
  

HUMAN, AI, ROBOT TEAMING AND THE FUTURE OF WORK: 
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Global investments in artificial intelligence (AI) and robotics are on the rise, with the results to impact 
global economies, security, safety, and human well-being. The most heralded advances in this space are 
more often about the technologies that are capable of disrupting business-as-usual than they are about 
innovation that advances or supports a global workforce. The Future of Work at the Human-Technology 
Frontier is one of NSF’s 10 Big Ideas for research advancement. This panel discussion focuses on the 
barriers and opportunities for a future of human and AI/robot teaming, with people at the center of complex 
systems that provide social, ethical, and economic value. 
 

INTRODUCTION 
A common misunderstanding in the design of new 

technologies is to view technology as simply a tool to fulfill a 
function, when they are more akin to processes that impact 
workers and other important outcomes of an organization. A 
systems-level approach to technology design must include the 
people, process workflows, and work environment factors to 
realize both human and technology potential and to avoid 
known mistakes of the past. Accelerating this effort in the face 
of current technology-centered investments in AI and robotics 
will take immediate and meaningful engagement across 
groups, and a unified effort that spans disciplines and work 
domains.  

Applying the concept of teaming to human-
technology systems is not just a “magic concept” (Pollitt & 
Hupe, 2011) that would be difficult to realize (Groom & Nass, 
2007), but rather it is a way to build upon past work on 
human-automation interaction and system design through the 
lens of teaming and teamwork. This framing allows human 
factors scientists and practitioners to work in parallel with 
ongoing advances in AI and robotics, to move beyond the 
levels of automation/autonomy categories (Parasuraman, 
Sheridan, & Wickens, 2000), toward addressing more 
complex, networked, and adaptive relationships with 
automation, as automation becomes increasingly distributed, 
agentic, and autonomous.  

Much is known about the effectiveness of human 
teams, as well as the control of synthetic teams of robotic or 
software agents. For example, we generally know what a good 
human teammate looks like, and we also know what good 
team problem-solving looks like (Paris, Salas, & Cannon-
Bowers, 2000; Salas, Burke, & Janis, 2000; Salas, Dickinson, 
Converse, & Tannenbaum, 1992; Salas, Wilson, Murphy, 
King, & Salisbury, 2008). However, this understanding of 

human teams is almost always descriptive, with a focus on the 
characteristics that contribute to good team performance (e.g., 
Duhigg, 2016). While useful, such description can be difficult 
to translate into control system design for robots or AI, which 
depend on quantifiable inputs and outputs.  

There are also well-established formal controls or 
optimization frameworks for designing and engineering 
robotic or software agent teams that can negotiate and achieve 
shared goals (Sugihara & Suzuki, 1994; Sycara & Zeng, 
1996). These formalized frameworks are suited to developing 
machines yet they tend to be for limited, well-defined 
applications that are likely to break when introduced to the 
reality of human systems. Even if such frameworks 
acknowledge human interactions, the human in the system is 
often treated as a black box endpoint, with its internal 
processes excluded (Fong, 2001; Michaud et al., 2010). Such 
approaches prevalent in certain engineering disciplines, often 
ignore the coordination and negotiation of personal, cultural, 
political, technological, and organizational processes that 
occur in the dynamic and complex world of humans – and the 
role that technology can play in facilitating or impeding those 
processes. There is a need to invest more in efforts that move 
beyond testing applications in rigidly-controlled 
environments, in which mathematical and computational 
modeling approaches thrive while obfuscating key human 
elements of the larger system, and instead bring focus to 
understanding people, AI, and robots working together in 
naturalistic settings.  

 
OBJECTIVE 

In line with the Organisation for Economic Co-
operation and Development’s Principles on Artificial 
Intelligence, adopted by 42 countries (OECD, 2019), a newly 
formed HFES Technical Group focused on Human, AI, Robot 
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Teaming envisions a future in which people and AI-imbued 
agents or robots are thoughtfully integrated to improve care, 
quality, flexibility, productivity, safety, and security. The 
assembled panelists will provide an overview of recent work 
related to human, AI, robot teaming for the future of work in 
transportation, military, education, and manufacturing. Key 
issues related to opportunities or barriers for advancing the 
science and engineering of human and AI/robot teams will be 
addressed.  

