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ABSTRACT: The advent of genome editing has transformed the therapeutic landscape for several 

debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. 

The therapeutic potential of nucleic acids has been limited by reliance on engineered viral vectors 

for delivery. Chemically-defined polymers can remediate technological, regulatory, and clinical 

challenges associated with viral modes of gene delivery. Due to their scalability, versatility and 

exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads 

efficiently while minimizing immune response and cellular toxicity. While polymeric gene 

delivery progressed significantly in the past four decades, clinical translation of polymeric vehicles 

faces several formidable challenges. The aim of our review is to illustrate diverse concepts in 

designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene 

therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize 

the recent work on understanding the contributions of chemical and architectural design 

parameters. We touch upon characterization methods used to visualize and understand events 

transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. 

We conclude that interdisciplinary approaches and methodologies motivated by fundamental 

questions are key to designing high-performing polymeric vehicles for gene therapy.  
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1 INTRODUCTION 

Molecular biology tools that remediate genetic defects have steadily grown in their 

capabilities, with the evolution of nucleic acid therapy tools such as meganucleases,1 transposons,2 

transcriptor activator-like nucleases (TALENS),3 ribonucleic acid (RNA) silencing,4 clustered 

regularly interspersed palindromic repeats (CRISPR) gene editing,5 base or prime editing,6,7 and 

other innovative editing platforms.8 In addition to the ability to treat many genetic diseases such 

as Leber’s congenital amaurosis, Duchenne’s muscular dystrophy, beta thalassemia, or cystic 

fibrosis, researchers are slowly uncovering the genetic basis of many acquired afflictions such as 

cancer, type 2 diabetes, Alzheimer’s, and age-related macular degeneration. Vaccine development 

is also increasingly relying upon delivery of deoxyribonucleic acid (DNA), RNA, or antigens. 

Many of the aforementioned systems involve systemic infusion or direct tissue administration; 

however, cellular therapies involving induced pluripotent stem cells and chimeric antigen receptor 

T-cells9 have also come to fruition and require ex vivo genome editing, further expanding the 

therapeutic scope of gene therapy. Indeed, several  gene therapy clinical trials have been 

progressing rapidly with landmark successes being reported in therapies focused on 

CRISPR/Cas9,10–12 and in the development of mRNA-based vaccines for severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2).13 

Despite the enormous promise held by gene therapy to solve pressing problems in human 

health, we must contend with economic and engineering barriers to their clinical translation. To 

deliver therapeutic nucleic acids during in vivo administration as well as ex vivo applications, 

engineered viral vectors, especially adeno-associated viruses, are employed by default.14 Over the 

years, clinicians have perfected approaches to optimize viral capsids to deliver payloads efficiently 

while minimizing toxicity and preventing adverse events associated with the innate immune 

system. Despite these efforts to reduce the mutagenic and immunogenic risks originating from 

viral vehicles, fatal responses to virus administration have been recorded in patients undergoing 
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experimental treatments for Duchenne’s muscular dystrophy and X-linked myotubular 

myopathy.15,16 The treatment regimens for these diseases require extremely high (and sometimes 

repeated) doses of viral vehicles, increasing the risk of adverse events. Beyond their non-ideal 

safety profiles, engineered viral vehicles pose financial and logistical challenges during scale-up 

and mass-manufacturing, resulting in both exorbitant product costs and long wait-times for 

production.17    

The need for nonviral delivery methods is widely acknowledged by both clinicians as well 

as biotechnologists in the nascent gene therapeutics industry.18,19 Chemically-defined materials can 

be easily scaled-up, made available off-the-shelf, be readily formulated, and stored without the 

need for technical expertise or access to refrigeration. The recent approval of two lipid-based 

mRNA vaccines for the novel coronavirus, SARS-CoV-2 have sparked renewed interest in non-

viral gene delivery platforms. While adenoviral and lipid-based delivery approaches  have both 

yielded successful vaccine candidates, there is a dire need for nanomaterial platforms that can 

address challenges in affordability and rapid world-wide distribution, especially in the developing 

world where infrastructural deficiencies exist in the cold chain.20  

Due to their versatility and multifunctionality, polymeric biomaterials have emerged as 

viable gene carriers.21,22 Advances in synthetic methodologies, particularly controlled radical 

polymerization have allowed researchers to impart desired properties to polymeric carriers by 

investigating diverse monomer functionalities and polymer architectures. Although our knowledge 

of intracellular mechanisms involved in polymeric gene delivery remains incomplete, researchers 

have developed creative ways to characterize and understand interactions between polymers, 

nucleic acid cargoes and cellular targets. The field has gradually been making progress towards 

clinical translation and the next decade promises to be an exciting one for polymeric vectors.  

We note that synthetic methodologies along with architectural and chemical design aspects 

for polymeric vehicles form the focus of our review. Hence, we redirect readers to excellent 

reviews focusing on related classes of biomaterials such as polypeptides,23 dendrimers,24,25 

nanogels,26,27 graphene-based materials,28 poly(ethylene imine) (PEI), chitosan, poly(L-lysine) 

(PLL), and hydrogels for sustained delivery29. Since lipid nanoparticles are outside the scope of 

our review we point out some reviews focusing on lipid-based delivery approaches.30–32 We would 

also like to highlight payload-specific reviews focused on short interfering RNA (siRNA)33,34 
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messenger RNA (mRNA)35,36 and a slate of recent reviews highlighting delivery challenges 

involved in CRISPR/Cas9 editing.19,29,37–44 Since Chemical Reviews has published two in-depth 

reviews on polymeric gene delivery45,46 in the past two decades we will only briefly discuss 

inorganic nanoparticles, PEI, PLL, chitosan, dendrimers, polypeptides, with references restricted 

to the most recent literature covering the subject. Given the rich decades-long history of this field, 

our review has been preceded by a wealth of review articles that have also offered critical insights 

on polymer-mediated gene delivery.47–52 In this contribution our goal was to capture the most 

recent developments in the field, to survey a broad variety of polymer design approaches along 

with clinical successes in a balanced manner, and to offer conceptual overviews that are of interest 

to seasoned investigators and novice researchers alike.  

Through this review, we aim to offer the reader a holistic view of significant developments 

and essential material design concepts in polymer-mediated transfer of nucleic acids. Our effort 

encompasses several disciplinary perspectives, including organic synthesis, macromolecular 

chemistry, materials engineering, and covers diverse classes of polymeric materials, from free 

polymer chains to cross-linked hydrogels and polymer coatings. We begin the review by outlining 

physiological barriers to delivery that must be traversed by polymeric vehicles to deliver their 

payload. The second section will present a detailed overview of key design motifs used in 

polymeric vehicles, paying special attention to chemical and architectural design features. We will 

discuss how precise design, chemical innovation, and controlled synthesis of polymeric vehicles 

have come together to impart powerful features such as stimuli-responsiveness and resistance to 

protein fouling. Subsequently, we will take a deep dive into the synthetic toolkit commonly 

deployed by polymer chemists to access interesting polyplex properties, with a focus on click-

chemistry approaches and post-polymerization modifications. The review will then transition to 

discussing the physical aspects of gene delivery and focus on how engineering interventions can 

resolve kinetic limitations in polyplex assembly. We will briefly describe alternative polymer 

platforms that address gene delivery challenges from a polymer processing rather than a polymer 

chemistry perspective. Our review will conclude by examining clinical success and future research 

directions for polymer-mediated gene delivery and by suggesting profitable avenues of research 

for aspiring investigators.  
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2 BIOLOGICAL CHALLENGES RELEVANT TO POLYMER-MEDIATED NUCLEIC 

ACID DELIVERY 

A key driving force for the design of polymers for gene delivery is the incorporation of 

material properties that aid nucleic acids in overcoming specific biological barriers to gene 

delivery. In this section we will first describe various therapeutic nucleic acids and the molecular 

biology principles underlying their functioning, highlighting their unique properties, challenges 

for delivery, and uses. We briefly describe commonly employed physical strategies to introduce 

nucleic acids within cells, noting that these approaches are mostly restricted to ex vivo 

applications.  Then, we review biological barriers that are unique to gene delivery, paying special 

attention to both extracellular (or systemic) barriers as well as intracellular barriers that are 

encountered by therapeutic nucleic acids as they travel to targeted cells where gene expression 

must be achieved. While we do not propose solutions to overcome these barriers in this section, 

we believe that a basic understanding of the biological basis for polymer-mediated gene delivery 

is essential to engineer synthetic strategies.  

2.1 Types of nucleic acid cargoes and their biological mechanisms 

Polymeric vehicles can be assembled with various nucleic acid modalities varying widely in their 

therapeutic application, the design constraints accommodated by the polymeric vehicle, and the 

desired time frame for therapeutic effects, i.e., whether we require permanent changes to the 

genome or transient expression or silencing of targeted proteins. While all of the cargoes described 

in the section vary in their size, topology, and mechanism of action (Figure 1), all of them are 

amenable to being packaged with synthetic polymers to form therapeutically useful 

nanoassemblies called polyplexes through polyelectrolyte complexation.    

2.1.1 Plasmids (pDNA). Plasmids are the most dominant nucleic acid cargoes explored in the 

gene delivery literature. These are circular double-stranded DNA molecules that are replicated 

inside bacteria separate from chromosomal DNA. Along with their utility in cloning DNA 

fragments and producing large quantities of proteins in culture, plasmids have been widely used 

as vectors in gene therapy.53 The two primary portions of plasmids are: (1) the bacterial backbone, 

which contains an antibiotic resistance gene and origin of replication for production in bacteria, 

and (2) the expression cassette, which is the transcriptional fragment containing the gene of interest 

and regulatory sequences.54 The expression cassette can encode therapeutic RNAs or proteins, and 
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if successfully delivered to the nucleus of target cell, endogenous cellular machinery can produce 

the therapeutic construct in large quantities.53 Unlike some other nucleic acid payloads, pDNA 

requires nuclear entry to be effective, placing additional constraints while designing gene delivery 

vehicles. Delivery efficiency can also be improved by reducing the plasmid size through the 

removal of the bacterial backbone, forming minicircles or minivectors.55 Once reaching the 

nucleus, plasmids and mini DNA vectors do not integrate into the genome, so expression of the 

transgene is transient and will diminish over time, especially as the cell divides.56 Plasmids are 

still widely used for transient gene delivery applications due to the ability to accommodate large 

gene payloads, their ease of construction, low production cost, and resistance to degradation.56 

2.1.2 mRNA. An alternative method to achieving transient gene expression in target cells is 

through the delivery of synthetic messenger RNA (mRNA).57 One major advantage of using 

mRNA as a therapeutic payload is that it is readily translated in the cytoplasm and does not need 

to translocate through the restrictive nuclear barrier. For this reason, mRNA can be expressed more 

readily than pDNA in non-dividing cells.58 The biggest concern with mRNA as a gene delivery 

vector, however, is its relative instability to RNase degradation.57 To address this concern, 

significant progress has been made in producing synthetic mRNAs that are more resistant 

degradation.59 The cap, 5’ and 3’ untranslated regions, coding region, and poly(A)-tail are all 

elements of natural mRNA that are present in synthetic mRNA, and all have been optimized for 

increasing stability. For example, synthetic caps, called anti-reverse cap analogs, have been 

developed that are resistant to decapping enzymes while maintaining translation efficiency.60 

Another concern surrounding mRNA has is the innate immune response that foreign mRNA can 

elicit.61  Some ways to reduce this immune response include modifications to the structure of the 

nucleic acid base (such as replacing  N1-Methylpseudouridine for uridine62,63) or 2’-O-

methylation.64 Such improvements in synthetic mRNA stability and immunogenicity have helped 

increase its popularity as a transgene vector.65 

2.1.3 Antisense oligonucleotides (ASOs) and RNA interference (RNAi). Along with nucleic 

acids that encode for genes, there is a critical need for delivery vehicles that can deliver synthetic 

nucleic acid oligomers that can induce gene silencing.66 These include ASOs and RNAs for RNAi. 

