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Abstract Aircraft observations collected during the Southern Ocean Cloud Radiation Aerosol
Transport Experimental Study in January-February of 2018 are used to evaluate cloud properties from
three satellite-imager datasets: (1) the Moderate Resolution Imaging Spectroradiometer level 2 (collection
6.1) cloud product, (2) the CERES-MODIS Edition 4 cloud product, and (3) the NASA SatCORPS
Himawari-8 cloud product. Overall the satellite retrievals compare well with the in situ observations,
with little bias and modest to good correlation coefficients when considering all aircraft profiles for which
there are coincident MODIS observations. The Himawari-8 product does, however, show a statistically
significant mean bias of about 1.2 um for effective radius (r,) and 2.6 for optical depth (r) when applied

to a larger set of profiles with coincident Himawari-8 observations. The low overall mean-bias in the r,
retrievals is due in part to compensating errors between cases that are non- or lightly precipitating, with
cases that have heavier precipitation. r, is slightly biased high (by about 0.5-1.0 um) for non- and lightly
precipitating cases and biased low by about 3-4 um for heavily precipitating cases when precipitation
exits near cloud top. The bias in non- and lightly precipitating conditions is due to (at least in part)
having assumed a drop size distribution in the retrieval that is too broad. These biases in the r, ultimately
propagate into the retrieved liquid water path and number concentration.

Plain Language Summary Clouds play a crucial role in the weather and climate system.
Satellite data can provide useful information on cloud properties (such as the size of the cloud droplets,
the amount of the liquid water, and the number of droplets in a given volume of the clouds) over large
areas and at high spatial and temporal resolutions. However, satellite cloud properties are determined or
retrieved from satellite measurements by employing a variety of simplifying assumptions that can lead to
large uncertainties in some conditions. In situ measurements of clouds from aircraft provide more direct
observations and can be used as ground truth to evaluate and improve the performance of the satellite
retrievals. This study focuses on clouds over the Southern Ocean (SO) and uses aircraft measurements
from Southern Ocean Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) in January-
February of 2018 to evaluate cloud properties from three satellite observations. It is found that the satellite
observations generally compare well with aircraft measurements with little bias. However, satellite
observations tend to overestimate the size of the cloud droplets, when clouds are not precipitating or

are lightly precipitating, while for clouds with heavier precipitation, the satellite observations tend to
underestimate the size of the cloud droplets.

1. Introduction

The Southern Ocean (SO) is one of the cloudiest regions in the world, in large part because of extensive
stratiform marine boundary layer (MBL) cloud (Mace et al., 2009, 2010). Compared against satellite data-
sets, the climate models and present-day reanalysis products predict too little MBL cloud over the SO, espe-
cially in the cold sectors of SO cyclones (Bodas-Salcedo et al., 2014; Naud et al., 2014; Williams et al., 2013).
The insufficient cloud cover causes significant biases in shortwave radiative fluxes over the SO (Schneider
& Reusch, 2016; Trenberth & Fasullo, 2010) and contributes to biases in the simulated surface air and sea
surface temperatures (Bodas-Salcedo et al., 2016; Sallée et al., 2013). In turn, these model biases have im-
pacts on regional and global circulations, influencing the position and strength of the Southern Hemisphere

KANG ET AL.

1 of 30


https://orcid.org/0000-0001-6121-860X
https://orcid.org/0000-0002-5218-6762
https://orcid.org/0000-0002-7858-8532
https://doi.org/10.1029/2020EA001397
https://doi.org/10.1029/2020EA001397
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020EA001397&domain=pdf&date_stamp=2021-03-15

A7
ra\%“1%
ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2020EA001397

mid-latitude jet, the Inter-Tropical Convergence Zone, and cross-hemispheric energy transports (Ceppi
et al, 2012, 2013; Hwang & Frierson, 2013; Kay et al., 2016).

Cloud properties, such as clouds effective radius (r,), optical depth (OD, 7), liquid water path (LWP), and
cloud droplet number concentration (INy) are central in understanding the physics of MBL clouds and their
radiative effect. Visible and infrared observations from geostationary and polar-orbiting satellites have long
been used to retrieve MBL cloud microphysical characteristics and for the study of SO clouds, cloud-aerosol
interactions, and for the evaluation of global models (e.g., Bodas-Salcedo et al., 2016; Haynes et al., 2011;
McCoy et al., 2015; Meskhidze & Nenes, 2006; Vergara-Temprado et al., 2018). However, the accuracy of sat-
ellite retrievals over the SO is questionable, as satellite retrievals have been infrequently evaluated against in
situ measurements in this region, due in part to the remoteness of the region and a paucity of in situ meas-
urements. The validation, empirical relationships, and Apriori data used in satellite retrieval algorithms
are mostly based on data collected in the Northern Hemisphere and might not be applicable over the SO.
In general, low-level SO clouds are thought to be more frequently multilayered, mixed-phase, and contain
more supercooled liquid water than in the Northern Hemisphere, conditions which pose significant chal-
lenges for satellite retrievals (Huang et al., 2014; Morrison et al., 2011).

A direct evaluation of satellite cloud retrievals can be made using in situ measurements from aircraft, and
many such studies have been done over the years, including in recent years for the Southeast Pacific (King
et al., 2013; Min et al., 2012; Painemal & Zuidema, 2011) and Northeastern Pacific (Noble & Hudson, 2015).
There have been a few cases where in situ measurements have been collected from aircraft over the SO.
Four transects over the SO were made during the HIAPER Pole-to-Pole Observations (HIPPO) experiment
(Wofsy, 2011). HIPPO confirmed the existence of extensive supercooled liquid water in the region, but col-
lected insufficient data to directly evaluate coincident satellite microphysical retrievals. More recently, in
situ measurements from 20 flights were made over the SO to the west and south of Tasmania (43-45°S, 145-
148°E) during the austral winter between 2013 and 2015 by Ahn et al. (2017). These flights focused on the
microphysical properties of low-level clouds, which were found to be commonly precipitating, patchy, and
mixed-phase. Ahn et al. (2018, hereafter A18) compared in situ observations from 11 of these flights to cloud
products from Moderate Resolution Imaging Spectroradiometer (MODIS) and found an overestimation of r,
in comparison with in situ measurements. In addition to, providing estimates of the biases of satellite cloud
retrievals, these evaluation studies also provide insights on the error sources, which can be further used to
improve the satellite retrieval algorithm. Satellite retrievals invoke assumptions about cloud structure and
microphysics, and errors arise when these assumptions are violated in the real world. Some error sources
explored by past studies include but not limited to: (1) subpixel inhomogeneity and three-dimensional ra-
diative effects, that is, clouds are not plane-parallel and the scattering of light from clouds is frequently not
well modeled using one-dimensional radiative transfer model as is assumed in the retrieval (e.g., Marshak
et al., 2006; Zhang et al., 2012); (2) assumptions about the shape of the cloud droplet size distribution (DSD,
e.g., Hansen, 1971; Platnick et al., 2017); (3) assumption about the cloud vertical structure (e.g., Bennartz
et al., 2007; Borg & Bennartz, 2007; Wood & Hartmann, 2006) and; (4) satellite viewing geometry and solar
zenith angle (e.g., Grosvenor & Wood, 2014; Maddux et al., 2010). Moreover, the in situ measurements that
are used to evaluate satellite retrievals also have uncertainties.

More recently, SO Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) collected airborne
in situ measurements over the SO (McFarquhar et al., 2020). During SOCRATES, NSF deployed the Gulf-
stream-V (GV) research aircraft to Hobart, Tasmania from January to February of 2018. From Hobart, the GV
flew a total of 15 research flights over the SO as far as 62°S, sampling aerosol, cloud and precipitation prop-
erties in situ, as well as remotely with a W-band cloud radar and high spectral resolution lidar. SOCRATES
provides an opportunity to evaluate satellite cloud products and retrieval assumptions during the austral
summer over the SO. In this study, we expand upon the earlier evaluations of cloud properties from sat-
ellites and evaluate low altitude cloud microphysical properties retrieved from satellites using airborne in
situ measurements collected during SOCRATES. After describing the datasets and methods in Section 2; in
Section 3, we compare the satellite retrievals of effective radius (r,), OD (), LWP, and cloud droplet number
concentration (N,) from three datasets that are based on observations from MODIS (Platnick et al., 2003)
and Himawari-8 (geostationary weather satellite; Bessho et al., 2016) with in situ measurements. This is
followed by Section 4, a more detailed examination of the retrieval assumptions and other factors that are

KANG ET AL.

2 of 30



V od |
AGU

Earth and Space Science 10.1029/2020EA001397
138°E 144°E 150°E 156°E 162°E
=7 7
36°S © Profiles collocated with MODIS only 36°S
@ Profiles collocated with Himawari-8 only
@ Profiles collocated with both MODIS & Himawari-8
42°S 42°S
48°S 48°S
54°S 54°S
60°S 60°S
DS

138°E 144°E 150°E 156°E 162°E

Figure 1. Gulfstream-V aircraft trajectory (black lines) during the Southern Ocean Cloud Radiation Aerosol Transport
Experimental Study. Clouds vertical profiles collocated with MODIS retrievals are marked by red dots, Himawai-8
retrievals by blue dots, and both satellites by purple circles.

responsible for differences between the satellite retrievals and in situ observations. Discussion and conclud-
ing remarks are given in Sections 5 and Section 6, respectively.

SOCRATES specifically targeted stratocumulus, primarily overcast or closed-cell stratocumulus, that reside
in the cold sectors of the low-pressure system, and the SOCRATES data do not represent a meteorologically
unbiased set of conditions. Nonetheless, stratocumulus clouds are a significant fraction of all SO low clouds
(Wood, 2012), and our focus on these clouds during SOCRATES results from a recognition that these clouds
lay at the heart of difficulties that many models are having in simulating SO climate. Based on the results
from other regions, one expects that satellite retrievals for these relatively spatially homogenous clouds
should work well (e.g., Painemal & Zuidema, 2011; hereafter PZ11). In Section 5, we discuss conditional
sampling issues and how results obtained here are related to previous evaluation studies over the Pacific
and over the SO (e.g., A18; Zhao et al., 2020) in more detail.

2. Data and Methods
2.1. SOCRATES Flights and In Situ Measurements

During SOCRATES, the GV was equipped with a suite of instruments measuring aerosol, cloud, and ther-
modynamic variables. A total of 15 research flights were flown over the SO, which are marked by the black
lines in Figure 1. Typically, the GV sampled clouds with several modules in each flight, which consists of a
combination of ramp ascents and descents, as well as level (fixed altitude) legs above, below, and in cloud.
Here, we focus on vertical profiles of cloud microphysical properties constructed from flight segments,
where the aircraft completely ascended or descended through low-altitude clouds, and multiple low-level
cloud layers were occasionally present.
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Table 1
In Situ Instruments
Instruments Method Measurements References
Cloud Droplet Probe (CDP) Forward scattered light ~Droplet diameter within 2-50 pum, 30 bins (1 um Lance et al. (2010); https://data.eol.
bin-width for sizes < 14 um; 2 um bin-width ucar.edu/dataset/552.002
for sizes >=16 um)
Two-Dimensional Stereo probe (2DS) Two-dimensional image Droplet diameter within 10-1,280 pm (10 um Wu and McFarquhar (2019); https://
bin-width) data.eol.ucar.edu/dataset/552.047

Two-Dimensional Cloud optical array Two-dimensional image Droplet diameter within 37.5-1,612.5 um, 64 bins Wu and McFarquhar (2019) https://

probe (2DC)

(25 um bin-width) data.eol.ucar.edu/dataset/552.046

Note. All the data are available at 1 Hz temporal resolution. CDP data are included in the SOCRATES Navigation, State Parameter, and Microphysics Flight-
Level Data, and this study uses version 1.3 of this data set. The version number of 2DC and 2DS is 1.1. 2DC data are not available for research flight RF02.

