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Abstract

Metric learning is a valuable technique for enabling the
ongoing enrollment of new users within biometric systems.
While this approach has been heavily employed for other
biometric modalities such as facial recognition, applica-
tions to eye movements have only recently been explored.
This manuscript further investigates the application of met-
ric learning to eye movement biometrics. A set of three
multilayer perceptron networks are trained for embedding
feature vectors describing three classes of eye movements:
fixations, saccades, and post-saccadic oscillations. The net-
work is validated on a dataset containing eye movement
traces of 269 subjects recorded during a reading task. The
proposed algorithm is benchmarked against a previously
introduced statistical biometric approach. While mean
equal error rate (EER) was increased versus the benchmark
method, the proposed technique demonstrated lower disper-
sion in EER across the four test folds considered herein.

1. Introduction

Eye movement biometrics have received considerable at-
tention in the literature over the past two decades [16]. This
focus is motivated by the specificity and persistence of hu-
man eye movements [2]. Eye movement biometric systems
offer notable advantages over alternative modalities, includ-
ing the ability to support liveness detection [ 7], along with
spoof-resistant continuous authentication [5]. Eye move-
ments are also well suited for integration within multimodal
biometric systems [14].

While considerable studies demonstrating the general ef-
ficacy of eye movement biometrics have been conducted,
existing literature is characterized by some notable limita-
tions. Namely, prior studies have largely been conducted
on a limited pool of subjects (e.g., 22 subjects in [4], 58
subjects in [18]), thereby reducing the reliability of the re-
ported results [3]. Moreover, the majority of the existing
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machine learning based literature is formulated as a closed-
set classification problem (e.g., [30], [18]). This formula-
tion lacks practical feasibility, as it requires retraining the
entire network upon enrollment of a new user. Addition-
ally, the identification of imposters is complicated by this
closed-set formulation.

To address this limitation, recent studies have begun
considering metric learning for eye movement biometrics
[1]. Initially demonstrated for facial recognition applica-
tions [29], this method directly addresses the aforemen-
tioned limitation of classification-based biometric systems.
This advantage is especially pertinent, given the pending
large-scale integration of eye tracking technology within
emerging wearable computing platforms, including virtual
and augmented reality head mounted devices.

The research described herein further explores the ap-
plication of metric learning to eye movement biometrics.
Namely, we train a set of eye movement type-specific multi-
layer perceptron (MLP) embedding networks using a triplet
loss formulation introduced in [29]. Input vectors consist
of a discrete feature array describing various classes of eye
movements, including fixations, saccades, and PSOs. Sim-
ilarity scores are produced as a weighted sum of the output
of each embedding network.

The proposed technique is verified on a large-scale
dataset consisting of 269 participants recorded during a
reading task. To the best of our knowledge, this manuscript
is the first to employ metric learning in the eye movement
biometrics domain using a biometric template consisting of
discrete eye movement features. We hypothesize that this
approach may yield superior results versus end-to-end ap-
plications by mandating the inclusion of domain-specific
knowledge through the feature extraction process. More-
over, by removing the requirement of deep convolutional
layers to support direct processing of the eye position sig-
nals, the resulting architecture is well-suited for implemen-
tation on lightweight embedded architectures.



2. Prior work

Since their introduction in 2004, significant research has
focused on improving the viability of eye movements as
biometrics [15]. A collective review of related work pub-
lished prior to 2015 may be found in [8]. Moreover, com-
parative results for studies analyzing common data sets
are provided in [27], which summarizes the results of the
most recent BioEye competition. As noted within these re-
views, the majority of prior work uses a common processing
pipeline, with the recordings initially partitioned into spe-
cific eye movement events using a classification algorithm,
followed by the formation of the biometric template as a
vector of discrete features from each event.

The winners of the BioEye 2015 competition, George &
Routray [9], used a radial basis function (RBF) network for
computing similarities between probe and gallery vectors.
Recordings were segmented into fixations and saccades us-
ing velocity thresholding (I-VT [28]). Features describing
the position, velocity, and acceleration for each eye move-
ment type were extracted from the segmented signal. After
applying backwards feature selection, fixation and saccade
feature vectors were fed into separate RBF networks, with
similarity scores computed as a weighted combination of
the output of each network. The algorithm was validated
using a dataset of 153 individuals recorded twice during a
reading task, achieving an equal error rate (EER) of 2.59%.
As the proposed method requires retraining the network
upon the enrollment of each new user, it is not feasible for
large-scale practical deployment.