ASOs are short (~20 bp), single-stranded oligodeoxynucleotides (ODNs) that can bind to a target 

mRNA to silence its expression. When the ASO binds to the target mRNA via base pairing, the 
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RNA-DNA hybrid acts a substrate for RNase H leading to the degradation of the target mRNA.67 

ASOs can also bind the targeted RNA and block translation without inducing its degradation 

(steric-blocking oligonucleotides) or modulate the splicing of the RNA (splice-switching 

oligonucleotides).68 Similar to ASOs, several types of therapeutic RNAs utilize RNAi, which is an 

innate biological process that inhibits gene expression.69 Endogenously, eukaryotes regulate 

mRNA translation by producing microRNAs (miRNAs) that bind to cytosolic RNAi enzymes to 

form an RNA-induced silencing complex (RISC). When bound as a RISC, miRNA can base-pair 

to messenger RNAs (mRNAs) containing complimentary sequences and either inhibit translation 

or promote degradation of the mRNA.70 Similarly, small interfering RNAs (siRNAs) are fragments 

of double-stranded RNA (ranging between 15-30 bp) derived from exogenous RNA that can use 

RISC to bind and cut mRNAs of specific sequences to inhibit translation.71 Improved siRNA 

constructs have overcome initial setbacks in toxicity and efficacy and have recently earned 

approvals from the Food and Drug Administration (FDA), re-invigorating their status as impactful 

therapeutic drugs.69 

The nucleotides in ASOs and synthetic RNAs for RNAi are chemically modified to impart 

resistance to degradation, improve immune system tolerance, and enhance binding selectivity.69,72 

Some common modifications of the phosphodiester backbone include phosphorothioate DNAs, 

phosphorodiamidate morpholinos, and peptide nucleic acids. Some common 2’ substitutions of the 

ribose sugar include: 2’-O-methyl, 2’-O-methoxyethyl, 2’-F, and 2’4’-locked nucleic acid.69,72 An 

additional benefit of ASOs and synthetic RNAs for RNAi is the fact they impart their gene 

silencing effects in the cytoplasm, so nuclear delivery is not necessary. Similarly to mRNA, 

though, these constructs still greatly benefit from gene delivery vehicles that stabilize them against 

degradation, promote cellular internalization, and allow for their entry into the cytoplasm.66,73 

Other therapeutic nucleic acid constructs for gene silencing that can be delivered with polymer-

based gene delivery vehicles include ribozymes, DNAzymes, and antagomirs.74–76 
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Figure 1. Schematic illustrating the endogenous pathways through which various nucleic acid 

payloads such as DNA, splice-switching oligonucleotides (SSOs), mRNAs, and ASOs are 

processed. Reprinted with permission from ref.45 Copyright 2015 American Chemical Society.  

2.1.4 Genome editing. The aforementioned nucleic acids impart transient effects on gene 

expression, and continued modulation of gene expression with these cargoes requires multiple 

administrations. Many gene therapies are focused on permanently altering the genome of target 

cells within a patient in a process known as gene editing. These therapeutic strategies utilize 

nucleic acid and protein-based machinery, the cellular delivery of which can be mediated by 

polycations. Nonviral genomic insertions of genes can be achieved with the delivery of DNA 

transposon systems such as Tol2, piggyBac, and Sleeping Beauty.2 More recently, however, gene 

therapy strategies have embraced technologies that can achieve genomic manipulations, such as 

gene insertions and knockouts with greater precision. The most common nonviral gene editing 

platforms include zinc finger nucleases, transcription activator-like effector nucleases (TALENs), 

meganucleases, and the CRISPR/Cas9 system.77 These nuclease systems induce a double-stranded 

break (DSB) in a precise location of the genome, which stimulates endogenous cellular repair 

machinery. Repair of the DSB can occur through non-homologous end-joining (NHEJ) or 
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homology-directed repair (HDR) as depicted in Error! Reference source not found.A. The NHEJ p

athway ligates the broken ends and often introduces insertions and/or deletions that can disrupt 

genes at the site of the break (knock-out). In contrast, the HDR pathway can repair the break by 

using a DNA template containing a homologous sequence, and by doing so, the repair can lead to 

the insertion of an exogenous gene of choice (knock-in).78 Variations of genome editing with Cas-

based derivates are being developed to address other challenges in gene editing at a rapid pace.8  

 

Figure 2. (A) Mechanism of the CRISPR-Cas9 system. Guide RNA recognizes and binds to the 

target genomic locus, subsequently directing the Cas9 protein to produce a double-stranded break 
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in the DNA.  The severed DNA can now undergo two types of repair, non-homologous end joining 

or homology-directed repair. (B) Summary of delivery strategies used for CRISPR/Cas9 editing. 

Strategy I Employs a plasmid to encode both the Cas9 protein and the single guide RNA. Strategy 

II uses a mixture of Cas9 mRNA and single guide RNA. Finally, the Cas9 protein can be delivered 

directly after annealing with the single guide RNA to form ribonucleoprotein complexes (Strategy 

III). Reprinted with permission from ref.79 Copyright 2017 Elsevier.  

The delivery of nucleic acid-based constructs is required for all of these editing strategies 

to occur. In the case of the canonical HDR-based gene insertion with CRISPR/Cas9, a 

ribonucleoprotein, consisting of the guide RNA (sgRNA) and Cas9 protein, must be delivered to 

the nucleus to induce a DSB concurrently with the delivery of a template DNA. The template DNA 

can be delivered via a plasmid or single-stranded oligonucleotide (ssODN), while the components 

of ribonucleoprotein can be delivered directly or expressed from a plasmid or mRNA (Error! R

eference source not found.B).40 Exemplified by this case, delivery requirements for these 

sophisticated editing systems are demanding, and there is an urgent need for efficient gene delivery 

strategies in order to achieve the desired outcomes.40 Polymer-based delivery platforms are well-

suited for the concurrent delivery of these large constructs. Sophisticated polymer-based design is 

required to help this cargo overcome the extracellular and intracellular barriers to achieve efficient 

delivery and editing.80 

We have summarized key features of the most widely used nucleic acid cargoes in this 

section. We also note the emergence of payload systems such as microRNA,81 self-amplifying or 

replicon RNA,82,83 base editor proteins,6,8 prime editing,7 and redirect the reader to more detailed 

articles discussing these molecules.  

2.2 Physical methods of delivery 

There are several categories of non-viral gene delivery vectors, each presenting advantages 

and disadvantages with their application. Physical methods of delivery achieve translocation of 

hydrophilic macromolecules into the intracellular space by transient permeabilization of the 

cellular membrane via mechanical means.84 These processes include microinjection, particle 

bombardment, electroporation, magnetofection, sonoporation, photoporation, mechanical 

deformation, and hydroporation.84 Most of these physical methods are most effective for the 

transfection of cells in culture (in vitro) or of localized tissue in vivo. In addition, they often require 



 13 

specialized equipment. Alternatively, gene delivery can be achieved using chemical carriers that 

typically bind the nucleic acid cargo and facilitate its intracellular uptake and delivery. Although 

the chemical diversity of these systems is vast, chemical carriers can generally be categorized as 

inorganic, peptide, lipid, or polymer-based systems.85 Examples of materials used for inorganic 

gene delivery particles include calcium phosphate, silica, gold, magnetic metals, carbon nanotubes, 

and quantum dots, among others. These inorganic nanoparticles can vary greatly in size, shape, 

and surface chemistry, and they are often functionalized with polymeric or bioactive compounds 

to tune their biological properties.86  

Alternatively, nucleic acids can be conjugated or electrostatically bound to biologically-

derived compounds, such as peptides, to promote nucleic acid delivery. Peptides for gene delivery 

can be broadly categorized as either cell-penetrating peptides, targeting peptides, endosome 

disrupting peptides, or nuclear localization signal peptides. While providing effective methods to 

overcome certain biological barriers, these peptides often suffer from short circulation half-lives, 

poor stability, and low DNA binding affinity.87 The most widely utilized non-viral gene delivery 

vehicle are lipid-based vesicles. Lipids, which consist of a hydrophilic head and hydrophobic tail, 

can form bilayer vesicles called liposomes, and if lipids with cationic heads are present in the lipid 

mixture, nucleic acids can electrostatically bind and become encapsulated in the liposome to form 

a lipoplex. These lipoplexes are often mixtures of charged lipids, un-charged lipids, and cholesterol 

that can promote fusing and lipid exchange with endogenous cellular membranes. Lipoplexes can 

also be functionalized with PEG-based coatings or bioactive compounds to improve transfection 

efficiency, stability, or promote tissue-specific targeting. Each of these non-viral methods have 

been developed over the last several decades in parallel to polymer-based gene delivery, and each 

method has its own advantages and disadvantages for any given gene delivery application. 

2.3 Extracellular barriers 

Polymer-mediated gene therapy promises to address limitations associated with both viral 

vectors and physical gene transfer methods, albeit not without its own series of extracellular and 

systemic biological barriers (Figure 2).88–90 The vectors must evade the reticuloendothelial system 

(RES) that would otherwise rapidly eliminate biologically relevant materials from the body.  

Additionally, there are multiple physiological barriers nonviral vehicles must cross, based on the 

route of administration (intravenous/mucosal injection, topical application, and oral delivery). 
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Formulation of the polyplexes must also be taken into consideration as, at higher salt 

concentrations, the electrostatic repulsion between the cationic polyplexes and anionic DNA 

backbone is screened by electrolytes, leading to a decrease in colloidal stability and a propensity 

for aggregation.43 Aggregation of these polyplexes can also occur in the blood (particularly due to 

plasma proteins and erythrocytes), which can also lead to unsuccessful localization of the vector 

to the desired tissue and RES-mediated elimination.91 Furthermore, upon systemic delivery of 

these vehicles in vivo, other barriers include phagocytosis of the nanoparticle, enzymatic (DNases, 

RNases, proteases) and/or hydrolytic degradation and potential activation of an immune system 

via a toll-like receptor (TLR)-mediated response or cytokine induction. Each of these barriers will 

be further discussed below, and circumvention of these barriers will be discussed throughout this 

review. 

 

Figure 2. Extracellular and intracellular barriers to nonviral gene delivery vehicles.  Reprinted 

with permission from ref.88 Copyright 2014 Springer Nature.  
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2.3.1 Serum-induced aggregation.  Like any other biomaterial introduced into a physiological 

environment , polymeric gene delivery vehicles are susceptible to non-specific protein adsorption 

(or biofouling) and the formation of an opsonin-enriched protein corona marks them out as a target 

for clearance by the immune system.92 Surprisingly, the challenges associated with non-specific 

protein adsorption are not unique to in vivo delivery since serum is ubiquitously used in the 

cultivation of both immortalized cell lines as well as the maintenance of primary cells. 

Unfortunately, serum contains numerous proteins, which can adsorb on to the polyplex surfaces 

through electrostatic, hydrophobic or interactions, ultimately causing these colloidal systems to 

aggregate  severely.93 

  Nanoparticles designed to condense the negatively charged backbone of nucleic acids 

typically consist of cationic lipids or polymers.  Although this positive charge allows efficient 

complexation with nucleic acids, these polycations tend to be sequestered by proteins present in 

the serum or by other components of the extracellular matrix.94 The association with plasma 

proteins (albumin, lipoproteins, macroglobulin) is the primary mechanism by which the 

reticuloendothelial system recognizes circulated nanoparticles. Immune recognition initiates a 

cascade of events that redirect injected polyplexes to the liver or spleen, thereby preventing the 

vehicle from reaching its target.95 In addition, the interaction with the serum proteins and 

nanoparticles can greatly alter their diameter and zeta potential, ultimately influencing its 

biodistribution profile and compromising organ-specific targeting.96,97  

Another serious consequence of protein-polyplex interactions is the displacement of the nucleic 

acid by negatively charged proteins through competitive binding, causing premature release and 

disassembly of formulated polyplexes.98 Proteoglycans and glycosaminoglycans are also abundant 

within serum-rich environments and can displace nucleic acids from polyplexes through a 

competition for cationic binding partners, triggering polyplex disassembly.99 Recent work has 

shown promise in enhancing the transfection efficiency of polymeric gene delivery vehicles even 

in the presence of high proportions of serum (up to 50%). Among a wide variety of strategies, 

methods to combat serum instability have included stealth nanoparticle coatings, such as the 

incorporation of poly(ethylene glycol) (PEG),100 fluorination,101,102 phosphonium-containing 

polymer blocks,103 and the incorporation of other hydrophilic stealth functionalities such as 

carbohydrate moieties.104,105 These chemical design strategies are discussed in detail in Section 3. 
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2.3.2 Susceptibility to enzymatic degradation. An additional deleterious effect of serum 

exposure is the rapid degradation of nucleic acids through the action of DNAse and RNAse 

enzymes present in serum. Naked RNA and DNA are known to rapidly degrade via serum 

nucleases in vivo; thus, nonviral vectors need to prolong the half-life of DNA in circulation. 

