Eye Movement Biometrics Using a New Dataset Collected in
Virtual Reality

Dillon Lohr
Texas State University
San Marcos, Texas, USA
djl70@txstate.edu

ABSTRACT

This paper introduces a novel eye movement dataset collected in
virtual reality (VR) that contains both 2D and 3D eye movement data
from over 400 subjects. We establish that this dataset is suitable for
biometric studies by evaluating it with both statistical and machine
learning—-based approaches. For comparison, we also include results
from an existing, similarly constructed dataset.
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1 INTRODUCTION

The study of eye movement-driven authentication has largely fo-
cused on authenticating users based on 2D eye movement features,
and promising results have been achieved in the past [Friedman
et al. 2017; George and Routray 2016].

We believe that eye tracking will become ubiquitous in virtual
reality (VR) devices with the inclusion of foveated rendering, a
technique which can significantly reduce computational require-
ments by utilizing gaze information. One benefit of VR is that it
makes it easy to elicit vergence responses by changing the depth of
a stimulus. Since convergence and divergence responses have been
shown to vary between people [Tyler et al. 2012], the addition of
vergence features may improve authentication rates.

In the present study, we improve upon the work of Lohr et al.
[2018] by using a significantly larger dataset collected at a higher
sampling frequency, employing more recent biometric approaches,
and comparing our results against another dataset. Although we
do not explore the use of vergence features in the present study,
our dataset will enable future research in that area.
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2 DATASETS

For our analysis, we used two different datasets. The first dataset,
which we call round 1 of the virtual reality eye movement database
(VREM-R1), is part of a new, long-term data collection procedure
that we started several months ago. The second dataset is the SBA-
ST dataset used by Friedman et al. [2017], which we included for
comparisons against VREM-R1.

VREM-R1 consists of eye movement data from 458 participants
(206 male, 248 female, 4 other) ages 18-58 (median: 20), each recorded
twice with a 5-minute break between recording sessions. Each
recording session lasted around 30 minutes, for a total experiment
duration of around 1 hour. Participants were recorded with SMI's
tethered system based on the HTC Vive (ET-HMD). The embed-
ded eye-tracking device by SMI tracks both eyes simultaneously
with a sampling rate of 250 Hz. A work-in-progress report by Lohr
et al. [2019] found that the ET-HMD has a binocular spatial accu-
racy around 0.67° (based on an average across 12 subjects). Five
tasks—three guided and two unguided—were presented during each
recording session. The guided tasks were each designed to elicit a
specific type of eye movement (namely saccades, smooth pursuit,
and vergence), while the unguided tasks captured a variety of eye
movements as participants watched a short video clip or read an
excerpt of text from National Geographic.

SBA-ST consists of eye movement data from 335 participants
(178 male, 157 female) ages 18-46 (median: 21). Participants were
recorded monocularly at 1000 Hz with SR Research’s EyeLink 1000.
More information about the SBA-ST dataset is given by Friedman
et al. [2017]. We modeled the data collection procedure used in
VREM-R1 after the SBA-ST procedure so that direct comparisons
could be made for some tasks.

This study focused only on the reading data, because eye move-
ments during reading have been used to achieve some of the best
biometric performance [Friedman et al. 2017]. There were 422 par-
ticipants from VREM-R1 and 322 participants from SBA-ST that
had reading data for both sessions; all other subjects were excluded
from this study. We assessed the biometric performance achieved
with VREM-R1 relative to SBA-ST using one statistical and one
machine learning—based approach. These approaches were chosen
because they both yielded high biometric performance on data
collected with the EyeLink 1000.

3 EYE MOVEMENT CLASSIFICATION

We classified each eye movement signal using the MNH algorithm
[Friedman et al. 2018]. Since the MNH (with default parameters)
expects 1000 Hz signals with relatively low noise (high spatial
precision), we interpolated the data in VREM-R1 to 1000 Hz using
MATLAB’s pchip function. The ET-HMD produces much noisier
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monocular signals than the EyeLink 1000, so low-pass filtering
would be necessary to smooth the signals enough that the MNH
would not over-classify noise. Instead of exploring different filtering
options, we simply used the heavily-filtered binocular signal from
the ET-HMD. There are downsides to using the binocular signal
instead of a low-pass filtered version of a monocular signal, such
as catch-up saccades during smooth pursuit being virtually non-
existent in the binocular signal, but such problems are beyond the
scope of this study.

