
1.  Introduction
The Southern Ocean (SO) is one of the cloudiest regions in the world, in large part because of extensive 
stratiform marine boundary layer (MBL) cloud (Mace et al., 2009, 2010). Compared against satellite data-
sets, the climate models and present-day reanalysis products predict too little MBL cloud over the SO, espe-
cially in the cold sectors of SO cyclones (Bodas-Salcedo et al., 2014; Naud et al., 2014; Williams et al., 2013). 
The insufficient cloud cover causes significant biases in shortwave radiative fluxes over the SO (Schneider 
& Reusch, 2016; Trenberth & Fasullo, 2010) and contributes to biases in the simulated surface air and sea 
surface temperatures (Bodas-Salcedo et al., 2016; Sallée et al., 2013). In turn, these model biases have im-
pacts on regional and global circulations, influencing the position and strength of the Southern Hemisphere 

Abstract  Aircraft observations collected during the Southern Ocean Cloud Radiation Aerosol 
Transport Experimental Study in January-February of 2018 are used to evaluate cloud properties from 
three satellite-imager datasets: (1) the Moderate Resolution Imaging Spectroradiometer level 2 (collection 
6.1) cloud product, (2) the CERES-MODIS Edition 4 cloud product, and (3) the NASA SatCORPS 
Himawari-8 cloud product. Overall the satellite retrievals compare well with the in situ observations, 
with little bias and modest to good correlation coefficients when considering all aircraft profiles for which 
there are coincident MODIS observations. The Himawari-8 product does, however, show a statistically 
significant mean bias of about 1.2 μm for effective radius (re) and 2.6 for optical depth (τ) when applied 
to a larger set of profiles with coincident Himawari-8 observations. The low overall mean-bias in the re 
retrievals is due in part to compensating errors between cases that are non- or lightly precipitating, with 
cases that have heavier precipitation. re is slightly biased high (by about 0.5–1.0 μm) for non- and lightly 
precipitating cases and biased low by about 3–4 μm for heavily precipitating cases when precipitation 
exits near cloud top. The bias in non- and lightly precipitating conditions is due to (at least in part) 
having assumed a drop size distribution in the retrieval that is too broad. These biases in the re ultimately 
propagate into the retrieved liquid water path and number concentration.

Plain Language Summary  Clouds play a crucial role in the weather and climate system. 
Satellite data can provide useful information on cloud properties (such as the size of the cloud droplets, 
the amount of the liquid water, and the number of droplets in a given volume of the clouds) over large 
areas and at high spatial and temporal resolutions. However, satellite cloud properties are determined or 
retrieved from satellite measurements by employing a variety of simplifying assumptions that can lead to 
large uncertainties in some conditions. In situ measurements of clouds from aircraft provide more direct 
observations and can be used as ground truth to evaluate and improve the performance of the satellite 
retrievals. This study focuses on clouds over the Southern Ocean (SO) and uses aircraft measurements 
from Southern Ocean Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) in January-
February of 2018 to evaluate cloud properties from three satellite observations. It is found that the satellite 
observations generally compare well with aircraft measurements with little bias. However, satellite 
observations tend to overestimate the size of the cloud droplets, when clouds are not precipitating or 
are lightly precipitating, while for clouds with heavier precipitation, the satellite observations tend to 
underestimate the size of the cloud droplets.
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mid-latitude jet, the Inter-Tropical Convergence Zone, and cross-hemispheric energy transports (Ceppi 
et al, 2012, 2013; Hwang & Frierson, 2013; Kay et al., 2016).

Cloud properties, such as clouds effective radius (re), optical depth (OD, τ), liquid water path (LWP), and 
cloud droplet number concentration (Nd) are central in understanding the physics of MBL clouds and their 
radiative effect. Visible and infrared observations from geostationary and polar-orbiting satellites have long 
been used to retrieve MBL cloud microphysical characteristics and for the study of SO clouds, cloud-aerosol 
interactions, and for the evaluation of global models (e.g., Bodas-Salcedo et al., 2016; Haynes et al., 2011; 
McCoy et al., 2015; Meskhidze & Nenes, 2006; Vergara-Temprado et al., 2018). However, the accuracy of sat-
ellite retrievals over the SO is questionable, as satellite retrievals have been infrequently evaluated against in 
situ measurements in this region, due in part to the remoteness of the region and a paucity of in situ meas-
urements. The validation, empirical relationships, and Apriori data used in satellite retrieval algorithms 
are mostly based on data collected in the Northern Hemisphere and might not be applicable over the SO. 
In general, low-level SO clouds are thought to be more frequently multilayered, mixed-phase, and contain 
more supercooled liquid water than in the Northern Hemisphere, conditions which pose significant chal-
lenges for satellite retrievals (Huang et al., 2014; Morrison et al., 2011).

A direct evaluation of satellite cloud retrievals can be made using in situ measurements from aircraft, and 
many such studies have been done over the years, including in recent years for the Southeast Pacific (King 
et al., 2013; Min et al., 2012; Painemal & Zuidema, 2011) and Northeastern Pacific (Noble & Hudson, 2015). 
There have been a few cases where in situ measurements have been collected from aircraft over the SO. 
Four transects over the SO were made during the HIAPER Pole-to-Pole Observations (HIPPO) experiment 
(Wofsy, 2011). HIPPO confirmed the existence of extensive supercooled liquid water in the region, but col-
lected insufficient data to directly evaluate coincident satellite microphysical retrievals. More recently, in 
situ measurements from 20 flights were made over the SO to the west and south of Tasmania (43-45°S, 145–
148°E) during the austral winter between 2013 and 2015 by Ahn et al. (2017). These flights focused on the 
microphysical properties of low-level clouds, which were found to be commonly precipitating, patchy, and 
mixed-phase. Ahn et al. (2018, hereafter A18) compared in situ observations from 11 of these flights to cloud 
products from Moderate Resolution Imaging Spectroradiometer (MODIS) and found an overestimation of re 
in comparison with in situ measurements. In addition to, providing estimates of the biases of satellite cloud 
retrievals, these evaluation studies also provide insights on the error sources, which can be further used to 
improve the satellite retrieval algorithm. Satellite retrievals invoke assumptions about cloud structure and 
microphysics, and errors arise when these assumptions are violated in the real world. Some error sources 
explored by past studies include but not limited to: (1) subpixel inhomogeneity and three-dimensional ra-
diative effects, that is, clouds are not plane-parallel and the scattering of light from clouds is frequently not 
well modeled using one-dimensional radiative transfer model as is assumed in the retrieval (e.g., Marshak 
et al., 2006; Zhang et al., 2012); (2) assumptions about the shape of the cloud droplet size distribution (DSD, 
e.g., Hansen, 1971; Platnick et al., 2017); (3) assumption about the cloud vertical structure (e.g., Bennartz 
et al., 2007; Borg & Bennartz, 2007; Wood & Hartmann, 2006) and; (4) satellite viewing geometry and solar 
zenith angle (e.g., Grosvenor & Wood, 2014; Maddux et al., 2010). Moreover, the in situ measurements that 
are used to evaluate satellite retrievals also have uncertainties.

More recently, SO Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) collected airborne 
in situ measurements over the SO (McFarquhar et al., 2020). During SOCRATES, NSF deployed the Gulf-
stream-V (GV) research aircraft to Hobart, Tasmania from January to February of 2018. From Hobart, the GV 
flew a total of 15 research flights over the SO as far as 62°S, sampling aerosol, cloud and precipitation prop-
erties in situ, as well as remotely with a W-band cloud radar and high spectral resolution lidar. SOCRATES 
provides an opportunity to evaluate satellite cloud products and retrieval assumptions during the austral 
summer over the SO. In this study, we expand upon the earlier evaluations of cloud properties from sat-
ellites and evaluate low altitude cloud microphysical properties retrieved from satellites using airborne in 
situ measurements collected during SOCRATES. After describing the datasets and methods in Section 2; in 
Section 3, we compare the satellite retrievals of effective radius (re), OD (τ), LWP, and cloud droplet number 
concentration (Nd) from three datasets that are based on observations from MODIS (Platnick et al., 2003) 
and Himawari-8 (geostationary weather satellite; Bessho et al., 2016) with in situ measurements. This is 
followed by Section 4, a more detailed examination of the retrieval assumptions and other factors that are 
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responsible for differences between the satellite retrievals and in situ observations. Discussion and conclud-
ing remarks are given in Sections 5 and Section 6, respectively.

SOCRATES specifically targeted stratocumulus, primarily overcast or closed-cell stratocumulus, that reside 
in the cold sectors of the low-pressure system, and the SOCRATES data do not represent a meteorologically 
unbiased set of conditions. Nonetheless, stratocumulus clouds are a significant fraction of all SO low clouds 
(Wood, 2012), and our focus on these clouds during SOCRATES results from a recognition that these clouds 
lay at the heart of difficulties that many models are having in simulating SO climate. Based on the results 
from other regions, one expects that satellite retrievals for these relatively spatially homogenous clouds 
should work well (e.g., Painemal & Zuidema, 2011; hereafter PZ11). In Section 5, we discuss conditional 
sampling issues and how results obtained here are related to previous evaluation studies over the Pacific 
and over the SO (e.g., A18; Zhao et al., 2020) in more detail.

2.  Data and Methods
2.1.  SOCRATES Flights and In Situ Measurements

During SOCRATES, the GV was equipped with a suite of instruments measuring aerosol, cloud, and ther-
modynamic variables. A total of 15 research flights were flown over the SO, which are marked by the black 
lines in Figure 1. Typically, the GV sampled clouds with several modules in each flight, which consists of a 
combination of ramp ascents and descents, as well as level (fixed altitude) legs above, below, and in cloud. 
Here, we focus on vertical profiles of cloud microphysical properties constructed from flight segments, 
where the aircraft completely ascended or descended through low-altitude clouds, and multiple low-level 
cloud layers were occasionally present.
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Figure 1.  Gulfstream-V aircraft trajectory (black lines) during the Southern Ocean Cloud Radiation Aerosol Transport 
Experimental Study. Clouds vertical profiles collocated with MODIS retrievals are marked by red dots, Himawai-8 
retrievals by blue dots, and both satellites by purple circles.
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This study uses the cloud microphysical properties measured by the particle-sizing instruments, as listed 
in Table 1. SOCRATES GV data are available via the Earth Observing Laboratory data archive (https://data.
eol.ucar.edu/project/552), with links to specific datasets given in Table 1. Here we rely primarily on (i) the 
Cloud Droplet Probe (CDP): an optical instrument that measures the concentration of cloud droplets in 
30 size bins with diameters ranging from 2–50 µm, by measuring the light forward scattered by individual 
cloud droplets, as they pass through a laser beam oriented across the aircraft flight direction, (ii) the two-di-
mensional stereo (2DS) probe: an optical array probe that records the images of hydrometeors using two or-
thogonal laser beams that cross in the middle of the sample volume and measures particle size based on the 
shadow (blockage of the lidar beam) for particle diameters (maximum dimension if irregular) ranging from 
about 10 to 1,280 µm with a 10 µm bin-width as they cross the optical array, and (iii) the two-dimensional 
cloud (2DC) probe: an optical array probe that measures hydrometeors ranging from 37.5 to 1612.5 µm with 
25 µm bin-width.