 
PANELIST STATEMENTS 

 
Human-Machine Teaming in Urban Air Mobility 
 Igor Dolgov, Ph.D.; Lead Human Factors Engineer 
at Uber Elevate. The term Urban Air Mobility (UAM) 
describes a vision for a new era of metropolitan transportation 
systems that will move people and goods through the air. A 
key advantage of this type of transport is sustainability. UAM 
aircraft will be electric and will not pollute the air. 
Additionally, advances in batteries also enable these types of 
aircraft to be more cost-effective than their fuel-powered 
counterparts. While many technologies have matured in recent 
decades, making UAM a reality is not without its difficulties 
(Thipphavong et al., 2018; Vascik, Hansman, & Dunn, 2018). 
 The challenges facing UAM proponents are manifold 
and include the development of new vehicles, batteries, 
infrastructure, communication technologies and networks, 
airspace services and networks, multi-modal transportation 
services, and regulations. Moreover, these technologies will 
need to be integrated, interoperable, and certified to be safe 
(Holden & Goel, 2016).  
 One avenue for handling this complexity is through 
automated, autonomous, robotic, and artificially intelligent 
tools and agents. These technologies can help reduce human 
workload, stress, and fatigue while improving situation 
awareness and decision making (e.g., Dolgov et al., 2017).  
While advantageous, the use of these technologies can be 
particularly challenging in life-critical applications 
(Brynjolfsson & Mitchell, 2017). Such contexts require human 
operators to maintain meaningful control of autonomous, 
robotic, or artificially intelligent systems, which has a number 
of design implications and challenges for human-machine 
teaming (Santoni de Sio & Van den Hoven, 2018). 
 Namely, these types of systems will need to be 
human-interpretable, entailing that they are transparent, 
explainable, and accountable (Roundtree, Goodrich, & 
Adams, 2019; Wachter, Mittelstadt, & Floridi, 2017). Meeting 
these criteria requires nuanced solutions. One major constraint 
is that many types of artificially intelligent and autonomous 
systems are neither readily explainable nor accountable 
(Samek, Wiegand, & Muller, 2017). For instance, while deep 
learning models exhibit excellent learning performance they 
suffer from a lack of transparency and explainability. This 
makes them challenging to implement in life-critical 
applications and requires the use of additional tools that can 
help alleviate these issues (Gunning, 2017).   

Furthermore, while transparency is traditionally seen 
as unequivocally positive for system safety and performance, 

it can sometimes be a double-edged sword.  When 
transparency reveals accuracy and reliability on the part of an 
automated aid, humans tend to trust it more and performance 
improves. But, trust wanes and performance suffers when 
transparency reveals errors or inadequacies (e.g., Kaltenbach 
& Dolgov, 2017). 

In sum, artificial intelligence, automation, autonomy, 
and robotics can help enable the UAM vision but great care 
must be taken in designing systems and processes that support 
complex human-machine teaming and human-system 
integration. 

Igor Dolgov is currently the Lead HF Engineer for 
Uber Elevate and also Chair of the Aerospace Systems 
Technical Group for the Human Factors and Ergonomics 
Society. He was previously a tenured associate professor of 
human factors/engineering psychology at New Mexico State 
University, where he led the Perception, Action, and 
Cognition, in Mediated, Artificial, and Natural Environments 
(PACMANe/“pacman”) laboratory. He earned a B.S.E. in 
Computer Science from Princeton University and a Ph.D. in 
Psychology-Arts, Media, & Engineering from Arizona State 
University via NSF’s Integrative Graduate Education and 
Research Traineeship Program. 
 
A Framework for Integrating AI into Human Society: An 
Army Perspective. 

Kaleb McDowell, Ph.D.; Chief Scientist at U.S. Army 
Combat Capabilities Development Command Army Research 
Laboratory, Human Research and Engineering Directorate 
(CCDC ARL HRED) 

 We present a framework meant to facilitate ideation 
about strategies to address the challenges of integrating AI into 
human society. Our ultimate aim is to expand discussion around 
concepts that we see as essential for the formation of human-AI 
partnerships, moving beyond the typical oversimplifications 
made when viewing this problem space as a monolithic entity, 
wherein a single, generalizable type of interaction is of concern. 
Example oversimplifications include: designating areas where 
AI replacing humans will either be inevitable or impossible, 
assuming that changing an AI's behavior can only be 
accomplished by scientists and engineers, and approaching 
human-AI integration as a simple task allocation problem.  

