ (1— 6" (a+t(b— a))dt.

0

First consider (7.19) with @ = 6. + u; and b = 6. + u2, and then consider
(7.19) with a = 0. 4+ uz and b = 6. +w;. Taking the difference of (7.19) with
these two choices of a and b and then using (7.18) we find that

Qe(u1) — Qulua) = 51y =) (/0= + 1) = 2 (62) + F'(0- +w2)
1 2 ! "
T /0 (1= ) (£(0- + 1wz~ s — 1))

— (0 +us — (1 — ) (ug — ul))>dt.
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Using the fundamental theorem of calculus we write this expression as

Qs (Ul) - Qs (UZ)

1 1
:<U1 — U2)U12/ f"(&e + tul)dt
0

1

— (u1 — UQ)UQ;/O f//(es + tUQ)dt
21 ! "

(ur — o) 2/0 (1= 0) (0. + us — t(us — uy)) dt

1
—(u — u2)2% /0 (T =1)f"(0= +ug — (1 —t)(ug — u1))dt.

From Proposition 6.8 we have that |o.|3_is bounded in Ck=La(M). Using
(7.3) we can choose ¢, to ensure that || is uniformly bounded away from

zero. Thus we can choose r, sufficiently small that each of the four integrals
above is bounded in C*~1%(M.), which concludes the proof. O

7.3. Proof of Proposition 7.1. In order to prove Proposition 7.1 we first
establish an estimate for the difference between the solution ¢, to the Lich-
nerowicz equation and the approximate solution 6. defined in §7.1. Our
strategy is to use a contraction-mapping argument. For each r > 0 let

=k, k,a .
By () = {u € CE*OML): [ull oy < 7

For € > 0 we define
X. = By (2K,Ch¢) N By (2K Coe),
where Cy, Cy are the constants appearing in (7.4), and Ks, Ky are those
appearing in (7.14). Choosing the metric
A(u,0) = lu = vl gy + 10— vlloma,

we find that X, is a complete metric space.
From (7.16) we have that 6. +u is a solution to the Lichnerowicz equation
if
Le[0c)u = — (L(0:) + Qe (u)) -
This holds provided u is a fixed point of the map

Ge: u s _Ps[es]_l (55(95) + Qs(u)) :

Lemma 7.11. We may choose €, such that for 0 < € < g, the map G is a
contraction mapping on X..

Proof. Start by taking e, to be smaller than the choices made for this con-
stant in Propositions 7.9 and 7.10. We first show that G. maps X, to itself.
If u € X, then taking uz = 0 in (7.17) implies that for 6 € {0,2} we have

||Qe(U)HC§—2,a(M€;ﬁE) < 4D, K5 KoCsCoe®.
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Thus from (7.14) we have
P16 Qe (W) g a5,y < ADKFKoCsCoe™.

From (7.14) and (7.4) we have

!!7’5[95]_155(95) < KsCse.

HCZ;’&(Ma‘?ﬁE)

Thus by choosing e, small enough, we can guarantee that G.(u) € X..
To see that G. is a contraction, suppose that uj,us € X.. Using (7.14)
and (7.17) we have

[Ge(ur) — Ge(ut2) | g,y < Kall Qelrm2) — Qw231

< KsD.AKoCoel|ur — sl g a5 -

Thus G. is a contraction so long as ¢ is sufficiently small. O

Proposition 7.12. We may choose €, sufficiently small that if 0 < € < &,
then ¢. — 0. € X.. In particular, we have

(7.20) 6= = el gtoarpy S & 0 €402},

Proof. Lemma 7.11 shows that if e, is sufficiently small then for 0 < € < e,
the map G, has a unique fixed point u, € X, C C’;a(ME). Since G (ue) = ue
we see from (7.16) that L.(0: + u.) = 0 and thus 6. + u. is a solution
to the Lichnerowicz equation (1.8). By Proposition 7.3 we have 6. — 1 €

Cf’a(Me). Thus, since u. € X, C Cf’a(ME), we have (0: + u.) — 1 €
C’f “(M.). Furthermore, for sufficiently small ¢ we have 6. + u. > 0. But
from [2, Proposition 6.4] we have that ¢, is the unique positive solution to

(1.8) such that ¢p.—1 € Cf’a(Ms). Thus we have ¢. = 6. +u.. In particular,
¢e — 0 = us € X, which immediately implies (7.20). O

Proof of Proposition 7.1. We establish the estimates (7.1) by writing

¢a_1:(98_1)+(¢8_9£)‘

We estimate 6. — 1 using (7.5) and (7.6). We estimate ¢. — 6. using (7.20),
together with Proposition 2.5(b). O