We combined DSD from the CDP with that from the 2DS (or 2DC) to calculate cloud microphysical 
properties. The in situ effective radius is calculated from the merged DSD from all the CDP bins (which 
includes particles up to 50  µm) and 2DS bins larger than 50  µm, the same approach as used by King 
et al. (2013). More details and uncertainties associated with instruments and the spectra-merging process-
es are discussed in Section 4.4. Specifically, re is computed as the ratio of the third to the second moment 
of a DSD
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where re is the effective radius at a given time, ri the droplet radius of each bin, ni the droplet concentration 
(#/cm3) per bin, and N the total number of the bins. Cloud droplet number concentration (Nd) is computed 
as:
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where the extinction efficiency Qe is assumed to be 2.

Liquid water content (LWC) is calculated as:
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Instruments Method Measurements References

Cloud Droplet Probe (CDP) Forward scattered light Droplet diameter within 2–50 µm, 30 bins (1 µm 
bin-width for sizes < 14 µm; 2 µm bin-width 
for sizes >=16 µm)

Lance et al. (2010); https://data.eol.
ucar.edu/dataset/552.002

Two-Dimensional Stereo probe (2DS) Two-dimensional image Droplet diameter within 10–1,280 µm (10 µm 
bin-width)

Wu and McFarquhar (2019); https://
data.eol.ucar.edu/dataset/552.047

Two-Dimensional Cloud optical array 
probe (2DC)

Two-dimensional image Droplet diameter within 37.5–1,612.5 µm, 64 bins 
(25 µm bin-width)

Wu and McFarquhar (2019) https://
data.eol.ucar.edu/dataset/552.046

Note. All the data are available at 1 Hz temporal resolution. CDP data are included in the SOCRATES Navigation, State Parameter, and Microphysics Flight-
Level Data, and this study uses version 1.3 of this data set. The version number of 2DC and 2DS is 1.1. 2DC data are not available for research flight RF02.
Abbreviations: CDP, Cloud Droplet Probe, 2DC, Two-Dimensional Cloud optical array probe 2DC; 2DS, Two-Dimensional Stereo probe.

Table 1 
In Situ Instruments

https://data.eol.ucar.edu/project/552
https://data.eol.ucar.edu/project/552


Earth and Space Science
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where the w is the density of liquid water. We calculate LWP by integrating LWC from the cloud base to 
the cloud top. Following Wood et al. (2011) and PZ11, cloud top and cloud base are defined as the highest 
and lowest altitude with LWC greater than 0.03 gm−3. The calculated value of LWP is not sensitive to this 
threshold.

In order to identify the cases (vertical profiles) where the precipitation is present, we calculate LWP for the 
droplets with diameters larger than 50 μm from 2DS probe (i.e., the vertically integrated precipitation liq-
uid water path), which we will denote as precipitation water path (PWP). Following the definition of King 
et al. (2013), clouds profiles are categorized into three groups: nonprecipitating (PWP ≤ 2 g m−2), lightly 
precipitating (2 g m−2 < PWP ≤ 10 g m−2), or heavily precipitating (PWP > 10 g m−2). The phase of the clouds 
is determined using the ice phase fraction μice (Korolev et al., 2017), defined as μice = IWP/(IWP + LWP), 
where ice water path (IWP) is the vertical integral of ice water content (IWC) obtained from the 2DS and 
only includes ice particles ≥200 µm, as derived by Wu and McFarquhar (2019). Later in the article, we will 
discuss the implications of this restriction.

Figure 2 shows the verticals profiles of in situ re, LWC, and Nd as a function of the normalized height (posi-
tion within cloud normalized such that 1 is cloud top and 0 is cloud base). Here only profiles of single-lay-
ered clouds are shown (meaning profiles with multiple low-level clouds layers are not included). The thin 
lines are from individual aircraft penetrations (dots shown in Figure 1), while the thick line and purple 
shading shows the average profile and standard error, respectively. The standard error is the standard devi-
ation divided by the square root of the number of profiles and is provided to give a sense for the one-sigma 
(66%) uncertainty in the average.

On average, both re and LWC increase roughly linearly with height, while Nd remains relatively constant 
with height, which is what one expects for cloud under an adiabatic assumption. We note that while re in-
creases linearly with height, the value of re is not especially small at cloud base, and the total change in re 
(on average) is only a few microns. LWC near the cloud top deviates from a linear increasing LWC, which 
may be due to entrainment, but could also be due to the aircraft passing through clouds with a horizontally 
varying cloud top height or cases where a thin-cloud-layer exists above a thicker-layer that is not resolved by 
the aircraft sampling. The data used here are sampled at 1 Hz, which is roughly equivalent to a horizontal 
sampling distance of 137 m, while ascents and descents rates were typical about 5–7 m s−1, yielding a verti-
cal resolution of about 6 m. The thickness of cloud layers varied from 88 to 2,421 m, with multilayer clouds 
often featuring multiple thin layers. The light lines in Figure 2 shows that individual aircraft penetrations 
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Figure 2.  In situ profiles (single-layered) of (a) effective radius (re), (b) liquid water content (LWC), and (c) droplet number concentration (Nd) normalized with 
respect to position within the cloud such that 1 indicates cloud top and 0 indicates cloud base. The thick black solid line is the mean of all the profiles. Purple 
shadings indicate the standard error. Spikes in the effective radius plot, in particular, occur when the Cloud Droplet Probe (CDP) records only a few small 
(∼10 µm) cloud-size droplets, but some precipitation size particles are present from two-dimensional stereo (2DS).
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do not always show an adiabatic-like profile, but of course the aircraft profiles we are creating are not 
necessarily sampling individual updrafts or downdrafts within a cloud, and any individual profile does not 
represent the actual profile of cloud properties at any specific location. Nonetheless, the horizontal distance 
sampled by the aircraft is roughly consistent with the 1-to-few pixel size being used in the satellite retrievals.

In Section 3, we compare satellite retrieved re, τ, LWP, and Nd with in situ values from individual profiles. 
In that analysis, the in situ cloud drop size distribution are first aggregated from the top of the cloud to the 
point where the OD reaches one (unless noted otherwise), and average DSD are used to compute re. Since 
both τ and LWP are integrated quantity, they are computed over the entire cloud layer by vertically integrat-
ing LWC and  , respectively. Despite of the variability in the cloud field, this approach is still reasonable to 
estimate the mean τ and LWP of the cloud field. The mean value of Nd for each profile is used (rather than 
the value near cloud top) to reduce sampling uncertainty. In the plots in Section 3, the variability of the in 
situ re is shown by the standard deviations of the values over the top 1 OD of the cloud, and the variability 
of the in situ Nd is shown by the standard deviations of the values taken over the cloud profile. In order to 
estimate the uncertainty associated with the LWP and τ, we fit a set of lines to individual profiles that bound 
the vertical variations in LWC and  , with details given in the supporting information.

2.2.  Satellite Products and Collocation

MODIS level 2 Collection 6.1 cloud products from Aqua platform (MYD06) are evaluated in this study. 
Detailed descriptions for the MODIS cloud product can be found in Platnick et al. (2017). Data are available 
at https://ladsweb.modaps.eosdis.nasa.gov/. The product includes cloud microphysical information with 
1-km resolution at nadir (directly below the satellite) based on a bi-spectral method using a non-absorbing 
visible-wavelength channel and one absorbing shortwave infrared channel, following the approach devel-
oped by T. Nakajima and King (1990). MODIS provides three sets of retrievals, based on three different 
absorbing channels at 1.6, 2.1, and 3.7 µm. During the evaluation, we mainly focus on the retrievals using 
the 3.7 µm channel since re retrievals from this band are expected to be less influenced by three-dimensional 
effects (more on this later in the document) and often show the best agreement with the in situ measure-
ments (e.g., King et al., 2013). Comparisons between 1.6 and 2.1 µm are also discussed in Section 3.2. In 
general, the comparison of satellite retrieved re and in situ measured re requires consideration of the vertical 
penetration of the photons into the cloud. As reported in the previous studies (King et al., 2013; T. Y. Na-
kajima et al., 2010; Platnick, 2000; Zhang & Platnick, 2011), one expects that re retrieval at 3.7 μm is more 
sensitive to the cloud droplets near cloud top due to the stronger absorption (smaller penetration depth), 
while re retrievals at 1.6 and 2.1 μm are more representative for the droplets deeper into the clouds due to the 
relatively weaker absorption (larger penetration depth). Thus (as described in Section 2.1), we calculated in 
situ cloud top re by averaging the cloud DSD over 1 OD at the top of the cloud. We also have examined the 
impact of using a threshold of two and three ODs, but found this had little effect on the results. In addition 
to MYD06 product, we also used MODIS level 3 MYD03 product for the geolocation fields, and MODIS 
level-1B data set MYD02QKM for the calibrated radiances to calculate the heterogeneity index (Section 4.1).

In addition to, the operational MODIS retrievals, we also evaluated the CERES-MODIS Cloud Product Re-
trieval Edition 4 (Minnis et al., 2020; Trepte et al., 2019). This retrieval product is produced by the CERES 
team at NASA Langley and is used in generating CERES radiative flux products (Kato et al., 2013). Although 
CERES-MODIS, pixel level data are not publicly available (publicly available data are limited to gridded 
level 3 products), we include in the supplementary material (Table S2) the mean of the CERES-MODIS 
retrievals collocated with the aircraft vertical profiles, which is used in all of the analysis presented here. 
While the microphysical properties of low clouds are also based on the bi-spectral technique, the underlying 
codes were developed independently and apply different techniques to account for absorption due to above 
cloud water vapor and different criteria to identify low clouds and when to apply the bi-spectral retrieval. 
CERES-MODIS algorithm processes MODIS radiance data with every other scanline and every 4th pixel 
from the original MODIS 1-km resolution (i.e., 339 pixels per scanline, instead of 1,354 pixels).

This study also evaluates cloud retrievals produced by the NASA SatCORPS group based on Himawari-8 ob-
servations (Smith and Minnis, 2018; Minnis et al., 2020; Trepte et al., 2019). Data are available at https://data.
eol.ucar.edu/dataset/552.027. Himawari-8 is a Japanese geostationary meteorological satellite launched in 
October 2014. The SATCORPS Himawari-8 retrievals have 2-km resolution at nadir and are available every 
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10-min during GV aircraft flight dates. Details of the cloud property retrieval methodology are given in 
Minnis et al. (2011, 2008) and largely follow the approach used for CERES-MODIS and use near-infrared 
imagery at 3.9 μm.

All three satellite products provide retrievals for re and τ, based on one-dimensionalradiative transfer calcu-
lations and the satellite retrieved re and τ can be used to derive LWP. The formulation varies depending on 
the assumed vertical structure (profile shape) of the cloud LWC and re. For a vertically homogeneous cloud 
having a constant LWC and re with altitude (Borg & Bennartz, 2007), one obtains:

 
4LWP ·
3

w
e

e
r

Q� (5)

while for an adiabatically stratified cloud having a linearly increasing LWC and re with altitude (Wood & 
Hartmann, 2006), one obtains:
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where w is the density of water, and again the extinction efficiency Qe is assumed to be 2. These two expres-
sions differ by a constant factor, with the vertically homogenous assumption giving a 20% larger LWP. Both 
MODIS and CERES-MODIS operational algorithm calculate and provide LWP based on Equation 5, while 
SatCORPS Himawari-8 data set includes LWP calculated with the Equation 6. Previous studies (e.g., King 
et al., 2013) have found that LWP computed using the vertically homogeneous formulation is usually pos-
itively biased for marine stratocumulus, which is not surprising given the overall adiabatic-like profiles of 
oceanic boundary layer clouds (Seethala & Horváth, 2010). We likewise find that this assumption provides 
a better match with the observations, and in the later discussion use Equation 6 assuming adiabatically 
stratified clouds except where specifically stated otherwise.