In addition to eye movement-specific features, other rep-
resentations of eye movement recordings have also been ex-
plored in the literature. For example, Li et al. [18] used a
multi-channel Gabor wavelet transform (GWT) to extract
texture features from eye movement trajectories during a
visual search task. Support vector machine (SVM) classi-
fiers were used for biometric identification and verification.
Results were verified using a data set consisting of 58 sub-
jects recorded across several trials, with a minimum EER
of 0.89% reported. Texture-based eye movement features
were recently reinvestigated in [10], where downsampling
of the filtered images was proposed for the feature extrac-
tion step in order to preserve spatial structure. In addition
to the aforementioned restriction regarding new user enroll-
ment, both of these studies utilized small subject pools.

Jia et al. [12] introduced deep learning techniques for
eye movement biometrics. A recurrent neural network
(RNN) was built using long short-term memory (LSTM)
cells. The output layer used softmax to produce class proba-
bilities. Their approach was validated using a dataset of 32
subjects recorded across several trials of a high-cognitive-
load task, with a minimum EER of 0.85% reported. While
valuable for its introduction of deep learning techniques to
the domain, this approach is characterized by the same lim-

itations as the aforementioned study.

Friedman et al. [6] employed a statistical approach
for eye movement biometrics. The proposed identifica-
tion workflow is promising for large-scale application, as
it does not suffer from the new subject enrollment prob-
lem. A novel event classification algorithm, the MNH [7],
was used to classify fixations, saccades, post-saccadic 0s-
cillations (PSOs), and several types of noise. A set of over
1000 features [26] was extracted from each recording. Fea-
tures were transformed and selected according to various
criteria, including normality, redundancy, and persistence as
quantified using the intraclass correlation coefficient (ICC).
This approach was validated using a dataset of 298 subjects
recorded twice each during a reading task. A best-case EER
of 2.01% was reported for features with ICCs thresholded
at 0.75. One limitation of this approach is that the use of
ICC:s for feature selection before splitting into training and
testing sets may bias the results, though the magnitude of
this bias is unclear.

Jager et al. [13] utilized involuntary micro eye move-
ments for biometric identification. Raw eye movement sig-
nals were initially transformed to isolate desired micro eye
movements according to their characteristic velocities, with
the resulting scaled values fed into a deep convolutional
neural network with two separate subnets. The approach
was validated using two datasets (75 subjects during a read-
ing task recorded at 1000 Hz [21], and a newly recorded
dataset consisting of 10 users). The network was demon-
strated to improve both accuracy and execution speed ver-
sus the technique described in [21]. As this approach was
validated for using a multi-class classification framework to
promote comparability with prior work, it also suffers from
the new user enrollment problem.

Abdelwahab and Landwehr [1] introduced metric learn-
ing to the eye movement biometrics literature using deep
distributional embeddings. Namely, sequences of six-
dimensional vectors (binocular gaze and pupil data) at 30
Hz were fed to a deep neural network which produced dis-
tributional embeddings using a Wasserstein distance met-
ric. The approach was validated on the Dynamic Images
and Eye Movements (DIEM) dataset [22], which contains
eye movement data of 210 subjects viewing various video
clips (sports, movie trailers, etc.). The technique described
herein is differentiated from this work, both by the underly-
ing network structure and by the use of vector versus distri-
butional embeddings, along with the utilization of discrete
eye movement feature vectors as input.

3. Methodology
3.1. Dataset

We used the SBA-ST dataset from [6], which consists
of eye movements recorded from 322 participants. Eye



movements were captured using the EyeLink 1000, which
monocularly tracked the left eye at 1000 Hz. Each subject
visit lasted no more than one hour and was split into two
sessions with a 5-minute break between sessions. Sessions
consisted of a series of tasks, only one of which (reading)
is used in the present study. During the reading task, sev-
eral stanzas from Lewis Carroll’s nonsensical poem, “The
Hunting of the Snark,” were displayed on the screen for 60
seconds. During this time, each subject was instructed to
silently read through the poem. The two reading tasks (one
per session) were separated by an average of 20 minutes.
More detailed information about the experimental setup can
be found in [6].

We excluded 53 subjects that had at least one recording
session with 20% or more noise classified by the MNH [7],
resulting in valid data for 269 subjects. The remaining sub-
jects for the current study were split into four random folds
for cross-validation. There were two recordings per subject,
and each recording had hundreds of classified events. The
same 4 folds were also used for the statistical method that
we benchmarked our models against.