8. PROOF OF THEOREM 1.1

We now complete the proof of our main theorem. We assume (4.2), and
that € < e, as in Proposition 7.1. From Proposition 5.6 we have A\ = p2\. €
€r32(M.) with ]dp€§ = 1 along 9M,, and from Lemmas 6.1 and 6.3 we

have
Vgxt + V;leck € 05_1701(M5).
Thus the results of [3] imply that

ge = ngAa and X, = ¢5_20'a
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constitutes an appropriate seed data set so that the conformal method pro-
duces a CMCSF hyperboloidal data set on M.. It remains to verify the
convergence statements (1.3) and (1.4).
We first consider the metric g.. In the exterior region F. we have
P29 — 9) = i (P2(9: = Ao))
* 4 2
=l ((¢E - 1>pa)‘€)
= 12(¢2 — 1)p’y.

By hypothesis we have g = p%g € €%*2(M). Thus (7.2) implies that

¢k32(B,) 5 ||L:(¢§ - 1)
Se.

1p*(tEge — 9) o2 (m) 107 gllgrazan

In the neck region A, we write
PH(V2ge — g) = V(0 — " WIN + 5 (V2N = §).
Applying (7.2) and Proposition 5.6, and using (4.8), we have

1°(WEge — Dllgronay S NPESE = Dllgronanly?Virllgr.ana,)

+ 1P (WEA = ) [lgmaizca,)
<e.

~

We now turn attention to the tensor .. In the exterior region F. we
have

p(ti%e = B) = (6% = Dpiioe + p(ifoe = 3).
Using Proposition 6.7 we have

Gh—1051(E,) 5} 1.

”pLZO’E k-1l (E,) < Hp(L:O'g - Z) ¢ch—Lal(E,) + HPE

Thus applying (7.2) and Proposition 6.7 we have

1p(t25e = S)llgr-rai (i) S 1e2(02% = Dllgraam,yllptioe
+ |lp(ezoe — %)
<e.

~

Fh—1,051(B,)

(gkfl,a;l (Ec)

In the neck region A, the analogous decomposition yields

wr-ton(a) S W20 = DllgroniayllpPioe
+ [[p¥Z0e]lgr—r.a (4,

1A(¥ZE: —0)

(gkfl,a;l(AC)

Se.

This concludes the proof of the main theorem. O
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APPENDIX A. UNIFORM INVERTIBILITY FOR ELLIPTIC OPERATORS

In this appendix we study the vector Laplace operator Ly, defined in (1.5)
and the linearized Lichnerowicz operator

(A1) P[] = Ay, — ¢ (RG] + 7loc R, +50)

given by (7.13) in the special case §# = 1. We obtain uniform invertibility of
these operators in the following sense.

Proposition A.1. Let A\. be the metrics constructed in (5.1). For each
d € [0,3) there exists a constant Cs, independent of €, such that:

(a) Ly.: C’g’a(Me) — C§_2’Q(M5) is invertible with

”X”Oﬁ’“(Ms;ﬁe) = C5||LAEXHC§‘2’“(ME;;BE)

for all vector fields X € Cg’a(ME),
(b) Pc[1]: C(';’O‘(ME) — C§_2’O‘(ME) is invertible with

||UHC§7Q(M5§I35) < OCSH,P&D]UHCZ;_Q’Q

for all functions u € Cgf’a(ME).

Theorem 1.6 of [2] implies that Ly_ and P.[1] are Fredholm of index zero;
see also [11]. Thus Proposition A.1 is an immediate consequence of the
elliptic regularity estimates in Proposition 5.5 and of the following lemma,
which controls the kernels of the operators, and is proven in section A.3
below.

(Ms§ﬁs)

Lemma A.2. For each § € [0,3) there exists Cs, independent of €, such
that:

(@) 1 XNcoarip.) < CsllLa. Xl co(ar, ) Jor all X € C(M.),
(b) llullcoar pey < CollPelullcoar, 5.y for all u e C3*(M).

Prior to proving Lemma A.2, we introduce a general framework for blowup
analysis and establish some results concerning the kernels of model opera-
tors.