Although, Nd is not provided in any of the three satellite products, it can likewise be derived from passive 
satellite observations using re and τ assuming a one-dimensional cloud and following the assumption that 
clouds have an adiabatic-like profile, in which LWC increase linearly from cloud base to cloud top, given by 
(Bennartz, 2007; Grosvenor et al., 2018):
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which is basically the product of the ratio of 1/2 and 5/2
er  and a constant C. The constant C is determined by 

several parameters, with eQ 2, and k, cw, and fad given by:
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The k parameter is a measure of the droplet spectrum width and is given by the third power of the ratio 

between volume radius (rv) to re, where 
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N
. k is often assumed to be a constant with a value 

of 0.8 in retrievals. Later in this study, we calculate k values using the in situ rv and re values for the cloud 
profiles. cw is the rate of increase of LWC with height (i.e., the condensation rate), which is a weak function 
of temperature and pressure, and is often assumed to be a constant ranges from 1 to 2.5 g m−3 km−1 (Al-
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brecht et al., 1990; Min et al., 2012). Again, later in this study, we examine the mean and variability of cw. 
cp = 1,004 J K−1 kg−1 is the specific heat of dry air at constant pressure, Lv = 2.5 × 106 J kg−1 is the latent heat 
of vapourization, Γd and Γm are the dry and moist adiabatic lapse rate, respectively. fad is called the adiabatic-
ity factor and describes how close the observed cloud is to a true adiabatic cloud layer (while still assuming 
the liquid water content increases linearly with height). Typically, this factor is assumed to be a constant 0.8 
(e.g., Bennartz et al., 2007). Again, later in this study, we calculate fad values for the cloud profiles.

In comparing satellite retrievals with in situ measurements, a key step is collocation. We used the coordi-
nates of the aircraft at the time when the aircraft crosses cloud top and found the corresponding satellite 
pixels surround this location. Here, we averaged the satellite pixels around the location of the in situ pro-
file within a 5 pixels × 5 pixels box for MODIS, 3 pixels × 3 pixels box for CERES-MODIS, and 3 pixels × 3 
pixels box for Himawari-8. Changing the size of the averaging box by a factor of 2 has a negligible impact 
on the results. While in most cases, all of the satellite retrievals within these boxes correctly identified 
the cloud as low-level (<3 km) liquid clouds; in a few cases, there were some scattered high clouds in the 
vicinity. In our box averages, we include only those satellite pixels which are identified as low-level liq-
uid clouds by the retrieval algorithms. We did reject a few cases (match up points) because the apparent 
cloud-top-height (CTH) did not match the in situ aircraft measurement within 1 km (satellite reported 
CTH > 3 km). While there are not a sufficient number of the poor CTH cases to quantify errors for these 
cases, we note that all of the satellite imager retrievals assume single layer clouds. Situations in which 
an optically thin high-altitude (ice) clouds overlays an optically thicker low-altitude (liquid) clouds is a 
long-standing problem for imager-based retrievals, but filtering for CTH < 3 km appears to be satisfactory 
for the present analysis.

The in situ aircraft measurements and satellite retrievals do not necessarily occur simultaneously. In 
our analysis, we account for the time offset by adjusting the box location for cloud advection, and we 
set a maximum time offset between the in situ and satellite data to be 1 h for MODIS (and CERES-
MODIS) and 10  min for Himawari-8. Specifically, we account for the distance clouds traveled by 
averaging the in situ measured wind speed near the cloud top, an approach which is similar to that 
employed by PZ11.

After the above filtering and processing, there remained 20 in situ cloud profiles (from eight flights) closely 
aligned with Aqua MODIS overpasses, and 51 profiles (from 14 flights) closely aligned with Himawari-8 
products. In total, 53 in situ cloud profiles are used in this study and statistics are provided in Table 2. The 
circles marked on Figure 1 show the location of these profiles, and Table S1 in the supporting information 
lists in situ properties for each profile.

3.  In Situ and Satellite Retrievals Comparisons
In this section, satellite retrievals from MODIS, CERES-MODIS, and Himawari-8 are compared with the 
in situ measurements of τ, re, LWP, and Nd. Statistics summarizing the comparison between the in situ and 
three satellite products are provided in Tables 3–5, respectively. We begin the analysis with τ and re, after 
which we focus on LWP and Nd, which are derived from τ and re.
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Variable N Mean Standard error

τ 53 (21,18,14) 12.6 (6.7,19.1,13.2) 1.3 (1.5,2.4,2.1)

LWP [g · m−2] 53 (21,18,14) 84.8 (34.7,120.6,114.0) 9.1 (7.0,13.3,18.4)

Nd [#/cm−3] 53 (21,18,14) 86.8 (91.4,109.7,50.3) 7.5 (12.2,12.8,7.9)

re(μm) 53 (21,18,14) 11.4 (8.7,11.0,16.0) 0.6 (0.4,0.4,1.3)

Notes. N is the number of the data points. For each cell, value in front of parentheses is the statistics for all the 
collocated profiles, while the first, second, and third values are that for nonprecipitating, lightly precipitating, and 
heavily precipitating cases, respectively.

Table 2 
Summary of the Statistics for In Situ Measurements Used in the Satellite Evaluation
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3.1.  Cloud Optical Depth

Figure 3 compares the in situ derived τ with satellite-retrieved τ. The vertical bars show the standard devia-
tion of τ for the pixels within the collocated satellite match-up box that is used for averaging (see Section 2). 
In many cases, the vertical bars exceed five, showing that there is typically a large horizontal variability in τ 
on the satellite pixel-scale. MODIS τ3.7 correlates well with in situ values (R = 0.91), having a mean bias of 
only 0.1. CERES-MODIS τ also correlates wells, R = 0.91, having a mean bias of 1.5, which is not statistically 
different from zero at a 95% confidence level (as the one-sigma uncertainty in the mean, that is the standard 
error, is about 1, while bias that is 2 times smaller than the standard error is not significant at 95% level of 
confidence). Himawari-8 τ is not well correlated with R = 0.79 and a mean bias of 2.6, which is nominally 
significant at 95% confidence. However, the Himawari-8 data yield about the same as the mean bias as 
CERES-MODIS, when restricted the 18 cases common to all three datasets (Figure 3d), with R = 0.86 and a 
mean bias = 1.88. Thus, the overall lower performance suggested by the full set of Himawari-8 match-ups 
is due to having more difficult cases. In particular, there are more cases with multiple low-level cloud layers 
(that is, multiple layers below 3 km; gray filled dots) in the Himawari-8 set, and in general, cases which are 
more spatially variable (notice the larger vertical uncertainty bars in panel c). As will be discussed further 
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Variable N R Mean bias Mean Standard error

τ 20 (6,7,7) 0.91 0.1 (1.0,−0.6,0.1) 13.8 (5.3,20.7,14.2) 1.0 (1.6,1.5,1.8)

LWP [g · m−2] 20 (6,7,7) 0.83 1.6 (6.1,0.2,−0.8) 96.1 (30.3,138.7,109.8) 8.5 (9.1,9.4,20.9)

LWPvh [g · m−2] 20 (6,7,7) 0.82 16.1 (10.4,20.9,16.1) 110.5 (34.6,159.4,126.7) 8.8 (9.4,10.1,21.3)

Nd [#/cm−3] 20 (6,7,7) 0.68 −9.1 (7.2,−32.8,0.6) 76.9 (62.9,100.8,65.0) 8.3 (8.1,15.4,12.0)

Nd_obs-mean-k_fad [#/cm−3] 20 (6,7,7) 0.68 −8.1 (8.0,−31.5,1.4) 77.8 (63.7,102.0,65.8) 8.3 (8.2,15.4,12.2)

Nd_obs_cbc_k_fad [#/cm−3] 20 (6,7,7) 0.78 −7.2 (0.8,−23.3,2.2) 78.8 (56.5,110.2,66.5) 7.2 (10.1,10.3,13.5)

re3.7 [μm] 20 (6,7,7) 0.9 0.0 (1.0,0.7,−1.6) 12.5 (10.4,11.9,15.0) 0.5 (0.3,0.3,1.0)

re2.1 [μm] 20 (6,7,7) 0.83 0.7 (2.4,1.0,−1.1) 13.2 (11.9,12.2,15.4) 0.6 (1.1,0.5,0.7)

re1.6 [μm] 20 (6,7,7) 0.84 −0.1 (0.8,0.6, −1.6) 12.5 (10.3,11.8,15.0) 0.6 (1.1,0.4,1.0)

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.
Notes. N is the number of the data points. R is the correlation coefficient. For each cell, value in front of parentheses is the statistics for all the collocated profiles, 
while the first, second, and third value are that for nonprecipitating, lightly precipitating, and heavily precipitating cases, respectively. Liquid water content 

(LWP) is calculated assuming adiabatically stratified cloud with equation 
  w

e
e

10LWP · r
9Q

 for the satellite retrievals. LWPvh is calculated assuming vertically 

homogeneous cloud with equation 
  w

e
e

4LWP · r
3Q

. Satellite Nd is retrieved with typically assumed constants (k = 0.8, and fad = 0.8), Nd_obs-mean-k_fad is 

retrieved by setting k and fad to the mean of the in situ values, and Nd_obs_cbc_k_fad by using case-by-case in situ value of k and fad. During the Nd retrieval, 
condensation rate(cw) is calculated using the satellite-retrieved cloud top temperature and pressure.

Table 3 
Summary of the Comparison Statistics Between MODIS Retrievals and In Situ Measurements

Variable N R Mean bias Mean Standard error

τ 20 (6,7,7) 0.91 1.5 (1.8,1.8,0.9) 15.2 (6.1,23.2,15.1) 0.9 (0.9,1.7,1.8)

LWP [g · m−2] 20 (6,7,7) 0.79 12.2 (12.2,25.3,−0.7) 106.7 (36.4,163.8,109.8) 9.7 (5.4,13.2,22.9)

LWPvh [g · m−2] 20 (6,7,7) 0.79 33.6 (19.4,58.0,21.3) 128.0 (43.6,196.5,131.8) 10.9 (5.2,14.7,24.7)

Nd [#/cm−3] 20 (6,7,7) 0.49 −7.9 (3.7,−41.5,15.7) 77.9 (59.4,92.0,79.7) 10.7 (3.8,17.3,19.0)

Nd_obs-mean-k_fad [#/cm−3] 20 (6,7,7) 0.49 −7.0 (4.4,−40.4,16.7) 78.9 (60.1,93.1,80.7) 10.7 (3.8,17.3,19.2)

Nd_obs_cbc_k_fad [#/cm−3] 20 (6,7,7) 0.59 −5.9 (−3.1,−33.4,19.1) 79.9 (52.6,100.2,83.1) 10.1 (6.0,12.4,21.2)

re[μm] 20 (6,7,7) 0.78 0.2 (1.5,1.5,−2.2) 12.7 (10.9,12.6,14.3) 0.6 (0.3,0.2,1.3)

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.