We argue that the fundamental nature of future human 
AI partnership is task relative, and it thus depends critically on 
the complexity of the problem to be solved, the certainty of 
information about the problem, and the time available to enact a 
solution. Our framework proposes that viewing interactions 
between AI and humans in the context of complexity, certainty, 
and time clearly emphasizes the reality that there is not one sort 
of interaction that must be considered and supported. Rather, 
there are myriad ways that humans and AIs may cooperate and 
interact. Critically, the framework provides a mechanism for 
researchers and engineers to consider their problem space and 
indicates how different types of human-AI interactions can be 
employed together for increased robustness and reliability over 
the lifespan of the technology. This is important as we consider 
that continually advancing AIs may be expected to evolve away 

C
op

yr
ig

ht
 2

02
0 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

01
8

Proceedings of the 2020 HFES 64th International Annual Meeting 63



  

from being mere tools for human application and will instead 
advance towards integration that is better described as novel, 
team-like partnerships (DeCostanza et al., 2018) 

Kaleb McDowell is currently the Chief Scientist of the 
CCDC ARL HRED. Since joining ARL, Dr. McDowell has 
developed a strong record of publication and impact within 
government, industry, and academic research and development 
communities and he has led several major research and 
development programs focused on neuroscience and 
neuroengineering, indirect vision systems, vehicle mobility, and 
human-agent teaming; receiving Army Research and 
Development Achievement awards in 2007 and 2009; and ARL 
Awards for Leadership and Engineering in 2011 and 2013. 

 
Integrating AI into Military Intelligence Analysis 

Lance Menthe, Ph.D., Senior Physical Scientist at 
RAND Corporation. Military intelligence analysis is a massive 
team effort. AI can improve the processing, exploitation, and 
dissemination of intelligence in many ways, but integrating AI 
into the analysis workflow requires careful consideration of 
the larger collaborative process to realize the promised 
benefits and avoid creating new bottlenecks. 

We present a framework for categorizing levels of 
automation and synthesis in the intelligence analysis process 
to highlight how AI can be helpful. We also present a set of 
evaluation criteria to indicate what kind of improvements 
should be sought. Finally, we outline a method of mapping the 
data flow in team-based analysis processes to identify where 
these capabilities will fit, and also where less sophisticated 
techniques—e.g. small scripts, software linkages, and 
workflow improvements—are required. Without this kind of 
consideration, the most expensive investments in AI may 
ultimately end up gathering dust in the corner.  

We find that many intelligence analysis tasks can be 
fully or partially automated, but human involvement will 
continue to be necessary in more complex tasks. AI can also 
free analysts to address new intelligence problems and 
develop supporting technologies to enable more complex 
analysis. However, analysts will need new skills, both to 
facilitate use of AI and to take advantage of opportunities to 
conduct more-advanced analysis. We have used this 
framework and data flow mapping process to assess how AI 
investments can support team-based intelligence analysis 
processes within the U.S. Air Force and U.S. Army. 

Lance Menthe is a senior physical scientist at RAND 
and a member of the Pardee RAND Graduate School faculty. 
He works primarily on intelligence, surveillance, and 
reconnaissance issues, including employment of remotely 
piloted aircraft and machine learning technologies for 
processing, exploitation, and dissemination. Other recent work 
includes analyzing the potential for light attack systems to 
provide close air support in counterinsurgency and 
counterterrorism operations. Menthe is the lead developer of 
RAND's Systems and CONOPs Operational Effectiveness 
Model (SCOPEM), an agent-based model of air, ground, and 
space domains. Prior to joining RAND, Menthe received a 
Ph.D. in physics from the University of California, Los 

Angeles, with a thesis on the physics of twisting 
conformations of DNA. 
 