Abbreviations: CDP, Cloud Droplet Probe, 2DC, Two-Dimensional Cloud optical array probe 2DC; 2DS, Two-Dimensional Stereo probe.

This study uses the cloud microphysical properties measured by the particle-sizing instruments, as listed
in Table 1. SOCRATES GV data are available via the Earth Observing Laboratory data archive (https://data.
eol.ucar.edu/project/552), with links to specific datasets given in Table 1. Here we rely primarily on (i) the
Cloud Droplet Probe (CDP): an optical instrument that measures the concentration of cloud droplets in
30 size bins with diameters ranging from 2-50 um, by measuring the light forward scattered by individual
cloud droplets, as they pass through a laser beam oriented across the aircraft flight direction, (ii) the two-di-
mensional stereo (2DS) probe: an optical array probe that records the images of hydrometeors using two or-
thogonal laser beams that cross in the middle of the sample volume and measures particle size based on the
shadow (blockage of the lidar beam) for particle diameters (maximum dimension if irregular) ranging from
about 10 to 1,280 um with a 10 um bin-width as they cross the optical array, and (iii) the two-dimensional
cloud (2DC) probe: an optical array probe that measures hydrometeors ranging from 37.5 to 1612.5 pm with
25 wm bin-width.

We combined DSD from the CDP with that from the 2DS (or 2DC) to calculate cloud microphysical
properties. The in situ effective radius is calculated from the merged DSD from all the CDP bins (which
includes particles up to 50 um) and 2DS bins larger than 50 um, the same approach as used by King
et al. (2013). More details and uncertainties associated with instruments and the spectra-merging process-
es are discussed in Section 4.4. Specifically, r, is computed as the ratio of the third to the second moment
of a DSD

Zi]\;lrﬁ "n;

sl n

where r, is the effective radius at a given time, r; the droplet radius of each bin, »; the droplet concentration
(#/cm?) per bin, and N the total number of the bins. Cloud droplet number concentration (N,) is computed
as:

Nd = Zn,’ (2)

B = X aQ.r’n; ®3)

where the extinction efficiency Q, is assumed to be 2.

Liquid water content (LWC) is calculated as:
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Figure 2. In situ profiles (single-layered) of (a) effective radius (r.), (b) liquid water content (LWC), and (c) droplet number concentration (N,;) normalized with
respect to position within the cloud such that 1 indicates cloud top and 0 indicates cloud base. The thick black solid line is the mean of all the profiles. Purple
shadings indicate the standard error. Spikes in the effective radius plot, in particular, occur when the Cloud Droplet Probe (CDP) records only a few small

(~10 um) cloud-size droplets, but some precipitation size particles are present from two-dimensional stereo (2DS).

4 N
LWC = ;ﬂ'pw >rion, 4
i=l

where the o, is the density of liquid water. We calculate LWP by integrating LWC from the cloud base to
the cloud top. Following Wood et al. (2011) and PZ11, cloud top and cloud base are defined as the highest
and lowest altitude with LWC greater than 0.03 gm™. The calculated value of LWP is not sensitive to this
threshold.

In order to identify the cases (vertical profiles) where the precipitation is present, we calculate LWP for the
droplets with diameters larger than 50 um from 2DS probe (i.e., the vertically integrated precipitation lig-
uid water path), which we will denote as precipitation water path (PWP). Following the definition of King
et al. (2013), clouds profiles are categorized into three groups: nonprecipitating (PWP < 2 g m™?), lightly
precipitating (2 gm™ < PWP <10 g m ™), or heavily precipitating (PWP > 10 g m™>). The phase of the clouds
is determined using the ice phase fraction .. (Korolev et al., 2017), defined as i, = IWP/(IWP + LWP),
where ice water path (IWP) is the vertical integral of ice water content (IWC) obtained from the 2DS and
only includes ice particles >200 um, as derived by Wu and McFarquhar (2019). Later in the article, we will
discuss the implications of this restriction.

Figure 2 shows the verticals profiles of in situ r,, LWC, and Ny as a function of the normalized height (posi-
tion within cloud normalized such that 1 is cloud top and 0 is cloud base). Here only profiles of single-lay-
ered clouds are shown (meaning profiles with multiple low-level clouds layers are not included). The thin
lines are from individual aircraft penetrations (dots shown in Figure 1), while the thick line and purple
shading shows the average profile and standard error, respectively. The standard error is the standard devi-
ation divided by the square root of the number of profiles and is provided to give a sense for the one-sigma
(66%) uncertainty in the average.

On average, both r, and LWC increase roughly linearly with height, while Ny remains relatively constant
with height, which is what one expects for cloud under an adiabatic assumption. We note that while 7, in-
creases linearly with height, the value of r, is not especially small at cloud base, and the total change in r,
(on average) is only a few microns. LWC near the cloud top deviates from a linear increasing LWC, which
may be due to entrainment, but could also be due to the aircraft passing through clouds with a horizontally
varying cloud top height or cases where a thin-cloud-layer exists above a thicker-layer that is not resolved by
the aircraft sampling. The data used here are sampled at 1 Hz, which is roughly equivalent to a horizontal
sampling distance of 137 m, while ascents and descents rates were typical about 5-7 m s, yielding a verti-
cal resolution of about 6 m. The thickness of cloud layers varied from 88 to 2,421 m, with multilayer clouds
often featuring multiple thin layers. The light lines in Figure 2 shows that individual aircraft penetrations
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do not always show an adiabatic-like profile, but of course the aircraft profiles we are creating are not
necessarily sampling individual updrafts or downdrafts within a cloud, and any individual profile does not
represent the actual profile of cloud properties at any specific location. Nonetheless, the horizontal distance
sampled by the aircraft is roughly consistent with the 1-to-few pixel size being used in the satellite retrievals.

In Section 3, we compare satellite retrieved r,, 7, LWP, and N, with in situ values from individual profiles.
In that analysis, the in situ cloud drop size distribution are first aggregated from the top of the cloud to the
point where the OD reaches one (unless noted otherwise), and average DSD are used to compute r,. Since
both 7and LWP are integrated quantity, they are computed over the entire cloud layer by vertically integrat-
ing LWC and p, respectively. Despite of the variability in the cloud field, this approach is still reasonable to
estimate the mean 7 and LWP of the cloud field. The mean value of N for each profile is used (rather than
the value near cloud top) to reduce sampling uncertainty. In the plots in Section 3, the variability of the in
situ r, is shown by the standard deviations of the values over the top 1 OD of the cloud, and the variability
of the in situ Ny is shown by the standard deviations of the values taken over the cloud profile. In order to
estimate the uncertainty associated with the LWP and 7, we fit a set of lines to individual profiles that bound
the vertical variations in LWC and £, with details given in the supporting information.

2.2. Satellite Products and Collocation

MODIS level 2 Collection 6.1 cloud products from Aqua platform (MYDO06) are evaluated in this study.
Detailed descriptions for the MODIS cloud product can be found in Platnick et al. (2017). Data are available
at https://ladsweb.modaps.eosdis.nasa.gov/. The product includes cloud microphysical information with
1-km resolution at nadir (directly below the satellite) based on a bi-spectral method using a non-absorbing
visible-wavelength channel and one absorbing shortwave infrared channel, following the approach devel-
oped by T. Nakajima and King (1990). MODIS provides three sets of retrievals, based on three different
absorbing channels at 1.6, 2.1, and 3.7 um. During the evaluation, we mainly focus on the retrievals using
the 3.7 um channel since r, retrievals from this band are expected to be less influenced by three-dimensional
effects (more on this later in the document) and often show the best agreement with the in situ measure-
ments (e.g., King et al., 2013). Comparisons between 1.6 and 2.1 wm are also discussed in Section 3.2. In
general, the comparison of satellite retrieved r, and in situ measured r, requires consideration of the vertical
penetration of the photons into the cloud. As reported in the previous studies (King et al., 2013; T. Y. Na-
kajima et al., 2010; Platnick, 2000; Zhang & Platnick, 2011), one expects that r, retrieval at 3.7 pm is more
sensitive to the cloud droplets near cloud top due to the stronger absorption (smaller penetration depth),
while r, retrievals at 1.6 and 2.1 um are more representative for the droplets deeper into the clouds due to the
relatively weaker absorption (larger penetration depth). Thus (as described in Section 2.1), we calculated in
situ cloud top r, by averaging the cloud DSD over 1 OD at the top of the cloud. We also have examined the
impact of using a threshold of two and three ODs, but found this had little effect on the results. In addition
to MYDO06 product, we also used MODIS level 3 MYDO03 product for the geolocation fields, and MODIS
level-1B data set MYD02QKM for the calibrated radiances to calculate the heterogeneity index (Section 4.1).

In addition to, the operational MODIS retrievals, we also evaluated the CERES-MODIS Cloud Product Re-
trieval Edition 4 (Minnis et al., 2020; Trepte et al., 2019). This retrieval product is produced by the CERES
team at NASA Langley and is used in generating CERES radiative flux products (Kato et al., 2013). Although
CERES-MODIS, pixel level data are not publicly available (publicly available data are limited to gridded
level 3 products), we include in the supplementary material (Table S2) the mean of the CERES-MODIS
retrievals collocated with the aircraft vertical profiles, which is used in all of the analysis presented here.
While the microphysical properties of low clouds are also based on the bi-spectral technique, the underlying
codes were developed independently and apply different techniques to account for absorption due to above
cloud water vapor and different criteria to identify low clouds and when to apply the bi-spectral retrieval.
CERES-MODIS algorithm processes MODIS radiance data with every other scanline and every 4th pixel
from the original MODIS 1-km resolution (i.e., 339 pixels per scanline, instead of 1,354 pixels).

This study also evaluates cloud retrievals produced by the NASA SatCORPS group based on Himawari-8 ob-
servations (Smith and Minnis, 2018; Minnis et al., 2020; Trepte et al., 2019). Data are available at https://data.
eol.ucar.edu/dataset/552.027. Himawari-8 is a Japanese geostationary meteorological satellite launched in
October 2014. The SATCORPS Himawari-8 retrievals have 2-km resolution at nadir and are available every
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10-min during GV aircraft flight dates. Details of the cloud property retrieval methodology are given in
Minnis et al. (2011, 2008) and largely follow the approach used for CERES-MODIS and use near-infrared
imagery at 3.9 um.

All three satellite products provide retrievals for r, and 7, based on one-dimensionalradiative transfer calcu-
lations and the satellite retrieved r, and 7 can be used to derive LWP. The formulation varies depending on
the assumed vertical structure (profile shape) of the cloud LWC and r,. For a vertically homogeneous cloud
having a constant LWC and r, with altitude (Borg & Bennartz, 2007), one obtains:

LWp = 22

30

(4

T-r, (5)

while for an adiabatically stratified cloud having a linearly increasing LWC and r, with altitude (Wood &
Hartmann, 2006), one obtains:

LWP = lgﬂr r, )

e

where P, is the density of water, and again the extinction efficiency Q, is assumed to be 2. These two expres-
sions differ by a constant factor, with the vertically homogenous assumption giving a 20% larger LWP. Both
MODIS and CERES-MODIS operational algorithm calculate and provide LWP based on Equation 5, while
SatCORPS Himawari-8 data set includes LWP calculated with the Equation 6. Previous studies (e.g., King
et al., 2013) have found that LWP computed using the vertically homogeneous formulation is usually pos-
itively biased for marine stratocumulus, which is not surprising given the overall adiabatic-like profiles of
oceanic boundary layer clouds (Seethala & Horvath, 2010). We likewise find that this assumption provides
a better match with the observations, and in the later discussion use Equation 6 assuming adiabatically
stratified clouds except where specifically stated otherwise.