Table 4 
Summary of the Comparison Statistics Between CERES-MODIS Retrievals and In Situ Measurements
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Variable N R Mean bias Mean Standard error

τ 51 (19,18,14) 0.79 2.6 (4.0,2.1,1.4) 15.7 (11.1,21.2,14.7) 1.0 (1.8,1.6,1.9)

LWP [g·m−2] 51 (19,18,14) 0.64 16.1 (21.8,21.1,2.0) 103.7 (58.7,141.7,116.1) 8.7 (9.4,11.4,24.5)

LWPvh [g·m−2] 51 (19,18,14) 0.64 36.9 (33.6,49.4,25.2) 124.5 (70.5,170.0,139.3) 10.1 (11.9,13.3,28.0)

Nd [#/cm−3] 51 (19,18,14) 0.77 −1.6 (6.3,−17.7,8.5) 87.0 (102.9,92.1,58.8) 5.1 (9.3,7.0,8.1)

Nd_obs-mean-k_fad [#/cm−3] 51 (19,18,14) 0.77 −0.5 (7.5,−16.5,9.2) 88.0 (104.2,93.2,59.5) 5.1 (9.4,6.9,8.2)

Nd_obs_cbc_k_fad [#/cm−3] 51 (19,18,14) 0.77 0.1 (4.4,−13.0,11.2) 88.7 (101.1,96.7,61.4) 5.3 (10.8,5.3,8.9)

re (μm) 51 (19,18,14) 0.84 1.2 (1.4,1.7,0.3) 12.3 (9.9,12.4,15.6) 0.3 (0.4,0.3,0.8)

Table 5 
Summary of the Comparison Statistics Between SatCORPS Himawari-8 Retrievals and In Situ Measurements

Figure 3.  Comparison of τ from in situ measurements (CDP+2DS) and satellite retrievals for each case (aircraft 
vertical profile) based on (a) Moderate Resolution Imaging Spectroradiometer (MODIS; MYD06 3.7 μm channel), (b) 
CERES-MODIS, (c) Himawari-8, and (d) for all three retrievals limited to the cases common to all three datasets. The 
vertical uncertainty bars indicate the standard deviation of τ within a box centered on the aircraft after correcting for 
advection (see text in Section 2). The horizontal uncertainty bars are estimated by fitting a set of lines to individual 
profiles that bound the vertical variations in β. Black, blue, and red open circles indicate cases that are nonprecipitating 
(PWP < 2 gm-−2), lightly precipitating (2 g m−2 < PWP <10 gm−2), or heavily precipitating (PWP > 10 gm−2), 
respectively. Gray filled dots indicate those in situ profiles when there are multiple low-level cloud layers (cloud top of 
all layers is less than 3 km). For text in panel (d), R indicates the correlation coefficient and B indicates the mean bias 
(satellite—in situ) for each data set (of the specified color).
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in Section 5, a mean bias near 2.5 with a one-sigma certainty of near 1 is reasonably good performance 
and is consistent with expectations based on previous studies. Tables 3–5 also lists the statistics for cases in 
different precipitation regimes (nonprecipitating, lightly precipitating, and heavily precipitating), and we 
will discuss these results in more detail in the context of the LWP retrieval in Section 3.3, after examining 
the effective radius.

3.2.  Effective Radius

The comparison between satellite-derived re and in situ re is shown in Figure 4. Here, the in situ re is derived 
from the merged spectrum of CDP and 2DS. MODIS re3.7 correlates well with in situ re (R = 0.9) and has a 
mean bias of 0.0 μm. In spite of being for the same set of cases, perhaps surprisingly the correlation between 
CERES-MODIS and in situ re is not quite as good as that of MODIS, with R = 0.78. Nonetheless, the mean 
bias of CERES re is small at 0.2 μm and not significantly different from zero at the 95% level of confidence. 
As for Himawari-8, the overall results are similarly good with the correlation between retrieved re and in situ 
re being 0.84, though the retrieved re are generally larger than in situ re, with a mean bias of 1.2 μm (which is 
significantly different from zero at 95% level of confidence, assuming the data to be normally distribution). 
However, as was the case for OD, the difference in the Himawari-8 bias is due to additional cases analyzed, 
and the bias reduces to −0.29 μm when restricted to the set of cases common to all three retrievals (see 
Figure 4d).
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Figure 4.  Comparison of re from in situ measurements (CDP+2DS) and re retrieved by (a) MODIS 3.7 μm channel, 
(b) CERES-MODIS, (c) Himawari-8, and (d) limited to the cases common to all three data sets. Symbols, vertical 
uncertainty bars, and text in panel (d) are the same as Figure 3. The horizontal uncertainty bars are the standard 
deviation near cloud top (see Section 2).
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As shown by the red symbols in Figure 4, larger negative errors are associated with some heavily precip-
itating cases (PWP > 10 gm−2), while most non- and lightly precipitating cases have a small positive bias. 
To demonstrate further how the error in re retrieval is related to the presence of precipitation, in Figure 5 
the re retrieval error is plotted as a function of PWP. For MODIS re retrievals (panel a), there is a large neg-
ative bias associated with four cases, all of which have a PWP greater than 12 g m−2. The same four cases 
are also negatively biased in CERES-MODIS and Himawari-8 retrievals. When considering all cases, there 
is more variability in the Himawari-8 retrieval error when PWP is greater than about 10 g m−2 than when 
PWP is less than about 10 g m−2. The mean bias of Himawari-8 re for these heavily precipitating cases is 
small (−0.3 μm), while the bias for non- and lightly precipitation is 1.4 μm. When restricted to the 18 cases 
common to all three datasets, the mean bias for the non- and lightly precipitating cases is similar and sta-
tistically significant in all three datasets, with values of 0.78, 1.52, and 0.62 μm for MODIS, CERES-MODIS, 
and Himawari-8 re retrievals, respectively. The presence of precipitation is clearly an important factor, and 
this will be explored in greater depth in Section 4.

As mentioned in Section 2.2, MODIS re retrievals are also available based on observations at 1.6 µm and 
2.1 µm in addition to 3.7 µm. The difference in the three MODIS re retrievals is influenced by the different 
absorption in different bands, with the photon penetration depth being largest at 1.6 µm and smallest at 
3.7 µm. Figure 6a shows a comparison between all three MODIS re retrievals with in situ re. Both re2.1 and 
re1.6 correlate well with in situ re, with R = 0.83 and R = 0.84, respectively, being slightly smaller than that 
of re3.7 (R = 0.91). As is also shown in Figure 6, there is one case (marked by cross) with an unusually large 
difference among the three channels. This difference is likely due to the inhomogeneity of cloud scene, as 
will be discussed in Section 4.1. When this case is excluded, the mean bias in re2.1 and re1.6 (taken across all 
cases) is only 0.30 μm and 0.17 μm, respectively. However, as the case for re3.7, there is marked variation with 
amount of precipitation. Similar to Figure 5, circles in Figures 6c and 6d show retrieval error of re2.1 and re1.6 
as a function of PWP. Overall, a positive bias still exists for non- and lightly precipitating cases, and the four 
cases associated with large negative bias in re3.7 (Figure 5a) continue to show a negative bias in re2.1, though 
to a smaller extent.

To compare the MODIS re retrievals from different wavelengths, Figure 6b shows the difference between re3.7 
and re2.1 (or re1.6) as a function of PWP. In general, re2.1 is larger than re3.7 with most points (orange circles) 
having a positive difference (located above the zero line), and this positive difference becomes more obvious 
for the heavily precipitating clouds. A similar positive difference is found for re1.6–re3.7, with re2.1 typically 
being closer to re3.7 than re1.6. As the amount of precipitation tends to increase with depth into the cloud, 
the increase in particle size for the precipitating cases is consistent with the expectation since photons at 
2.1 μm can penetrate deeper into the cloud than at 3.7 μm. This does not explain, however, why re2.1 or re1.6 
is larger for the nonprecipitating cases (where one might expect the opposite behavior), suggesting that 
factors other than vertical variation, penetration depth, and precipitation are important in the difference. 
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Figure 5.  Satellite re retrieval errors in (a) MODIS, (b) CERES-MODIS, (c) Himawari-8 as a function of vertically integrated precipitation water path (PWP). 
Symbols are same as that in Figure 3, with two vertical dashed line indicating the thresholds of 2 and 10 g m−2 used to define non- and lightly-precipitating 
categories.
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This result, is consistent with previous studies that show re2.1 (or re1.6) tend to be larger than re3.7 (e.g., PZ11; 
King et al., 2013).

3.3.  Cloud Liquid Water Path

Figure 7 shows a comparison between in situ LWP and satellite-derived LWP, calculated using Equation 6, 
which assumes clouds are adiabatic. MODIS LWP correlates well with in situ LWP (R = 0.83) and has a 
mean bias of only 1.6 g m−2, while for CERES-MODIS, R = 0.79 and the mean bias is 12.2 g m−2 (which is 
not significantly different from zero at the 95% level). For Himawari-8 using 51 cases, R = 0.64 and mean 
bias is 16.1 g m−2 (not significant at 95%), with better performance for single-layered cases in Himawari-8 
retrievals (R = 0.8 and mean bias = 15.8 g m−2), and with similar performance to MODIS when restricting 
to the set of cases common to all three satellite retrievals (Figure 7d).

In the literature, satellite-derived values for LWP are sometimes obtained by assuming a vertically homo-
geneous cloud (Equation 5), rather than an adiabatic cloud (Equation 6). Tables 3–5 provide mean bias and 
other error statistics using this alternative formulation. As one might expect given that the in situ profiles 
of LWC (see Section 2) do show an adiabatic-like profile, the adiabatic formulation for LWP produces better 
overall results, whereas the vertically homogeneous assumption results in a statistically significant overes-
timation of LWP.
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Figure 6.  (a) MODIS re retrievals at three wavelengths versus the in situ re (CDP+2DS). Cross symbol in panel (a) 
denotes point with unusually large difference that is likely due to spatial heterogeneity (see text). (b) Difference 
between MODIS re3.7 and re2.1 (or re1.6) as a function of PWP. (c) MODIS re3.7 error (circles) and re2.1 error (x’s) as a 
function of PWP. (d) Same as panel c, except for x’s are for re1.6 error. In (c) and (d), the color code is the same that in 
Figure 5 and earlier figures. The two vertical dashed lines in panels (b) and (c) denote the thresholds of 2 and 10 gm−2 
used to define non- and lightly precipitating categories.
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One expects a positive error in re, or τ (meaning the retrieved value is too large) will result in a positive error 
in LWP (regardless of which of the two LWP formulations is used), and indeed we find this to be true, as 
shown in Figure 8. For all three satellite products, the bias in LWP is positively correlated with bias in re, 
with the R of 0.52, 0.69, and 0.59, respectively, and positively correlated with bias in τ, with the R of 0.92, 
0.88, and 0.91. Note that there are more black and blue points (associated with non- and lightly precipitating 
profiles) in the upper right quadrant in Figures 8b and 8c. In Section 3.2, it was noted that non- and lightly 
precipitating cases have a small positive (satellite > in situ) mean bias in re in all three retrieval datasets. 
Likewise, the OD for the non- and lightly precipitating cases is also slightly biased in the CERES-MODIS 
and Himawari-8 datasets, as is evident in Figures 8e and 8f, which show fewer points in lower left quadrant 
than upper right quadrant (see also Tables 4 and 5). Together the positive bias in re and τ creates a small 
(but statistically significant) bias of 19.22 and 21.58 g m−2 in the LWP. In the operational MODIS MYD06 
product, on the other hand, there is no significant LWP bias associated with non- and lightly precipitating 
cases; and these points have a mean bias of only 2.93 g m−2. This is because the bias in re is countered by a 
small compensating error in τ of about −0.6 for MODIS for lightly precipitating cases (note the points in 
lower left of Figure 8d). The small bias of −0.6 is not itself statistically significant, and so it is ambiguous 
as to whether this compensation is coincidental. If coincidental, one expects that MODIS LWP would also 
have a small bias in LWP for non- and lightly precipitating clouds given that it appears to have a similar bias 
in re, but based on the data we have, all we can conclude is that there is no significant bias in LWP.
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Figure 7.  Comparison of liquid water path (LWP) from in situ measurements (CDP+2DS) and retrieved by (a) MODIS 
3.7 μm channel, (b) Himawari-8, (c) CERES-MODIS, and (d) limited to the cases common to all three data sets. LWP 
are retrieved from satellite assuming adiabatically stratified cloud. Symbols, vertical uncertainty bars, and text in panel 
(d) are the same as that in Figure 3. The horizontal uncertainty bars are estimated by fitting a set of lines to individual 
profiles that bound the vertical variations in liquid water content (LWC).
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While there is no statistically significant bias associated with the heavily precipitating cases (red circles), 
there is considerable variability with these cases having largest positive and negative errors in re, τ, and LWP. 
The standard error (uncertainty in the mean) is greater than 20 g m−2 for the heavily precipitating cases in 
all three datasets. In particular, the handful of cases identified as having large negative error in re (retrieved 
re is too small) have the largest underestimate in LWP.