3.2. Event classification and feature extraction

Each signal was classified into fixations, saccades, and
PSOs using the MNH [7]. We then extracted a subset of
the features originally introduced in [26] and [9]. Like [9],
our features were extracted from each individual event. It is
important to note that metric learning could be applied on
the raw eye movement signals without the need for event
classification, perhaps using CNNs or LSTMs. However,
the current analysis framework was chosen for two reasons:
1) As the MNH algorithm [7] was developed specifically for
the utilized dataset, we were confident that it would produce
meaningful event classification, thereby avoiding errors as-
sociated with misclassification and fully leveraging domain-
specific knowledge, and 2) a priori segmentation of the raw
signals into discrete feature vectors allows for the evalua-
tion of more simplistic and lightweight network architec-
tures, versus the multilayer convolutional architectures tra-
ditionally employed in end-to-end workflows, which may
be preferable in emerging embedded architectures with lim-
ited computing and power resources.

Features were extracted on the horizontal (H), vertical
(V), and combined (C) channels. Further details regarding
the computation of each feature may be found in the moti-
vating study (i.e., [26] and [9]).

3.2.1 Fixation features

For fixations, we used the following features derived from
[26]: duration; drift displacement, distance, and mean ve-
locity (H/V/C); slope and R2 of linear fit of drift (H/V);
R2 of quadratic fit of drift (H/V); position centroid (H/V);

percent of samples above and crossing the 90th percentile
velocity threshold of the MNH; mean, median, standard de-
viation (SD), skewness, and kurtosis of the velocity and
acceleration profiles (H/V/C). We also used the following
features derived from [9]: angle with previous fixation; dis-
tance from previous fixation; SD, skewness, and kurtosis of
the position trace (H/V); dispersion. In total, we extracted
59 features for each fixation event.

3.2.2 Saccade features

For saccades, we used the following features derived from
[26]: duration; amplitude (H/V/C); peak velocity, accelera-
tion, and deceleration (H/V/C); travel distance; efficiency;
tail efficiency; percentage tail inconsistency; initial devi-
ation; initial average deviation; maximum raw deviation
and the respective point; area-based curvature; quadratic-
fit curvature; cubic-fit-extreme-1 and cubic-fit-extreme-2
and their respective points; cubic-fit-curvature-maximum
and the respective point; amplitude-duration ratio (H/V/C);
peak velocity—amplitude ratio (H/V/C); peak velocity—
duration ratio (H/V/C); peak velocity—local noise ratio;
acceleration-deceleration duration ratio; peak acceleration—
peak deceleration ratio (H/V/C); mean, median, SD, skew-
ness, and kurtosis of the velocity and acceleration profiles
(H/V/C). We also used the following features derived from
[O]: angle; angle with previous saccade; distance from pre-
vious saccade; SD of the position trace (H/V); dispersion.
In total, we extracted 79 features for each saccade event.

3.2.3 PSO features

For PSOs, we used the following features derived from
[26]: duration; time since previous PSO; number of peaks
(H/V/C); ratio of PSO duration to the preceding saccade’s
duration; ratio of PSO duration to the preceding saccade’s
amplitude (H/V/C); mean, median, SD, skewness, and kur-
tosis of the velocity and acceleration profiles (H/V/C). Al-
though [9] did not classify PSO events, we used the fol-
lowing features inspired by that study: SD of the position
trace (H/V); dispersion. In total, we extracted 42 features
for each PSO event.

3.3. Algorithms

Inspired by [9], we train one multilayer perceptron
(MLP) for each event type (fixation, saccade, PSO). Since
our goal is for each network to learn a meaningful embed-
ding of the features from its event type, we employ the
triplet loss formulated by [29]:
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where f{, f , and f/" are the embeddings of the anchor,
positive, and negative samples, respectively, and a is the
margin that should separate the positive and negative sam-
ples.

Intuitively, this loss function seeks to bring the positive
sample closer than the negative sample to the anchor and en-
force a minimum separation (the margin) between the pos-
itive sample and the negative sample. If this is already the
case, then there is no loss; we do not care to bring the pos-
itive sample even closer nor push away the negative sample
even farther. As a result, the model is not able to learn from
triplets that do not violate the margin. This is why—as [29],
[11], and others point out—it is imperative to select good
triplets that will let the model learn.

