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HUMAN, Al, ROBOT TEAMING AND THE FUTURE OF WORK:
BARRIERS AND OPPORTUNITIES FOR ADVANCEMENT
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Eric Holder, U.S. Army Combat Capabilities Development Command Army Research Laboratory Human
Research and Engineering Directorate (CCDC ARL-HRED)
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Lance Menthe, RAND Corporation
Rod D. Roscoe, Human Systems Engineering, Arizona State University
Shivam Zaveri, Human and Social Dimensions of Science and Technology, Arizona State University

Global investments in artificial intelligence (AI) and robotics are on the rise, with the results to impact
global economies, security, safety, and human well-being. The most heralded advances in this space are

more often about the technologies that are capable of disrupting business-as-usual than they are about
innovation that advances or supports a global workforce. The Future of Work at the Human-Technology

Frontier is one of NSF’s 10 Big Ideas for research advancement. This panel discussion focuses on the
barriers and opportunities for a future of human and Al/robot teaming, with people at the center of complex
systems that provide social, ethical, and economic value.
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INTRODUCTION

A common misunderstanding in the design of new
technologies is to view technology as simply a fool to fulfill a
function, when they are more akin to processes that impact
workers and other important outcomes of an organization. A
systems-level approach to technology design must include the
people, process workflows, and work environment factors to
realize both human and technology potential and to avoid
known mistakes of the past. Accelerating this effort in the face
of current technology-centered investments in Al and robotics
will take immediate and meaningful engagement across
groups, and a unified effort that spans disciplines and work
domains.

Applying the concept of teaming to human-
technology systems is not just a “magic concept” (Pollitt &
Hupe, 2011) that would be difficult to realize (Groom & Nass,
2007), but rather it is a way to build upon past work on
human-automation interaction and system design through the
lens of teaming and teamwork. This framing allows human
factors scientists and practitioners to work in parallel with
ongoing advances in Al and robotics, to move beyond the
levels of automation/autonomy categories (Parasuraman,
Sheridan, & Wickens, 2000), toward addressing more
complex, networked, and adaptive relationships with
automation, as automation becomes increasingly distributed,
agentic, and autonomous.

Much is known about the effectiveness of human
teams, as well as the control of synthetic teams of robotic or
software agents. For example, we generally know what a good
human teammate looks like, and we also know what good
team problem-solving looks like (Paris, Salas, & Cannon-
Bowers, 2000; Salas, Burke, & Janis, 2000; Salas, Dickinson,
Converse, & Tannenbaum, 1992; Salas, Wilson, Murphy,
King, & Salisbury, 2008). However, this understanding of

human teams is almost always descriptive, with a focus on the
characteristics that contribute to good team performance (e.g.,
Duhigg, 2016). While useful, such description can be difficult
to translate into control system design for robots or Al, which
depend on quantifiable inputs and outputs.

There are also well-established formal controls or
optimization frameworks for designing and engineering
robotic or software agent teams that can negotiate and achieve
shared goals (Sugihara & Suzuki, 1994; Sycara & Zeng,
1996). These formalized frameworks are suited to developing
machines yet they tend to be for limited, well-defined
applications that are likely to break when introduced to the
reality of human systems. Even if such frameworks
acknowledge human interactions, the human in the system is
often treated as a black box endpoint, with its internal
processes excluded (Fong, 2001; Michaud et al., 2010). Such
approaches prevalent in certain engineering disciplines, often
ignore the coordination and negotiation of personal, cultural,
political, technological, and organizational processes that
occur in the dynamic and complex world of humans — and the
role that technology can play in facilitating or impeding those
processes. There is a need to invest more in efforts that move
beyond testing applications in rigidly-controlled
environments, in which mathematical and computational
modeling approaches thrive while obfuscating key human
elements of the larger system, and instead bring focus to
understanding people, Al, and robots working together in
naturalistic settings.

OBJECTIVE
In line with the Organisation for Economic Co-
operation and Development’s Principles on Artificial
Intelligence, adopted by 42 countries (OECD, 2019), a newly
formed HFES Technical Group focused on Human, Al, Robot
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Teaming envisions a future in which people and Al-imbued
agents or robots are thoughtfully integrated to improve care,
quality, flexibility, productivity, safety, and security. The
assembled panelists will provide an overview of recent work
related to human, Al, robot teaming for the future of work in
transportation, military, education, and manufacturing. Key
issues related to opportunities or barriers for advancing the
science and engineering of human and Al/robot teams will be
addressed.