3.4.  Cloud Droplet Number Concentration

Figure  9 compares the satellite-derived Nd with the in situ values. When considering all comparison 
points, the MODIS, CERES-MODIS, and Himawari-8 Nd retrievals are biased by only −9.1, −7.9, and 
−1.6 #/cm−3, respectively. These biases are not significantly different from zero at the 95% level of con-
fidence and are small or modest relative to the overall mean of 86.8 #/cm−3 (Table 2). As was the situa-
tion for LWP (discussed above in Section 3.3), the impact of precipitation on the bias in Nd retrievals is 
complicated by the correlation between errors in re and τ and is somewhat different in each of the three 
datasets and also depends to amount of precipitation present. In all three satellite datasets, the errors in 
re and τ tend to cancel out, producing relatively little bias in Nd. The only statistically significant bias we 
find are for the lightly precipitating category, where MODIS and CERES-MODIS retrievals have under-
estimated the Nd by about 30–40 #/cm−3,and Himawari-8 retrievals have underestimated the Nd by −17.7 
#/cm−3 (from an overall mean of about 100 #/cm−3). We note that the correlation between the retrieved 
and in situ values is poorer for Nd (ranging from 0.49 to 0.77) than for re, τ, and LWP. At the end of this 
section, we examine in more details the effect of random errors (variability from profile-to-profile) in the 
retrieved Nd.
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Figure 8.  Difference between satellite-derived liquid water path (LWP) and in situ LWP as a function of retrieval error in re and τ. The 1st column is for 
MODIS, the 2nd column is for CERES-MODIS, and the 3rd column is for Himawari-8. Symbols are the same as Figure 3.
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Perhaps equally importantly, we find a large bias error in cases with multiple low-level clouds for Himawari-8, 
with a mean bias of 23.4 #/cm−3. There are only 10 cases where multiple low-level clouds are present, but 
the difference is significant because these cases have smaller droplet concentration (mean value about 52.4 
#/cm−3 with a mean-absolute deviation of 27 #/cm−3). The MODIS and CERES-MODIS retrievals include 
only one such multilayer case, and we cannot directly assess if the results would be similar for multilayer 
cases for these two datasets, but given the similar physical basis of the retrievals, it seems likely that the 
MODIS-based retrievals would have similar difficulty. Unfortunately, it is difficult to identify when multiple 
low-level cloud layers are present from satellite VIS-IR imagery alone; however, other measurements such 
as CALIPSO lidar backscatter might be used to detect the presence of such layers in combined retrievals al-
gorithms. When multilayer clouds are removed from the set of cases examined, the three datasets have sim-
ilar mean biases of −9.7, −8.6, and −7.7 #/cm−3 for MODIS, CERES-MODIS, and Himawari-8, respectively.

The above assessment for Nd is based on an assumed value for k of 0.8, fad of 0.8, and using cw value calcu-
lated using Equation 9 with satellite retrieved cloud top temperature and pressure. Using in situ measure-
ments, fad can be calculated using Equation 10. Doing so, we find a mean value of 0.74 for the 43 single-lay-
ered profiles. Likewise, the k factor can be calculated using the SOCRATES data based on Equation 8. The 
value for k is generally not constant over the depth of the clouds, but typically is larger toward cloud top 
because the DSD is narrower. In Figure 10, we plot histograms of the calculated k factors near cloud top 
(integrated extinction from cloud top less than 1) and for all vertical levels. The averaged k for cloud top is 
0.76 ± 0.08, which is slightly larger than averaged k for the whole cloud layer 0.73 ± 0.09. Using both the 
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Figure 9.  Comparison of Nd from in situ measurements (CDP+2DS) and retrieved by (a) MODIS 3.7 μm channel, 
(b) CERES-MODIS, (c) Himawari-8, and (d) limited to the cases common to all three data sets. Symbols, vertical 
uncertainty bars, and text in panel (d) are the same as that in Figure 3. The horizontal uncertainty bars are the standard 
deviation of values over the cloud layer (see Section 2).
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mean cloud top k of 0.76 and mean value fad of 0.74 has little net effect on 
the retrieval, with the resulting mean bias for Nd from MODIS, CERES-
MODIS and Himawari-8 becoming -8.1, −7.0, and −0.5 #/cm−3. We also 
find that, if one uses values of k and fad obtained from the in situ data on 
case-by-case basis for the Nd retrieval, there is likewise little change in the 
mean bias (−7.2, −5.9, and 0.1 #/cm−3). The small net change in the bias 
occurs because the impact of decreasing fad opposes (or compensates) for 
the effect of decreasing k in Equation 7. That is, what is important for 
the retrieval is the ratio sqrt (fad)/k, which remains nearly constant and 
produces no net bias (systematic error) in the retrieval.

3.4.1.  Uncertainty Analysis for Nd

Following Grosvenor et al. (2018) and Bennartz (2007), one can estimate 
the contribution of random errors (or uncertainty) in input variables in 
Equation 7 to the random error in Nd, using a Gaussian error propagation 
formulation as shown in Equation 11. The derivation assumes the input 
errors are normally distributed and uncorrelated with each other.




     
     
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In short, the expected fractional error in Nd would be given by square root of the sum of the squares of 
the fractional errors in the input terms on the right-hand side of Equation 11. For each input variable, we 
have calculated the fractional error for the inputs using the case-by-case (profile-by-profile) SOCRATES 
single-layered collocated profiles. For example, for Himawari-8, we approximate  er  as the standard devi-

ation of (retrieved re–in situ re) which equals 1.93 μm and er  as the mean in situ value of 11.73 μm, and so 
5

2
e

e

r
r

 = 41.14%. In Equation 11, the term “other” represents the contribution of additional error sources 

other than input variables, which we neglect here, see Grosvenor et al. (2018) for additional discussion.

Table 6 lists the percentage fractional error for each term (not squared) in the Equation 11. Note that the 

column  d

d

N
N

 given here is calculated from the data (same as the other columns) not calculated based on 

Equation 11, while  d

d calc

N
N

is calculated based on Equation 11 with terms on the right-hand side of Equa-

tion 11 as input values. As one might intuitively expect from Equations 7 and 11, errors in Nd are sensitive 
to changes in re since re is raised to the power of 5/2. Our estimates show that error in re is indeed the 
largest source for Nd error, with highest relative error contribution, followed by error in τ. As for assumed 
constants, variability in cw, k and fad can also contribute to Nd error, but based on variability observed during 
SOCRATES the impact is smaller than that of re, though we note the SOCRATES samples data are limited to 
summertime stratocumulus. One might notice that the sum of the expected percent fractional error doesn’t 
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Figure 10.  Histogram of k factor at cloud top (averaged over 1OD) and 
averaged over whole cloud layer.
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MODIS 41.93% 48.17% 2.83% 9.68% 17.35% 14.99% 41.14%

CERES-MODIS 54.18% 63.4% 2.41% 9.68% 17.35% 14.71% 58.33%

Himawari-8 36.6% 55.9% 1.59% 10.72% 16.11% 22.05% 47.56%

Abbreviation: MODIS, Moderate Resolution Imaging Spectroradiometer.

Table 6 
Expected Percent Fractional Error (Uncertainty) in Nd due to Contributions From Different Sources
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“add up” to the  d

d

N
N

 calculated on a case-by-case basis. This is because there are correlations between error 

terms that are not considered in Equation 11. Nonetheless, it seems safe to conclude that error in re have a 
relatively large impact on the uncertainty in the Nd retrieval as compared with other sources, with a total 
(case-to-case) uncertainty between about 40% and 55%.

4.  Error Analysis
Satellite imager retrievals examined in this article invoke several assumptions about cloud structure and 
microphysics, and errors are likely to arise when these assumptions are violated in the real world. In this 
section, we focus on errors in the effective radius retrieval, which are arguably the most statistically robust 
errors identified in Section 3, to assumptions in the bi-spectral retrieval, as well as examine some uncer-
tainties in our analysis approach. Specifically, in Section 4.1, we examine errors related to the assumption 
of horizontally homogeneous (i.e., plane-parallel or one-dimensional) clouds. The bi-spectral retrieval also 
assumes that the shape of the cloud DSD can be represented by a simple function with a single mode. In 
the case of the MODIS, CERES-MODIS, and Himawari-8 bi-spectral retrievals examined in this article, a 
modified gamma distribution with a fixed effective variance is assumed. Larger liquid droplets absorb more 
SWIR radiation than smaller droplets, and at its core, the bi-spectral technique is using the difference in 
absorbed radiation (between the visible and SWIR) to determine particle size. In simple terms, the larger 
the droplets are (on average), the larger the absorption is, and the smaller the ratio of SWIR reflectance to 
visible wavelength becomes. The retrieval therefore also has some sensitivity to the width of the DSD. In 
Sections 4.2, we show that when there is large contribution from larger precipitating droplets near cloud 
top, these cases are associated with significant underestimate in the effective radius, and in Section 4.3, 
we examine errors associated with the assumed width for the size distributions for the non- and lightly 
precipitating cases. Last, in Section 4.4, we discuss uncertainties related to the in situ probes and analysis 
technique.

4.1.  Horizontal Inhomogeneity

Standard cloud remote sensing techniques rely on two basic assumptions: First, clouds are assumed to be 
plane-parallel and homogeneous within each satellite pixel. Second, pixels are assumed independent and 
the net horizontal radiative transport between pixels is neglected. Standard cloud remote sensing techniques 
rely on two basic assumptions: First, clouds are assumed to be plane-parallel and homogeneous within each 
satellite pixel. Second, pixels are assumed independent and the net horizontal radiative transport between 
pixels is neglected. Standard cloud remote sensing techniques rely on two basic assumptions: first, clouds 
are assumed to be plane-parallel and homogeneous within each satellite pixel. Second, pixels are assumed 
independent and the net horizontal radiative transport between pixels is neglected. This bias increases with 
pixel size as the amount of subscale inhomogeneity is increasing Standard cloud remote sensing techniques 
rely on two basic assumptions: first, clouds are assumed to be plane-parallel and homogeneous within each 
satellite pixel. Second, pixels are assumed independent and the net horizontal radiative transport between 
pixels is neglected.