Although, Ny is not provided in any of the three satellite products, it can likewise be derived from passive
satellite observations using r, and 7 assuming a one-dimensional cloud and following the assumption that
clouds have an adiabatic-like profile, in which LWC increase linearly from cloud base to cloud top, given by
(Bennartz, 2007; Grosvenor et al., 2018):

d

U2 1 12
\/g [f::ldcm T =C T (7)

= 52 T
2ﬂ'k erw re re

which is basically the product of the ratio of 7'/> and r,”’* and a constant C. The constant C is determined by

several parameters, with Q, ~2, and k, c,, and f,q given by:

3
s

¢, = pL—Cf’(F,n(T,P) -r,) ©
LWP
fad = LWPad (10)

The k parameter is a measure of the droplet spectrum width and is given by the third power of the ratio

3LWC

1/3
. k is often assumed to be a constant with a value
47Z'p wN d

between volume radius (r,) to r,, where r, = [

of 0.8 in retrievals. Later in this study, we calculate k values using the in situ r, and r, values for the cloud
profiles. ¢, is the rate of increase of LWC with height (i.e., the condensation rate), which is a weak function
of temperature and pressure, and is often assumed to be a constant ranges from 1 to 2.5 gm™ km™" (Al-
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Table 2
Summary of the Statistics for In Situ Measurements Used in the Satellite Evaluation
Variable N Mean Standard error
T 53(21,18,14) 12.6 (6.7,19.1,13.2) 1.3(1.5,2.4,2.1)
LWP [g- m~%] 53 (21,18,14) 84.8 (34.7,120.6,114.0) 9.1(7.0,13.3,18.4)
Ny [#/Cm_g] 53(21,18,14) 86.8 (91.4,109.7,50.3) 7.5(12.2,12.8,7.9)
r(um) 53(21,18,14) 11.4 (8.7,11.0,16.0) 0.6 (0.4,0.4,1.3)

Notes. N is the number of the data points. For each cell, value in front of parentheses is the statistics for all the
collocated profiles, while the first, second, and third values are that for nonprecipitating, lightly precipitating, and
heavily precipitating cases, respectively.

brecht et al., 1990; Min et al., 2012). Again, later in this study, we examine the mean and variability of c,.
¢, = 1,004 J K" kg ™" is the specific heat of dry air at constant pressure, L, = 2.5 X 10° J kg™" is the latent heat
of vapourization, I'y and T',, are the dry and moist adiabatic lapse rate, respectively. f,q4 is called the adiabatic-
ity factor and describes how close the observed cloud is to a true adiabatic cloud layer (while still assuming
the liquid water content increases linearly with height). Typically, this factor is assumed to be a constant 0.8
(e.g., Bennartz et al., 2007). Again, later in this study, we calculate f,4 values for the cloud profiles.

In comparing satellite retrievals with in situ measurements, a key step is collocation. We used the coordi-
nates of the aircraft at the time when the aircraft crosses cloud top and found the corresponding satellite
pixels surround this location. Here, we averaged the satellite pixels around the location of the in situ pro-
file within a 5 pixels X 5 pixels box for MODIS, 3 pixels X 3 pixels box for CERES-MODIS, and 3 pixels X 3
pixels box for Himawari-8. Changing the size of the averaging box by a factor of 2 has a negligible impact
on the results. While in most cases, all of the satellite retrievals within these boxes correctly identified
the cloud as low-level (<3 km) liquid clouds; in a few cases, there were some scattered high clouds in the
vicinity. In our box averages, we include only those satellite pixels which are identified as low-level lig-
uid clouds by the retrieval algorithms. We did reject a few cases (match up points) because the apparent
cloud-top-height (CTH) did not match the in situ aircraft measurement within 1 km (satellite reported
CTH > 3 km). While there are not a sufficient number of the poor CTH cases to quantify errors for these
cases, we note that all of the satellite imager retrievals assume single layer clouds. Situations in which
an optically thin high-altitude (ice) clouds overlays an optically thicker low-altitude (liquid) clouds is a
long-standing problem for imager-based retrievals, but filtering for CTH < 3 km appears to be satisfactory
for the present analysis.

The in situ aircraft measurements and satellite retrievals do not necessarily occur simultaneously. In
our analysis, we account for the time offset by adjusting the box location for cloud advection, and we
set a maximum time offset between the in situ and satellite data to be 1 h for MODIS (and CERES-
MODIS) and 10 min for Himawari-8. Specifically, we account for the distance clouds traveled by
averaging the in situ measured wind speed near the cloud top, an approach which is similar to that
employed by PZ11.

After the above filtering and processing, there remained 20 in situ cloud profiles (from eight flights) closely
aligned with Aqua MODIS overpasses, and 51 profiles (from 14 flights) closely aligned with Himawari-8
products. In total, 53 in situ cloud profiles are used in this study and statistics are provided in Table 2. The
circles marked on Figure 1 show the location of these profiles, and Table S1 in the supporting information
lists in situ properties for each profile.

3. In Situ and Satellite Retrievals Comparisons

In this section, satellite retrievals from MODIS, CERES-MODIS, and Himawari-8 are compared with the
in situ measurements of t, r,, LWP, and N,. Statistics summarizing the comparison between the in situ and
three satellite products are provided in Tables 3-5, respectively. We begin the analysis with 7 and r,, after
which we focus on LWP and Ny, which are derived from 7 and r..
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;‘31;11:12}3) of the Comparison Statistics Between MODIS Retrievals and In Situ Measurements

Variable N R Mean bias Mean Standard error
T 20(6,7,7) 0.91 0.1 (1.0,—0.6,0.1) 13.8 (5.3,20.7,14.2) 1.0(1.6,1.5,1.8)
LWP [g- m?| 20(6,7,7) 0.83 1.6 (6.1,0.2,—0.8) 96.1 (30.3,138.7,109.8) 8.5(9.1,9.4,20.9)
LWPy; [g - m—z] 20 (6,7,7) 0.82 16.1 (10.4,20.9,16.1) 110.5 (34.6,159.4,126.7) 8.8(9.4,10.1,21.3)
Ny [#/cm ™3] 20 (6,7,7) 0.68 —9.1(7.2,—32.8,0.6) 76.9 (62.9,100.8,65.0) 8.3(8.1,15.4,12.0)
Nt obs meank_jaa [#/cm™] 20 (6,7,7) 0.68 —8.1(8.0,—31.5,1.4) 77.8 (63.7,102.0,65.8) 8.3(8.2,15.4,12.2)
N obs.cbe k_jud [#/cm™] 20 (6,7,7) 0.78 —7.2(0.8,—23.3,2.2) 78.8 (56.5,110.2,66.5) 7.2(10.1,10.3,13.5)
Te37 [m] 20 (6,7,7) 0.9 0.0 (1.0,0.7,—1.6) 12.5(10.4,11.9,15.0) 0.5(0.3,0.3,1.0)
Fern [m] 20(6,7,7) 0.83 0.7 (2.4,1.0,—1.1) 13.2(11.9,12.2,15.4) 0.6 (1.1,0.5,0.7)
Fere [um] 20(6,7,7) 0.84 —0.1(0.8,0.6, —1.6) 12.5(10.3,11.8,15.0) 0.6 (1.1,0.4,1.0)

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.
Notes. N is the number of the data points. R is the correlation coefficient. For each cell, value in front of parentheses is the statistics for all the collocated profiles,
while the first, second, and third value are that for nonprecipitating, lightly precipitating, and heavily precipitating cases, respectively. Liquid water content

10
(LWP) is calculated assuming adiabatically stratified cloud with equation LWP = —Pu

4 e
Py T - 1. Satellite Ny is retrieved with typically assumed constants (k = 0.8, and f,q = 0.8), Nd_obs-mean-k_fad is

7 - 1, for the satellite retrievals. LWPy, is calculated assuming vertically

homogeneous cloud with equation LWP =
€

retrieved by setting k and f,4 to the mean of the in situ values, and Nd_obs_cbc_k_fad by using case-by-case in situ value of k and f,4. During the Nj retrieval,

condensation rate(cy,) is calculated using the satellite-retrieved cloud top temperature and pressure.

3.1. Cloud Optical Depth

Figure 3 compares the in situ derived 7 with satellite-retrieved 7. The vertical bars show the standard devia-
tion of 7 for the pixels within the collocated satellite match-up box that is used for averaging (see Section 2).
In many cases, the vertical bars exceed five, showing that there is typically a large horizontal variability in T
on the satellite pixel-scale. MODIS 73 ; correlates well with in situ values (R = 0.91), having a mean bias of
only 0.1. CERES-MODIS 7 also correlates wells, R = 0.91, having a mean bias of 1.5, which is not statistically
different from zero at a 95% confidence level (as the one-sigma uncertainty in the mean, that is the standard
error, is about 1, while bias that is 2 times smaller than the standard error is not significant at 95% level of
confidence). Himawari-8 7 is not well correlated with R = 0.79 and a mean bias of 2.6, which is nominally
significant at 95% confidence. However, the Himawari-8 data yield about the same as the mean bias as
CERES-MODIS, when restricted the 18 cases common to all three datasets (Figure 3d), with R = 0.86 and a
mean bias = 1.88. Thus, the overall lower performance suggested by the full set of Himawari-8 match-ups
is due to having more difficult cases. In particular, there are more cases with multiple low-level cloud layers
(that is, multiple layers below 3 km; gray filled dots) in the Himawari-8 set, and in general, cases which are
more spatially variable (notice the larger vertical uncertainty bars in panel c). As will be discussed further

:Z:::;:ry of the Comparison Statistics Between CERES-MODIS Retrievals and In Situ Measurements

Variable N R Mean bias Mean Standard error

T 20(6,7,7) 091 1.5(1.8,1.8,0.9) 15.2(6.1,23.2,15.1) 0.9 (0.9,1.7,1.8)
LWP [g- m™?] 20(6,7,7) 079 12.2(12.2,25.3,—0.7) 106.7 (36.4,163.8,109.8) 9.7 (5.4,13.2,22.9)
LWP,; [g - m~?] 20(6,7,7) 079  33.6(19.4,58.0,21.3) 128.0 (43.6,196.5,131.8)  10.9 (5.2,14.7,24.7)
Ny [#/cm™] 20(6,7,7) 049 —7.9(3.7,—41.5,15.7) 77.9 (59.4,92.0,79.7) 10.7 (3.8,17.3,19.0)
Nl obs:mean-ic.fud [#/cm™]  20(6,7,7) 0.49 —7.0(4.4,—40.4,16.7) 78.9 (60.1,93.1,80.7) 10.7 (3.8,17.3,19.2)
Nt obs cbe kfad [#/cm™]  20(6,7,7)  0.59 —5.9(=3.1,-33.4,19.1)  79.9(52.6,100.2,83.1)  10.1(6.0,12.4,21.2)
r[um] 20(6,7,7) 078  0.2(1.5,1.5-2.2) 12.7(10.9,12.6,14.3) 0.6 (0.3,0.2,1.3)

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.
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Table 5

Summary of the Comparison Statistics Between SatCORPS Himawari-8 Retrievals and In Situ Measurements