A.1. Exhaustions of weighted Riemannian manifolds. Let (M., g.)
be a Riemannian manifold. We say that a sequence of Riemannian manifolds
(Mj, gj) forms an exhaustion of (M, g,) if

o M, are non-empty precompact open subsets of My,

o My CMy CMyCMyCMzC---

o U]oil M] = M*, and

® |lg; — g«llc2(k,g.) — O on each precompact set K C M,.
If in addition we have continuous functions w;: M; — (0,00) and w: M, —
(0,00) such that |[w; —wx||co(xy — 0 on each precompact set K C M, then
we say that (M, gj, w;) forms an exhaustion of (M., g., ws).
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We now give a definition of convergence for linear differential operators.
Let (Mj,g;) be an exhaustion of (M, g.). Consider a second order linear
differential operator P, acting on sections of some tensor bundle over M,,
and operators P; acting on the restriction of that bundle to M;. We write
P; = AjVZ + B;V + C; where A;, B;, C; are appropriate bundle homomor-
phisms and where V is the connection associated to g;. Similarly, we write
P. = AV?2+ B,V+C,. We say that P; converges to Py, and write
Pj — Py, if

|A; — Aslle2(k g,y + 1Bj — Billor(k,g.) + 1105 — Cillco(k g,y — 0

on each precompact K C M,.
Clearly, if P; — P, then for each precompact K and each smooth tensor
field n we have

IPin — Panllcogrgy — 0 and [Py — Plnllcogx,g.) = 0,

where P; and P! denote the formal adjoints of P; and P, respectively. If in
addition the operators P; and P, are elliptic then the constants in the inte-
rior elliptic regularity estimates can be chosen independently of (sufficiently
large) j. Finally, the reader should notice that if (M}, g;) is an exhaustion
of (M., g«) then any family of second order geometric operators P; = P|g;]
and Py, = Plg,] satisfies P; — P,.

Proposition A.3. Let (M;, gj, w;) be an ezhaustion of (M, g«, ws), and let
P; and Py be second order elliptic linear differential operators on (Mj,g;)
and (M, g«) with P; — P,. Suppose also that there exists points q; € M
converging to q. € My with respect to g, a sequence of tensor fields u; €
C%(M;), and constants ¢,C > 0 such that:

(a) for all j we have (w;1|uj|gj) > ¢;

J
(b) for all j we have S]Epwj_1|uj|gj <C;
j
(c) we have Sj\l}p wj_lleuj\gj — 0 asj— 0.
fi
Then there is a mon-zero tensor field u, € CO(M*,g*) and a subsequence

{u;,} such that

o uj, — uy uniformly on compact sets;
o supw; uslg, < 0o;
M

o P.u, =0 in the weak sense.

Proof. Fix p > dim(M,) so that the Sobolev space H'P(M;,g.) embeds
continuously into C°(Mj, g.) for each j.

We now describe a process for extracting a subsequence of {u;} that we
use iteratively in order to produce the desired subsequence via a diagonal
argument. Given the sequence {u;} and the sets My C M; C My, we extract
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a subsequence u;, 1 as follows. Our assumptions imply that for sufficiently
large 7 we have

|uj|gj < 2Cwy, ’Pjuj|gj < Cw, on M.

As the volumes voly, (Ms) are uniformly bounded for j > 2, we have that the
Sobolev norms |[w; || o.p(n1y,g,) and || Pjuj || 0w (as,,g,) are bounded uniformly.
Since the assumption P; — P, implies

1]l 20 (0 ) < € (||Pjuj||H0’P(M2,gj) + ||uj||H01P(M2,gj)>

for some constant C’ independent of j, we have that ||u;llg2p(as,.g,) are
bounded, and thus so are [u;||g2r(ar, 4,)- Applying Rellich’s lemma yields
a subsequence {u;, 1} that converges in HP(Mj, g.) to some function u.
Since p has been chosen such that HY“P(My,g.) € C°(My), it follows that

we have uniform pointwise convergence
Uj,, 1 — U1 in C’O(Ml,g*).
Furthermore, assumptions (a) and (b) imply that

&
|u1(gs)lg. > BY lu1]g, <2Cw, on M.

The process that produces the subsequence {u;, 1} from the sequence
{u;} and the sets My C My C M, is now applied iteratively. For example,
applying this process to the sequence {u;, 1} and the sets My C Moy C M3
gives rise to the subsequence {u;, 2} of {u;, 1} that converges in C°(Ma, g.)
to some limit uo. Since u;, 1 — u1 in CY(Mj, g.), we see that the function
us is a continuous extension of uy to the domain M>. Furthermore, we have
that

c
[u2(gs)|g. > 3 lualg, <2Cw, on Mo.

Repeating this process inductively we obtain subsequences {u;, ;} of {u;}
and limiting functions u; € C°(M;) such that

wj, 1 — U in C’O(Ml,g*)

as n — oo. Consequently, the diagonal sequence {uj, »} is uniformly con-
vergent on every compact subset of M, to a limit u, € C’O(M*7 gx). Further-
more, we have

|us (qe) | g > and  |uy|g, <2Cw, on M,.

c
2 b
For the remainder of the proof we denote the subsequence {u;, »} by {u;, }.