Learning with Robots 
 Rod D. Roscoe, PhD, Associate Professor of Human 
Systems Engineering. Human team members learn from each 
other by sharing knowledge, demonstrating skills, giving and 
receiving feedback, and more. Research on educational 
technologies suggests that robot teammates could contribute to 
team learning in several ways. 
 First, researchers have explored how AI-based 
systems can teach learners in complex domains. Intelligent 
tutoring systems use AI-based algorithms to mimic expert 
human tutors, such as detecting learners’ inputs, actions, and 
solutions and then responding with appropriate feedback 
(Kulik & Fletcher, 2016; VanLehn, 2011). Similarly, 
automated writing evaluation tools use natural language 
processing and AI-based algorithms to assess students’ writing 
and provide feedback to aid revision (Shermis & Burstein, 
2013; Wilson & Roscoe, 2019). In these cases, automated 
systems “instruct” the learner, which can be delivered via 
verbal messages, animated characters, or physical robots 
(Belpaeme et al., 2018). 
 Second, researchers have used AI techniques to 
simulate learners—creating teachable agents that “learn” 
based on user inputs. Such systems leverage “learning by 
teaching” such that students learn by explaining, 
demonstrating skills, and testing the performance of the 
simulated learner (Matsuda et al., 2020; Roscoe et al., 2013). 
These “learners” can be tangible robots, which introduces 
embodied learning opportunities (Belpaeme et al., 2018; 
Thomaz, & Breazeal, 2008). 

Despite this potential, automated educational 
technologies also suggest several cautions. Developers often 
offload too much of the instructional process onto the 
software, inadvertently neglecting (a) the expertise of human 
teachers and (b) the importance of interpersonal relationships 
(e.g., rapport). This is exacerbated by the fact that automated 
detection (i.e., of language, behavior, or affect) remains 
imperfect, which undermines performance and trust 
(Belpaeme et al., 2018 Roscoe et al., 2017). Rather than 
automating or "replacing" teachers, learners, and team 
members, perhaps more attention should be paid to 
augmenting and facilitating human capabilities via adaptive 
support (e.g., Matarić, 2017; Rummel et al., 2016). 

Rod Roscoe is an associate professor of human systems 
engineering in the Polytechnic School of the Ira A. Fulton 
Schools of Engineering, and a Diane and Gary Tooker 
Professor of Effective Education in STEM. He is affiliate 
faculty of the Mary Lou Fulton Teachers College and the 
Center for Human, Artificial Intelligence, and Robot Teaming 
(CHART). His research investigates how the intersection of 
learning science, computer science, and user science can 
inform effective and innovative uses of educational 
technologies.  

 
Enhancing Workforce Outcomes with AI-Based Training 
Systems 
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Shivam Zaveri, M.S., Graduate Research Assistant at 
the School for the Future of Innovation in Society. 
Successfully integrating advanced technologies in an existing 
work environment is a pervasive challenge for the future of 
work (Anithes, 2017). Complexities arise from both workers 
and work environments; workers are an integral part of the 
work system with different roles and measures of success, and 
work environments require advanced technologies to consider 
multiple factors for effective integration and for maintaining a 
level of work system success. 

The recently awarded NSF C-Accel project, Safe 
Skill-Aligned On-The-Job Training with Autonomous 
Systems (PI: Srivastava) recognizes the potential and 
challenges in human-robot teaming technologies. This project 
is exploring different avenues for enhancing workforce 
environments and creating successful human-robot teaming 
technologies. Currently, a multi-disciplinary team of 
researchers representing five disciplines at Arizona State 
University are interviewing workers in the logistics, finance, 
retail, and healthcare industries who interact with advanced 
technologies and automated systems on a daily basis. These 
workers are being interviewed about their role requirements, 
technology interactions, training methods and preferences.  

Preliminary findings indicate key insights on how 
workers view technology systems. Workers are open to having 
repetitive tasks automated when it makes them more 
successful in their daily roles. These advanced technologies 
allow workers to be more effective and efficient. Certain 
industries, such as healthcare, require that workers adhere to 
strict policies, like keeping meticulous patient notes while 
maintaining a level of compassion for the patient. These 
workers are open to new technologies to aid in their tasks but 
prioritize patient wellbeing. Human-robot teaming systems 
have the potential to lessen the burden on healthcare workers 
but must be seamlessly integrated into the workflow. A 
primary challenge for future technologies will require worker 
buy-in and safeguarding work environment standards.  