PANELIST STATEMENTS

Human-Machine Teaming in Urban Air Mobility

Igor Dolgov, Ph.D.; Lead Human Factors Engineer
at Uber Elevate. The term Urban Air Mobility (UAM)
describes a vision for a new era of metropolitan transportation
systems that will move people and goods through the air. A
key advantage of this type of transport is sustainability. UAM
aircraft will be electric and will not pollute the air.
Additionally, advances in batteries also enable these types of
aircraft to be more cost-effective than their fuel-powered
counterparts. While many technologies have matured in recent
decades, making UAM a reality is not without its difficulties
(Thipphavong et al., 2018; Vascik, Hansman, & Dunn, 2018).

The challenges facing UAM proponents are manifold
and include the development of new vehicles, batteries,
infrastructure, communication technologies and networks,
airspace services and networks, multi-modal transportation
services, and regulations. Moreover, these technologies will
need to be integrated, interoperable, and certified to be safe
(Holden & Goel, 2016).

One avenue for handling this complexity is through
automated, autonomous, robotic, and artificially intelligent
tools and agents. These technologies can help reduce human
workload, stress, and fatigue while improving situation
awareness and decision making (e.g., Dolgov et al., 2017).
While advantageous, the use of these technologies can be
particularly challenging in life-critical applications
(Brynjolfsson & Mitchell, 2017). Such contexts require human
operators to maintain meaningful control of autonomous,
robotic, or artificially intelligent systems, which has a number
of design implications and challenges for human-machine
teaming (Santoni de Sio & Van den Hoven, 2018).

Namely, these types of systems will need to be
human-interpretable, entailing that they are transparent,
explainable, and accountable (Roundtree, Goodrich, &
Adams, 2019; Wachter, Mittelstadt, & Floridi, 2017). Meeting
these criteria requires nuanced solutions. One major constraint
is that many types of artificially intelligent and autonomous
systems are neither readily explainable nor accountable
(Samek, Wiegand, & Muller, 2017). For instance, while deep
learning models exhibit excellent learning performance they
suffer from a lack of transparency and explainability. This
makes them challenging to implement in life-critical
applications and requires the use of additional tools that can
help alleviate these issues (Gunning, 2017).

Furthermore, while transparency is traditionally seen
as unequivocally positive for system safety and performance,

it can sometimes be a double-edged sword. When
transparency reveals accuracy and reliability on the part of an
automated aid, humans tend to trust it more and performance
improves. But, trust wanes and performance suffers when
transparency reveals errors or inadequacies (e.g., Kaltenbach
& Dolgov, 2017).

In sum, artificial intelligence, automation, autonomy,
and robotics can help enable the UAM vision but great care
must be taken in designing systems and processes that support
complex human-machine teaming and human-system
integration.

Igor Dolgov is currently the Lead HF Engineer for
Uber Elevate and also Chair of the Aerospace Systems
Technical Group for the Human Factors and Ergonomics
Society. He was previously a tenured associate professor of
human factors/engineering psychology at New Mexico State
University, where he led the Perception, Action, and
Cognition, in Mediated, Artificial, and Natural Environments
(PACMANe/“pacman”) laboratory. He earned a B.S.E. in
Computer Science from Princeton University and a Ph.D. in
Psychology-Arts, Media, & Engineering from Arizona State
University via NSF’s Integrative Graduate Education and
Research Traineeship Program.

A Framework for Integrating Al into Human Society: An
Army Perspective.

Kaleb McDowell, Ph.D.; Chief Scientist at U.S. Army
Combat Capabilities Development Command Army Research
Laboratory, Human Research and Engineering Directorate
(CCDC ARL HRED)

We present a framework meant to facilitate ideation
about strategies to address the challenges of integrating Al into
human society. Our ultimate aim is to expand discussion around
concepts that we see as essential for the formation of human-Al
partnerships, moving beyond the typical oversimplifications
made when viewing this problem space as a monolithic entity,
wherein a single, generalizable type of interaction is of concern.
Example oversimplifications include: designating areas where
Al replacing humans will either be inevitable or impossible,
assuming that changing an Al's behavior can only be
accomplished by scientists and engineers, and approaching
human-Al integration as a simple task allocation problem.