Variable N R Mean bias Mean Standard error

T 51(19,18,14) 0.79  2.6(4.0,2.1,1.4) 15.7 (11.1,21.2,14.7) 1.0 (1.8,1.6,1.9)
LWP [g-m~?] 51(19,18,14) 0.64 16.1(21.8,21.1,2.0)  103.7(58.7,141.7,116.1) 8.7 (9.4,11.4,24.5)
LWP,;, [g-m_z] 51(19,18,14) 0.64  36.9(33.6,49.4,25.2) 124.5(70.5,170.0,139.3) 10.1 (11.9,13.3,28.0)
Ny [#/cm™?] 51(19,18,14) 0.77 —1.6(6.3,—-17.7,8.5) 87.0(102.9,92.1,58.8) 5.1(9.3,7.0,8.1)

Nt obsmeant fud [#/cm™]  51(19,18,14) 0.77 —0.5(7.5-16.59.2)  88.0(104.2,93.2,59.5)  5.1(9.4,6.9,8.2)

51(19,18,14) 077  0.1(4.4,—13.0,11.2) 88.7(101.1,96.7,61.4) 5.3 (10.8,5.3,8.9)

N obs cbe k_jad [#/cm ]

re (um) 51(19,18,14) 0.84  1.2(1.4,1.7,0.3) 12.3(9.9,12.4,15.6) 0.3(0.4,0.3,0.8)
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Figure 3. Comparison of 7 from in situ measurements (CDP+2DS) and satellite retrievals for each case (aircraft
vertical profile) based on (a) Moderate Resolution Imaging Spectroradiometer (MODIS; MYDO06 3.7 um channel), (b)
CERES-MODIS, (c) Himawari-8, and (d) for all three retrievals limited to the cases common to all three datasets. The
vertical uncertainty bars indicate the standard deviation of 7 within a box centered on the aircraft after correcting for
advection (see text in Section 2). The horizontal uncertainty bars are estimated by fitting a set of lines to individual
profiles that bound the vertical variations in 8. Black, blue, and red open circles indicate cases that are nonprecipitating
(PWP < 2 gm ), lightly precipitating (2 g m~> < PWP <10 gm™?), or heavily precipitating (PWP > 10 gm™?),
respectively. Gray filled dots indicate those in situ profiles when there are multiple low-level cloud layers (cloud top of
all layers is less than 3 km). For text in panel (d), R indicates the correlation coefficient and B indicates the mean bias
(satellite—in situ) for each data set (of the specified color).
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Figure 4. Comparison of 7, from in situ measurements (CDP+2DS) and r, retrieved by (a) MODIS 3.7 um channel,
(b) CERES-MODIS, (c) Himawari-8, and (d) limited to the cases common to all three data sets. Symbols, vertical
uncertainty bars, and text in panel (d) are the same as Figure 3. The horizontal uncertainty bars are the standard
deviation near cloud top (see Section 2).

in Section 5, a mean bias near 2.5 with a one-sigma certainty of near 1 is reasonably good performance
and is consistent with expectations based on previous studies. Tables 3-5 also lists the statistics for cases in
different precipitation regimes (nonprecipitating, lightly precipitating, and heavily precipitating), and we
will discuss these results in more detail in the context of the LWP retrieval in Section 3.3, after examining
the effective radius.

3.2. Effective Radius

The comparison between satellite-derived r, and in situ r, is shown in Figure 4. Here, the in situ r, is derived
from the merged spectrum of CDP and 2DS. MODIS r.; ; correlates well with in situ 7, (R = 0.9) and has a
mean bias of 0.0 um. In spite of being for the same set of cases, perhaps surprisingly the correlation between
CERES-MODIS and in situ r, is not quite as good as that of MODIS, with R = 0.78. Nonetheless, the mean
bias of CERES r, is small at 0.2 um and not significantly different from zero at the 95% level of confidence.
As for Himawari-8, the overall results are similarly good with the correlation between retrieved r, and in situ
1. being 0.84, though the retrieved r, are generally larger than in situ r,, with a mean bias of 1.2 um (which is
significantly different from zero at 95% level of confidence, assuming the data to be normally distribution).
However, as was the case for OD, the difference in the Himawari-8 bias is due to additional cases analyzed,
and the bias reduces to —0.29 um when restricted to the set of cases common to all three retrievals (see
Figure 4d).
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Figure 5. Satellite r, retrieval errors in (a) MODIS, (b) CERES-MODIS, (c) Himawari-8 as a function of vertically integrated precipitation water path (PWP).
Symbols are same as that in Figure 3, with two vertical dashed line indicating the thresholds of 2 and 10 g m™ used to define non- and lightly-precipitating

categories.

As shown by the red symbols in Figure 4, larger negative errors are associated with some heavily precip-
itating cases (PWP > 10 gm™?), while most non- and lightly precipitating cases have a small positive bias.
To demonstrate further how the error in 7, retrieval is related to the presence of precipitation, in Figure 5
the r, retrieval error is plotted as a function of PWP. For MODIS r, retrievals (panel a), there is a large neg-
ative bias associated with four cases, all of which have a PWP greater than 12 g m™>. The same four cases
are also negatively biased in CERES-MODIS and Himawari-8 retrievals. When considering all cases, there
is more variability in the Himawari-8 retrieval error when PWP is greater than about 10 g m™* than when
PWP is less than about 10 g m™> The mean bias of Himawari-8 r, for these heavily precipitating cases is
small (—0.3 um), while the bias for non- and lightly precipitation is 1.4 um. When restricted to the 18 cases
common to all three datasets, the mean bias for the non- and lightly precipitating cases is similar and sta-
tistically significant in all three datasets, with values of 0.78, 1.52, and 0.62 um for MODIS, CERES-MODIS,
and Himawari-8 r, retrievals, respectively. The presence of precipitation is clearly an important factor, and
this will be explored in greater depth in Section 4.

As mentioned in Section 2.2, MODIS r, retrievals are also available based on observations at 1.6 um and
2.1 um in addition to 3.7 um. The difference in the three MODIS r, retrievals is influenced by the different
absorption in different bands, with the photon penetration depth being largest at 1.6 um and smallest at
3.7 um. Figure 6a shows a comparison between all three MODIS r, retrievals with in situ r,. Both r,; and
I correlate well with in situ r,, with R = 0.83 and R = 0.84, respectively, being slightly smaller than that
of re37 (R = 0.91). As is also shown in Figure 6, there is one case (marked by cross) with an unusually large
difference among the three channels. This difference is likely due to the inhomogeneity of cloud scene, as
will be discussed in Section 4.1. When this case is excluded, the mean bias in r.,; and r.; ¢ (taken across all
cases) is only 0.30 um and 0.17 um, respectively. However, as the case for r.; 7, there is marked variation with
amount of precipitation. Similar to Figure 5, circles in Figures 6¢ and 6d show retrieval error of re;; and re; ¢
as a function of PWP. Overall, a positive bias still exists for non- and lightly precipitating cases, and the four
cases associated with large negative bias in r.;; (Figure 5a) continue to show a negative bias in re,;, though
to a smaller extent.

To compare the MODIS r, retrievals from different wavelengths, Figure 6b shows the difference between re; ;
and re,; (or o1 6) as a function of PWP. In general, 1, is larger than re;; with most points (orange circles)
having a positive difference (located above the zero line), and this positive difference becomes more obvious
for the heavily precipitating clouds. A similar positive difference is found for re; ¢-Te3 7, With re,; typically
being closer to r;7 than re; 6. As the amount of precipitation tends to increase with depth into the cloud,
the increase in particle size for the precipitating cases is consistent with the expectation since photons at
2.1 um can penetrate deeper into the cloud than at 3.7 um. This does not explain, however, why re,; Or Ie; 6
is larger for the nonprecipitating cases (where one might expect the opposite behavior), suggesting that
factors other than vertical variation, penetration depth, and precipitation are important in the difference.
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Figure 6. (a) MODIS r, retrievals at three wavelengths versus the in situ r, (CDP+2DS). Cross symbol in panel (a)
denotes point with unusually large difference that is likely due to spatial heterogeneity (see text). (b) Difference
between MODIS 1,37 and r.,; (Or 1 ) as a function of PWP. (¢) MODIS r.s; error (circles) and r.,; error (x’s) as a
function of PWP. (d) Same as panel c, except for x’s are for 1, ¢ error. In (c) and (d), the color code is the same that in
Figure 5 and earlier figures. The two vertical dashed lines in panels (b) and (c) denote the thresholds of 2 and 10 gm™
used to define non- and lightly precipitating categories.

2

This result, is consistent with previous studies that show re,; (or re; 6) tend to be larger than re; 7 (e.g., PZ11;
King et al., 2013).

3.3. Cloud Liquid Water Path

Figure 7 shows a comparison between in situ LWP and satellite-derived LWP, calculated using Equation 6,
which assumes clouds are adiabatic. MODIS LWP correlates well with in situ LWP (R = 0.83) and has a
mean bias of only 1.6 g m ™, while for CERES-MODIS, R = 0.79 and the mean bias is 12.2 g m™ (which is
not significantly different from zero at the 95% level). For Himawari-8 using 51 cases, R = 0.64 and mean
bias is 16.1 g m™ (not significant at 95%), with better performance for single-layered cases in Himawari-8
retrievals (R = 0.8 and mean bias = 15.8 g m™2), and with similar performance to MODIS when restricting
to the set of cases common to all three satellite retrievals (Figure 7d).

In the literature, satellite-derived values for LWP are sometimes obtained by assuming a vertically homo-
geneous cloud (Equation 5), rather than an adiabatic cloud (Equation 6). Tables 3-5 provide mean bias and
other error statistics using this alternative formulation. As one might expect given that the in situ profiles
of LWC (see Section 2) do show an adiabatic-like profile, the adiabatic formulation for LWP produces better
overall results, whereas the vertically homogeneous assumption results in a statistically significant overes-
timation of LWP.
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Figure 7. Comparison of liquid water path (LWP) from in situ measurements (CDP+2DS) and retrieved by (a) MODIS
3.7 um channel, (b) Himawari-8, (c) CERES-MODIS, and (d) limited to the cases common to all three data sets. LWP
are retrieved from satellite assuming adiabatically stratified cloud. Symbols, vertical uncertainty bars, and text in panel
(d) are the same as that in Figure 3. The horizontal uncertainty bars are estimated by fitting a set of lines to individual
profiles that bound the vertical variations in liquid water content (LWC).

One expects a positive error in r,, or 7 (meaning the retrieved value is too large) will result in a positive error
in LWP (regardless of which of the two LWP formulations is used), and indeed we find this to be true, as
shown in Figure 8. For all three satellite products, the bias in LWP is positively correlated with bias in r,
with the R of 0.52, 0.69, and 0.59, respectively, and positively correlated with bias in 7, with the R of 0.92,
0.88, and 0.91. Note that there are more black and blue points (associated with non- and lightly precipitating
profiles) in the upper right quadrant in Figures 8b and 8c. In Section 3.2, it was noted that non- and lightly
precipitating cases have a small positive (satellite > in situ) mean bias in r, in all three retrieval datasets.
Likewise, the OD for the non- and lightly precipitating cases is also slightly biased in the CERES-MODIS
and Himawari-8 datasets, as is evident in Figures 8e and 8f, which show fewer points in lower left quadrant
than upper right quadrant (see also Tables 4 and 5). Together the positive bias in r, and 7 creates a small
(but statistically significant) bias of 19.22 and 21.58 g m > in the LWP. In the operational MODIS MYD06
product, on the other hand, there is no significant LWP bias associated with non- and lightly precipitating
cases; and these points have a mean bias of only 2.93 g m™2. This is because the bias in r, is countered by a
small compensating error in 7 of about —0.6 for MODIS for lightly precipitating cases (note the points in
lower left of Figure 8d). The small bias of —0.6 is not itself statistically significant, and so it is ambiguous
as to whether this compensation is coincidental. If coincidental, one expects that MODIS LWP would also
have a small bias in LWP for non- and lightly precipitating clouds given that it appears to have a similar bias
in r,, but based on the data we have, all we can conclude is that there is no significant bias in LWP.
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Figure 8. Difference between satellite-derived liquid water path (LWP) and in situ LWP as a function of retrieval error in r, and 7. The 1st column is for
MODIS, the 2nd column is for CERES-MODIS, and the 3rd column is for Himawari-8. Symbols are the same as Figure 3.