The three satellite-imager datasets evaluated in this study are based on a bi-spectral technique, which as-
sumes clouds are horizontally homogeneous (i.e., plane-parallel or one-dimensional). Of course, in reality, 
the cloud fields often exhibit significant horizontal variability, and the breakdown of the one-dimensional 
assumption can lead to systematic errors during the retrieval (e.g., Marshak et al., 2006; Zhang et al., 2012). 
To assess the impact of horizontal inhomogeneity on the retrieval error, we examine the relationship be-
tween heterogeneity in the satellite visible imagery and errors in effective radius using the Hσ index (Liang 
et al., 2009), defined as:
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which is the ratio of the standard deviation to the mean of the reflectance within the domain. Our adoption 
of this metric stems from previous research suggesting that clouds with Hσ < 0.3 are sufficiently homoge-
neous that errors due to one-dimensional assumption are likely small is this situation, while larger values 
of Hσ associated with more heterogeneous cloud fields have significant retrieval biases (Zhang et al., 2012; 
Zhang & Platnick, 2011). For MODIS, we calculated H  using the MODIS radiance (MYD02QKM product) 
at 0.86 μm for the same 5 × 5 pixel analysis box used in the comparisons in Section 3. Similarly, we calculate 
H  for Himawari-8 reflectance at 0.8 μm for using the same 3 × 3 pixel analysis box. The MODIS radiance is 

observed at 250 m (nadir) resolution, which is finer than the 1 km grid used for the MODIS cloud property 
retrievals. The results shown here are based on the 250 m data, but we find our results do not differ appre-
ciably if the radiance data are first reduced to 1 km resolution.

Figure 11 shows the error in the retrieved re from MODIS and Himawari-8 as a function of Hσ. Overall most 
points have a value for Hσ smaller than 0.3, and there is no clear dependence in the biases for these points. 
However, there are a few points with Hσ > 0.3. For the one case with Hσ ∼ 0.7, there is a large difference 
in the three re retrievals from MODIS (based on different SWIR bands), which motivated us to remove this 
point from the analysis in Section 3.2. For this heterogeneous point, the MODIS 3.7 μm band retrieval has 
the least error, which is consistent with Zhang and Platnick (2011), and other studies that have suggested 
that this band is less susceptible to three-dimensional effects. For Himawari-8, there are two cases with Hσ 
> 0.5 that show relatively large error in re. Overall, most of the cases we evaluated are relatively homoge-
nous with no dependence on Hσ, which suggests that horizontal heterogeneity is not a dominant source of 
re error for our evaluation result. We also examined whether errors in retrieved τ show any dependence on 
Hσ since previous studies suggested that the retrieved τ can be smaller than the actual τ due to heterogeneity 
(Grosvenor et al., 2018). We found that retrieved τ error likewise shows no clear dependence on Hσ for our 
cases (figure not shown).

4.2.  The Presence of Precipitation at Cloud Top

The presence of precipitation can significantly impact the re retrieval. Minnis et al. (2004) and Zhang (2013) 
show that the presence of precipitation can result in underestimation in retrieved re. In Section 3.2, we find 
that re is underestimated for some (but not all) heavily-precipitating cases. To further assess the contribu-
tion of the droplets larger than 50 µm, we calculated the ratio of mean LWC over the top 1 OD of the cloud 
for droplets with diameters >50 µm (i.e., precipitation water content, PWC) and droplets with diameters < 
50 µm (i.e., cloud water content, CWC). Figure 12 shows difference between satellite retrieved re and in situ 
re as a function of this ratio PWC/CWC.

For simplicity, only relatively homogeneous cases (Hσ < 0.3) are considered here. Most of the cases have a 
ratio of PWC/CWC < 0.1, which means the contribution from larger precipitation mode is small. Underes-
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Figure 11.  Satellite retrieval re error as a function of horizontal heterogeneity index for (a) MODIS and (b) Himawari-8. 
Symbols are the same as Figure 3. The additional x-symbols in (a) represent the error of MODIS re2.1 and re1.6.
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timation of re was found for three cases with large contributions from precipitation particles (ratio > 0.2). 
This demonstrates that it is not the presence of precipitation in the cloud (characterized by PWP) but the 
presence of precipitation near cloud top that is important. We note that if we ignore particle larger than 
50 µm and calculate in situ re only from the CDP, the difference between the satellite retrieved re and in situ 
re (showing as crosses in Figure 12) are smaller for these three heavily-precipitating cases, but the satellite 
retrieved re still shows underestimation, especially for two of the cases, demonstrating that this effect is not 
an artifact resulting from the merging of the CDP and 2DS (more on this in Section 4.4).

4.3.  Droplet Size Distribution Width (for Non- and Lightly Precipitating Clouds)

Satellite retrievals algorithms typically make assumptions regarding the shape of cloud DSD. The MODIS, 
CERES-MODIS, and Himawari-8 retrievals examined here assume a modified gamma distribution which 
can be written as: (Hansen, 1971)

       1 3 / /
0

v v r r ve e e en r N r e� (13)

where r is the droplet radius, N0 is a constant, and ev  is effective variance given by (Hansen, 1971)
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For the gamma distribution one can show that k = (1 − ve) (1 − 2ve). Thus, the width of the DSD can be 
assessed using ve or k factor. In the retrievals, MODIS assumes a modified gamma distribution with a fixed 
variance ve of 0.1 (Platnick et al., 2017), as do CERES-MODIS and Himawari-8 (W. L. Smith, personal com-
munication, 2020). ve = 0.1 corresponds to k = 0.72. Of course, the actual DSD may not be well approximat-
ed by a gamma distribution with ve of 0.1, and this will impact the retrieved re (Arduini et al., 2005).

In order to, explore the width of the cloud DSD with respect to precipitation amount, we plot the in situ esti-
mated k factor as a function of PWP in Figure 13a. Here k is calculated using Equation 8 and no assumption 
regarding the shape of the DSD is made. Consistent with our earlier analysis and focus on values needed 
for the retrieval, here the k factor is determined by averaging the observed DSD over 1 OD at the cloud top, 
and for simplicity, we only consider single-layered clouds. The k factor tends to decrease (the distribution 
becomes broader) with increasing PWP. The mean k factor for nonprecipitating, lightly precipitating and 
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Figure 12.  (a) MODIS re3.7 error as a function the ratio of mean liquid water content (LWC) over the top 1 OD of the cloud for droplets with diameters >50 µm 
(i.e., precipitation water content, PWC) and droplets with diameters <50 µm (i.e., cloud water content, CWC). (b) and (c) are the same as (a) except for CERES-
MODIS and Himawari-8 re. Only cases with Hσ < 0.3 are considered here. Colors and symbols are same that in Figure 3, with open circles representing the 
difference between satellite retrieved re and in situ value calculated using merged DSD from Cloud Droplet Probe (CDP) and two-dimensional stereo (2DS), 
while cross represent the difference between retrieved re and in situ re calculated using the CDP only.
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heavily precipitating cases is 0.80, 0.77, and 0.70. In particular, the observed DSD width of the nonprecip-
itating and lightly precipitating cases is narrower than the assumed value (that is, k is greater than 0.72). 
We likewise calculated ve for those nonprecipitating and lightly precipitating cases using Equation 14 with 
the cloud DSD from CDP probe averaged over 1OD. The mean value of ve is for these nonprecipitating and 
lightly precipitating cases is about 0.068, which is narrower than the assumed ve = 0.1 in the retrieval.

We discussed the impact of bias and uncertainty in the k factor on Nd in Section 3.4. A quantitative assess-
ment of the impacts of uncertainty (or bias) in k (or ve) on the re retrieval is more difficult and arguably 
requires detailed radiative transfers calculations using a variety of values for k (or ve). However, we can 
gauge the impact of the droplet width on re retrieval based on result published by PZ11, who examined the 
impact of the distribution width on the re retrieval using a log-normal σ (σlog). We estimated σlog of the in 
situ measured DSD using a least squares minimization. We opted to use a minimization approach to obtain 
a best fit for a log-normal distribution to the bulk of the observed cloud particles and to minimize the im-
pact of unusually small or large particles (outliers in the data), which we found to significantly broaden the 
estimated σlog. Details are given in the supplementary material.

As shown in Figure 13b, σlog is negatively correlated with k because broader DSD means smaller k and 
larger σlog, while a narrower DSD means larger k and smaller σlog. The σlog for non-precipitating and light-
ly-precipitating of single-layered cases averaged over the top 1 OD is 0.16. PZ11 undertook radiative transfer 
simulations to understand how the retrieved re is impacted when the true value σlog is smaller than the value 
assumed in the radiative transfer calculation. They found that when actual σlog is smaller than the assumed 
value of 0.35 (equivalent to ve = 0.1), the retrieved re is also larger and would be overestimated (biased high). 
Specifically, PZ11 compared the retrieved re assuming σlog = 0.35 and 0.2 and found retrieved was re overesti-
mated by as much as 0.58 μm. This result is broadly similar to result published by Chang and Li (2001), who 
found that a change of ±0.15 in σlog resulted change of about ±1 μm in the mean of the re retrievals (starting 
from a nominal value of 0.35 for σlog with er 10 μm).

We concluded, therefore, that much of the positive-bias in re for the non- and lightly precipitating cases 
(shown in Section 3.2 to range from 0.5 to about 1.0 μm) is likely due to having an assumed effective vari-
ance that is a bit too large, or stated more generally, an assumed DSD in the retrieval which is too wide for 
the SO clouds observed during SOCRATES. As a caveat, we note that the solar and view geometries in this 
study are not identical to those in previous studies that examine the width of the DSD and its impacts on 
the retrieval. We do not expect this is a significant factor for the solar and view geometry during SOCRATES, 
as the profiles were taken during the Southern Hemisphere summer primarily in the afternoon when the 
sun is reasonably high with a solar zenith angle less than 60°. Nonetheless, the above conclusion should 
perhaps be quantified using full radiative transfer calculations for the precise conditions observed during 
SOCRATES, and more generally evaluated over the range of solar and view geometries encountered over 
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Figure 13.  (a) k factor as a function of precipitation water path (PWP); (b) Scatter plot between log-normal σ and k. 
Only single-layered clouds are shown here.
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the SO to more fully assess the impact, especially as regards possible seasonal impacts. Such is beyond the 
scope of the present study and is left as a topic for future work.

4.4.  Uncertainty due to Instrumentation

In the preceding analysis, we calculated in situ re from the DSD obtained by merging measurements from 
the CDP and 2DS. Specifically, we used all the CDP bins (includes particles up to 50 µm) and combine it 
with the DSD from the 2DS for bins larger than 50 µm, the same approach as used by King et al. (2013). We 
have also explored merging the CDP and 2DC, as well as a second alternative (ALT) approach for merging 
the CDP and 2DS, in which we use the DSD from CDP for bins smaller than 25 µm, the DSD from the 
2DS for bins larger than 50 µm, and use the larger values between the two probes for the intermediate bin 
(25–50 µm). Figure S3 in the supplementary material shows an example of the CDP, 2DS, and 2DC spectra 
and the result merged DSD.