We removed subjects with either 5% or more missing samples or
18% or more samples classified as noise by the MNH. These thresh-
olds were chosen empirically. From VREM-R1, 66 total subjects
were removed in this way, leaving 356 subjects for our analysis.
From SBA-ST, 114 total subjects were removed in this way, leaving
208 subjects for our analysis.

4 STATISTICAL APPROACH

Our statistical approach, which we refer to as STAT, closely fol-
lowed the data analysis procedure used by Friedman et al. [2017]. A
brief summary follows. Over 1000 features from fixations, saccades,
and post-saccadic oscillations were extracted. A subset of these
features was selected based on normality, redundancy, and intra-
class correlation. Principal component analysis (PCA) was used for
dimensionality reduction. Cosine distance was used for computing
similarity measures.

When checking normality, we used the Shapiro-Wilk test instead
of the Pearson Chi-Square test. We determined the best subset of
features, their normality transformations, and the optimal number
of principal components by minimizing equal error rate (EER) on a
training set of subjects, then we employed them when evaluating
on a disjoint set of subjects.

For both datasets, we randomly selected 75 subjects for training
and used another randomly-selected 75 subjects for evaluation. We
repeated training and evaluation 100 times for each dataset with
different samples of subjects to get a distribution of EER. We chose
to use 75 subjects each time based on the methodology of George
and Routray [2016].

5 MACHINE LEARNING APPROACH

Our machine learning approach, which we’ll refer to as RBFN,
closely followed the procedure used by George and Routray [2016].
A brief summary follows. We extracted 12 features from each fixa-
tion and 46 features from each saccade. Two radial basis function
(RBF) networks were created, one for fixations and one for saccades.
Each network contained 32 neurons per subject and had one output
node per subject. Each neuron used a Gaussian activation function

P, o(x) = e Plx=nll”, where § = Lz (1)
20

with parameters y and o determined using k-means clustering. For
a given subject, each event was fed through the network and the
outputs were averaged across all events. The fixation and saccade
outputs were averaged together to produce the final match scores.
Occasionally, a neuron’s activation had a non-finite 8, and when
that happened we simply set f = 1 to allow that neuron to still
activate for nearby samples. Also, when optimizing the weights of
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our models, we used the Moore-Penrose pseudo-inverse instead of
gradient descent. We did not remove any features from our models.

For both datasets, we randomly selected 75 subjects, trained
on data from session 1, and evaluated on data from session 2. We
repeated training and evaluation 100 times for each dataset with
different samples of subjects to get a distribution of EER.

6 RESULTS

Table 1 reports the mean and standard deviation of our achieved
EER with each dataset and with each biometric approach.

Table 1: EER achieved with each dataset and approach.

Dataset Approach EER (%)
Mean  SD
VREM-R1 STAT 9.98 239
RBFN 14.37 1.67
SBA-ST STAT 2.04 132
RBFN 5.12  0.74

7 DISCUSSION

Compared to SBA-ST, the EER with VREM-R1 was nearly 5-times
worse using the STAT approach and about 3-times worse using the
RBEFN approach. There are two main reasons for why the VREM-R1
performed worse. First, and perhaps most importantly, the MNH
was specifically designed for data from the EyeLink 1000, so there
were several problems with its classification of signals from the
ET-HMD. Second, the binocular signals that we used were heavily
filtered, so features like peak saccade velocity would have been
heavily affected. Fine-tuning the MNH parameters, using some low-
pass filtered version of a monocular signal instead of the binocular
signal, and removing data after the end of reading would all improve
biometric performance when using the VREM-R1 dataset.

In the future, we are interested in exploring the inclusion of
vergence-related features, because these should be uncorrelated
with the existing features set and should further help distinguish be-
tween individuals. Additionally, as we expand the VREM-R1 dataset
with additional rounds of recordings, we plan to assess the temporal
persistence of features over longer periods of time.
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