While there is no statistically significant bias associated with the heavily precipitating cases (red circles),
there is considerable variability with these cases having largest positive and negative errors in r,, 7, and LWP.
The standard error (uncertainty in the mean) is greater than 20 g m ™ for the heavily precipitating cases in
all three datasets. In particular, the handful of cases identified as having large negative error in r, (retrieved
1, is too small) have the largest underestimate in LWP.

3.4. Cloud Droplet Number Concentration

Figure 9 compares the satellite-derived N; with the in situ values. When considering all comparison
points, the MODIS, CERES-MODIS, and Himawari-8 N, retrievals are biased by only —9.1, —7.9, and
—1.6 #/cm™>, respectively. These biases are not significantly different from zero at the 95% level of con-
fidence and are small or modest relative to the overall mean of 86.8 #/cm™ (Table 2). As was the situa-
tion for LWP (discussed above in Section 3.3), the impact of precipitation on the bias in N, retrievals is
complicated by the correlation between errors in r, and 7 and is somewhat different in each of the three
datasets and also depends to amount of precipitation present. In all three satellite datasets, the errors in
r. and 7 tend to cancel out, producing relatively little bias in Ny. The only statistically significant bias we
find are for the lightly precipitating category, where MODIS and CERES-MODIS retrievals have under-
estimated the N, by about 30-40 #/cm,and Himawari-8 retrievals have underestimated the N; by —17.7
#/cm ™ (from an overall mean of about 100 #/cm™>). We note that the correlation between the retrieved
and in situ values is poorer for Ny (ranging from 0.49 to 0.77) than for r,, 7, and LWP. At the end of this
section, we examine in more details the effect of random errors (variability from profile-to-profile) in the
retrieved Ny.
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Figure 9. Comparison of Ny from in situ measurements (CDP+2DS) and retrieved by (a) MODIS 3.7 um channel,

(b) CERES-MODIS, (c) Himawari-8, and (d) limited to the cases common to all three data sets. Symbols, vertical
uncertainty bars, and text in panel (d) are the same as that in Figure 3. The horizontal uncertainty bars are the standard
deviation of values over the cloud layer (see Section 2).

Perhaps equally importantly, we find a large bias error in cases with multiple low-level clouds for Himawari-8,
with a mean bias of 23.4 #/cm™>. There are only 10 cases where multiple low-level clouds are present, but
the difference is significant because these cases have smaller droplet concentration (mean value about 52.4
#/cm ™ with a mean-absolute deviation of 27 #/cm™). The MODIS and CERES-MODIS retrievals include
only one such multilayer case, and we cannot directly assess if the results would be similar for multilayer
cases for these two datasets, but given the similar physical basis of the retrievals, it seems likely that the
MODIS-based retrievals would have similar difficulty. Unfortunately, it is difficult to identify when multiple
low-level cloud layers are present from satellite VIS-IR imagery alone; however, other measurements such
as CALIPSO lidar backscatter might be used to detect the presence of such layers in combined retrievals al-
gorithms. When multilayer clouds are removed from the set of cases examined, the three datasets have sim-
ilar mean biases of —9.7, —8.6, and —7.7 #/cm > for MODIS, CERES-MODIS, and Himawari-8, respectively.

The above assessment for Ny is based on an assumed value for k of 0.8, f,4 of 0.8, and using c,, value calcu-
lated using Equation 9 with satellite retrieved cloud top temperature and pressure. Using in situ measure-
ments, f,q can be calculated using Equation 10. Doing so, we find a mean value of 0.74 for the 43 single-lay-
ered profiles. Likewise, the k factor can be calculated using the SOCRATES data based on Equation 8. The
value for k is generally not constant over the depth of the clouds, but typically is larger toward cloud top
because the DSD is narrower. In Figure 10, we plot histograms of the calculated k factors near cloud top
(integrated extinction from cloud top less than 1) and for all vertical levels. The averaged k for cloud top is
0.76 £ 0.08, which is slightly larger than averaged k for the whole cloud layer 0.73 + 0.09. Using both the
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mean cloud top k of 0.76 and mean value f,4 of 0.74 has little net effect on
the retrieval, with the resulting mean bias for N; from MODIS, CERES-
MODIS and Himawari-8 becoming -8.1, —7.0, and —0.5 #/cm™>. We also
find that, if one uses values of k and f,q obtained from the in situ data on
case-by-case basis for the Ny retrieval, there is likewise little change in the
mean bias (=7.2, —5.9, and 0.1 #/cm™>). The small net change in the bias
occurs because the impact of decreasing f,q opposes (or compensates) for
the effect of decreasing k in Equation 7. That is, what is important for
the retrieval is the ratio sqrt (f,4)/k, which remains nearly constant and
produces no net bias (systematic error) in the retrieval.

3.4.1. Uncertainty Analysis for N,

Following Grosvenor et al. (2018) and Bennartz (2007), one can estimate
the contribution of random errors (or uncertainty) in input variables in

0+
0.5

averaged over whole cloud layer.

J ! Equation 7 to the random error in Ny, using a Gaussian error propagation

0.6 0.7 0.8 0.9 formulation as shown in Equation 11. The derivation assumes the input
k errors are normally distributed and uncorrelated with each other.
. . 2 2 2 2 2 2
Figure 10. Histogram of k factor at cloud top (averaged over 10D) and oN, 1 o, 1of,, ok 1 or 5ar,
— = | | g | | + = + other (11)
N, 2 ¢, 2 fu k 27

In short, the expected fractional error in N; would be given by square root of the sum of the squares of
the fractional errors in the input terms on the right-hand side of Equation 11. For each input variable, we
have calculated the fractional error for the inputs using the case-by-case (profile-by-profile) SOCRATES
single-layered collocated profiles. For example, for Himawari-8, we approximate 0r, as the standard devi-

ation of (retrieved r.~in situ r,) which equals 1.93 um and 7, as the mean in situ value of 11.73 um, and so
EXA

2,

other than input variables, which we neglect here, see Grosvenor et al. (2018) for additional discussion.

= 41.14%. In Equation 11, the term “other” represents the contribution of additional error sources

Table 6 lists the percentage fractional error for each term (not squared) in the Equation 11. Note that the

column N given here is calculated from the data (same as the other columns) not calculated based on
d
Equation 11, while Ny is calculated based on Equation 11 with terms on the right-hand side of Equa-
d lcale

tion 11 as input values. As one might intuitively expect from Equations 7 and 11, errors in N, are sensitive
to changes in r, since r, is raised to the power of 5/2. Our estimates show that error in r, is indeed the
largest source for N, error, with highest relative error contribution, followed by error in 7. As for assumed
constants, variability in ¢y, k and f,q can also contribute to N, error, but based on variability observed during
SOCRATES the impact is smaller than that of r,, though we note the SOCRATES samples data are limited to
summertime stratocumulus. One might notice that the sum of the expected percent fractional error doesn’t

Table 6
Expected Percent Fractional Error (Uncertainty) in Ny due to Contributions From Different Sources

ON, ON, 1 oc, ok 1 Ofu 1 or 5 or,|

Nd N‘i calc 2 Cw k 2 fad 27 2 7
MODIS 41.93% 48.17% 2.83% 9.68% 17.35% 14.99% 41.14%
CERES-MODIS 54.18% 63.4% 2.41% 9.68% 17.35% 14.71% 58.33%
Himawari-8 36.6% 55.9% 1.59% 10.72% 16.11% 22.05% 47.56%

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.
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terms that are not considered in Equation 11. Nonetheless, it seems safe to conclude that error in r, have a

relatively large impact on the uncertainty in the Nj retrieval as compared with other sources, with a total

(case-to-case) uncertainty between about 40% and 55%.

“add up” to the calculated on a case-by-case basis. This is because there are correlations between error

4. Error Analysis

Satellite imager retrievals examined in this article invoke several assumptions about cloud structure and
microphysics, and errors are likely to arise when these assumptions are violated in the real world. In this
section, we focus on errors in the effective radius retrieval, which are arguably the most statistically robust
errors identified in Section 3, to assumptions in the bi-spectral retrieval, as well as examine some uncer-
tainties in our analysis approach. Specifically, in Section 4.1, we examine errors related to the assumption
of horizontally homogeneous (i.e., plane-parallel or one-dimensional) clouds. The bi-spectral retrieval also
assumes that the shape of the cloud DSD can be represented by a simple function with a single mode. In
the case of the MODIS, CERES-MODIS, and Himawari-8 bi-spectral retrievals examined in this article, a
modified gamma distribution with a fixed effective variance is assumed. Larger liquid droplets absorb more
SWIR radiation than smaller droplets, and at its core, the bi-spectral technique is using the difference in
absorbed radiation (between the visible and SWIR) to determine particle size. In simple terms, the larger
the droplets are (on average), the larger the absorption is, and the smaller the ratio of SWIR reflectance to
visible wavelength becomes. The retrieval therefore also has some sensitivity to the width of the DSD. In
Sections 4.2, we show that when there is large contribution from larger precipitating droplets near cloud
top, these cases are associated with significant underestimate in the effective radius, and in Section 4.3,
we examine errors associated with the assumed width for the size distributions for the non- and lightly
precipitating cases. Last, in Section 4.4, we discuss uncertainties related to the in situ probes and analysis
technique.

4.1. Horizontal Inhomogeneity

Standard cloud remote sensing techniques rely on two basic assumptions: First, clouds are assumed to be
plane-parallel and homogeneous within each satellite pixel. Second, pixels are assumed independent and
the net horizontal radiative transport between pixels is neglected. Standard cloud remote sensing techniques
rely on two basic assumptions: First, clouds are assumed to be plane-parallel and homogeneous within each
satellite pixel. Second, pixels are assumed independent and the net horizontal radiative transport between
pixels is neglected. Standard cloud remote sensing techniques rely on two basic assumptions: first, clouds
are assumed to be plane-parallel and homogeneous within each satellite pixel. Second, pixels are assumed
independent and the net horizontal radiative transport between pixels is neglected. This bias increases with
pixel size as the amount of subscale inhomogeneity is increasing Standard cloud remote sensing techniques
rely on two basic assumptions: first, clouds are assumed to be plane-parallel and homogeneous within each
satellite pixel. Second, pixels are assumed independent and the net horizontal radiative transport between
pixels is neglected.