‘We now show that P>,£L* = 0 weakly. 7Consider a smooth tensor field 7
supported on some {2 C Q C M,, where () is compact. Since P;, — P, and
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9j, — g« we have

\ [ v,

= lim

T )
n—>00 A<%nn7u]">gj7ldvgj7z

< lim /Q‘<77,]Djn“jn>gjn

d%jn

n—oo
< lnlleo(e,g. Volg, () - Tim [Py, uj, oo, )-

It follows from our assumptions that supg w;nl|Pjntn|gjn — 0. As the
functions w;,, converge uniformly to the positive function w, on the precom-
pact set 2, they are uniformly bounded from above and below on 2. Thus
1P, uj, llcogg,,) — 0 and hence

/ (PIn,us),.dV,, = 0.

*

Therefore Pou, = 0 weakly. O

A.2. Invertibility of model operators. Our blowup analysis uses the
mapping properties of elliptic geometric operators defined using one of two
model CMCSF hyperboloidal initial data sets: the data assumed in the main
theorem, given by (g, ¥) on M, which serves as a model away from the gluing
region, and the data given by (§,0) on H?, which serves as a model in the
gluing region. In the first case, our aim is to establish the injectivity of the
vector Laplace operator L, and of the operator Py given by

1
Pou = Agu — 3 (Rlg] + 7|Z|3 +30) u

=Agu—(3+ \ZE)’

where we have used (1.2). The operator Py serves as a model for the lin-
earization P;[1] of the Lichnerowicz operator about the function 1. In the
second case, we establish injectivity of the analogous operators defined by
(.0).

First we consider the case of the data assumed in the main theorem.

Proposition A.4. Let (g,%) be initial data on M as in Theorem 1.1 and
suppose |1 —§| < 2.
(a) If a continuous vector field X on M satisfies | X|, < Cp° for some
constant C and if Ly X =0, then X = 0.
(b) If a continuous function u on M satisfies |u| < Cp® for some constant
C and if Pou =0, then u = 0.

Proof. For the first claim, we note that L, is an elliptic geometric operator.
Thus from the elliptic regularity results in [2, Lemma 5.1] we have X €
Cy™(M). From Proposition 6.3 of [3] we have that

Ly: CY*(M) — CY (M)
is invertible, and thus X = 0.



ASYMPTOTIC GLUING OF SHEAR-FREE DATA 41

For the second claim, we note that Ay, — 3 is an elliptic geometric op-
erator. Since |E\3 € Cg_l’a(M), adding —\E|§u to the lower order term
does not affect the arguments leading to elliptic regularity results for Py;
see [11, Lemma 4.8] and [2, Lemma 5.1]. (Note that the sign convention

for the Laplacian Ay in [11] is the opposite of the one used here.) Thus
u € Cg’a(M). Since Proposition 6.5 of [3] implies that

Po: Cp*(M) — CF (M)
is invertible, we conclude that v = 0. U

We now turn to the model of hyperbolic space. As in section 2.1 we
use the coordinates (z,y) on the half-space model of hyperbolic space and
write 72 = |z|2 + y2. Recall also the function j defined in (2.6) and the
function F described in Proposition 2.2. It is established in [11, Theorem
5.9] that any self-adjoint elliptic geometric operator Pon hyperbolic space
is an isomorphism

P CPHE®) — CF 2 (HP)
provided |§ — 1| < R, where R is the indicial radius of the operator P. In
particular, this applies to the vector Laplace operator Ly and to the operator
A§73for |5*1| < 2.

The isomorphism property of P, together with interior elliptic regularity,
implies that any continuous tensor field v € ker P with lv]g < Cp° must
in fact vanish. In our blowup analysis we require a slight strengthening of
this statement that makes use of the functions y and yF on the half-space
model of hyperbolic space. The argument we present is a generalization of
the proof of Proposition 13 and Corollary 14 in [10].

Proposition A.5. Let P bea self-adjoint elliptic geometric operator on H
with indicial radius R > 0. Suppose that for some ¢ satisfying |1 — 6| < R
there exists v € ker P satisfying either vy < C(yF)? or|v|y < Cy® . Then
v 1s identically zero.

Proof. We argue by contradiction and consider first the case that there exists
a nonzero tensor field v € ker P and constants C,§ € R such that [§—1| < R
and |v|; < C(yF)°. Let ro > 0 be such that v does not vanish identically
on the set where r < rg. From Proposition 2.2 we have

(A.2) lv]g < C’y‘s where r > ro,
y5

(A.3) lv]y < C—% where 7 < 3rg,
r

where here, and in the following, the value of C' may vary from line to line.
Let pg: R? — [0,1] be a smooth cutoff function supported on |z| < 27,

where x = (z!,22) are Cartesian coordinates on R?, and define © on H by

) = [ vl = €l .
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Since v does not vanish on r < 2ry by assumption, one can always choose
o so that v is not identically zero. Differentiation under the integral sign
shows that P = 0.