There are three classifications of triplets: easy, semi-
hard, and hard. Easy negatives do not violate the margin, so
our model cannot learn from them. Semi-hard negatives vi-
olate the margin, but the positive sample is (correctly) closer
to the anchor than the negative sample. Hard negatives are
triplets where the negative sample is closer to the anchor
than the positive sample. Both semi-hard and hard triplets
may be used to train the model, and it seems to be problem-
dependent whether one is more useful than the other. Note
that the hardest negatives across the whole dataset are likely
outliers, so it is unwise (not to mention, computationally in-
feasible) to train on the globally hardest negatives [29].

Input vectors to the MLPs were first scaled using scikit-
learn’s RobustScaler [24], with scaling parameters deter-
mined on the train set only. Each MLP had the same archi-
tecture. Namely, the network consisted of 4 hidden layers,
each with 64 ReLU-activated nodes. The output layer had
64 nodes, resulting in a 64-element embedding vector. We
did not use dropout on any of the layers. While the liter-
ature has suggested that the normalization of the resulting
embeddings for triplet loss yields no benefit (i.e., [| 1]), we
found that L2 normalization improved our results. We used
a triplet loss margin of 0.2.

At each training iteration, we randomly selected 20 sub-
jects and 5 events per subject. The events were sam-
pled from both recording sessions. All semi-hard and hard
triplets contributed to the loss for that iteration. Each MLP
was trained for 200,000 iterations and performance mea-
sures were computed after every 1000 iterations. We used
the AdamW optimizer [20] with an initial learning rate of
0.001 and a weight decay of 0.1. Other parameters were left
to their default values. After 100,000 iterations, the learning
rate was reduced by a factor of 10.

For each eye movement type, the embedding of each
recording was defined by computing the centroid of all cor-
responding eye movements from that recording. This ap-
proach therefore describes each recording using three cen-
troid embeddings, one for each eye movement type. Gen-
uine matches correspond to recording pairs for the same in-

dividual across sessions. Distance metrics were computed
for each of the three eye movement embeddings individu-
ally to allow for the assessment of the value of each eye
movement type within the authentication process. In ad-
dition, a model fusing information across each eye move-
ment class was also considered. To combine information
across eye movement types, distances were fused using a
weighted sum. The following optimal weights were deter-
mined through grid search: 0.77 for saccades, 0.08 for fixa-
tions, and 0.15 for PSOs. This fusion of information across
movement types is consistent with prior work in the litera-
ture [9].

We also implemented a modified version of the statisti-
cal method by [6] for benchmarking purposes. The original
statistical approach used the ICC as part of the feature se-
lection process before splitting into a training and testing
set, leading to some information leakage. To fix this, we
split the data into training and testing sets at the very begin-
ning, did the whole procedure on the training set, then used
the best number of principal components and ICC group
to evaluate the testing set. All transformations to normal-
ity, feature selections, and PCAs were performed using the
training set and later applied on the testing set. As we did
not have access to several oculomotor plant characteristic
(OPC) features that were included in the original statistical
approach, these features are excluded from this comparative
analysis.

Metric learning methods were developed and tested us-
ing Python 3.6 and PyTorch 1.2 on Pop!_OS 19.10 (a Linux
distribution). We utilized the PyTorch Metric Learning li-
brary (v0.9.84) [23] to enable rapid development. The sta-
tistical method was written in MATLAB 2020a. Analysis
was conducted on a desktop machine with an NVIDIA GTX
1080 (8 GB memory), an Intel i7-6700K @ 4 GHz, and 32
GB RAM. Each metric learning model took approximately
one hour to train on this machine, and roughly 11 hours
were needed to train all 3 models with 4-fold CV.

3.4. Evaluation methodology

We evaluated the performance of 5 different models:
1) the fixations-only model (FIX only), 2) the PSOs-only
model (PSO only), 3) the saccades-only model (SAC only),
4) the model resulting from taking a weighted sum of the
distances produced by the three prior models (fused), and
5) the benchmark statistical method. Each model was quan-
titatively assessed with EER and was qualitatively assessed
with receiver operating characteristic (ROC) curves and
genuine-vs-impostor distributions.

To maximize the use of available data, we performed 4-
fold cross-validation. For each evaluation fold, we com-
puted the Euclidean distance between each subject’s session
1 centroid embeddings and all other subjects’ session 2 cen-
troid embeddings. We computed the EER with the resulting
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Figure 1. ROC curves for each model evaluated on each of the 4
folds. The mean ROC curve is drawn with a thicker line and is
surrounded by a shaded region representing the standard deviation
of the curves. To help distinguish similar curves, a zoomed-in por-
tion of the plot is inset at the top-right. The dashed line indicates
where 1 — TPR = F PR, and the point where one of the curves
intersects this line is the EER for that curve.

distances. These distances were then negated and used as
similarities for computing an ROC curve with scikit-learn
[24]. We also plotted the similarity score distributions for
genuine and impostor matches. Since the negated distances
are not bound from O to 1 like a similarity score, we min-
max scaled the distances to be between 0 and 1 before visu-
alizing the genuine and impostor distributions.