Human-robot teaming systems can potentially 
provide many benefits to many workers and work 
environments. Building adaptability into these systems 
requires a thorough understanding of workplace challenges, 
and actively incorporating feedback from the users. Each 
workplace has a unique pace to accept change. This project 
considers the qualitative and technical aspects of the future of 
work as it builds human-robot technologies that can enhance 
work environments evolving over time.   

Shivam Zaveri is a graduate student at Arizona State 
University focused on industrial workforces and 
entrepreneurship. Shivam received his B.E. in Industrial 
Engineering in 2014 from the University of Tennessee - 
Knoxville, where he focused on entrepreneurship, 
globalization and reliability in a range of systems. He also 
received his Masters in Science and Technology Policy from 
Arizona State University in 2017.  
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	The challenges facing UAM proponents are manifold and include the development of new vehicles, batteries, infrastructure, communication technologies and networks, airspace services and networks, multi-modal transportation services, and regulations. M...
	One avenue for handling this complexity is through automated, autonomous, robotic, and artificially intelligent tools and agents. These technologies can help reduce human workload, stress, and fatigue while improving situation awareness and decision ...
	Namely, these types of systems will need to be human-interpretable, entailing that they are transparent, explainable, and accountable (Roundtree, Goodrich, & Adams, 2019; Wachter, Mittelstadt, & Floridi, 2017). Meeting these criteria requires nuanced...
	Furthermore, while transparency is traditionally seen as unequivocally positive for system safety and performance, it can sometimes be a double-edged sword.  When transparency reveals accuracy and reliability on the part of an automated aid, humans te...
	In sum, artificial intelligence, automation, autonomy, and robotics can help enable the UAM vision but great care must be taken in designing systems and processes that support complex human-machine teaming and human-system integration.
	Igor Dolgov is currently the Lead HF Engineer for Uber Elevate and also Chair of the Aerospace Systems Technical Group for the Human Factors and Ergonomics Society. He was previously a tenured associate professor of human factors/engineering psycholog...
	Lance Menthe, Ph.D., Senior Physical Scientist at RAND Corporation. Military intelligence analysis is a massive team effort. AI can improve the processing, exploitation, and dissemination of intelligence in many ways, but integrating AI into the analy...
	We present a framework for categorizing levels of automation and synthesis in the intelligence analysis process to highlight how AI can be helpful. We also present a set of evaluation criteria to indicate what kind of improvements should be sought. Fi...
	We find that many intelligence analysis tasks can be fully or partially automated, but human involvement will continue to be necessary in more complex tasks. AI can also free analysts to address new intelligence problems and develop supporting technol...
	Lance Menthe is a senior physical scientist at RAND and a member of the Pardee RAND Graduate School faculty. He works primarily on intelligence, surveillance, and reconnaissance issues, including employment of remotely piloted aircraft and machine lea...
	Learning with Robots
	Rod D. Roscoe, PhD, Associate Professor of Human Systems Engineering. Human team members learn from each other by sharing knowledge, demonstrating skills, giving and receiving feedback, and more. Research on educational technologies suggests that rob...
	First, researchers have explored how AI-based systems can teach learners in complex domains. Intelligent tutoring systems use AI-based algorithms to mimic expert human tutors, such as detecting learners’ inputs, actions, and solutions and then respon...
	Second, researchers have used AI techniques to simulate learners—creating teachable agents that “learn” based on user inputs. Such systems leverage “learning by teaching” such that students learn by explaining, demonstrating skills, and testing the p...
	Despite this potential, automated educational technologies also suggest several cautions. Developers often offload too much of the instructional process onto the software, inadvertently neglecting (a) the expertise of human teachers and (b) the import...
	Rod Roscoe is an associate professor of human systems engineering in the Polytechnic School of the Ira A. Fulton Schools of Engineering, and a Diane and Gary Tooker Professor of Effective Education in STEM. He is affiliate faculty of the Mary Lou Fult...
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