We claim that

(A.4) E

;<C <y275+y5> ‘
On the region where r > 3rg, the estimate (A.2) implies (A.4) and thus we

focus attention on the region where r < 3rg. There, (A.3) implies that

y(S

g|<2re (W2 + |z —&[2)?

We now use the change of variables £ = x — y( and observe that r < 3rg
and €| < 2rg implies |¢] < 5%. Thus using polar coordinates yields

- _ d¢
0]y < Cy? 6/ T TNs
7 |lz—y¢|<2r¢ (1 + K‘Q)é

5ro0/y ¢
<C 2—5/ —_dt.
=7 e ey

[0l < C

de.

It follows from
1 < C for t <1,
(1+¢2)0 ~— |Ct™2°  for t>1
that

5r0/y t 26—2
/0 atep dt < C(1+y*™=).
This completes the proof of (A.4).

We now define u = Z*0, where Z is the inversion operator defined in
(2.3). Note that Pu = 0 due to Z-invariance of §, and consequently the
T-invariance of P. Choose ry > 0 so that u # 0 on r < r1. Choose also a

smooth function ¢1: R — [0, 1] supported on |z| < 271 such that the tensor
field

o) = [ ule = )ea(e) de
is non-zero. Differentiation under the integral sign shows that Pu = 0.
We claim that
(A.5) jaly S 7770+
To this end, observe that (A.4) implies
Y 2—46 Y é
i<(z) ()
The same change of variables argument involved in the proof of (A.4) shows
that

|u

lulz < Cy*°+4° on <3
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In the region where r < 3r;, we have C~'y < p < Cy, which implies the
estimate (A.5) in that region.

In the region where r > 3r; and |£] < 2r; we have

C™r? <9? + |z — £J2Cr?.
The estimate (A.5) now follows from the fact that C~!p < r% < Cp where
r>3r.

Since p < C, the estimate (A.5) implies that |a|; < Cp” where v =
min (2 — 6,6). Thus @ € ker P and @ € CO(H?), where |1 — v| < R. The
isomorphism property of P implies that @ = 0, which is the desired contra-
diction.

Suppose now that Pv = 0 and that lv|g < Cy’. If § < 0, then the fact that
y > Cp implies |v[z < C# and hence the isomorphism property of P implies
v = 0. If § > 0, then the fact that F° > C implies that |v[; < C(yF)? and
thus v = 0 by the previous argument. ([

A.3. Proof of Lemma A.2. We now establish Lemma A.2. We present
the argument for the estimate

(A.6) lullcoar iy S IPeMullco(ar;p.)
the estimate for the vector Laplace operator follows from analogous reason-
ing.

We argue by contradiction and assume that (A.6) does not hold. Thus
there exists 6 € [0,3) and a sequence ¢; — 0, together with functions u; €
Cy*(M.,), such that

J

(A.7) lujlleg .,y = 1
and
(A8) ”7)53' [1]UJHC(?(M5] ?ﬁsj) — 0.

Hence there exist points ¢; € M ~ (Ui, U Us,;), where we recall (2.10),
such that at the point 7. (q;) € M., we have

(A.9) (i)

1
> —.
me;(aj) — 2
Passing to a subsequence if necessary, we may assume that ¢; — ¢ € M. We
now consider several cases, depending on the location of ¢ € M, obtaining
a contradiction in each case.

Case 1: ¢ € M. In this case we define (Mj, g;, w;) by setting
Mj = {p € M~ (Ul,ej U UQ,EJ'): Pe; (7761- (p)) > Ej}a
gj =T Ay, and wj = W;ﬁg], = 7z, (pe; /ng)‘s; see (4.7).
Let 9: (0,00) — (0, 1] be the smooth cutoff function used in (4.5), and

define the function w,: M — (0,00) by setting w = 1 outside the domain
of the preferred background coordinates ©; = (6, p) and by requiring that
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wy = ¥(|(8, p)|) in each background coordinate chart. Set w, = (p/w,)® on
M.

We claim that (M}, gj, w;) forms an exhaustion of (M, g, ws). The con-
vergence of the metrics is immediate from the fact that ;A\, = g on E;
see Proposition 5.6. To see the convergence of the weight functions, we re-
call from §4.3 that in preferred background coordinates ©; = (6, p) we have
mrwe = (|0, p)| +€%(0,p)|). Thus T2, we; — w uniformly on every pre-
compact subset of M. As nlp. = p on E. we see that w; — w, uniformly
on precompact sets as well.