Chemical modifications to the nucleobase furanose sugar or phosphate backbone has been a 

common method by which researchers have circumvented this barrier (Section 2.1.3).106 

Additionally, delivery via local injections minimizes the time spent in circulation (including 

contact with serum proteins) and thus can lead to improved gene delivery. Unfortunately, this 

cannot be applied universally and has only seen utility for the treatment of certain cancers.90 The 

propensity for DNA/RNA to be degraded by serum nucleases can not only be attenuated by 

complexation via cationic delivery vehicles, but also modification of these vehicles with cell-

specific targeting moieties can direct the cargo to the tissue of interest.43   

2.3.3 Immune activation. The immune system is a formidable extracellular barrier that triggers 

potent non-specific defense mechanisms immediately upon introduction of polyplexes into the 

organism. While the innate immunity, more pronounced in the case of viral vectors (except some 

adenoassociated viruses),95  nonviral vehicles and their macromolecular cargo can trigger an innate 

immune response as well. Surprisingly, although poly(ethylene glycol) (PEG) has long held the 

status of a “biocompatible” material, recent reports suggest that PEG elicits an accelerated blood 

clearance (ABC) response, as well as a complement activation-related pseudoallergy response 

(CARPA). We would like to direct readers to Section 3.4.1 which discusses in detail the 

immunogenic effects of PEG in gene delivery. Activating the innate immune system leads to the 

recruitment of vascular endothelial cells and platelets, inflammatory cytokine production, and 

macrophage cell death. On the other hand, previous exposure to exogenous material causes the 

adaptive immune system to generate an antigen-specific response in the form of neutralizing 

antibodies, which clears the polyplexes from circulation and prevents successful re-

administration.107 The innate ability for both DNA and RNA to activate the immune system upon 

systemic injection in vivo can represent a substantial obstacle during gene delivery.108 These side 

effects include toxicity associated with a TLR-mediated inflammatory response, and cytokine 

release. Additionally, changes to the chemical composition of the delivery vehicle and size, 

aggregation state, shape and charge of the nanoparticle can provoke varied responses from the 

immune system.109 These factors necessitate careful design of nanoparticles in order to side-step 
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anti-polyplex immune responses and ensure the safety and performance of polymeric vehicles. 

While immune-responses to viral vectors comprise various steps (innate immunity, adaptive 

immunity, humoral and cell-mediated responses), we restrict our discussion to those most relevant 

to polymers: toll-like receptors and complement activation.    

TLRs are a class of membrane-bound receptor proteins that play a key role in the innate 

immune response. Each type of TLR receptor can recognize specific compounds common to 

microbial pathogens. TLRs allow immune cells, such as macrophages and dendritic cells, to mount 

rapid and tailored immunological responses, such as releasing inflammatory cytokines and anti-

viral interferons, to attack the microbial invaders.110 Humans have TLRs that can bind a variety of 

foreign nucleic acids belonging to viruses or bacteria. For example, TLR3 binds to dsRNA, 

TLR7/TLR8 binds to ssRNA, and TLR9 binds to ssDNA (especially if it contains unmethylated 

CpG motifs common to bacterial DNA).111 This ability of TLRs to sense exogenous nucleic acids, 

however, can induce immune responses to therapeutic nucleic acids. While in some cases, such as 

vaccines or cancer therapies, immunostimulation may be desired, this effect is usually deleterious 

to most gene therapies.112 For example, it is well documented that the delivery of siRNA can illicit 

excessive cytokine release and inflammation partly through TLR-dependent pathways. It has been 

found that common chemical modifications used to improve siRNA stability can help reduce this 

immune activation.109 The choice of gene delivery vehicle can also affect the immunogenic 

properties of nucleic acids. In the case of siRNA complexes, some vehicles, such as many lipid-

based systems, do not inhibit the siRNA from stimulating immune system,109 while some 

polymeric vehicles allow siRNA to effectively evade immune activation.113 In addition, it is 

possible the vehicle itself may activate TLR-based defenses. One study found that PEI within PEI-

based siRNA polyplexes acted as a TLR5 agonist, which was used to promote therapeutic anti-

tumor immune activation.114 Such findings suggest that the polymeric components of polyplexes 

must also undergo extensive testing to determine if they have unforeseen immunostimulatory 

properties. 

The complement system is another component of the innate immune system that must be 

considered in assessing the immunostimulatory properties of gene delivery vehicles. Complement 

proteins in blood serum can recognize foreign material either directly or through antibody binding, 

and upon doing so, can initiate a proteolytic cascade within the complement system that ultimately 

triggers inflammation, phagocytosis of the foreign material, and rupturing of bacterial membranes. 
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The three activation pathways of the complement system are known as the classical pathway, 

alternative pathway, and lectin pathway.115 Along with avoiding hemolysis or altering blood 

coagulation, nonviral gene delivery vehicles must not activate the complement system to be 

considered hemocompatible.116 Complement activation has been observed for liposomes, naked 

phosphorothioate oligonucleotides, and polyplexes, as well.112,116,117 While naked polycations such 

as PLL, poly(amidoamine) (PAMAM) dendrimers, and PEI can all strongly activate the 

complement system, this activation is greatly diminished by charge neutralization with nucleic 

acid cargo.117–119 In addition, it was found that complement activation was strongly dependent on 

polymer chain length, with cationic oligomers showing weak activation.117,118 No complement 

activation was seen for cyclodextrin-based cationic oligomers complexed with siRNA, which were  

administered to non-human primates.120 Investigations such as this show how the careful 

formulation of polyplex systems can successfully avoid complement activation in vivo. 

2.3.4 Challenges in organ targeting 

Genetic cargoes are not uniformly distributed throughout the body. The liver, for instance, 

is a common location for nanoparticles to accumulate due to the clearance of circulating 

nanoassemblies by the liver sinusoidal endothelial cells, a highly vascularized structure that is a 

key part of the  reticuloendothelial system.121 The liver is also responsible for the metabolism and 

detoxification of xenobiotics as well as reabsorption of chylomicrons, which have similar 

dimensions to synthetic nanoparticles.122 Therefore, targeting gene delivery vehicles to organs 

other than the liver represents a considerable challenge. Siegwart and coworkers engineered a 

strategy to reliably deliver mRNA payloads to extrahepatic organs by tuning the surface charge 

distributions of lipoplexes.123 A similar strategy could be developed with polymeric vehicles to 

improve extrahepatic organ-specific delivery. While local or regional administration of polyplexes 

simplifies some of the complexities presented by organ-targeting, they are still beset with 

operational difficulties. For instance, skeletal muscle tissues are amenable to intramuscular 

injections, yet these highly vascularized tissues are often surrounded by other cell types 

(endothelial, epithelial and adventitial cells), which makes DNA transfer inaccessible unless the 

tissue is damaged124 or if minimally invasive polyplex injections are performed directly into the 

muscle.125 Even though skeletal muscle is often injected locally or electroporated to promote 

transfection, smooth muscle layers and vasculature are often too thin for reliable injections.126 

https://en.wikipedia.org/wiki/Reticuloendothelial_system
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Hence, electroporation or ex vivo transfection with subsequent grafting to the host is required, 

which can limit efficacy. Organ targeting with systemically-administered polyplexes imposes 

stringent design constraints, requiring precise modulation of chemical and physical properties of 

the polymeric vehicle. Additionally, nanoparticles that extravasate from the blood must reach  cells 

of interest through the interstitial space, which is a viscous, dynamic, and complex matrix of 

biomacromolecules.  Larger nanoparticles (larger than 60 nm) cannot diffuse through the 

extracellular matrix of most tissues.127,128  Mitragotri and coworkers have written a comprehensive 

review of the penetrative propensity of nanoparticles across cell and tissue barriers.129 

Improved targeting of polyplexes can be achieved by the modification of parameters such 

as size, charge, or the incorporation of targeting ligands to deliver nucleic acids to remote 

destinations.130 For targeting to be effective in systemically-injected polymeric vehicles, 

polyplexes often need to accommodate both stealth functionalities (to reduce non-specific 

interactions with serum proteins) and targeting ligands (for cell-specific binding).131,132 How do 

we reduce non-specific interactions with proteins and yet ensure a multivalent display of specific 

cell-binding moieties that bind to target cells with high selectivity and affinity? We discuss 

methods to incorporate these functionalities in a complementary fashion in Section 3.4.  

2.3.5 Cytotoxicity. Cellular toxicity is a key performance metric for gene delivery materials. For 

a gene delivery vehicle to be efficacious, transfection efficiency must ideally be maximized, and 

cytotoxicity minimized; otherwise, high cytotoxicity can result in tissue/organ damage in patients. 

However, highly efficient polymeric gene delivery vehicles often exhibit high cytotoxicity, a 

tradeoff often seen with gene delivery vehicles. Thus, most gene delivery systems attempt to strike 

a fine balance between achieving efficient transfection with limited toxicity. It should be noted, 

that, since cytotoxicity is a broad term for cell death, this concept can be split into more specific 

categories, including apoptosis, necrosis, necroptosis, and autophagy, encompassing both 

programmed and unprogrammed mechanisms.133 However, discussions about specific cytotoxicity 

pathways are beyond the scope of this review. 

Cationic polymers/moieties have been implicated as a major contributor to cellular toxicity, 

likely as a result of their interactions with negatively charged membranes and proteins.134,135 As an 

example, cationic PEI-based polyplexes have been observed to exhibit varying levels of 

cytotoxicity, correlated with factors such as molecular weight,136 polymer length,137 permeation of 
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the cellular and/or nuclear membranes,138 mitochondrial interactions/depolarization,139,140 and the 

presence of free polymer chains.138 In particular, there is evidence that mitochondrial integrity is 

strongly associated with polyplex cytotoxicity mechanisms since depolarization will disrupt the 

redox homeostasis of the cell.139,140 Notably, the addition of hydrophilic functionalities such as 

PEG,141 or carbohydrate moieties,142 to cationic polymers has been shown to ameliorate toxicity 

during transfection. The reduced cytotoxicity of these polymeric delivery vehicles is potentially 

due to their lower nuclear permeability.143 Shorter glycopolymers have also been shown to induce 

cell death more slowly than longer polymers.137 It has also been suggested that polymer 

degradation products may serve as a source of toxicity (e.g., through the generation of reactive 

oxygen species), though this hypothesized mechanism is dependent on the polymer structure.137  

In this section, we have provided snapshots of extracellular barriers, ranging from immune 

responses to reticuloendothelial system clearance, serum-induced aggregation, cell death, and 

targeting challenges. Balancing the conflicting design requirements imposed by these biological 

phenomena is a steep challenge that demands multifunctionality, precise design, and adaptability, 

all of which are hallmarks of polymeric materials. 