Table 7 along with Figures 14 and 15, summarize the impact of using different probes or the merge ap-
proach on the in situ re and estimated error in the satellite retrieved re. Since 2DC probe is not available for 
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Different probes/methods

CDP+2DS (king) CDP+2DS (ALT) CDP+2DC CDP

Mean re That Collocated With MODIS [μm] 12.55 (8.87,11.17,16.55) 13.21 (9.33,11.81,17.37) 11.7 (8.73,10.9,14.62) 11.54 (8.72,10.9,14.18)

Mean re That Collocated With Himawari-8 (μm) 11.48 (8.44,11.03,15.95) 12.01 (8.75,11.57,16.77) 11.58 (8.59,11.45,15.6) 10.61 (8.28,10.62,13.59)

Mean Error of MODIS re3.7 −0.03 (1.13,0.71,-1.59) −0.69 (0.66,0.07,−2.41) 0.82 (1.27,0.98,0.34) 0.98 (1.27,0.98,0.78)

Mean Error of MODIS re2.1 0.74 (2.92,1.04,−1.11) 0.08 (2.45,0.4,−1.93) 1.59 (3.06,1.31,0.82) 1.75 (3.06,1.32,1.26)

Mean Error of MODIS re1.6 −0.14 (0.79,0.65,−1.58) −0.8 (0.32,0.01,−2.4) 0.71 (0.93,0.92,0.35) 0.88 (0.93,0.93,0.79)

Mean Error of CERES-MODIS re 0.17 (1.71,1.47,−2.22) −0.49 (1.25,0.83,-3.04) 1.02 (1.85,1.74,-0.29) 1.02 (1.85,1.74,−0.29)

Mean Error of Himawari-8 re 0.91 (1.43,1.35,−0.31) 0.38 (1.13,0.81,−1.13) 0.81 (1.28,0.93,0.04) 0.81 (1.28,0.93,0.04)

Note. Since 2DC probe is not available for research flight RF02, only data from other flights with collocated profiles are considered here for comparison. For 
each cell, value in front of parentheses is the statistics for all the collocated profiles, while the first, second and third, value are that for nonprecipitating, lightly 
precipitating, and heavily precipitating cases.

Table 7 
Statistics for re Using Different Probes or Merging Methods and Corresponding Estimates of Error in Satellite Retrieved re

Figure 14.  Box plots in situ re for cases collocated with (a) MODIS and CERES-MODIS (19 profiles) and (b) 
Himawari-8. There are four kinds of in situ re obtained with different instruments and merging methods: CDP+2DS 
(King approach), CDP+2DS (Alternative approach), CDP+2DC, and Cloud Droplet Probe (CDP) only. Since the two-
dimensional cloud (2DC) probe is not available for research flight RF02, only data from other flights with collocated 
profiles are considered.
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research flight RF02, only data from other flights are considered. For the 19 profiles available for MODIS, 
mean in situ re calculated using different probes or merging methods varies from 11.54 µm with the CDP 
only to 13.21 µm with CDP+2DS (ALT). To visualize the difference of in situ re, Figure 14 shows box plots 
of in situ re for cases collocated with different sensors. Overall, CDP+2DS (ALT) gives largest in situ re in 
all precipitation regimes. In situ re from CDP+2DS (King) is smaller than CDP+2DS (ALT) because counts 
in the intermediate bin (25–50 µm) from the CDP are typically smaller than that from 2DS. In situ re from 
CDP+2DC tend to be smaller than that from CDP+2DS, and close to that from CDP only, as counts from 
2DC bins are usually smaller than that from 2DS.

Naturally, the impact of using different probes or merge approach is much more important for the heavily 
precipitating cases than for the non- or lightly precipitating cases. Nonetheless, even for the non- or lightly 
precipitating cases, using the CDP+2DS (ALT) merging increases the re and can (at least partially) offset 
the estimated error (see Figure 15). Taking the MODIS re3.7 as an example, for light-precipitating cases, the 
mean error in MODIS re3.7 is about 0.98, 0.98, 0.71, and 0.07 µm when compared with in situ re from CDP, 
CDP + 2DC, CDP + 2DS (King), and CDP + 2DS (ALT), respectively. Using CDP + 2DS (ALT) appears 
to eliminate the bias for the lightly precipitating cases. The bias for nonprecipitating cases is, while not 
eliminated, reduced from 1.27 µm with CDP only to 0.66 µm with CDP + 2DS (ALT). However, the bias for 
heavily precipitating cases gets worse, going from 0.34 µm estimated using CDP + 2DC to -2.41 µm using 
CDP + 2DS (ALT).

Thus, regardless of how we merged the CDP and 2DS data, there is a fundamental difference in the bias 
for the different precipitating categories. If one calculates the bias across all precipitating categories, the 
CDP + 2DS (ALT) formulation produces the smallest error but does so only by balancing the errors across 
the different categories. This same pattern is weaker in the CERES-MODIS and Himawari-8, but is quali-
tatively similar.

Past studies (e.g., King et al., 2013) suggest that the counts in the CDP below 50 µm are more reliable, and 
we have therefore focused on using CDP + 2DS (King) formulation in our analysis. But we note there is a 
measurement issue here that needs to be addressed for future field campaigns, specifically that efforts are 
needed to reduce the uncertainty in measured number concentration for particles between about 20 and 
100 µm.

5.  Summary and Discussion
Satellite retrievals of cloud properties have been widely used to study clouds over the SO, but our confidence 
in these retrievals has been limited by a lack of verification. In this study, cloud properties observed from 
aircraft during the SOCRATES in January–February of 2018 are used to evaluate retrievals of cloud proper-
ties for SO stratocumulus based on the widely used visible shortwave infrared bi-spectral technique. In par-
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Figure 15.  Box plots of error in satellite-derived re from (a) MODIS, (b) CERES-MODIS, and (c) Himawari-8 when compared with different in situ re. There are 
four kinds of in situ re obtained with different instruments and merging methods: CDP+2DS (King approach), CDP+2DS (Alternative approach), CDP+2DC, 
and Cloud Droplet Probe (CDP) only. Since two-dimensional cloud (2DC) probe is not available for research flight RF02, only data from other flights with 
collocated profiles are considered.



Earth and Space Science

ticular, three data sets are examined: (i) the Moderate Resolution Imaging Spectroradiometer (MODIS) level 
2 (collection 6.1) cloud product, (ii) the CERES-MODIS edition 4 product, and (iii) the NASA SatCORPS 
Himawari-8 product. Our analysis focused on the use of vertical profiles of cloud properties constructed 
from individual aircraft penetrations through the stratocumulus. Analysis of the cloud vertical structure 
shows that SO stratocumulus have an adiabatic-like structure on average. Moreover, the stratocumulus 
examined were largely closed-cell (or at least overcast) and homogeneous (with heterogeneity index <0.3).

When the effective radius (re) is evaluated, we find a small positive bias in re for non- or lightly precipitating 
cases of about 0.5–1 µm in all three datasets (satellite retrievals are slightly too large), though we caution 
that this bias is somewhat sensitive to whether and how the CDP measurements are merged with 2DS (see 
Section 4.4). This small positive re is due (at least in part) to the assumed DSD width being too wide in the 
retrievals. In the retrievals, the DSD is assumed to be a modified-gamma distribution with an effective 
variance (ve) of 0.1, which is larger than the value calculated from in situ measurements for non or lightly 
precipitating cases of 0.068. Previous studies of polarimetric data have also suggested that ve for the marine 
clouds is likely to be narrower than that is assumed in the satellite retrievals (e.g., Benas et al., 2019; Di Noia 
et al., 2019). We also find that the width of DSD increases (the k factor decreases) as the PWP increases, 
suggesting it might be possible to parameterize this relationship as part of a combined imager-radar re-
trieval, in which the radar would constrain the PWP. Collectively, cases with relatively heavy precipitation 
(PWP > 10 gm−2) have a negative bias (opposite in sign to the non- and lightly precipitating cases). Not all 
heavily precipitating cases are negatively biased but rather large biases occurred when significant precipi-
tation was found near cloud top (PWC/CWC > 0.2). In these few cloud-top-precipitation cases, biases in re 
ranged from about −2 to −6 μm (satellite retrieved values are too small – see Figure 12). As with the bias 
for nonprecipitating clouds, the bias for the cases with heavy precipitation is not qualitatively dependent on 
whether and how the CDP and 2DS data are merged in the calculation of re, but quantitatively the size of the 
bias does depend on whether and how 2DS data are merged. However, a key point is that regardless of how 
we merged the probe data, we cannot simultaneously reduce the magnitude of the bias in both the nonprec-
ipitating and heavily precipitating cases. Reducing the positive bias in the nonprecipitating cases (making 
the in situ re larger on average by merging the data such that it maximizes the potential contribution from 
precipitation) also makes the magnitude of the negative bias in the heavily precipitating cases larger; and 
vice versa, reducing the magnitude of the negative bias in the heavily precipitating cases (by making in situ 
re smaller by minimizing the contribution of precipitation) makes the positive bias in the nonprecipitating 
cases larger.

As for the cloud OD (τ), CERES-MODIS and Himawari-8 are found to have a small positive bias in τ of about 
2–3 to (satellite retrievals are too large) for non- and lightly precipitating cases. This bias is close, but not 
significant at the 95% level of confidence. On the other hand, MODIS (MYD06) do not appear to be biased 
for these cases and instead was found to have a small negative bias for lightly precipitating clouds.

Satellite retrievals of LWP are derived based on τ and re with an assumption about the cloud vertical struc-
ture. LWP retrievals based on the assumption of an adiabatic cloud structure compare well with the in situ 
observations and are unbiased when averaged over all cases, while the assumption of a constant profile in 
LWC results in a significant overestimate in the LWP (∼+20%). For non- and lightly precipitating cases, 
the small positive bias in re and τ for CERES-MODIS and Himawari-8 combine to produce a statistically 
significant bias of about +20 g m−2 in the LWP for these cases. On the other hand, MODIS LWP was not 
biased by its small positive bias in re because of the small compensating bias in τ (about −0.6) for the same 
lightly-precipitating cases. Heavily precipitating cases do not show a significant bias in τ or LWP for any 
of the three data sets. However, in all three datasets, there is larger variability associated with the heavily 
precipitating cases, with these cases having both the largest positive and largest negative errors in re, τ, and 
LWP. In particular, the handful of cases identified as having large negative errors in re (due to significant 
precipitation near cloud top) had the largest underestimate in LWP.

We also used in-situ measured Nd to evaluate satellite retrievals of Nd, which is derived using a formulation 
based on τ and re. This formulation assumes the cloud is sub-adiabatic, meaning the total LWP is smaller 
than that for a true adiabatic cloud by a factor fad, but the LWC still increases linearly with altitude about 
cloud base, while Nd is constant. The formulation also depends on the DSD width (expressed via the k fac-
tor) and condensation rate (that depends on pressure and temperature). Overall, the Nd retrieval works rea-
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sonably well for our SO cases, as long as one uses the condensation rate that is appropriate for the SO (and 
this can be estimated reasonably well from the cloud top temperature and pressure). Errors in re and τ tend 
to cancel out producing relatively little bias in Nd. The profile-to-profile uncertainty based on ∼5 km × 5 km 
spatial averages of the Nd retrieval was found to be 40%–55%, driven primarily by errors in re (see Table 6). 
Using assumed values of 0.8 for both fad and the k causes little bias in the retrieval because there is a can-
cellation of error between fad (observed mean = 0.74) and k (observed mean at cloud top = 0.76). However, 
using k and fad on a case-by-case basis does improve the correlation between the retrieved and in situ Nd. 
With respect to our precipitation classification, the only statistically significant bias in Nd that we find is 
in the lightly precipitating category, where MODIS and CERES-MODIS retrievals have underestimated the 
Nd by about 30 to 40 #/cm−3, and Himawari-8 retrievals have underestimated the Nd by 17.7 #/cm−3 (from 
an overall mean of about 100 #/cm−3). Perhaps more problematically, we also found a bias of about 23.4 #/
cm−3 in the Nd retrieval for cases featuring multiple low-level (<3 km) clouds for profiles collocated with 
Himawari-8. The presence of optically thin layers with low droplet concentrations was found in 10 of the 
53 profiles with collocated Himawari-8 data. Only one such case occurred in the set of cases with collocated 
MODIS data.