For the ROC curves, we plotted one curve for each model
evaluated on each fold. We also computed an average curve
for each model by interpolating the true-positive rate (TPR)
at every percentage point of the false-positive rate (FPR) for
each curve and plotting the mean TPR at each point of the
FPR. The standard deviation of the TPR at each point of the
FPR was also computed and plotted to show the variance of
the model across folds.

4. Results

The EERs for each approach are presented in Table 1.
The ROC curves of each model evaluated on each fold are
presented in Figure 1. The genuine and impostor distribu-
tions for the FIX-only (A), PSO-only (B), SAC-only (C),
fused (D), and statistical (E) models are displayed in Fig-
ure 2.

Fixations alone performed the worst in terms of EER and
had the most variance across folds of the models tested.
This indicates a lack of distinguishable information in the
implemented fixation features. There is evidence that mi-
crosaccades during fixations could provide useful biometric
information [25], but we did not capture microsaccades in
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Figure 2. The genuine and impostor distributions combined across
all 4 folds for each model. The dashed lines represent the median
of each distribution. The distributions are plotted as densities, so
the area under the curve sums up to 1. Since the models originally
output distances, we negated then min-max scaled the distances
within each fold to fit between 0 and 1 before plotting them here.
(A) FIX-only model. (B) PSO-only model. (C) SAC-only model.
(D) Fused model. (E) Statistical approach.

our feature set. Saccades alone provided most of the useful
information for our metric learning models. PSOs alone
performed somewhere between saccades and fixations in
terms of EER. Fusing information from saccades, fixations,
and PSOs led to more consistent performance, but only
slightly reduced EER overall.

Our fused model performed better than the statistical
method on only 1 of the 4 folds, and had a noticeably higher
mean EER than the statistical method across folds. The



Table 1. Quantitative evaluation of model performance. Values are EER in %. Each row is labeled according to the fold that was used for
evaluation, except the last row which contains the means and standard deviations across the 4 folds.

FIX only PSO only SAC only Fused Statistical method
Fold 1 14.46 10.96 5.30 5.35 4.47
Fold 2 24.30 15.79 6.83 5.71 7.57
Fold 3 19.44 14.57 8.33 7.98 2.68
Fold 4 16.67 10.89 5.69 6.14 4.17
Mean (SD) 18.72(3.67) 13.05(2.17) 6.54(1.18) 6.29 (1.01) 4.72 (1.78)

fused model did, however, perform more consistently across
folds than the statistical method, exemplified by the signifi-
cantly lower SD of the EERs produced by our model.

An interesting observation is that the largest improve-
ment in EER moving from the SAC-only model to the fused
model is on fold 2, where the FIX-only and PSO-only mod-
els individually performed the worst. This exemplifies the
importance of fusing information from all of the models.

It is worth noting that our modified statistical method
performed worse than the original statistical approach by
[6]. This may be due to several reasons. We moved the
train-test split to the start of the procedure rather than after
feature selection. We also performed 4-fold CV instead of
100 random 50/50 splits which may have some effect on our
results. Lastly, we did not have access to the OPC features
used in the original approach.

5. Conclusion

We employed metric learning for eye movement biomet-
rics by training MLPs using features extracted from clas-
sified saccades, fixations, and PSOs during reading. Each
MLP learned an embedding function such that events from
the same subject were closer to each other than events from
different subjects. We compared our metric learning ap-
proach against a modified version of the statistical approach
by [6] and found that, when we fuse the similarities pro-
duced by each MLP, our approach produces more consistent
results but does not achieve the same level of performance
as the statistical approach.

This study did not take advantage of the potential for
metric learning to be used with the raw eye movement sig-
nals directly, without the need for event classification. In
future studies, we would like to explore this direction of
work. We would also like to see how well this approach
works on other datasets. For example, the dataset described
in [19] was collected using an eye tracker embedded in a
virtual reality device. This dataset is generally lower quality
than the one used in the present study, but it includes signals
recorded from both eyes. Ultilizing the information from
both eyes together could prove beneficial for eye movement
biometrics.
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