Let v; = W;kjuj. As g. € M; for sufficiently large j, we may pass to a
subsequence to ensure that ¢; € M; for all j, and hence that ¢, € M;. From
(A.9) and (A.7) we have

(w; ;)

Furthermore, setting P; = TF;jPEj [1], we have Sup w;1|1:)jvj‘ — 0.

1
> =
g~ 2

and supwj_l\uj\ <1
M;

The convergence of L:\Us& to |Z|Z in the exterior region given by (6.11)
implies that P, [1] — Po as described in §A.1. Thus from Proposition A.3
there exists a nonzero function v, € CO(M) such that |v.| < C(p/w«)? and
Povs = 0. Note that p < Cw, < C. Thus, since 6 > 0, we have |v,| < C.
But Proposition A.4 implies that the only continuous and bounded function
in the kernel of Py is the zero function, contradicting that v, is nonzero.

Case 2: ¢ € OM ~ {p1,p2}. Let © = (6, p) be background coordinates on
M centered at ¢ as introduced in §2.2. After an affine change of coordinates
we can arrange that at ¢ we have g@-jd@id@j = 5ijd®id®j. For j sufficiently
large, g; is contained in the domain Z(q) of ©; denote ©(g;) by (éj, pj). Let
r+« > 0 be such that neither p; nor ps is contained in that part of Z(q) where
|(0, p)| < re. Without loss of generality, we may assume that \é]| < ry/2.

Set M; = {(z,y) € H: |[(z,y)| < r/4pj,y > p;/2} and use the back-
ground coordinates (6, p) about ¢ to define ®;: M; — M by

(I)j: (:an) = (eap) = (éj + ﬁjiﬂ,ﬁjy).
Note that ®;(0,1) = ¢; and that for sufficiently small ¢ (and hence, in view
of (4.2), sufficiently small €;) the image of ®; is contained in the exterior
region E.. Thus we may define Tj: M; — M, by T = 1., o ®;.
Set g; = T;A:;. Let @j = we,(te;(gj)) and, recalling from (4.7) that
pe = Pe/‘f%y define

~ -4
~ — 0k ~ Py * ~
(A.10) wy = i ) T, = (2) T

J
We claim that (M;, g;, w;) forms an exhaustion of (H, g,°). Since p; — 0
we have Uj M; = H. To see that g; — g, recall from Proposition 5.6 that
tz\e = g on E., and thus g; is simply the pullback of g by ®;. In coordinates
O = (6,p), we write g = p_2§ij(0, p)dO'de’. Thus in coordinates X = (z,y)
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we have g; = <I>j-g = y‘zgij (0} +pjx, ﬁjy)dXide. Thus on any precompact
set K C H we have g; — y‘zﬁij (q)dX'dX’) = y~2gg = § uniformly. Finally,
to see the convergence of the weight function, note that ﬁ;lT;‘psj =y and

that on any precompact K C H we have oﬁj_l
the claim is verified.

Define the functions v; on M; by v; = (ﬁj/djj)*‘sl?uj. Using (A.10) we
see that wj_1|vj| = @*(ﬁgj‘s\uﬂ). Thus from (A.9) and (A.7) we have

T}we; — 1 uniformly. Thus

1
—1 1 )
(w; |Uj|)‘(071) = and SUpw; vl <1

J

hence assumptions (a) and (b) of Proposition A.3 hold.

Define the differential operator P; on M; by P; = T} P, [1]. We claim
that P; — Ay — 3. To see this, note first that since (7\. = g in the exterior
region E., applying the constraint equations (1.2) to (A.1) yields

7.
§L6|05|§\5

2 7 * 2 2
=8, =3 -2 - 5 (2,10, 3., — 1ZE).

By the hypotheses of Theorem 1.1 we have that E% is bounded, and thus
for some constant C' we have @;\Z@ = @j(p2|i|%) < C(pjy)?, which tends
to zero uniformly on any precompact set. Furthermore, from (6.11) we have

€

i 1
P, (1] :Ag—3—§yz|§—
(A.11)

|z los, ., — 1B < Clo)%e;

which also tends to zero. Finally, since g; = ®7g — ¢ we have Ay — Ay,
which establishes the claim.

From (A.8) we have wj_l |Pjvj| — 0. Applying Proposition A.3 we obtain a
continuous, nonzero function v, on H such that |v,| < Cy® and Ajvye — 3y =
0. This, however, contradicts Proposition A.5.