2.4 Intracellular barriers 

Irrespective of whether they are deployed for in vivo or in vitro settings, all polymer-based 

gene delivery vehicles must overcome a series of intracellular barriers to successfully deliver their 

nucleic acid cargo. The series of barriers that need to be overcome depends on the ultimate 

destination of the nucleic acid cargo; RNA-based cargoes only need to reach the cytoplasm to 

perform their therapeutic function, while plasmids and gene-editing constructs must be trafficked 

to and enter the nucleus.144 The obstacles described in this section are outlined in the general order 

in which they may be encountered and include: (1) cellular binding, (2) endocytosis, (3) endosomal 

escape, (4) intracellular transport, (5) unpackaging, and (6) nuclear uptake.22,145–147 The difficulty 

in overcoming each of these barriers depends on many factors including the type of polymer, 

nucleic acid identity, therapeutic application, cell type and pathway variations between/within 

cells, just to name few (Figure 3). A large body of research has been amassed to determine how 

different polymeric vehicles overcome these barriers. PEI has been considered the gold standard 

in polymeric gene delivery for over two decades, presumably due to its ability to achieve 

endosomal escape through the proton sponge effect (which is discussed in detail in Section 2.4.3). 
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PEI has served as the mechanistic model and the impetus for the development of next generation 

amine-containing polymers capable of escaping the endosome. As the prototypical polymeric 

transfection reagent, the field has gone to great lengths to understand the intracellular mechanisms 

of PEI as a model. Therefore, the following section explores intracellular barriers as studied 

through PEI-based models, which serve as the basis for understanding the delivery mechanisms of 

next-generation polymers as described in subsequent sections.146,148 The focus on PEI shows the 

challenges the field faces in conclusively determining intracellular trafficking mechanisms. In 

addition, many of the lessons learned from these mechanistic studies of canonical polycations have 

been leveraged to create more sophisticated polymer-based systems with improved abilities to 

overcome these intracellular barriers. 

 

Figure 3. Possible endocytosis and intracellular trafficking pathways taken by polyplexes, that 

represent intracellular barriers. While some cargo, such as siRNA, only needs to reach the 

cytoplasm, other cargo, such as plasmid DNA (pDNA) must be trafficked to the nucleus. In 

addition to nuclear uptake, the polymeric vehicle must shuttle the cargo during cellular binding, 

endocytosis, endosomal escape, intracellular transport, and unpackaging for successful 
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transfection of a given cell type. Reprinted with permission from ref.146 Copyright 2018 Royal 

Society of Chemistry.  

2.4.1 Cellular uptake. For polycationic gene delivery vehicles that lack a targeting moiety for a 

specific receptor on the cell surface, such as unfunctionalized PEI, the conventional wisdom is that 

these cationic polyplexes bind to the cell surface via non-specific electrostatic interactions.46 The 

negatively-charged glycocalyx, which varies widely in composition and density, consists of a 

brush-like layer of oligosaccharides, called glycosaminoglycans, that are anchored to the cell 

surface as proteoglycans and glycolipids. Several viruses are known to rely on glycosaminoglycan 

binding for internalization and infection.149 Polymeric vehicles that contain targeting moieties aim 

to increase the specificity of gene delivery systems primarily through their biodistribution. For 

example, specific targeting is frequently achieved through the conjugation of preexisting 

endogenous ligand-receptor interactions (for instance folate/folate receptor), however these can 

come with disadvantages such as nonspecific binding to nontarget tissue expressing the receptor, 

competing circulation of endogenous ligands, or background from soluble receptors.130 

Baldeschwieler et al. showed that proteoglycans were crucial components for the binding 

and uptake of the PLL-based polyplexes.150 Studies utilizing enzymatic degradation and genetic 

knockout of glycosaminoglycans, among others, supported the hypothesis that PEI also relies on 

binding to proteoglycans, especially heparan sulfate, for internalization.151–155 Behr et al. proposed 

a model of PEI polyplex uptake that is dependent on binding to the most common form of heparan 

sulfate proteoglycans called syndecans. Their work suggested that the syndecans cluster and 

condense around the bound polyplex, in a process aided by cholesterol, leading to syndecan 

phosphorylation and actin-dependent engulfment of the particle.152 Several studies, however, show 

that the role of glycosaminoglycans in promoting PEI-based transfection is far more nuanced. For 

example, Durocher et al. found that different types of syndecans can have opposing roles in relation 

to PEI-based gene transfection, with some syndecans causing a reduction in gene expression.156 

Some studies have shown how glycosaminoglycans can be deleterious to successful transfection 

in part by destabilizing the polyplexes.99,157 More recently, work by James et al. suggest that the 

role of heparan sulfate proteoglycans in mediating the successful transfection with PEI has less to 

do with promoting electrostatic binding but more through the ability of HSPGs to order lipid rafts 

and promote hydrophobic interactions between the lipid rafts and polyplexes.158 As exemplified 
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by these studies, many mechanistic underpinnings of PEI-based transfection are not fully settled 

due to the myriad of challenges in characterizing the intracellular interactions of polyplexes. In 

this case, elucidating the role of glycosaminoglycans in PEI uptake is made difficult in part by 

heterogeneity and variability of glycosaminoglycans on different cell types and tissues.145 

2.4.2 Endocytosis. After binding to the cell surface, a polyplex must be internalized by the cell 

in order to deliver its genetic cargo. Because of their large molecular weight and charged surfaces, 

polyplexes are most often internalized actively through endocytosis.159 Success of the transfection 

for a particular cell-type can depend on the endocytosis pathway.160 The most well-characterized 

endocytosis mechanisms, which include clathrin-mediated endocytosis, caveolae-dependent 

endocytosis, macropinocytosis, and phagocytosis, have been the most closely examined routes in 

regards to gene delivery.161 Clathrin-mediated endocytosis is the main method of internalizing 

extracellular and membrane components, and is accomplished by the formation of clathrin-coated 

pits (60-120 nm in diameter)162 in an actin- and dynamin-dependent manner. Caveolae are bulb-

shaped invaginations (60-70 nm in diameter) within lipid rafts that contain the structural proteins 

cavins and caveolins.163 The density of caveolae on the cell surface varies widely between cell 

types. Budding of caveolae is dynamin-dependent and a highly regulated process, which allows 

for the endocytosis of bound material and its trafficking along classical endocytic routes, 

transportation to other organelles, or even transcytosis. 164,165 Macropinocytosis is a non-specific, 

growth factor-induced method of endocytosis that allows for the uptake of extracellular fluid in 

irregular-shaped macropinosomes, ranging between 0.5-10 µm in size, by actin-dependent 

evagination and ruffling of the plasma membrane.164 In contrast to macropinocytosis, phagocytosis 

(mostly employed by immune cells) requires a solid particle (>0.5 µm in size) to initiate 

endocytosis.166 

The contribution of less-characterized pathways to gene delivery, including clathrin-

independent pathways such as CLIC/GEEC, flotillin-dependent, Arf6-dependent, and RhoA-

dependent endocytosis, is an active area of research.159 These endocytosis routes coexist within 

mammalian cells, and while some cargo is internalized exclusively by one route, most cargoes 

utilize multiple pathways.167 

A variety of uptake pathway-specific inhibitors are available that can assist in determining 

the primary endocytosis pathways utilized by polyplexes.168,169 For example, chlorpromazine and 
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amantadine inhibit clathrin-mediated endocytosis, filipin III and genistein inhibit caveolae-

mediated endocytosis, dimethylamiloride inhibits micropinocytosis, dynasore inhibits dynamin, 

and cytochalasin D depolymerizes actin.170,171 The contribution of each pathway toward the uptake 

for a specific polyplex formulation can be determined by treating cells with inhibitors 

(individually) and subsequently measuring internalization of polyplexes (e.g., using fluorescent 

tags). These molecules are easy to incorporate into cell culture assays and have been utilized in 

numerous polyplex studies.172–177 Unfortunately, these inhibitors are often non-specific and may 

not entirely block one pathway, resulting in off-target effects and potentially inducing 

cytotoxicity.147,169 As an alternative to small molecule inhibitors, methods such as RNA 

interference have been utilized to target and downregulate the expression of specific pathway 

proteins, such as clathrin heavy chain and caveolin-1, for the purpose of studying polyplex 

uptake.178 

2.4.3 Endolysosomal navigation and the proton-sponge hypothesis.  With few exceptions, 

endocytosis of a given polyplex by any of the routes described above will lead to entrapment of 

the polyplex in the degradative endolysosomal pathway and its exclusion from the cytoplasm. 

Following endocytosis and its arrival at the early endosome, polyplexes can be recycled back to 

the cell surface179 or be carried forward into late endosomes (pH 6.0-4.8), which is gradually 

acidified by vacuolar-type H+-adenosine triphosphatase (V-ATPase) proton pumps. Late 

endosomes eventually merge with lysosomes, whose acidic lumen (pH ~4.5) and high hydrolase 

content facilitate the degradation of the cargo.180 Endosomal entrapment is a severe bottleneck in 

gene delivery146,181 and considerable energy has been devoted to developing and modifying 

polymer-based systems to overcome this barrier.46,147 Over two and half decades ago, when the 

ability of PEI to promote efficient transfection was discovered, it was proposed that PEI managed 

to avoid endosomal degradation by acting as a “proton sponge” (Figure 4(A)).182,183 Ever since, 

the proton sponge hypothesis has served as a theoretical basis for the development of polymeric 

vehicles that can escape or endure endosomal entrapment. The theory states that the amino groups 

of PEI, which have a broad buffering capacity in the pH range of endosomes (pH 4-7),184 act as 

potent “proton sponges” during the ATPase-driven acidification of endosomes. Buffering against 

this acidification causes a passive influx of chloride ions that causes osmotic swelling of the 

endosome leading its disruption and subsequent release of the polyplex.182 In addition, it was 

postulated that during this process, the polymer itself swells, like a sponge, due to increased 
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charge-charge repulsion to aid in endosomal rupture.183 This proton sponge theory has been 

thought to apply to other polymers that exhibit broad buffering capacities such as PAMAM185 and 

poly(N,N-dimethylamino-2-ethylmethacrylate) (PDMAEMA).186 As such, this theory is cited 

widely for explaining the efficacy of new transfection vectors.  

 

 

Figure 4. Possible mechanisms for endosomal escape of PEI-based polyplexes. (A) The proton 

sponge hypothesis suggests the following steps: i) Polyplexes buffer the endosome during its 

ATPase-driven acidification process. ii) This causes an influx of protons and chloride ions, which 

increases the osmotic pressure. iii) The pressure build-up leads to rupture of the endosome, 

allowing the polyplex to escape. (B) An alternative theory of endosomal escape, the membrane 

permeabilization theory, suggests a slightly different mechanistic hypothesis: i) Free PEI chains 

are present alongside the polyplex. ii) These molecules intercalate into the endosomal membrane. 

iii) Membrane defects and/or nano-holes are formed that allows for escape of the polyplex without 
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full rupture of the endosome. Reprinted with permission from ref.146 Copyright 2018 Royal Society 

of Chemistry.  (C) The retrograde transport hypothesis posits that caveolar transport of PEI-based 

polyplexes can eliminate the need for endosomal escape. Reprinted with permission from ref.187 

Copyright 2012 American Chemical Society.  

Over two decades of work, however, has not managed to verify the proton sponge 

hypothesis since supporting evidence for the mechanism has been mixed and heavily debated. 

Mounting evidence is pointing toward alternative mechanisms of PEI’s ability to escape 

endosomes including direct membrane penetration, which has been examined in-depth in a review 

by Schubert et al. and subsequentially summarized here (Figure 4(B)).146 One key aspect of the 

debate regarding proton sponge mechanism is the evidence tying buffering capacity to endosomal 

escape. While studies have shown that having buffering capacity contributes to PEI’s ability to 

promote transfection,188–192 buffering capacity alone does not serve as the sole parameter 

contributing to endosomal escape and efficient transfection efficiency. Another key point of debate 

revolves around the accumulation of PEI in certain endolysosomal vesicles. It has been observed 

that PEI polyplexes are found in early endosomes and undergo acidification (pH ~ 6), and some 

studies have found that PEI polyplexes are trafficked to the lysosomes,193–196 but others do not find 

this colocalization.190,197 Schubert et al. suggest that the inconsistencies in these studies of 

intracellular distribution is due to the complexity and differences across trafficking fates of various 

uptake mechanisms.146,198 In addition, while some studies have observed endosomal buffering in 

line with the proton sponge hypothesis,190,192,199 others have found a lack of buffering by PEI in 

the endolysosomal system and have questioned the mechanism.184,189,197 Lastly, doubt has emerged 

that the osmotic pressures engendered by a proton sponge is enough to elicit rupture of the 

endosome. While some calculations suggest that the expansion of endosomes by osmotic swelling 

does not meet the critical threshold200 necessary to induce rupture,184,201 another calculation202 

suggests rupture is possible only within a certain range of free polymer content within the 

endosome. 