The three satellite-imager datasets evaluated in this study are based on a bi-spectral technique, which as-
sumes clouds are horizontally homogeneous (i.e., plane-parallel or one-dimensional). Of course, in reality,
the cloud fields often exhibit significant horizontal variability, and the breakdown of the one-dimensional
assumption can lead to systematic errors during the retrieval (e.g., Marshak et al., 2006; Zhang et al., 2012).
To assess the impact of horizontal inhomogeneity on the retrieval error, we examine the relationship be-
tween heterogeneity in the satellite visible imagery and errors in effective radius using the H, index (Liang
et al., 2009), defined as:

—% 12)
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Figure 11. Satellite retrieval r, error as a function of horizontal heterogeneity index for (a) MODIS and (b) Himawari-8.
Symbols are the same as Figure 3. The additional x-symbols in (a) represent the error of MODIS re,; and rej 6.

which is the ratio of the standard deviation to the mean of the reflectance within the domain. Our adoption
of this metric stems from previous research suggesting that clouds with H, < 0.3 are sufficiently homoge-
neous that errors due to one-dimensional assumption are likely small is this situation, while larger values
of H, associated with more heterogeneous cloud fields have significant retrieval biases (Zhang et al., 2012;
Zhang & Platnick, 2011). For MODIS, we calculated H using the MODIS radiance (MYD02QKM product)
at 0.86 wm for the same 5 X 5 pixel analysis box used in the comparisons in Section 3. Similarly, we calculate
H , for Himawari-8 reflectance at 0.8 um for using the same 3 X 3 pixel analysis box. The MODIS radiance is
observed at 250 m (nadir) resolution, which is finer than the 1 km grid used for the MODIS cloud property
retrievals. The results shown here are based on the 250 m data, but we find our results do not differ appre-
ciably if the radiance data are first reduced to 1 km resolution.

Figure 11 shows the error in the retrieved r, from MODIS and Himawari-8 as a function of H,. Overall most
points have a value for H, smaller than 0.3, and there is no clear dependence in the biases for these points.
However, there are a few points with H, > 0.3. For the one case with H, ~ 0.7, there is a large difference
in the three r, retrievals from MODIS (based on different SWIR bands), which motivated us to remove this
point from the analysis in Section 3.2. For this heterogeneous point, the MODIS 3.7 um band retrieval has
the least error, which is consistent with Zhang and Platnick (2011), and other studies that have suggested
that this band is less susceptible to three-dimensional effects. For Himawari-8, there are two cases with H,
> 0.5 that show relatively large error in r,. Overall, most of the cases we evaluated are relatively homoge-
nous with no dependence on H,, which suggests that horizontal heterogeneity is not a dominant source of
r, error for our evaluation result. We also examined whether errors in retrieved 7 show any dependence on
H, since previous studies suggested that the retrieved 7 can be smaller than the actual 7 due to heterogeneity
(Grosvenor et al., 2018). We found that retrieved 7 error likewise shows no clear dependence on H, for our
cases (figure not shown).

4.2. The Presence of Precipitation at Cloud Top

The presence of precipitation can significantly impact the r, retrieval. Minnis et al. (2004) and Zhang (2013)
show that the presence of precipitation can result in underestimation in retrieved r.. In Section 3.2, we find
that r, is underestimated for some (but not all) heavily-precipitating cases. To further assess the contribu-
tion of the droplets larger than 50 um, we calculated the ratio of mean LWC over the top 1 OD of the cloud
for droplets with diameters >50 um (i.e., precipitation water content, PWC) and droplets with diameters <
50 pm (i.e., cloud water content, CWC). Figure 12 shows difference between satellite retrieved r, and in situ
r. as a function of this ratio PWC/CWC.

For simplicity, only relatively homogeneous cases (H, < 0.3) are considered here. Most of the cases have a
ratio of PWC/CWC < 0.1, which means the contribution from larger precipitation mode is small. Underes-

KANG ET AL.

19 of 30



A7
ra\%“1%
ADVANCING EARTH
AND SPACE SCIENCE

Earth and Space Science 10.1029/2020EA001397

(a) T T T T (b) % T T T T (c) T T T T
2b : 000 res;Tecppsans | E‘ 2 B o 000 relecpp,aps | 2 )_5 % 000 relewpp,aps |
E‘ %% XXX TeysTecp 3 ig XXX [e-lecpp E 5% ° XXX fe-lecpp
= 3
3 = =
T 0 % g o 8 s 0 x
= x x 1] f= P
i ° ° 2 ui x o
N =2 1w -2t { Y —2to0 x
m = [ce]
N x 8 i x =
52 s < x
5 -4t o 1 I -4t 0o X 1 = -ar 1
o i c
= o o =
-6F 1 H -6t o 1 T -6t ° o
1 1 1 1 1 1 1 °l 1 1 1 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
PWC/CWC PWC/CWC PWC/CWC

Figure 12. (a) MODIS r.;; error as a function the ratio of mean liquid water content (LWC) over the top 1 OD of the cloud for droplets with diameters >50 um
(i.e., precipitation water content, PWC) and droplets with diameters <50 um (i.e., cloud water content, CWC). (b) and (c) are the same as (a) except for CERES-
MODIS and Himawari-8 r,. Only cases with H; < 0.3 are considered here. Colors and symbols are same that in Figure 3, with open circles representing the
difference between satellite retrieved r, and in situ value calculated using merged DSD from Cloud Droplet Probe (CDP) and two-dimensional stereo (2DS),
while cross represent the difference between retrieved r, and in situ r, calculated using the CDP only.

timation of r, was found for three cases with large contributions from precipitation particles (ratio > 0.2).
This demonstrates that it is not the presence of precipitation in the cloud (characterized by PWP) but the
presence of precipitation near cloud top that is important. We note that if we ignore particle larger than
50 um and calculate in situ r, only from the CDP, the difference between the satellite retrieved r, and in situ
1, (showing as crosses in Figure 12) are smaller for these three heavily-precipitating cases, but the satellite
retrieved r, still shows underestimation, especially for two of the cases, demonstrating that this effect is not
an artifact resulting from the merging of the CDP and 2DS (more on this in Section 4.4).

4.3. Droplet Size Distribution Width (for Non- and Lightly Precipitating Clouds)

Satellite retrievals algorithms typically make assumptions regarding the shape of cloud DSD. The MODIS,
CERES-MODIS, and Himawari-8 retrievals examined here assume a modified gamma distribution which
can be written as: (Hansen, 1971)

n(r) _ Nor(l—Sve)/vee—r/(reve) (13)
where r is the droplet radius, N, is a constant, and V. is effective variance given by (Hansen, 1971)
2
1°(r =) zrin(r)dr
V, = 0 ( e) ( ) (14)

re2 I3 7z'r2n(r)dr

For the gamma distribution one can show that k = (1 — v,) (1 — 2v,). Thus, the width of the DSD can be
assessed using v, or k factor. In the retrievals, MODIS assumes a modified gamma distribution with a fixed
variance v, of 0.1 (Platnick et al., 2017), as do CERES-MODIS and Himawari-8 (W. L. Smith, personal com-
munication, 2020). v, = 0.1 corresponds to k = 0.72. Of course, the actual DSD may not be well approximat-
ed by a gamma distribution with v, of 0.1, and this will impact the retrieved r, (Arduini et al., 2005).

In order to, explore the width of the cloud DSD with respect to precipitation amount, we plot the in situ esti-
mated k factor as a function of PWP in Figure 13a. Here k is calculated using Equation 8 and no assumption
regarding the shape of the DSD is made. Consistent with our earlier analysis and focus on values needed
for the retrieval, here the k factor is determined by averaging the observed DSD over 1 OD at the cloud top,
and for simplicity, we only consider single-layered clouds. The k factor tends to decrease (the distribution
becomes broader) with increasing PWP. The mean k factor for nonprecipitating, lightly precipitating and
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Figure 13. (a) k factor as a function of precipitation water path (PWP); (b) Scatter plot between log-normal o and k.
Only single-layered clouds are shown here.

heavily precipitating cases is 0.80, 0.77, and 0.70. In particular, the observed DSD width of the nonprecip-
itating and lightly precipitating cases is narrower than the assumed value (that is, k is greater than 0.72).
We likewise calculated v, for those nonprecipitating and lightly precipitating cases using Equation 14 with
the cloud DSD from CDP probe averaged over 10D. The mean value of v, is for these nonprecipitating and
lightly precipitating cases is about 0.068, which is narrower than the assumed v, = 0.1 in the retrieval.

We discussed the impact of bias and uncertainty in the k factor on Ny in Section 3.4. A quantitative assess-
ment of the impacts of uncertainty (or bias) in k (or v,) on the r, retrieval is more difficult and arguably
requires detailed radiative transfers calculations using a variety of values for k (or v,). However, we can
gauge the impact of the droplet width on r, retrieval based on result published by PZ11, who examined the
impact of the distribution width on the 7, retrieval using a log-normal o (gi,5). We estimated ojog of the in
situ measured DSD using a least squares minimization. We opted to use a minimization approach to obtain
a best fit for a log-normal distribution to the bulk of the observed cloud particles and to minimize the im-
pact of unusually small or large particles (outliers in the data), which we found to significantly broaden the
estimated oy, Details are given in the supplementary material.

As shown in Figure 13b, oy, is negatively correlated with k because broader DSD means smaller k and
larger oo, While a narrower DSD means larger k and smaller oi,,. The oy, for non-precipitating and light-
ly-precipitating of single-layered cases averaged over the top 1 OD is 0.16. PZ11 undertook radiative transfer
simulations to understand how the retrieved r, is impacted when the true value g, is smaller than the value
assumed in the radiative transfer calculation. They found that when actual oy, is smaller than the assumed
value of 0.35 (equivalent to v, = 0.1), the retrieved r, is also larger and would be overestimated (biased high).
Specifically, PZ11 compared the retrieved r, assuming o}, = 0.35 and 0.2 and found retrieved was r, overesti-
mated by as much as 0.58 um. This result is broadly similar to result published by Chang and Li (2001), who
found that a change of +£0.15 in oy, resulted change of about 1 um in the mean of the 7, retrievals (starting
from a nominal value of 0.35 for gy, with 7, =10 pm).

We concluded, therefore, that much of the positive-bias in r, for the non- and lightly precipitating cases
(shown in Section 3.2 to range from 0.5 to about 1.0 um) is likely due to having an assumed effective vari-
ance that is a bit too large, or stated more generally, an assumed DSD in the retrieval which is too wide for
the SO clouds observed during SOCRATES. As a caveat, we note that the solar and view geometries in this
study are not identical to those in previous studies that examine the width of the DSD and its impacts on
the retrieval. We do not expect this is a significant factor for the solar and view geometry during SOCRATES,
as the profiles were taken during the Southern Hemisphere summer primarily in the afternoon when the
sun is reasonably high with a solar zenith angle less than 60°. Nonetheless, the above conclusion should
perhaps be quantified using full radiative transfer calculations for the precise conditions observed during
SOCRATES, and more generally evaluated over the range of solar and view geometries encountered over
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Table 7

Statistics for r, Using Different Probes or Merging Methods and Corresponding Estimates of Error in Satellite Retrieved r,

Different probes/methods

CDP+2DS (king)

CDP+2DS (ALT)

CDP+2DC

CDP

Mean r, That Collocated With MODIS [um]
Mean r, That Collocated With Himawari-8 (um)
Mean Error of MODIS 137

Mean Error of MODIS r,,

Mean Error of MODIS 1 ¢

Mean Error of CERES-MODIS r,

Mean Error of Himawari-8 r,

12.55(8.87,11.17,16.55)
11.48 (8.44,11.03,15.95)

—0.03 (1.13,0.71,-1.59)
0.74(2.92,1.04,—1.11)

—0.14(0.79,0.65,—1.58)
0.17 (1.71,1.47,—2.22)
0.91 (1.43,1.35,—0.31)

13.21(9.33,11.81,17.37)
12.01 (8.75,11.57,16.77)
—0.69 (0.66,0.07,—2.41)
0.08 (2.45,0.4,—1.93)
—0.8(0.32,0.01,—2.4)
—0.49 (1.25,0.83,-3.04)
0.38 (1.13,0.81,—1.13)

11.7 (8.73,10.9,14.62)
11.58 (8.59,11.45,15.6)
0.82 (1.27,0.98,0.34)
1.59 (3.06,1.31,0.82)
0.71 (0.93,0.92,0.35)
1.02 (1.85,1.74,-0.29)
0.81 (1.28,0.93,0.04)

11.54 (8.72,10.9,14.18)

10.61 (8.28,10.62,13.59)
0.98 (1.27,0.98,0.78)
1.75 (3.06,1.32,1.26)
0.88 (0.93,0.93,0.79)
1.02 (1.85,1.74,—0.29)
0.81 (1.28,0.93,0.04)

Note. Since 2DC probe is not available for research flight RF02, only data from other flights with collocated profiles are considered here for comparison. For
each cell, value in front of parentheses is the statistics for all the collocated profiles, while the first, second and third, value are that for nonprecipitating, lightly
precipitating, and heavily precipitating cases.

the SO to more fully assess the impact, especially as regards possible seasonal impacts. Such is beyond the
scope of the present study and is left as a topic for future work.