We argue that the fundamental nature of future human
Al partnership is task relative, and it thus depends critically on
the complexity of the problem to be solved, the certainty of
information about the problem, and the time available to enact a
solution. Our framework proposes that viewing interactions
between Al and humans in the context of complexity, certainty,
and time clearly emphasizes the reality that there is not one sort
of interaction that must be considered and supported. Rather,
there are myriad ways that humans and Als may cooperate and
interact. Critically, the framework provides a mechanism for
researchers and engineers to consider their problem space and
indicates how different types of human-Al interactions can be
employed together for increased robustness and reliability over
the lifespan of the technology. This is important as we consider
that continually advancing Als may be expected to evolve away
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from being mere tools for human application and will instead
advance towards integration that is better described as novel,
team-like partnerships (DeCostanza et al., 2018)

Kaleb McDowell is currently the Chief Scientist of the
CCDC ARL HRED. Since joining ARL, Dr. McDowell has
developed a strong record of publication and impact within
government, industry, and academic research and development
communities and he has led several major research and
development programs focused on neuroscience and
neuroengineering, indirect vision systems, vehicle mobility, and
human-agent teaming; receiving Army Research and
Development Achievement awards in 2007 and 2009; and ARL
Awards for Leadership and Engineering in 2011 and 2013.

Integrating Al into Military Intelligence Analysis

Lance Menthe, Ph.D., Senior Physical Scientist at
RAND Corporation. Military intelligence analysis is a massive
team effort. Al can improve the processing, exploitation, and
dissemination of intelligence in many ways, but integrating Al
into the analysis workflow requires careful consideration of
the larger collaborative process to realize the promised
benefits and avoid creating new bottlenecks.

We present a framework for categorizing levels of
automation and synthesis in the intelligence analysis process
to highlight how Al can be helpful. We also present a set of
evaluation criteria to indicate what kind of improvements
should be sought. Finally, we outline a method of mapping the
data flow in team-based analysis processes to identify where
these capabilities will fit, and also where less sophisticated
techniques—e.g. small scripts, software linkages, and
workflow improvements—are required. Without this kind of
consideration, the most expensive investments in Al may
ultimately end up gathering dust in the corner.

We find that many intelligence analysis tasks can be
fully or partially automated, but human involvement will
continue to be necessary in more complex tasks. Al can also
free analysts to address new intelligence problems and
develop supporting technologies to enable more complex
analysis. However, analysts will need new skills, both to
facilitate use of Al and to take advantage of opportunities to
conduct more-advanced analysis. We have used this
framework and data flow mapping process to assess how Al
investments can support team-based intelligence analysis
processes within the U.S. Air Force and U.S. Army.

Lance Menthe is a senior physical scientist at RAND
and a member of the Pardee RAND Graduate School faculty.
He works primarily on intelligence, surveillance, and
reconnaissance issues, including employment of remotely
piloted aircraft and machine learning technologies for
processing, exploitation, and dissemination. Other recent work
includes analyzing the potential for light attack systems to
provide close air support in counterinsurgency and
counterterrorism operations. Menthe is the lead developer of
RAND's Systems and CONOPs Operational Effectiveness
Model (SCOPEM), an agent-based model of air, ground, and
space domains. Prior to joining RAND, Menthe received a
Ph.D. in physics from the University of California, Los

Angeles, with a thesis on the physics of twisting
conformations of DNA.

Learning with Robots

Rod D. Roscoe, PhD, Associate Professor of Human
Systems Engineering. Human team members learn from each
other by sharing knowledge, demonstrating skills, giving and
receiving feedback, and more. Research on educational
technologies suggests that robot teammates could contribute to
team learning in several ways.

First, researchers have explored how Al-based
systems can teach learners in complex domains. Intelligent
tutoring systems use Al-based algorithms to mimic expert
human tutors, such as detecting learners’ inputs, actions, and
solutions and then responding with appropriate feedback
(Kulik & Fletcher, 2016; VanLehn, 2011). Similarly,
automated writing evaluation tools use natural language
processing and Al-based algorithms to assess students’ writing
and provide feedback to aid revision (Shermis & Burstein,
2013; Wilson & Roscoe, 2019). In these cases, automated
systems “instruct” the learner, which can be delivered via
verbal messages, animated characters, or physical robots
(Belpaeme et al., 2018).