2.4.4 Alternative Hypothesis 1: Direct Membrane Permeabilization.  Despite the controversy 

regarding its mechanism, the burst-release of PEI polyplexes from endosomes has been observed 

directly.194,203,204 Interestingly, it was observed that the endosome remained intact after releasing 

its contents. This result suggests that the polyplex promotes release not by large scale rupture or 
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lysis, as suggested by the proton sponge hypothesis, but through direct permeabilization of the 

endosomal membrane22,204,205 (Figure 4(B)) in a manner not dissimilar to the membrane-lytic 

mechanisms underlying viral infection.206 This membrane permeabilization that allows for the 

leakage of proteins and dyes has been observed with PAMAM dendrimers207–210 as well as 

PEI.211,212 The membrane disruption caused by PEI may not only help with endosomal escape, but 

could also be the cause of its well-known cytotoxicity.137,139,213 

Although it has been suggested that the PEI polyplex itself causes membrane 

penetrations,22,204 there is growing evidence that it is actually free polymer chains not bound to the 

nucleic acid cargo that is allowing for membrane penetration and endosomal release.205,214 Many 

studies have demonstrated that the presence of free PEI chains are critical in promoting gene 

delivery.215–218 At the N/P ratios (the ratio of ionizable amine groups to phosphate groups within 

nucleic acid payloads ) necessary for transfection, the majority of PEI polymer chains 

(approximately 60-90%) exist as free polymers in solution219,220 and may exist in an equilibrium 

between free and bound states, similar to what has been observed with PAMAM dendrimers.221–

224 Depending on its length, free PEI chains have been shown to promote release from endosome 

and even assist in the translocation of genetic cargo through the nuclear membrane.225 The solution 

behavior of free PEI is pH-dependent226 and its ability to destabilize the membrane barrier is 

greatly enhanced at low pH.227 In addition, since PEI has an exceptional ability to interact with 

and translocate anionic lipids,228,229 Won et al. suggests that the preferential ability of PEI to 

perforate mature endosomes is due to their higher anionic lipid content.230 They achieved direct 

visualization of PEI adsorption and permeabilization of model lipid vesicles consisting of a 

mixture of neutral and anionic lipids.230 Lastly, Banaszak Holl et al. quantified this 

permeabilization by free PEI chains in patch clamp measurements of whole HEK293 cells. They 

concluded that PEI caused persistent nanoscale hole formation via a detergent-like membrane 

disruption mechanism (known as the carpet model), and its potency was correlated to its charge 

density.231 Many supporters of the membrane permeabilization mechanism of PEI hypothesize, 

however, that the proton sponge effect may play a synergistic role in assisting membrane 

permeabilization if it is indeed occurring.204,214,232 It is also key to recognize that the endosomal 

escape mechanism of any given polycationic reagent may depend greatly on polymer composition 

and the particular cell type being transfected, which makes universal mechanistic claims 

exceedingly difficult.146 In conclusion, we agree with Schubert et al. that despite being a popular 
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and long-standing explanation for the ability of PEI to escape the endosome, two decades worth 

of research has failed to verify that the proton sponge effect is the most critical parameter for 

endosomal escape and improving therapeutic nucleic acid delivery performance. Evidence is 

mounting that endosome permeabilization by the direct interaction of PEI chains with the 

endosomal membrane plays a critical role in endosomal escape of polyplexes and should play a 

featured role in the prevailing mechanistic theory of its functionality. 

2.4.5 Alternative Hypothesis 2: Retrograde Transport via the Golgi and the endoplasmic 

reticulum. The most common observation is that PEI polyplexes undergo both clathrin- and 

caveolae-dependent endocytosis.175,177,178,187,198,233–235 Most of these groups concluded, however, 

that caveolae-dependent endocytosis is either entirely178,198,234 or mostly accountable175,177,187,235 

for transgene expression. Although caveolae can interact with early endosomes and partake in 

classical endocytic routes,165,236 it has been shown that endocytosed caveolae are capable of 

bypassing lysosomal compartments and directly merge with organelles such as the Golgi and 

endoplasmic reticulum (ER).163,237–240 ER is contiguous with the inner and outer membranes of the 

nucleus,241and  it has been shown that several cargoes such as proteins, can enter the nucleus242,243 

upon arrival at the ER. In the case of some toxins and viruses, ER localization can contribute to 

cytoplasmic release.244 In these cases, the efficiency of the caveolae-dependent delivery has been 

attributed to the ability of caveolae-dependent endocytotic vesicles to bypass the rapid degradation 

of the endolysosomal system. In the context of polymeric delivery, Sullivan et al. (Figure 4(C)) 

and Reineke et al. showed that PEI-pDNA complexes that underwent caveolin-dependent 

endocytosis could bypass endosomal degradation by retrograde transport.187,235 It appears that 

retrograde transport can also offer a compelling alternative to both the proton-sponge and the direct 

membrane permeabilization hypotheses.  

Others, however, have found that fluid-phase endocytosis (such as macropinocytosis) can 

be important for uptake and expression of PEI polyplexes as well.245,246 In addition, Zhuang et al. 

found that PEI polyplexes can be endocytosed via a route that is clathrin-independent, caveolin-

independent, dynamin-dependent, and flotillin-dependent.154 One reason such discrepancies can 

arise is the preference of endocytotic routes for certain size ranges and the heterogeneous size 

distributions of PEI polyplexes.233,234,247–249 The route of endocytosis is also strongly cell type 

dependent233,234,245 and inhibition of one endocytotic route can lead to compensatory increases in 
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others since cells are often employing multiple endocytotic routes in tandem.177,198 As exemplified 

by PEI, defining the endocytosis mechanism for any given polymeric system is a challenge due to 

the intricacy, codependence, and highly variable nature of endocytotic pathways within and 

between cells. 

2.4.6 Intracellular Transport.  Although escaping the endosome is an important barrier to 

overcome for all polymer-based gene delivery, the timing of the escape is also an important 

parameter to consider for some genetic cargo. In the case of large DNA cargoes, escaping from 

endosomes far away from the nucleus has been considered detrimental due its poor ability to reach 

the nucleus via diffusion.189 While small oligo DNAs can diffuse through the cytoplasm efficiently, 

diffusion of DNA >250 bp is highly restricted in cytoplasm and plasmids >3000 bp appear 

immobile.204,250 The actin cytoskeleton plays a significant role in inhibiting DNA motility.251 

Therefore, it is thought to be advantageous for DNA to stay within its endocytic vesicles for long 

enough to use it as a shuttle to the nucleus but not for so long that degradation of the genetic cargo 

in the endolysosomal system occurs.146 Imaging and microtubule inhibition studies have shown 

that upon endocytosis, vesicles containing polyplexes are actively transported via microtubules 

towards the nucleus.199,252 PEI polyplexes were shown traveling with a linear speed of 10-1 µm.s-1 

in COS-7253 and HUH-7254 cells and accumulated in the perinuclear space within minutes,253 

reducing the distance needed for the plasmid to reach the nucleus. Outside PEI, Reineke and 

coworkers tracked the filopodia-driven transport of polyplexes formulated from the glycopolymer, 

Glycofect, and concluded that these complexes were trafficked over long distances (13 μm) along 

filopodial projections at a velocity of 0.003 μm.s-1 to 0.07 μm.s-1.255  

There is debate about the timing of DNA release by polycations, and it is unclear if 

polyplexes outside of endosomes are efficiently trafficked. There is evidence, however, that some 

naked plasmids (i.e., plasmids uncomplexed from the polycation) can utilize intracellular 

machinery in the cytoplasm to complete the race to the nucleus and allow for nuclear uptake. 

Plasmids have been shown to be actively transported on microtubules, along with actin to a lesser 

degree,256 by recruiting molecular motors, transcription factors, and importins to facilitate 

movement.257 This recruitment, and subsequent transport, is sequence-specific.258 Dean et al. 

showed that plasmids containing binding sites for cyclic adenosine 3′,5′-monophosphate response-

element binding protein, present in the cytomegalovirus promoter, significantly increased 
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microtubule transport rates and nuclear accumulation of the plasmid.259 Interestingly, stabilizing 

microtubules via acetylation, either with inhibitors or mechanical manipulation, can greatly 

increase rates of nuclear localization and improve gene delivery.259–261 

2.4.7 Unpackaging.  Although it is not entirely clear at what stage in the transfection process is 

optimal for unpackaging of the nucleic acid cargo, the preferred location/time of this occurrence 

likely varies heavily on the type of polymer, cells, pathway utilized, and nucleic acid type. It is 

generally agreed, however, that unpackaging must occur at some point to allow for the nucleic acid 

to perform its ultimate function. A fine balance must be achieved so that the polymer properly 

protects the nucleic acid from degradation in the extracellular and intracellular space while 

releasing it at the optimal time and place.262 Premature release in the degradative endolysosomal 

system263 or intracellular space can lead to degradation of the cargo due to nuclease activity. Naked 

plasmid DNA has a half-life of approximately 50-90 min in the cytoplasm of HeLa and COS 

cells.264 For this reason, it is suggested that polyplexes should be programmed to release DNA near 

the nucleus or inside the nucleus.201 Simple parameters of the polycation can be tuned to achieve 

the right balance of protection and release including the polymer length,265,266 charge density,267,268 

and structural rigidity.269,270 The release performance can also be improved with the incorporation 

of chemical moieties that allow for intracellular degradation of the polymer.262,271,272  

While great progress has been made in “smart” stimuli-responsive polymers (described in 

Section 3.6), it is still valuable to understand how and to what degree materials like PLL or PEI 

manage to release their cargo. Lauffenburger et al. found that PLL polyplexes could reach the 

nucleus intact but were unable to unpack (or unpackage) their cargo to allow for gene 

expression.265 Others have also attributed PLL’s poor transfection efficiencies to its inability to 

unpack nucleic acid cargo.273–276 Chloroquine, a lysosomotropic antimalarial used widely in gene 

delivery,181,277,278 has been commonly used in conjunction with PLL to improve its transfection 

properties.189,279,280 Chloroquine’s mode of action is usually attributed to its ability to promote 

endosomal escape,181 but several studies have shown that chloroquine can improve transfection 

efficiencies of strong-binding polycations, such as PLL, by competitively binding and releasing 

the nucleic acid cargo.279,281 In contrast, PEI unpackages much more efficiently than PLL273 and 

does not require chloroquine for efficient transfection.190 Studies have shown that PEI polyplexes 

can relinquish DNA cargo in the presence of competitive polyanions present in the cellular 
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environment including glycosaminoglycans,275,276 RNA,282 and cytosolic proteins.283 It is unclear, 

however, whether competitive binding is responsible for unpackaging in the cells, and if so, what 

macromolecule is ultimately responsible.146,232 The intracellular location of polyplex unpackaging 

is also unclear. Chen at al. used fluorescence resonance energy transfer to quantify PEI unpacking 

kinetics in the endolysosome, cytoplasmic, and nuclear compartments and found that the 

unpackaging of PEI begins in the endo/lysosome and continues at a similar rate in the cytosol.284 

While others have also observed PEI unpackaging in the cytosol,285 several others have observed 

intact polyplexes in the nuclei of cells (Section 2.4.8) and witnessed unpackaging occurring after 

nuclear uptake.273 It is not clear whether unpackaging prior or post nuclear uptake is optimal for 

transcription and to what degree the polyplex must be unpackaged. Surprisingly, Fajac et al. 

showed that transcription of plasmid can still occur within loosely bound PEI polyplexes (N/P = 

5-15), and was only inhibited when the DNA was fully compacted (N/P > 20).286 Importantly, this 

work suggests that complete dissociation of the polycation from the nucleic acid cargo may not be 

required for efficient transgene expression. On the other hand, Pack and coworkers have reported 

a 58-fold increase in delivery efficiency, merely by weakening PEI-DNA interactions through 

acetylation of primary amines within PEI. Despite significant losses in buffering capacity caused 

by acetylating up to 57% of primary amines, they still observed polyplex unpackaging within 