Case 8: q € {p1,p2}. In this case we may assume, without loss of generality,
that ¢ = p1 and, by passing to a subsequence if necessary, that the points g;
are contained in the domain Z(p;) of the preferred background coordinates

~

(0, p) centered about pi. Let (6;,p;) be the background coordinates of g;.
Since gj € M N (Ur¢; UUze;) we have |(éj,ﬁj)] > g;. Since \(éj,ﬁj)| — 0 we
may assume that |0;] + p; < 1/8.

Below, we consider three sub-cases, depending on the nature of the con-
vergence (éj, p;) — (0,0). In each case we define nested precompact subsets
M; C H and maps T;: M; — M.,;. We arrange T} so that the preferred

background coordinate expression for Tj(z,y) satisfies

1
(A.12) 85? <|Tj(z,y)| < 3’
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which ensures that g; = T\, is well defined. We then show that (Mj, g5)
forms an exhaustion of (H, g), and that P; = T P, [1] — Ay — 3. Finally,
in each case we construct a sequence of functions v; and weights w; satis-
fying the hypotheses of Proposition A.3. We thus obtain a nonzero limiting
function vy, from which we obtain a contradiction via Proposition A.5.

Case 3(a): Both ]éj|//3j and \(éj,ﬁj)|/€j are bounded above. Thus there
exists C' > 1 such that |0;| < Cp; and |(0;,p;)| < Cej for all j. Thus
pi <1(05,p5) < 10;]+ pj < 2Cp;. Furthermore, since €; < |(0;, p;)| we have
ej <2Cpj and pj < [(05,pj)| < Cej. Combining these yields
1. A . 1 .
(A.13) 5P < 105,05)l <2Cp;  and - o mej < pj < 2C¢;.
Let
1
M] = {(‘T7y) € H: |(:an)| < 8773/ > 85]}
€j
and define Tj: M; — M., by setting Tj(z,y) = ¥, (v,y) = (g;7,¢;y). For
each (z,y) € M; we have, for sufficiently large j, that

1
83 < g5y < |(g52,659)| < %

8

Thus from (4.3) and (4.6) we have w = T;‘ﬁgj. From Proposition 5.6 we have
g; = \IJ:], Ae; — g on precompact sets of H, and thus (Mj, gj, w) is an exhaus-
tion of (H, g, w). Furthermore, it follows from (6.12) that Tf’UajE\E_ -0
uniformly on precorAnpact subsets of H; hence Pj = T} P, [1] —A> Ay — 3.

Let (2j,9;) = (0j/¢j,pi/ej) € Mj so that Tj(2;,9;) = (05,p;). From
(A.13) the sequence (Z;,9;) is bounded, and g; is bounded away from zero.
Thus by passing to a subsequence we have (Z;,7;) — (Zx, J«) with g, > 0.

Set v; = Tjuj. By assumption we have

and thus (A.12) holds. Let

(wil‘vj‘) &) - (ﬁgf‘uﬂ‘) e, (a5) - %
and
supw™uj| = sup 75 (52, uy ) < 1.
j M;
Furthermore

— * (~—0
sup w 1|I)jvj| = S]\l/l]pT'j (pej- |P€J[1]u]’) < ||P€j [1]uj‘|Cg(MEj;ﬁgj) — 0.
j J

J



ASYMPTOTIC GLUING OF SHEAR-FREE DATA 47

Thus the hypotheses of Proposition A.3 are satisfied and there exists a
nonzero function v, on H with Agv, — 3v, = 0 and

As we are assuming ¢ > 0 this implies |v,] < (yF)® and the desired contra-
diction is obtained from Proposition A.5.

Case 3(b): |éj\/[)j is bounded above, but |(éj,ﬁj)|/€j is not bounded above.
In this case we may, after passing to a subsequence if necessary, suppose
that |0;] < Cp; for some constant C' > 1 and that 7#; = [(6;, p;)|/e; — oo.
Thus

Pj
€j

(A.14) pj < ejty =1(05,p)| <2Cp; and = — oo,

Let

1 8¢;
M; = (I‘,y)GHZ |($7y)|<7A7y> A]}-
’ { 16C)p; pj
For sufficiently large j we have ¢;/p; < 8C and thus M; C A.,. Hence
we may define Tj: My — M., by Tj(z,y) = V., (#jz,7y). In preferred
background coordinates (6, p) about p; we have Tj(z,y) = (g7, £;75y)
and thus from (A.14) we see that

A . . 1
8¢5 < 8¢ < piy < ety < |Tj(w,y)| < &575(2,y)| < ¥

thus (A.12) holds.