Second, researchers have used Al techniques to
simulate learners—creating teachable agents that “learn”
based on user inputs. Such systems leverage “learning by
teaching” such that students learn by explaining,
demonstrating skills, and testing the performance of the
simulated learner (Matsuda et al., 2020; Roscoe et al., 2013).
These “learners” can be tangible robots, which introduces
embodied learning opportunities (Belpaeme et al., 2018;
Thomaz, & Breazeal, 2008).

Despite this potential, automated educational
technologies also suggest several cautions. Developers often
offload too much of the instructional process onto the
software, inadvertently neglecting (a) the expertise of human
teachers and (b) the importance of interpersonal relationships
(e.g., rapport). This is exacerbated by the fact that automated
detection (i.e., of language, behavior, or affect) remains
imperfect, which undermines performance and trust
(Belpaeme et al., 2018 Roscoe et al., 2017). Rather than
automating or "replacing" teachers, learners, and team
members, perhaps more attention should be paid to
augmenting and facilitating human capabilities via adaptive
support (e.g., Matari¢, 2017; Rummel et al., 2016).

Rod Roscoe is an associate professor of human systems
engineering in the Polytechnic School of the Ira A. Fulton
Schools of Engineering, and a Diane and Gary Tooker
Professor of Effective Education in STEM. He is affiliate
faculty of the Mary Lou Fulton Teachers College and the
Center for Human, Artificial Intelligence, and Robot Teaming
(CHART). His research investigates how the intersection of
learning science, computer science, and user science can
inform effective and innovative uses of educational
technologies.

Enhancing Workforce Outcomes with AI-Based Training
Systems
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Shivam Zaveri, M.S., Graduate Research Assistant at
the School for the Future of Innovation in Society.
Successfully integrating advanced technologies in an existing
work environment is a pervasive challenge for the future of
work (Anithes, 2017). Complexities arise from both workers
and work environments; workers are an integral part of the
work system with different roles and measures of success, and
work environments require advanced technologies to consider
multiple factors for effective integration and for maintaining a
level of work system success.

The recently awarded NSF C-Accel project, Safe
Skill-Aligned On-The-Job Training with Autonomous
Systems (PI: Srivastava) recognizes the potential and
challenges in human-robot teaming technologies. This project
is exploring different avenues for enhancing workforce
environments and creating successful human-robot teaming
technologies. Currently, a multi-disciplinary team of
researchers representing five disciplines at Arizona State
University are interviewing workers in the logistics, finance,
retail, and healthcare industries who interact with advanced
technologies and automated systems on a daily basis. These
workers are being interviewed about their role requirements,
technology interactions, training methods and preferences.

Preliminary findings indicate key insights on how
workers view technology systems. Workers are open to having
repetitive tasks automated when it makes them more
successful in their daily roles. These advanced technologies
allow workers to be more effective and efficient. Certain
industries, such as healthcare, require that workers adhere to
strict policies, like keeping meticulous patient notes while
maintaining a level of compassion for the patient. These
workers are open to new technologies to aid in their tasks but
prioritize patient wellbeing. Human-robot teaming systems
have the potential to lessen the burden on healthcare workers
but must be seamlessly integrated into the workflow. A
primary challenge for future technologies will require worker
buy-in and safeguarding work environment standards.

Human-robot teaming systems can potentially
provide many benefits to many workers and work
environments. Building adaptability into these systems
requires a thorough understanding of workplace challenges,
and actively incorporating feedback from the users. Each
workplace has a unique pace to accept change. This project
considers the qualitative and technical aspects of the future of
work as it builds human-robot technologies that can enhance
work environments evolving over time.

Shivam Zaveri is a graduate student at Arizona State
University focused on industrial workforces and
entrepreneurship. Shivam received his B.E. in Industrial
Engineering in 2014 from the University of Tennessee -
Knoxville, where he focused on entrepreneurship,
globalization and reliability in a range of systems. He also
received his Masters in Science and Technology Policy from
Arizona State University in 2017.
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