HEK293 cells via fluorescence resonance energy transfer.268 Therefore, increased buffering 

capacity of other amino-containing polymeric reagents does not correlate to improvement in 

transgene delivery, and a balance between DNA-polymer binding and buffer capacity must be 

engineered.287–290 

2.4.8 Nuclear membrane penetration and active nuclear transport. The nucleus of the cell is 

contained by a phospholipid bilayer envelope that consists of an outer membrane, which is 

continuous with the endoplasmic reticulum, and an inner membrane, which encloses the 

nucleoplasm. The inner and outer membranes are separated by the perinuclear space and are fused 

at many sites by proteinaceous pores, called nuclear pore complexes.291 Nuclear pore complexes 

are large macromolecular assemblies (120 MDa) that are constructed from multiple copies of 

around 30 proteins called nucleoporins.292 NPCs control the bidirectional transportation of cargo, 

such as proteins and mRNA, in and out of the nucleus in a highly selective manner. While small 

molecules and ions can passively diffuse through the 9 nm pores of NPCs, larger cargo (up to 39 

nm in diameter) requires active transportation through the nuclear pore complex.293 Large proteins 
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bound for the nucleus, for example, have small peptide tags called nuclear localization signals 

(NLS) that recruit nuclear shuttle proteins, called karyopherins, which shuttle the cargo through 

the nuclear pore complex.294 Although there are many types of NLS tags, the prototypical NLS is 

the monopartite classical NLS derived from the SV40 large T antigen NLS containing the lysine-

rich sequence PKKKRKV.295 Different types of NLS signals can recruit a variety of karyopherins, 

including importin α, importin β, and exportins, that are used to shuttle different macromolecular 

cargoes. Most commonly, an NLS will bind to the importin α-subunit of an importin α/β dimer or 

directly to the importin β, which will then translocate the complex through the nuclear pore 

complex.294 The release of the cargo is mediated by the Ras-related small GTPase Ran, which 

regulates the directionality of cargo transport in and out of the nucleus.296 

While viruses have evolved the ability to harness the nuclear import machinery to transfer 

genetic cargo into the nucleus,297,298 polyplex-based systems have shown to be severely hampered 

by the nuclear membrane barrier.299 Therefore, polyplexes greatly benefit from the breakdown of 

the nuclear membrane that occurs during the cell division. PEI-based polyplexes show a 30- to 

500-fold increase in transfection efficiency when introduced to cells shortly before cell division 

(G2/S vs G1 phase),300 which can be achieved chemically via a double thymidine block 

synchronization strategy, among others.301–303 The nuclear barrier of non-dividing cells is more 

persistent, however, since their nuclear membrane does not break down, and transport of DNA 

through the nuclear pore complex is necessary.304 The uptake of  DNA, both plasmid and oligos, 

through the nuclear pore complex is energy dependent and highly dependent on the cargo 

size.305,306 Wolff et al. showed that the size limit for passive diffusion of dsDNA into the nucleus 

was between 200-310 bp, while DNA between 310-1500 bp required active transport.307 Nuclear 

uptake of a 900 bp DNA cassette was improved via covalent attachment of the SV40 T antigen 

NLS, a strategy also employed by Behr et al. to improve transgene expression of an end-capped 

DNA reporter construct.308 The covalent309,310 and non-covalent attachment311,312 of NLS peptides 

to plasmids has been employed with mixed results.313 Interestingly, researchers have found success 

through the use of nuclear proteins, such as high-mobility-group proteins and histones, as gene 

delivery vectors themselves, since these cationic proteins are trafficked to the nucleus and naturally 

compact DNA.314,315 In addition, glycosylation of vectors and plasmids have also been used to 

improve nuclear uptake via a glyco-dependent mechanism involving nuclear lectins.316 Figure 5 

summarizes several strategies for increasing nuclear uptake. 
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Figure 5. Examples of strategies employed for increasing nuclear uptake of plasmids. The 

expression of plasmids in dividing cells is far higher than non-mitotic cells due to the breakdown 

of nuclear membrane, which allow for enhanced nuclear uptake. To increase the nuclear transport 

of non-dividing cells, attachment of Nuclear localization signals (NLS) or inclusion of DNA 

nuclear targeting sequences (DTS) are employed to harness importins to allow for shuttling of the 

plasmid through the nuclear pore complex. Reprinted from ref317 with attribution under the 

Creative Commons Attribution License 4.0 (CC BY).  

It has been found, however, that naked plasmid DNA itself can promote active nuclear 

uptake by the virtue of having the correct sequence.318 DNA nuclear targeting sequences are 

promoter regions of DNA that bind transcription factors in a sequence-dependent manner. Of a 

handful of DNA nuclear targeting sequences identified to be effective with all mammalian cell 

types, the SV40 promoter is the most well-known.317 This 72 bp sequence binds at least ten 

different transcription factors ubiquitously expressed in mammalian cells.319 Binding of the 

transcription factors to the DNA recruits importins that allow for active uptake of the DNA through 

the nuclear pore complex.317 Based on this mechanism, it would seem that any eukaryotic promoter 

region that can bind transcription factors should be able to promote nuclear uptake, but this is not 

the case.320 Although DNA nuclear targeting sequences seem to bind a large array of proteins, a 

specific subset of transcription factors, importins, and chaperone proteins are necessary to promote 

nuclear uptake321–323 which not all promoters may recruit or utilize.317 Another well-established 
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DNA nuclear targeting sequences including the binding site for the nuclear factor κβ (NFκβ) 

transcription factor, which is induced through stimuli such as the addition of tumor necrosis-α 

(TNF-α).324,325 In addition, glucocorticoid receptor binding sites have also been used to promote 

nuclear uptake of DNA.326,327 Introduction of glucocorticoids, such as dexamethasone, induce a 

conformational change in the glucocorticoid receptor, which promotes its transport into the 

nucleus.299 Dexamethasone dilates the nuclear pores, which can also promote nuclear uptake of 

large plasmid DNA and increase transfection efficiency.302,328,329 

For researchers endeavoring to improve the nuclear uptake of DNA cargo with polymer-

based vehicles, it would be helpful to understand what levels of nuclear uptake are typically 

achieved with standard PEI-based transfections. Using quantitative polymerase chain reaction 

measurements, Szoka et al. detected as few as 75 and as many as 50,000 plasmid copies (<5% of 

applied dose) in the nuclei of transfected cells, but found that levels above 3000 plasmids/nuclei 

yielded marginal returns in transgene expression.330 According to a study of Escande et al., PEI 

enhances nuclear uptake compared to naked DNA.  They showed that complexation of circular 

DNA with PEI increased nuclear uptake by 10-fold (from 0.1 to 1%) after microinjection into the 

cytoplasm.331 In fact, plasmid still bound to PEI has been observed in the nucleus273,284,325,332,333  

and was typically seen 3.5-4.5 hrs after transfection.273,325,333 Midoux et al. claim that entire 

polyplexes (70-300 nm in diameter) may pass through NPCs, which are typically exclusive of 

particles that size.325 Although the mechanism of this polyplex translocation through the nucleus 

in non-mitotic cells is not clear,334 work by Reineke et al. suggests that permeabilization of the 

nucleus by PEI may play a role.137,143 More work, however, is needed to fully understand the role 

of PEI in nuclear uptake of DNA cargo. Any endeavor to maximize nuclear transport of a polymer-

based vehicle must consider many variables including differences in cell types, stages of division, 

pathways utilized in uptake, the timing and location of unpackaging, and transport requirements 

for each type of nucleic acid cargo. 

We conclude our discussion of biological concepts pertinent to gene delivery with a few 

directions for future research. We emphasize the need to exploit advances in intracellular imaging. 

For instance,  light  sheet fluorescence microscopy335 can visualize polyplex trajectories within 

live cells as well as model organisms such as the zebrafish. This way, the intracellular polyplex 

distribution among different organelles can be acquired with high spatiotemporal resolution 

through live cell imaging instead of fixed specimens, shedding light on polyplex itineraries within 
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cells and animals.  We also note that insufficient attention has been devoted to measuring the 

immunogenicity of polyplex delivered through in vivo modalities. While histological examination 

of tissue samples is growing more prevalent, we also believe that characterizing the expression of 

pro-inflammatory and anti-inflammatory markers induced by polyplex administration will be 

illuminating. Overall, the application of more sophisticated biological characterization techniques 

can resolve several enigmas that still confound the elucidation of polymeric gene delivery 

mechanisms.  

3 CHEMICAL DESIGN OF POLYMERIC CATIONIC VECTORS  

The promise of precise molecular engineering of polymeric materials is often cited as the main 

advantage to using them in many fields, but particularly in nonviral gene delivery. It is no surprise 

that as the field of polymer synthesis continues to advance, more diverse polymeric vectors are 

reported for their potential in gene therapy applications. The constant invention and refinement of 

new polymerization techniques coupled with the synthesis of novel functional monomers 

continues to expand the ever-growing catalog of synthetic and semi-synthetic macromolecules 

available. The introduction of reversible deactivation radical polymerizations  in the early 2000s 

has permitted the synthesis of previously inaccessible well-controlled polymers, that incorporate 

a larger variety of chemically interesting monomers. Techniques such as reversible addition 

fragmentation chain-transfer (RAFT) polymerization,336–338 nitroxide-mediated polymerization 

(NMP),339,340 and atom transfer radical polymerization (ATRP)341,342 allow the synthesis of 

polymers with tailored molecular weights and low molecular weight dispersity, while using 

previously inaccessible monomers,343 initiation pathways,343 and biologically friendly solvents.344–

346 These techniques reduce the termination events present in conventional free radical 

polymerization, granting polymeric molecules in which tailored end groups are incorporated in 

most of their chains. Apart from the opportunities to incorporating beneficial end groups (e.g., 

targeting moieties for cell-specific gene delivery) this level of end group control also allows for 

the synthesis of controlled block copolymers through these techniques. In gene delivery, these 

versatile and robust polymerization methods allow for the incorporation of cationic, hydrophilic, 

hydrophobic, and targeting functional groups as monomers or end groups.347 In addition to the 

surge in controlled radical polymerization techniques, other polymerization methods continue to 

be developed for the synthesis of nucleic acid delivery vectors. For instance, polymerization 
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methods using click chemistry348,349, azide-alkyne cycloaddition,350 anionic polymerization,351 

cationic polymerization,352 and ring opening polymerization353 have also been reported for the 

synthesis of polymeric vectors.  

The tenet of polymeric gene delivery design is the incorporation of positive charges distributed 

along the macromolecular structure. These charges are responsible for the polyelectrolyte 

complexation of polycations and negatively charged nucleic acids into polyplexes; it has been 

proposed that the favorable entropic changes due to the release  of counterions from the polymer 

and nucleic acid chains are the driving force for this complexation.354,355 Paradoxically, the positive 

charges that allow complexation are also responsible for some of the cytotoxicity concerns that 

prevent a widespread use of polymeric vectors.134,135 Several chemical strategies have been 

employed to mitigate some of the inherent drawbacks of polymeric cations and enhanced their 

delivery efficiency: (1) engineering the type of charged groups use for polycation synthesis; (2) 

modulate the  polymer architecture and molecular weight and; (3) tailor the polycation chemical 

composition through the introduction of hydrophobic, hydrophilic, or stimuli-responsive moieties 

(Figure 6).  
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Figure 6. Schematic summary of the factors considered during the design of functional 

polycations with tailored properties for the delivery of therapeutic nucleic acids.  

A large breadth of literature has been dedicated to studying how modifying each of these 

aspects affects the biological processes involved in gene delivery and ultimately how they affect 

the transfection performance. It remains challenging to ascertain how effectively gene delivery 

vehicles can be translated across diverse cell types. This section is focused on describing classic 

and novel polycations with a variety of architectures and compositions that are used for gene 

delivery while highlighting how their specific molecular design affects their performance as gene 

delivery vectors.  

3.1 Polymer Architecture  

Polymers that are used for nucleic acid delivery are chemically and structurally diverse and 

herein we describe the fundamental terms that define these structures. Polymers are 

macromolecules that are defined chemically and topologically by their composition (i.e., type and 

number of (co)monomers they contain) and their architecture (i.e., the spatial arrangement in 
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which those monomeric units are linked together to form the polymer chains) (Figure 7). 