4.4. Uncertainty due to Instrumentation

In the preceding analysis, we calculated in situ r, from the DSD obtained by merging measurements from
the CDP and 2DS. Specifically, we used all the CDP bins (includes particles up to 50 um) and combine it
with the DSD from the 2DS for bins larger than 50 um, the same approach as used by King et al. (2013). We
have also explored merging the CDP and 2DC, as well as a second alternative (ALT) approach for merging
the CDP and 2DS, in which we use the DSD from CDP for bins smaller than 25 um, the DSD from the
2DS for bins larger than 50 um, and use the larger values between the two probes for the intermediate bin
(25-50 um). Figure S3 in the supplementary material shows an example of the CDP, 2DS, and 2DC spectra
and the result merged DSD.

Table 7 along with Figures 14 and 15, summarize the impact of using different probes or the merge ap-
proach on the in situ r, and estimated error in the satellite retrieved r,. Since 2DC probe is not available for

(a) 25.0 (b) 25.0
CDP+2DS(King)
[ CDP+2DS(ALT)
22.5 1 CDP+2DC 2254
= CDP
20.0 20.0
17.5 17.5
K K
2 2
B 15.0 @150
< <
12.5 ? 12.5
- %ééﬁ N
7.5 7.5

non-precipitating lightly-precipitating heavily-precipitating
Peciptation Regime

non-precipitating lightly-precipitating heavily-precipitating
Peciptation Regime

Figure 14. Box plots in situ r, for cases collocated with (a) MODIS and CERES-MODIS (19 profiles) and (b)
Himawari-8. There are four kinds of in situ r, obtained with different instruments and merging methods: CDP+2DS
(King approach), CDP+2DS (Alternative approach), CDP+2DC, and Cloud Droplet Probe (CDP) only. Since the two-
dimensional cloud (2DC) probe is not available for research flight RF02, only data from other flights with collocated
profiles are considered.
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Figure 15. Box plots of error in satellite-derived r, from (a) MODIS, (b) CERES-MODIS, and (c) Himawari-8 when compared with different in situ r,. There are
four kinds of in situ r, obtained with different instruments and merging methods: CDP+2DS (King approach), CDP+2DS (Alternative approach), CDP+2DC,
and Cloud Droplet Probe (CDP) only. Since two-dimensional cloud (2DC) probe is not available for research flight RF02, only data from other flights with
collocated profiles are considered.

research flight RF02, only data from other flights are considered. For the 19 profiles available for MODIS,
mean in situ 7, calculated using different probes or merging methods varies from 11.54 um with the CDP
only to 13.21 um with CDP+2DS (ALT). To visualize the difference of in situ r,, Figure 14 shows box plots
of in situ r, for cases collocated with different sensors. Overall, CDP+2DS (ALT) gives largest in situ r, in
all precipitation regimes. In situ r, from CDP+2DS (King) is smaller than CDP+2DS (ALT) because counts
in the intermediate bin (25-50 um) from the CDP are typically smaller than that from 2DS. In situ r, from
CDP+2DC tend to be smaller than that from CDP+2DS, and close to that from CDP only, as counts from
2DC bins are usually smaller than that from 2DS.

Naturally, the impact of using different probes or merge approach is much more important for the heavily
precipitating cases than for the non- or lightly precipitating cases. Nonetheless, even for the non- or lightly
precipitating cases, using the CDP+2DS (ALT) merging increases the r, and can (at least partially) offset
the estimated error (see Figure 15). Taking the MODIS r.; 7 as an example, for light-precipitating cases, the
mean error in MODIS r.; 7 is about 0.98, 0.98, 0.71, and 0.07 um when compared with in situ r, from CDP,
CDP + 2DC, CDP + 2DS (Xing), and CDP + 2DS (ALT), respectively. Using CDP + 2DS (ALT) appears
to eliminate the bias for the lightly precipitating cases. The bias for nonprecipitating cases is, while not
eliminated, reduced from 1.27 um with CDP only to 0.66 um with CDP + 2DS (ALT). However, the bias for
heavily precipitating cases gets worse, going from 0.34 um estimated using CDP + 2DC to -2.41 um using
CDP + 2DS (ALT).

Thus, regardless of how we merged the CDP and 2DS data, there is a fundamental difference in the bias
for the different precipitating categories. If one calculates the bias across all precipitating categories, the
CDP + 2DS (ALT) formulation produces the smallest error but does so only by balancing the errors across
the different categories. This same pattern is weaker in the CERES-MODIS and Himawari-8, but is quali-
tatively similar.

Past studies (e.g., King et al., 2013) suggest that the counts in the CDP below 50 um are more reliable, and
we have therefore focused on using CDP + 2DS (King) formulation in our analysis. But we note there is a
measurement issue here that needs to be addressed for future field campaigns, specifically that efforts are
needed to reduce the uncertainty in measured number concentration for particles between about 20 and
100 pm.

5. Summary and Discussion

Satellite retrievals of cloud properties have been widely used to study clouds over the SO, but our confidence
in these retrievals has been limited by a lack of verification. In this study, cloud properties observed from
aircraft during the SOCRATES in January-February of 2018 are used to evaluate retrievals of cloud proper-
ties for SO stratocumulus based on the widely used visible shortwave infrared bi-spectral technique. In par-
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ticular, three data sets are examined: (i) the Moderate Resolution Imaging Spectroradiometer (MODIS) level
2 (collection 6.1) cloud product, (ii) the CERES-MODIS edition 4 product, and (iii) the NASA SatCORPS
Himawari-8 product. Our analysis focused on the use of vertical profiles of cloud properties constructed
from individual aircraft penetrations through the stratocumulus. Analysis of the cloud vertical structure
shows that SO stratocumulus have an adiabatic-like structure on average. Moreover, the stratocumulus
examined were largely closed-cell (or at least overcast) and homogeneous (with heterogeneity index <0.3).

When the effective radius (r,) is evaluated, we find a small positive bias in r, for non- or lightly precipitating
cases of about 0.5-1 pum in all three datasets (satellite retrievals are slightly too large), though we caution
that this bias is somewhat sensitive to whether and how the CDP measurements are merged with 2DS (see
Section 4.4). This small positive r, is due (at least in part) to the assumed DSD width being too wide in the
retrievals. In the retrievals, the DSD is assumed to be a modified-gamma distribution with an effective
variance (v,) of 0.1, which is larger than the value calculated from in situ measurements for non or lightly
precipitating cases of 0.068. Previous studies of polarimetric data have also suggested that v, for the marine
clouds is likely to be narrower than that is assumed in the satellite retrievals (e.g., Benas et al., 2019; Di Noia
et al., 2019). We also find that the width of DSD increases (the k factor decreases) as the PWP increases,
suggesting it might be possible to parameterize this relationship as part of a combined imager-radar re-
trieval, in which the radar would constrain the PWP. Collectively, cases with relatively heavy precipitation
(PWP > 10 gm2) have a negative bias (opposite in sign to the non- and lightly precipitating cases). Not all
heavily precipitating cases are negatively biased but rather large biases occurred when significant precipi-
tation was found near cloud top (PWC/CWC > 0.2). In these few cloud-top-precipitation cases, biases in r,
ranged from about —2 to —6 um (satellite retrieved values are too small - see Figure 12). As with the bias
for nonprecipitating clouds, the bias for the cases with heavy precipitation is not qualitatively dependent on
whether and how the CDP and 2DS data are merged in the calculation of r,, but quantitatively the size of the
bias does depend on whether and how 2DS data are merged. However, a key point is that regardless of how
we merged the probe data, we cannot simultaneously reduce the magnitude of the bias in both the nonprec-
ipitating and heavily precipitating cases. Reducing the positive bias in the nonprecipitating cases (making
the in situ r, larger on average by merging the data such that it maximizes the potential contribution from
precipitation) also makes the magnitude of the negative bias in the heavily precipitating cases larger; and
vice versa, reducing the magnitude of the negative bias in the heavily precipitating cases (by making in situ
1. smaller by minimizing the contribution of precipitation) makes the positive bias in the nonprecipitating
cases larger.

As for the cloud OD (7), CERES-MODIS and Himawari-8 are found to have a small positive bias in 7 of about
2-3 to (satellite retrievals are too large) for non- and lightly precipitating cases. This bias is close, but not
significant at the 95% level of confidence. On the other hand, MODIS (MYDO06) do not appear to be biased
for these cases and instead was found to have a small negative bias for lightly precipitating clouds.

Satellite retrievals of LWP are derived based on 7 and r, with an assumption about the cloud vertical struc-
ture. LWP retrievals based on the assumption of an adiabatic cloud structure compare well with the in situ
observations and are unbiased when averaged over all cases, while the assumption of a constant profile in
LWC results in a significant overestimate in the LWP (~+420%). For non- and lightly precipitating cases,
the small positive bias in r, and t for CERES-MODIS and Himawari-8 combine to produce a statistically
significant bias of about +20 g m™ in the LWP for these cases. On the other hand, MODIS LWP was not
biased by its small positive bias in r, because of the small compensating bias in 7 (about —0.6) for the same
lightly-precipitating cases. Heavily precipitating cases do not show a significant bias in 7 or LWP for any
of the three data sets. However, in all three datasets, there is larger variability associated with the heavily
precipitating cases, with these cases having both the largest positive and largest negative errors in r,, 7, and
LWP. In particular, the handful of cases identified as having large negative errors in r, (due to significant
precipitation near cloud top) had the largest underestimate in LWP.

We also used in-situ measured N, to evaluate satellite retrievals of Ny, which is derived using a formulation
based on 7 and r,. This formulation assumes the cloud is sub-adiabatic, meaning the total LWP is smaller
than that for a true adiabatic cloud by a factor f,q4, but the LWC still increases linearly with altitude about
cloud base, while Ny is constant. The formulation also depends on the DSD width (expressed via the k fac-
tor) and condensation rate (that depends on pressure and temperature). Overall, the N, retrieval works rea-
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sonably well for our SO cases, as long as one uses the condensation rate that is appropriate for the SO (and
this can be estimated reasonably well from the cloud top temperature and pressure). Errors in r, and 7 tend
to cancel out producing relatively little bias in Ny. The profile-to-profile uncertainty based on ~5 km X 5 km
spatial averages of the Nj retrieval was found to be 40%-55%, driven primarily by errors in r, (see Table 6).
Using assumed values of 0.8 for both f,4 and the k causes little bias in the retrieval because there is a can-
cellation of error between f,4 (observed mean = 0.74) and k (observed mean at cloud top = 0.76). However,
using k and f,4 on a case-by-case basis does improve the correlation between the retrieved and in situ Ny.
With respect to our precipitation classification, the only statistically significant bias in N, that we find is
in the lightly precipitating category, where MODIS and CERES-MODIS retrievals have underestimated the
N, by about 30 to 40 #/cm™°, and Himawari-8 retrievals have underestimated the N, by 17.7 #/cm™ (from
an overall mean of about 100 #/cm ™). Perhaps more problematically, we also found a bias of about 23.4 #/
cm™ in the Nj retrieval for cases featuring multiple low-level (<3 km) clouds for profiles collocated with
Himawari-8. The presence of optically thin layers with low droplet concentrations was found in 10 of the
53 profiles with collocated Himawari-8 data. Only one such case occurred in the set of cases with collocated
MODIS data.