Overall, our results broadly agree with the past evaluation studies of the MODIS bi-spectral retrievals tech-
nique for overcast stratocumulus. For instance, PZ11 reported that the MODIS retrieved re2.1 was overesti-
mated by 15%–20% (mean bias of 2.08 μm) in comparison with cloud top re using 20 profiles (from mostly 
non- and lightly precipitating subtropical stratocumulus) over the Southeast Pacific (to the west of South 
America) during The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS), while Min et al. (2012) 
reported a mean bias of 1.75 μm using 17 nonprecipitating cases from VOCALS. While we focused on the 
re3.7, we likewise find the MODIS re2.1 is overestimated, though by a slightly smaller amount of ∼10% (mean 
bias of 1.12 μm) for 12 homogeneous non- and lightly precipitating cases.

Closer to our region of study, A18 evaluated MODIS retrievals in wintertime stratocumulus over the SO near 
Tasmania. Like us, A18 finds that MODIS underestimates the re of heavily precipitating clouds and over-
estimates the re of nonprecipitating clouds, and like us A18 identify the width of the drop size distribution 
as a possible factor impacting MODIS retrieval. However, A18 found an overestimation of re2.1 by ∼13 μm 
on average for nonprecipitating clouds. While a variety of factors contribute to this rather large re bias (see 
discussion A18), the major factor is likely to be the broken and patchy nature of the clouds they observed, 
which were primarily open-cell or disorganized stratocumulus. The MODIS and Himawari-8 bi-spectral re-
trievals are based on an assumption of one-dimensional radiative transfer and are known to work poorly for 
broken and spatially heterogenous clouds and to substantially overestimate re on average for broken clouds 
(e.g., Marshak et al., 2006). A18 did include two flights with overcast (closed-cell) stratocumulus. According 
to their Table 1, the average in situ re for these two cases were 8.6 and 7.5 μm (which is consistent with the 
smaller values we observed during SOCRATES for nonprecipitating clouds), while the MODIS retrieved 
values of re3.7 are near 12.6 μm on both flights (which is within the range we found for nonprecipitating 
clouds but toward the high side), resulting in a bias of 4–5 μm (which is several μm bigger than our bias 
for this cloud type). Our SOCRATES cases included only one nonprecipitating case with a bias larger than 
4 μm, and this case was one of our cases with a relatively large cloud heterogeneity index. Thus, we spec-
ulate that the somewhat larger bias found by A18 for their overcast cases might be a consequence of cloud 
heterogeneity. We note that A18 do report a heterogeneity index for their cases, but the index they use is the 
standard MODIS product index which looks at variability of 250m pixel radiances within each 1 km pixel 
used in the OD retrieval, and does not characterize the variability of the larger scene or collocation box used 
in the analysis. We also note that the observations A18 use in their analysis are not restricted to the region 
near cloud top. One expects the re in non-precipitating clouds will be smaller below cloud top and this might 
well have reduced the magnitude of the in situ estimates (and increase the apparent bias) by a few microns.

Very recently, Zhao et al.  (2020), hereafter Z20, evaluated MODIS and Himawari-8 re using SOCRATES 
measurements for a subset of the flights that we have analyzed. Their results differ from ours in several 
key respects. Their analysis was based on two approaches: (1) measurements taken when the aircraft was 
flying horizontally (level legs) that are nominally within about 200 m of cloud top and (2) vertical profiles 
created from aircraft ramps through the cloud (which is similar to our study). Based on the horizontal flight 
data, Z20 report a mean bias with Himawari-8 of 4.39 μm for liquid phase clouds and 2.24 μm for mixed-
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phase clouds (see their Figure 4), while for MODIS re3.7 they report a bias of about 2 μm for both liquid and 
mixed-phase clouds (see their Figure 7). It is not clear from their manuscript whether the comparison for 
Himawari-8 is based on only CDP or the combination of CDP + 2DS (while their MODIS comparison is 
clearly based on the combination) which might explain some of the difference between their Himawari-8 
and MODIS results, but more importantly, in both comparisons the collocated in situ data with Himawari-8 
never has an re value greater than about 11.5 μm and the in situ data collocated with MODIS never has a 
value for re larger than about 9.4 μm. This fundamentally differs from what we find. We frequently find in 
situ values for re are larger than 12 μm for profiles that contain precipitation (which is common place) and 
this seems consistent with previous studies. We note that in their analysis of aircraft profile data, Z20 find 
their profiles (1) have vertical mean values for re that is larger than the average for their horizontal flight 
legs and (2) the profile values near cloud top suggest a bias for Himawari-8 that is near (or below) 1 μm (see 
their Figures 6). As such, their vertical profile data are consistent with our results and inconsistent with the 
horizontal flight data they present. We speculate that when creating their 10s horizontal leg data averages 
that periods with low or no condensate (with small values of re) or perhaps drop-outs in the data have 
somehow biased the 10s averages. In general, we suggest that averages of re should either (1) be weighted 
by liquid-water-content or total number concentration or (2) better yet, a single DSD should be summed 
(generated) from the measured counts for the full averaging period to calculate re and other parameters that 
characterize the distribution from this single DSD.

As noted above, Z20 subdivide their results between liquid and mixed-phase clouds. They identify mixed-
phase, as those where the ratio of liquid water content from the CDP (where presumably all CDP observed 
particles are assumed to be liquid) divided by the total condensed water (estimated from measurements 
by a Closed-Path Hygrometer, CLH-2) is less than 0.85. We suggest that the approach used by Z20 is prob-
lematic because it relies on measurements from two different instruments, where each measurement has 
a nominal uncertainty of 10 to 15%, and the instruments can (and do) have different response times and 
sensitivities to icing in supercooled environments. This means that the measurement uncertainty alone can 
easily cause the ratio of liquid-to-total condensate to be less than 0.85. In fact, we have been unable to re-
produce Z20’s results in this regard and find that in many of our aircraft profiles LWC for the CDP is greater 
than TWC from the CLH-2 such that the ratio has unphysical values greater than one. Consequently, we 
have examined the ratio of ice-to-total condensate for precipitation based on the 2DS only, whose imagery 
has been processed following Wu and Mcfarquhar (2019) to identify ice particles >= ∼ 200 um. Whereas 
Z20 find that the majority of the cloud is mixed-phase, we find that only 4 out of 53 of our profiles contain 
even 10% ice from the perspective of the 2DS (Figure S4). Of course, it could well be the case that numerous 
small-ice particles are present and the 2DS-only estimate that we use is substantially underestimating the 
contribution of ice. But one expects those small ice particles will very rapidly grow in size via the Wege-
ner–Bergeron–Findeisen process, such that (while our 2DS-only) estimate might underestimate the mass 
of ice, we would detect its presence. Overall, we find no distinction between cases that contained large-ice 
from those without large-ice, in any significant way, for any choice of the ice-mass-fraction. Ultimately Z20 
conclude that phase does not matter (bias is about the same for liquid and mixed-phase), and in this sense 
we agree. Nonetheless, we do not believe the majority of the cloud should be considered mixed-phase. At 
present, evaluation of cloud phase (across the full range of SOCRATES instruments) remains an ongoing 
area of research by SOCRATES instrument teams, and more work is needed to understand the performance 
of instruments under the challenging conditions encountered.

6.  Conclusions
We conclude there is a consistent pattern between studies which show there are small but statistically 
significant biases associated with the MODIS and Himawari-8 bi-spectral retrievals of re for overcast SO 
stratocumulus as compared with in situ aircraft measurements, even when comparisons are appropriately 
restricted to near cloud top observations. At least here, and in A18, the bias depends significantly on precipi-
tation within the cloudy column, and we conclude that the presence of precipitation near cloud top (not just 
within cloud) is of particular importance. We find the bias for non- or lightly precipitating stratocumulus to 
be consistent with (if a bit smaller) than those identified during VOCALS for subtropical stratocumulus and 
find (as other studies have) that this bias is due (at least in part) to the width (shape) of the assumed drop 
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size distribution, where a distribution that is too broad for nonprecipitating marine stratocumulus has been 
assumed in the retrieval. In general, precipitation is associated with wider distributions, and the observed 
DSDs is not always well characterized using a monomodal log-normal or gamma size distribution (see 
supplementary material). The biases in τ are less robust and typically not statistically significant at the 95% 
level of confidence, depending on data set and precipitation category. Errors in re and τ propagate into the 
retrieved LWP and Nd in somewhat complex ways, as errors in the re and τ are correlated (again depending 
on the presence of precipitation). A summary is given in Section 5 with more detailed discussions given in 
Sections 3.3 and 3.4. In general, we find the bias and case-to-case uncertainty in the satellite Nd retrievals 
is smaller than one might expect simply from the bias and random errors in re because of this correlation.

We stress the SOCRATES measurement were collected in the afternoon and during the SH summer where 
solar zenith angles are less than 60° (conditions under which theoretical studies suggest the bi-spectral re-
trieval should work well for homogeneous clouds). Thus, we are not surprised to find the bi-spectral retriev-
al works similarly well during SOCRATES as has been found with subtropical stratocumulus. We suggest 
that additional research should be undertaken using detailed radiative transfer simulations to model and 
better understand how variations in the DSD and its vertical and horizontal structure are likely to effect 
retrievals at larger solar zenith angles typical of the SO in other seasons and other times of day and more 
generally suggest that additional measurements should be collected during the SO winter.

In Section 4.4, we examined briefly the impact of combining data from the CDP, 2DS, and 2DC probes 
has on our analysis. The agreement between satellite retrievals and in situ re shows some dependence 
on the choices of in situ probes and merging methods. Several evaluation studies (e.g., King et al., 2013; 
Platnick & Valero, 1995; Witte et al., 2018) have considered the uncertainty of in situ measurement of re. 
For instance, Witte et al. (2018) compared the re measured by phase Doppler interferometer (PDI) with 
MODIS re2.1 and revisited the evaluation studies over the Pacific (e.g., Noble & Hudson, 2015; PZ11) using 
different instruments during the same three campaigns. Witte et al. (2018) found no apparent systematic 
bias (mean bias of −0.22 µm) in retrieved re2.1. Indeed, as we show in Section 4.4, we can merge the CDP 
and 2DS data in such a way that there is little overall bias in the re, but this result is obtain by balancing 
the errors between non-, lightly- and heavily precipitating case, and there is a fundamental difference 
in the bias for the different precipitating categories. In short, as these studies highlight, there are sig-
nificant uncertainties associated with in situ measurements, and a continued need for improved in situ 
measurements.

Data Availability Statement
In particular, low rate navigation, state parameter, and microphysics flight-level data https://doi.
org/10.5065/D6M32TM9; 2DS data https://doi.org/10.26023/8HMG-WQP3-XA0X; and 2DC data https://
doi.org/10.26023/E95A-FKYF-7P0R.NASA SatCORPS Himawari-8 data during the SOCRATES were ob-
tained from SDAC at https://doi.org/10.5065/D6CC0ZFJ. Table S1 in the supporting information includes 
all the case-by-case values needed to generate the figures contained in this article. This study also evaluates 
cloud retrievals produced by the NASA SatCORPS group based on Himawari-8 observations (Smith and 
Minnis, 2018, Minnis et al., 2020; Trepte et al., 2019).
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