Homopolymers incorporate only one type of monomer while macromolecules with two or more 

monomer types result in statistical, alternating, gradient, or block copolymers. Statistical 

copolymers incorporate the different repeating units along the polymeric structure with an 

organization that reflects their reactivity. Alternating copolymers are a specific case of statistical 

copolymers that incorporate two types of monomeric units in an alternating pattern. Finally, block 

copolymers display defined segments, or “blocks”, that comprise only one type of monomeric unit. 

In terms of architecture, linear polymers are composed of monomers bound only to two other 

monomers to form the polymer chains. As highlighted in Figure 7, monomers and crosslinkers 

with the ability to be chemically bound to more than two monomers, enables the synthesis of 

macromolecules with radiating chains, resulting in (co)polymers with dendrimer, branched, star, 

and graft architectures, as well as polymeric networks and gels.  Besides the topologies accessible 

through covalently linking monomers in different spatial arrangements, other topologies can be 

created via supramolecular assembly of macromolecules. For example, amphiphilic copolymers 

(i.e., polymers that contain hydrophilic and hydrophobic monomers) can self-assemble into 

structures such as micelles, worms, and vesicles (Figure 7).  
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Figure 7. Typical polymer architectures and self-assembled structures are defined based on the 

monomer identity and spatial arrangement (cartoon to display orientation in space; size not drawn 

to scale).  

3.1.1 Linear. Linear polycations are the most commonly studied polymeric nucleic acid delivery 

vehicles.356 PEI, PLL, PDMAEMA, poly 2-aminoethylmethacrylamide (PAEMA), 

poly(amidoamines) (PAAs),357 and poly(β-amino esters) (PBAEs)358 have all been widely explored 

as linear polycations for the delivery of various payloads (Figure 8).359,360 PEI and PLL are 

common commercially available “off-the-shelf” materials that contain amine groups, which can 

be protonated at physiological pH.49 Due to their high availability, these materials are among the 

earliest structures explored by researchers in the field.182,361 These structures are often used as 

positive controls and have been widely chemically-modified to optimize performance for a number 

of specific application (vide infra). Linear PEI derivatives are marketed as jetPEI® by Polyplus-

transfection® SA for both in vitro transfection reagents and in vivo applications. Inspired by the 

chemistry and performance of these structures, other common systems have been created via 
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radical polymerization routes to house pendant amine structures.  For example, PDMAEMA is 

readily synthesized to create several homopolymer and copolymer architectures at different lengths 

that have been extensively explored as polycationic vectors. The tertiary amino groups in 

PDMAEMA have pKa values ~7.5, indicating that they are only partially protonated at 

physiological pH (7.4) and ionic strength (150 mM).360,362 

 

Figure 8.  Chemical structures of common linear cationic polymers used as vectors for gene 

therapy.  

Linear polycations exhibit structural differences such as i) cation identity (e.g., primary 

amines in PLL, secondary amines in PEI, and tertiary amines in PDMAEMA), ii) cation position 

(e.g., along the backbone in PAAs and PEI  versus pendant in PLL and PDMAEMA), and iii) 

cationic density (i.e., nitrogen-to-carbon atomic ratios). These structures, however,  all share a 

distinctive feature when used as delivery vehicles: polyplex formulations based on these polymers 

exhibit moderate to high transfection efficiencies in vitro depending on the cell type and 

particularly at high molecular weights and formulation ratios (see Sections 3.2 and 6.3 for a 

detailed discussion). This is attributable to strong binding and protection of the nucleic acid 

payloads, and their ability to interact with the cellular membrane. While this nonspecific 
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interaction with cell membranes can be beneficial to performance, unfortunately, it can elicit high 

cell toxicity (IC50 values on the order of 10 of µg.mL-1).49,362 To overcome the delivery hurdles of 

linear polycations, several strategies such as the evaluation of other architectures (Sections 3.1.2—

3.1.4), tailoring of the polycation molecular weight (Section 3.2), introduction of different 

functional groups such as alternative charged centers (Section 3.3), hydrophilic (Section 3.4) and 

hydrophobic moieties (Section 3.5), and stimuli-responsive moieties (Section 3.6), have been 

explored and are further discussed below.  

PAAs and PBAEs represent a somewhat different class of linear polycations.357,358,363 These 

polymers are synthesized via the Aza-michael addition of primary or (bis)secondary amines to 

multifunctional acrylamides (for PAAs) and acrylates for (PBAEs). Their uniqueness arises due to 

the modularity of their synthesis. A plethora of different functional groups, contained in the amine 

or acrylate/acrylamide monomers, can be incorporated seamlessly into the polycationic structure 

(see R1-R4 substituents in Figure 8). The large number of monomers available for the synthesis of 

PBAEs have afforded more than 2000 PBAEs that have been explored as gene delivery 

vectors.358,364 Compared to PAAs, PBAEs contained degradable ester groups along their polymer 

backbone, which can contribute to the cargo release. Also due to the modularity of PAAs and 

PBAEs, modifications to lower the cytotoxicity of their formulations, such as the introduction of 

hydrophilic moieties and the modification of the polymer end groups, can be easily achieved. The 

synthesis, properties, and use of these highly modular polycations in different biomedical 

applications including gene delivery have been recently reviewed.232,357,358,363 

Linear block copolymers that link polycationic homopolymers with non-ionic hydrophilic 

blocks condense nucleic acids into nanometric polyplexes sometimes called polyion complex 

micelles (PICs). These nanometric polyplexes formed by electrostatic complexation (rather than 

by amphiphilic self-assembly, see Section 3.5.2) place the nucleic acid cargo in the assembly core 

and provide a hydrophilic protective corona. PEG, as well as hydrophilic acrylamide, acrylate, and 

ff1996, where mixtures of PEG-b-PLL diblock copolymers and ASOs formed relatively 

monodisperse aggregates.365 Since then, PICs have been used as delivery vehicles for DNA,366–369 

siRNA,91,370–382 ASOs,376,383,384 ssRNA,382 antisense ODNs,384 and mRNA.385 PICs, their 

formation, and applications in gene delivery have been summarized in recent reviews.386–388   
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As alternatives to conventional PIC micelles (where the hydrophilic block is covalently 

bound to the polycations), Kataoka and coworkers have showed that PEGylated antisense ODNs384 

or siRNA389 form similar PICs when mixed with PLL homopolymers. The addition of targeting 

moieties to PICs to enhance their performance and provide cell-specific delivery has also been 

explored. PICs have been functionalized with cRGD peptides,370,371,379,381 antibodies to target 

pancreatic cells,377 lactose groups for enhanced delivery to HuH-7 cells,384,389 and glucose groups 

for systemic delivery of ODNs to the brain.390  

The transfection efficiency of PIC micelles can be also improved by the introduction of 

stimuli-responsive properties (Section 3.6).91,378,380,391–393 For instance, Belamie et al. reported the 

delivery to mesenchymal stem cells with endosomal pH triggered release of siRNA. Simultaneous 

complexation of siRNA with either PLL or PEI homopolymers polycations and PEG-b-

poly(methacrylic acid) (PMAA) diblock copolymers tripartite PIC micelles that would 

disassemble due to protonation of PMAA in lysosomal pH conditions were formed (Figure 

9(A)).91 In another example, complexation of pDNA with a PEG-b-poly{N-[N’-(2-aminoethyl)-2-

aminoethyl]aspartamide} (PEG-b-P[Asp(DET)]) diblock copolymer, synthesized by coupling the 

blocks through a disulfide group, afforded PIC micelles with intracellularly cleavable PEG 

coronas. (Figure 9(B)).391 Triblock copolymers with thermoresponsive properties have also been 

employed in the formulation of PIC micelles, Miyata et al. showed the complexation of ASOs with 

a triblock terpolymer containing poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-n-propyl-2-oxazoline) 

(PnPrOx), and PLL, containing a PnPrOx midblock that exhibits a lower critical solution 

temperatures. Triblock micelles were able to outperform diblock micelles that did not contain the 

PnPrOx midblock, when applied for cancer therapy delivery and serum stability.383 The presence 

of the thermoresponsive PnPrOx midblock prevented nucleic acid degradation by nucleases, and 

polyanion exchange with glycosaminoglycans (GAGs) at physiological temperature.392  

Polyion complex micelles offer a simple method to introduced hydrophilic coatings into 

polyplexes (a concept that is further explored in Section 3.4). Their chemical versatility has been 

demonstrated through the incorporation of targeting, crosslinking, and stimuli-responsive moieties 

have allowed them to be used for the delivery of many therapeutic nucleic acids. 
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Figure 9. (A) PIC micelle with acidic induced disassembly of their cores. Reprinted with 

permission from ref.91 Copyright 2017 Royal Society of Chemistry. (B) PIC micelles based on 

PEG-ss-P[Asp(DET)] degradable diblock copolymers  undergo PEG cleavage in the reducible 

under intracellular environment. Reprinted with permission from ref.391  Copyright 2008 American 

Chemical Society.  

3.1.2 Branched (co)polymers and dendrimers. Branched polycations having secondary 

polymer chains budding from a primary polymer backbone in a tree-branch-like structure are also 

a class of widely studied nucleic acid delivery vehicles. These polycations can be divided into 

branched (co)polymers and dendrimers. Branched (co)polymers possess randomly distributed 

branches along their structure with broad molecular weight distributions. Dendrimers on the other 

hand are well-defined molecules with fractal branching radiating from a core. Branched PEI, 

branched PBAEs, as well as PLL, PAMAM, and polypropylene imine (PPI) dendrimers (Figure 

10) have all been widely explored as gene delivery vectors. The use of branched (co)polymers for 

gene delivery present two main advantages: (1) these polymers often incorporate different types 

of amine groups (with different pKa values) within the branching points, the backbone, and the end 

groups which can be protonated at varying pH values; (2) branched polymers can be can be 

synthesized and modify easily and with low costs.394,395 In general, branched polymers with 

increasing degree of branching and molecular weights have shown enhanced cellular 
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internalization, but at the cost of higher cytotoxicities and higher variability due to larger dispersity 

indices.396,397  

 

Figure 10. Chemical structure of polycationic branched polymers and dendrimers commonly used 

for the delivery of nucleic acids. 

Branched PEI is one of the most widely studied polycation class for gene delivery, which 

displays a combination of primary, secondary, and tertiary amines in its structure. The presence of 

these different amine groups (with different pKa values) endows branched PEI systems with 

efficient nucleic acid binding ability and broader buffering capacity when compared to polycations 

based on just one class of amine cation.  This architectural feature likely contributes to the high 

performance of branched PEI vectors.395 Branched PEIs with high molecular weight have shown 

greater transfection efficiency and nucleic acid binding than those with low molecular weights; 

however, high molecular weight is correlated to greater toxicity towards cells due to the increase 

in charge density on the polymer which causes cell membrane disruption.396,398 Branched PEIs 

with low molecular weights exhibit lower toxicity but are less efficient at binding DNA, and thus 

chemical modifications such as end group functionalization285,399 and incorporation of degradable 

linkages/crosslinks have been explored to improve the transfection efficiency of these vectors.400–

402 
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Similarly to their linear counterparts branched PBAEs are synthesized via one-pot Michael 

addition of primary or secondary amines to multifunctional acrylates.358,363 Branched PBAEs 

effectively condense DNA, display lower cytotoxicity in comparison to PEI, and display 

biodegradability due to their ester linkages.358 Recent studies showed that compared to their linear 

counterparts, branched PBAEs display higher transfection efficiencies, with high molecular weight 

hyperbranched PBAEs displaying simultaneously higher transfection efficiency and lower 

cytotoxicity.403,404 PBAEs have been recently reported as vectors for the delivery of plasmids for 

gene editing therapies.405–407 Green et al.405 reported linear and branched PBAEs that are  optimized 

for the transfection of HEK293T or B16F10 cells, respectively (Figure 11(A)). It was shown that 

polyplexes formulated with these PBAEs have the capacity to co-deliver two pDNA encoding 

Cas9 endonucleases and sgRNA, respectively to perform either 1-cut knockout or 2-cut gene 

deletions. Hu and coworkers reported that polyplex formulations based on linear and 

hyperbranched PBAEs outperformed a 25kDa PEI and a PAMAM G4 dendrimer control in the 

transfection of SiHa and HeLa cells with Green Fluorescence Protein (GFP) encoding plasmids 

(Figure 11(B)).406 Similar formulations were then used for the delivery of CRISPR/Cas9 encoding 

plasmids targeting HPV16 E7 oncogenes. 
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Figure 11. (A) Linear (4-4-6) and branched(7,8-4-J11) PBAEs used to transfect HEK293T and 

B16-F-10 cells, respectively. (B) Polyplex formulations (N/P ratio of 75) based on linear (PBAE) 

or hyperbranched (hPPC1-2) Poly(β-aminoesters) outperform PEI and PAMAM dendrimer 

controls in the transfection of HeLa cells. Reprinted with permission from ref.406 Copyright 2020 

Elsevier.  