Overall, our results broadly agree with the past evaluation studies of the MODIS bi-spectral retrievals tech-
nique for overcast stratocumulus. For instance, PZ11 reported that the MODIS retrieved r.,; was overesti-
mated by 15%-20% (mean bias of 2.08 um) in comparison with cloud top r, using 20 profiles (from mostly
non- and lightly precipitating subtropical stratocumulus) over the Southeast Pacific (to the west of South
America) during The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS), while Min et al. (2012)
reported a mean bias of 1.75 um using 17 nonprecipitating cases from VOCALS. While we focused on the
Ie37, we likewise find the MODIS r., ; is overestimated, though by a slightly smaller amount of ~10% (mean
bias of 1.12 um) for 12 homogeneous non- and lightly precipitating cases.

Closer to our region of study, A18 evaluated MODIS retrievals in wintertime stratocumulus over the SO near
Tasmania. Like us, A18 finds that MODIS underestimates the r, of heavily precipitating clouds and over-
estimates the r, of nonprecipitating clouds, and like us A18 identify the width of the drop size distribution
as a possible factor impacting MODIS retrieval. However, A18 found an overestimation of r.,; by ~13 um
on average for nonprecipitating clouds. While a variety of factors contribute to this rather large r, bias (see
discussion A18), the major factor is likely to be the broken and patchy nature of the clouds they observed,
which were primarily open-cell or disorganized stratocumulus. The MODIS and Himawari-8 bi-spectral re-
trievals are based on an assumption of one-dimensional radiative transfer and are known to work poorly for
broken and spatially heterogenous clouds and to substantially overestimate r, on average for broken clouds
(e.g., Marshak et al., 2006). A18 did include two flights with overcast (closed-cell) stratocumulus. According
to their Table 1, the average in situ r, for these two cases were 8.6 and 7.5 um (which is consistent with the
smaller values we observed during SOCRATES for nonprecipitating clouds), while the MODIS retrieved
values of r;; are near 12.6 um on both flights (which is within the range we found for nonprecipitating
clouds but toward the high side), resulting in a bias of 4-5 um (which is several pm bigger than our bias
for this cloud type). Our SOCRATES cases included only one nonprecipitating case with a bias larger than
4 um, and this case was one of our cases with a relatively large cloud heterogeneity index. Thus, we spec-
ulate that the somewhat larger bias found by A18 for their overcast cases might be a consequence of cloud
heterogeneity. We note that A18 do report a heterogeneity index for their cases, but the index they use is the
standard MODIS product index which looks at variability of 250m pixel radiances within each 1 km pixel
used in the OD retrieval, and does not characterize the variability of the larger scene or collocation box used
in the analysis. We also note that the observations A18 use in their analysis are not restricted to the region
near cloud top. One expects the r, in non-precipitating clouds will be smaller below cloud top and this might
well have reduced the magnitude of the in situ estimates (and increase the apparent bias) by a few microns.

Very recently, Zhao et al. (2020), hereafter Z20, evaluated MODIS and Himawari-8 r, using SOCRATES
measurements for a subset of the flights that we have analyzed. Their results differ from ours in several
key respects. Their analysis was based on two approaches: (1) measurements taken when the aircraft was
flying horizontally (level legs) that are nominally within about 200 m of cloud top and (2) vertical profiles
created from aircraft ramps through the cloud (which is similar to our study). Based on the horizontal flight
data, Z20 report a mean bias with Himawari-8 of 4.39 um for liquid phase clouds and 2.24 yum for mixed-
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phase clouds (see their Figure 4), while for MODIS r.; ; they report a bias of about 2 um for both liquid and
mixed-phase clouds (see their Figure 7). It is not clear from their manuscript whether the comparison for
Himawari-8 is based on only CDP or the combination of CDP + 2DS (while their MODIS comparison is
clearly based on the combination) which might explain some of the difference between their Himawari-8
and MODIS results, but more importantly, in both comparisons the collocated in situ data with Himawari-8
never has an r, value greater than about 11.5 pm and the in situ data collocated with MODIS never has a
value for r, larger than about 9.4 um. This fundamentally differs from what we find. We frequently find in
situ values for r, are larger than 12 um for profiles that contain precipitation (which is common place) and
this seems consistent with previous studies. We note that in their analysis of aircraft profile data, Z20 find
their profiles (1) have vertical mean values for r, that is larger than the average for their horizontal flight
legs and (2) the profile values near cloud top suggest a bias for Himawari-8 that is near (or below) 1 um (see
their Figures 6). As such, their vertical profile data are consistent with our results and inconsistent with the
horizontal flight data they present. We speculate that when creating their 10s horizontal leg data averages
that periods with low or no condensate (with small values of r,) or perhaps drop-outs in the data have
somehow biased the 10s averages. In general, we suggest that averages of r, should either (1) be weighted
by liquid-water-content or total number concentration or (2) better yet, a single DSD should be summed
(generated) from the measured counts for the full averaging period to calculate r, and other parameters that
characterize the distribution from this single DSD.

As noted above, Z20 subdivide their results between liquid and mixed-phase clouds. They identify mixed-
phase, as those where the ratio of liquid water content from the CDP (where presumably all CDP observed
particles are assumed to be liquid) divided by the total condensed water (estimated from measurements
by a Closed-Path Hygrometer, CLH-2) is less than 0.85. We suggest that the approach used by Z20 is prob-
lematic because it relies on measurements from two different instruments, where each measurement has
a nominal uncertainty of 10 to 15%, and the instruments can (and do) have different response times and
sensitivities to icing in supercooled environments. This means that the measurement uncertainty alone can
easily cause the ratio of liquid-to-total condensate to be less than 0.85. In fact, we have been unable to re-
produce Z20’s results in this regard and find that in many of our aircraft profiles LWC for the CDP is greater
than TWC from the CLH-2 such that the ratio has unphysical values greater than one. Consequently, we
have examined the ratio of ice-to-total condensate for precipitation based on the 2DS only, whose imagery
has been processed following Wu and Mcfarquhar (2019) to identify ice particles >= ~ 200 um. Whereas
720 find that the majority of the cloud is mixed-phase, we find that only 4 out of 53 of our profiles contain
even 10% ice from the perspective of the 2DS (Figure S4). Of course, it could well be the case that numerous
small-ice particles are present and the 2DS-only estimate that we use is substantially underestimating the
contribution of ice. But one expects those small ice particles will very rapidly grow in size via the Wege-
ner-Bergeron-Findeisen process, such that (while our 2DS-only) estimate might underestimate the mass
of ice, we would detect its presence. Overall, we find no distinction between cases that contained large-ice
from those without large-ice, in any significant way, for any choice of the ice-mass-fraction. Ultimately Z20
conclude that phase does not matter (bias is about the same for liquid and mixed-phase), and in this sense
we agree. Nonetheless, we do not believe the majority of the cloud should be considered mixed-phase. At
present, evaluation of cloud phase (across the full range of SOCRATES instruments) remains an ongoing
area of research by SOCRATES instrument teams, and more work is needed to understand the performance
of instruments under the challenging conditions encountered.

6. Conclusions

We conclude there is a consistent pattern between studies which show there are small but statistically
significant biases associated with the MODIS and Himawari-8 bi-spectral retrievals of r, for overcast SO
stratocumulus as compared with in situ aircraft measurements, even when comparisons are appropriately
restricted to near cloud top observations. At least here, and in A18, the bias depends significantly on precipi-
tation within the cloudy column, and we conclude that the presence of precipitation near cloud top (not just
within cloud) is of particular importance. We find the bias for non- or lightly precipitating stratocumulus to
be consistent with (if a bit smaller) than those identified during VOCALS for subtropical stratocumulus and
find (as other studies have) that this bias is due (at least in part) to the width (shape) of the assumed drop
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size distribution, where a distribution that is too broad for nonprecipitating marine stratocumulus has been
assumed in the retrieval. In general, precipitation is associated with wider distributions, and the observed
DSDs is not always well characterized using a monomodal log-normal or gamma size distribution (see
supplementary material). The biases in 7 are less robust and typically not statistically significant at the 95%
level of confidence, depending on data set and precipitation category. Errors in r, and 7 propagate into the
retrieved LWP and N, in somewhat complex ways, as errors in the r, and 7 are correlated (again depending
on the presence of precipitation). A summary is given in Section 5 with more detailed discussions given in
Sections 3.3 and 3.4. In general, we find the bias and case-to-case uncertainty in the satellite Ny retrievals
is smaller than one might expect simply from the bias and random errors in r, because of this correlation.

We stress the SOCRATES measurement were collected in the afternoon and during the SH summer where
solar zenith angles are less than 60° (conditions under which theoretical studies suggest the bi-spectral re-
trieval should work well for homogeneous clouds). Thus, we are not surprised to find the bi-spectral retriev-
al works similarly well during SOCRATES as has been found with subtropical stratocumulus. We suggest
that additional research should be undertaken using detailed radiative transfer simulations to model and
better understand how variations in the DSD and its vertical and horizontal structure are likely to effect
retrievals at larger solar zenith angles typical of the SO in other seasons and other times of day and more
generally suggest that additional measurements should be collected during the SO winter.

In Section 4.4, we examined briefly the impact of combining data from the CDP, 2DS, and 2DC probes
has on our analysis. The agreement between satellite retrievals and in situ r, shows some dependence
on the choices of in situ probes and merging methods. Several evaluation studies (e.g., King et al., 2013;
Platnick & Valero, 1995; Witte et al., 2018) have considered the uncertainty of in situ measurement of r,.
For instance, Witte et al. (2018) compared the r, measured by phase Doppler interferometer (PDI) with
MODIS re,; and revisited the evaluation studies over the Pacific (e.g., Noble & Hudson, 2015; PZ11) using
different instruments during the same three campaigns. Witte et al. (2018) found no apparent systematic
bias (mean bias of —0.22 um) in retrieved r., ;. Indeed, as we show in Section 4.4, we can merge the CDP
and 2DS data in such a way that there is little overall bias in the r,, but this result is obtain by balancing
the errors between non-, lightly- and heavily precipitating case, and there is a fundamental difference
in the bias for the different precipitating categories. In short, as these studies highlight, there are sig-
nificant uncertainties associated with in situ measurements, and a continued need for improved in situ
measurements.

Data Availability Statement

In particular, low rate navigation, state parameter, and microphysics flight-level data https://doi.
org/10.5065/D6M32TM9; 2DS data https://doi.org/10.26023/8HMG-WQP3-XA0X; and 2DC data https://
doi.org/10.26023/E95A-FKYF-7POR.NASA SatCORPS Himawari-8 data during the SOCRATES were ob-
tained from SDAC at https://doi.org/10.5065/D6CCOZFJ. Table S1 in the supporting information includes
all the case-by-case values needed to generate the figures contained in this article. This study also evaluates
cloud retrievals produced by the NASA SatCORPS group based on Himawari-8 observations (Smith and
Minnis, 2018, Minnis et al., 2020; Trepte et al., 2019).
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