Let (j,9;) = (g;7;)~1(0;, p;) so that Tj(i;,§;) = m,;(q;). By construc-
tion we have |(Z;,9;)| = 1 and it follows from (A.14) that g; > 1/2C. Thus
we may pass to a subsequence such that (Z;,9;) — (Z«, Ux) with |(Z4, 9+)| = 1
and y, > 0.

Setting g; = T As; and w; = T;ﬁgj, we claim that (Mj, g;, w;) forms an
exhaustion of (H, g, (y/2r)?), where as usual we write r = |(z,y)|. To see
this, first note that Proposition 5.6 implies that \I!:j Ae; — ¢ uniformly on
precompact sets. Dilation by 7; is an isometry of hyperbolic space that pre-
serves unweighted norms; see (2.15). Thus g; — ¢ uniformly on precompact
sets. Next observe from (4.7), while using (4.3) and (4.6), that

yF(#r)
2 (r +1 /f§r)
The hypotheses that define this case include #; — oo, while Proposition 2.2

states that F'(7;r) = 1if #;r > 2. Thus we see that T’ pe; — y/2r uniformly
on precompact subsets of H and the claim is established.

T; pe, =



48 ALLEN ET AL.

Set v; = T;u; and Pj = TP, [1]. We now verify that the hypotheses of
Proposition A.3 are satisfied. The assumption (A.9) implies that

_ 1
(wj l‘vj‘)

Z —
(25,95) 2
and thus hypothesis (a) holds. As the assumptions (A.7) and (A.8) imply
that hypotheses (b) and (c) hold, it remains to establish the convergence
of the operators P;. Proposition 6.8 implies that T]ﬂaaj |3 — 0 uniformly
<j

on precompact subsets of H. Thus the convergence g; — ¢ implies that
Pj — Ag - 3.

We now invoke Proposition A.3 to conclude that there exists a nonzero
continuous function v, on H such that |v.] < C(y/r)? < Cy° and Azv. —
3v, = 0. Consequently, Proposition A.5 yields a contradiction.

Case 3(c): |0; |/p] is not bounded above. Passing to a subsequence we may
assume that |0;]/p; — oo. We may further assume that p]/|9 | < 1/2; when
combined with the fact that e; < (6 i, pj)| we find that |03| >ej/2.

Let (2;,3;) = ;" (0, ;) so that W (2}, §;) = 7, (q;). Set

0;
M; = {(z,y) e H: |(z,y)] < ‘2J,y>6]}
Pj

For (z,y) € M; we may use |é\ < 1/8 to conclude that

| ]| | ]| 1
A.15 < = <2—= < —
(15) i) < 2 L) <22 <
and use pj|z| < |6;]/2 to obtain
(A16)  1(d; + d5.dy9)| > a5+ dyal = 2V + sl > Bl 1,
€j

Thus the map ®;: M; — Ag.; given by ®;(z,y) = (£; + gz, 95y) is well
defined, and the map 7T = \Ilej o®;: M; — M., satisfies (A.12). In pre-
ferred background coordinates (0, p) about p1 we have Tj(z,y) = (;2; +
5957, €5959) = (05 + p;jx, pjy) and thus T;(0,1) = 7, (g;).
We now estimate T} p.; using (4.8), which implies that
o P
jPei = :
2 (1250, 9)] + o)

The estimate (A.16) implies that |®;(z,y)| > 1/4 and thus from Proposition
2.2 we have F(|®;(z,y)|) uniformly bounded above and below. The lower
bound |®;(z,y)| > 1/4 furthermore implies that

b
|Pj(z,y)|
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As (A.15) and (A.16) imply that
0 0
1 < o) < 212,
2€j Ej

and as y; = p;/ej, we find that

1 p; B pi
A7 — Ly <T'p., <C-2
( ) C’9j|y_ jPei = |03|y

for some constant C.

Let g; = T; A, and set w; = y?. From Proposition 5.6 we see that gi —~ g
on precompact sets and thus (M, g;, w;) forms an exhaustion of (H, 3,°).
We seek to apply Proposition A.3 to the functions
. —0
P\ Tru
6;1)

’Uj—

and operators Pj = TP, [1]. Proposition 6.8 implies that T7[o; ]?\E — 0
uniformly on precompact subsets of H. Thus the convergence g; — ¢ i;nplies
that P; — Ay — 3. Thus by applying (A.17) to (A.7), (A.8), and (A.9) we
have that the hypotheses of Proposition A.3 are satisfied. The result is a
nonzero function v, satisfying both |v,| < Cy® and Ayv — 3v = 0. This,
however, is in contradiction to Proposition A.5.

With all cases exhausted, the proof of Lemma A.2 is complete.
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