The utility of multiple end groups of dendrimers have been applied as biomaterials for 

theranostics and drug and gene delivery.408  Dendrimers are synthesized using repetitive sequences 

in  which each layer, called a generation, is grown in a step-wise manner from the core. This 

sequence guarantees regular branched structure with well-defined structures. The end groups of 



 47 

dendrimer macromolecules for gene delivery often contain primary amines, thus presenting a 

highly charged corona at physiological conditions, leading to efficient nucleic acid binding, and 

enhanced cellular internalization. The nucleophilic amine end groups allow for further chemical 

modification allowing the incorporation of targeting moieties to increase specific internalization 

and/or addition of hydrophilic units to reduce toxicity. 

PAMAM dendrimers, the most studied dendrimer for gene delivery applications, contain 

hydrogen-bonding amide and tertiary amine groups in their cores and display primary amine end 

groups as their corona. The highly charged primary amine end groups are responsible for the 

toxicity and their modification has been explored as a tool to reduce toxicity,409 increase circulation 

time410,411 or improve targeting ability.412,413 The molecular weight, size and number of end groups 

in PAMAM dendrimers grows rapidly with each generation. For instance, a Generation 3 (G3) 

PAMAM dendrimer weighs 5147 g.moL-1 and contains 24 terminal amine groups, while a G6 

dendrimer weighs 43451 g.moL-1 and contains 192 terminal amine groups.185 The in vitro 

transfection efficiencies and toxicities of PAMAM dendrimers are highly generation dependent 

and results vary depending on the type of cell line used.414  Due to their high transfection 

efficiencies, intact and “activated” G6 PAMAM dendrimers marketed as SuperFect®  and 

Polyfect®, respectively are sold by Qiagen as transfection reagents for a broad range of cell lines 

including COS-7, NIH/3T3, HeLa, 293, and CHO cells. A thorough analysis on the use of PAMAM 

dendrimers for biomedical applications including gene transfections was recently reported by 

Giarolla et al.414 PLL415 and PPI416–418 dendrimers have also shown promise as gene delivery 

vectors, especially because of their reported ability to escape the endosomes after cellular 

internalization. Similar to PAMAM, PLL and PPI dendrimers consist of sphere-like structures 

decorated with primary amines that maintain good ability to be internalized into cells after 

complexation with nucleic acids. 

Due to their highly charged corona, dendrimer vectors show high cellular internalization, 

but toxicity remains to be a limiting factor moving forward. Overall, dendrimers represent unique 

vectors due to their well-defined structures. Further review of the application of dendrimers for 

gene therapy can be found elsewhere.419,420 

3.1.3 Star. Star polymers are a class of branched polymers in which linear polymer “arms” 

radiate out from a common branching point or “core”. Polymer arms are synthesized through the 
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same techniques used to synthesize linear polymers. Controlled polymerization techniques permit 

the synthesis of star polymers with targeted molecular weights, grafting densities, and end group 

chemistries. Star polymers present increased charged density, compared to linear polymers of the 

same chemical composition, by covalently linking several linear arms to the core, making them an 

interesting synthetic platform for gene therapy. Star polymers also possess an increased number of 

end groups that can be chemically modified. Star polymers with PDMAEMA arms synthesized 

through group transfer polymerization and their applications in pDNA delivery were reported in 

the early 2000s.421 Other types of cationic and hydrophilic polymers, such as oligoethylene imine 

(OEI), PDMAEMA, PAEMA, and poly(ethylene glycol)ethyl ether methacrylate (PEGEEMA), 

have also been used as arms in the synthesis of star polycations with lower molecular weight 

dispersity.347 Star polymers including cationic peptide arms showed good biocompatibility during 

gene delivery.422,423 The use of α-, β- and γ-cyclodextrin (CD) as cores in star polymers 424–427 has 

gained popularity due to their biocompatibility and the development of several synthetic rounds 

that allow the conjugation of polymers to the hydroxy groups present in CDs. 

 The length, composition, and number of arms in stars polymers determine their properties 

and gene delivery efficiency, and thus synthetic strategies that allow the control of each of these 

parameters have been explored. When considering cationic arm length, Reineke and coworkers 

synthesized a series of discrete star polycations based on a β-CD core termed “click clusters”.424 

These macromolecules were synthesized through the selective functionalization of the primary 

alcohol groups in β-CD with azido groups, and subsequent coupling with alkyne-functionalized 

OEI dendrons through copper-catalyzed 1,3 dipolar cycloaddition. The OEI arms varied in length 

between 1-5 ethylene amine units and the star polycations with arms containing 4 or 5 units showed 

the highest pDNA transfection efficiency in HeLa and H9c2 cells (at least one order of magnitude 

luciferase relative luminescence units (RLU) higher than the other polycations at N/P of 20), which 

was comparable to controls jetPEI® and SuperFect®. This high level of transfection was achieved 

while maintaining low cytotoxicity (> 0.8 fraction cell survival in both cell lines) compared to the 

poor viability seen for the controls (<30% viability for both controls in both cell lines). Similarly, 

Li et al. synthesized α-CD-OEI star polymers with linear and branched OEI arms containing 1 to 

14 ethylene imine units (Figure 12(B)).428 Star polymers with longer (14 ethyleneimine units) 

branched arms revealed at least one order of magnitude higher transfection efficiency (luciferase 

expression measured as RLU) with HEK293  and Cos7 cell lines than the other analogues and a 
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25 kDa branched PEI control. Similar trends were observed in both the presence and absence of 

serum. In terms of the composition of the arms, Neoh and coworkers reported the synthesis and 

transfection efficiency comparison of star copolymers that contained either PDMAEMA 

homopolymer arms or PDMAEMA-b-PEG arms diblock copolymer arms. To synthesize these 

star(co)polymers, β-CD was modified with ATRP-initiator groups. The resultant multifunctional 

initiators were used in the polymerization of DMAEMA arms that were subsequently chain-

extended with a PEGEEMA block (Figure 12(A)). When compared to linear high molecular 

weight PDMAEMA and PEI controls, the star polymers with PDMAEMA and block PDMAEMA-

b-PEG arms (at N/P 20-30) displayed around 5-fold higher transfection efficiency with HEK293 

cells.  Similar luciferase transfection efficiencies with a decrease in cytotoxicity were observed in 

comparison to a PDMAEMA homopolymer star. 429  

 

Figure 12. (A) Synthesis of CD-g-P(DMAEMA)-b-P(PEGEEMA) star polymers. Reprinted with 

permission from ref.429 Copyright 2009 American Chemical Society. (B) Chemical structure of a 

α-CD-OEI star polymer. Reprinted with permission from ref.428 Copyright 2007 Elsevier. (C) Arm-

first cationic cross-linked star polymer with degradable cores. Reprinted with permission from 

ref.430 Copyright 2011 American Chemical Society. 

Chemical modifications of star polymers allow for the improvement of their delivery.  End 

group modification of star polycations to incorporate targeting ligands such as hyaluronic acid,431 

folic acid,432,433 and adamantyl groups434 allowed formulations that actively target specific cell 
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receptors or tumor delivery. Polyplex formulations based on PEGylated polycationic star polymers 

show improved colloidal stability, decreased toxicity, and increased blood circulation 

times.423,429,435,436 Additionally, incorporation of degradable moieties such as disulfide linkages430 

(Figure 12(C))  and acid-labile functional groups437 in the star cores provided routes for polymer 

degradation and nucleic acid release.  

3.1.4 Graft copolymers. Polycationic graft copolymers – also called brush or comb-like 

polymers – link several cationic polymer chains (or combs) into a single macromolecule. The 

combs are typically short oligocations, that on their own display poor transfection efficiencies, but 

when grafted to a common polymer backbone afford macromolecules with large charge densities 

and enhanced delivery performance. Graft polymers with PDMAEMA,438–440 PEI,441 PEG-b-

PEI,442 oligoamines,441,443 oligopeptide combs,444–454 and other structures have all been explored 

as gene delivery vehicles.  Several key features that dictate the properties and efficacy of these 

polymers include the type, amount, and length of the polycationic grafts.  

Synthetic approaches using the grafting-to approach have been exploited, where the 

cationic combs are attached to preformed polymeric backbones. For instance, Pun and coworkers 

synthesized a library of graft polymers via post-polymerization of poly(glycidyl methacrylate) 

(PGMA) homopolymers with tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), 

and tris(2-aminoethyl) amine (TREN).443 Graft homopolymers containing TEPA and PEHA combs 

with a degree of polymerization of 50 have been explored for transfection of HeLa cells with DNA 

polyplexes at N/P ratios of 10 (Figure 13(A)). These structures have shown similar performance 

to a control 25 kDa branched PEI, the use of degradable linkers between the backbone and the 

cationic grafts have been explored as a strategy to reduce the toxicity and enhanced the release of 

the nucleic acid cargo.440  

Graft (co)polymer with cationic oligopeptide combs have also been synthesized via 

grafting-through polymerization of oligopeptide macromonomers. Pun and coworkers have 

synthesized a series of vinyl-terminated cationic oligopeptide monomers that can be 

copolymerized with N-(2-hydroxypropyl)methacrylamide (HPMA) via conventional free radical 

and RAFT polymerization to afford brush copolymers with pendant oligopeptide combs.444,445,447–

450 The first brush copolymer contained oligolysine (K11) combs, which delivered pDNA to HeLa 

cells with transfection efficiencies similar to a linear PLL control yet with lower cytotoxicity.444  
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Harnessing the modularity of this synthetic approach, several iterations of these brush copolymers 

where synthesized aiming to improve their efficiency. Polymers with optimum oligolysine length 

(K10),445 incorporating neutral (glycine) and different cationic (arginine and histidine) peptides in 

the oligopeptide sequences were explored.449,452 Additionally, brush polymers with oligopeptides 

linked to the polymer backbone have been created with a degradable linker448,451 or ligands for 

cell-specific delivery have also been studied.447 Emrick and coworkers have prepared comb-

peptide polymers through ring-opening metathesis polymerization (ROMP) of cyclooctene-

oligopeptide macromonomers that afford comb-like cationic delivery systems (Figure 

13(B)).446,453,454 A pentalysine-comb cyclooctene polymer with a molecular weight ~ 30 kDa 

showed a more than two-fold greater pDNA transfection efficiency of COS-1 cells when compared 

to jetPEI®, SuperFect®, and linear PLL controls.453 The polyplex formulations based on these 

comb polymers showed lower efficiency when compared to Lipofectamine 2000 (33K versus 49K 

Relative fluorescence units) but showed lower cytotoxicity (99% vs 67% COS-1 cell viability). 

Analogous polycyclooctene polymers containing di, tri, tetra, and pentalysine grafts have also been 

evaluated in the transfection of C2C12 cells, where the tetralysine-containing comb polymer variant 

displayed greater GFP expression levels than the other variants.454 Copolymerization of the 

tetralysine comb polymers with a cyclooctene macromonomers containing a nuclear localization 

signal peptide greatly increase the performance of these systems. The DNA-binding ability of the 

tetralysine-containing comb polymers can be modulated through copolymerization with a 

hydrophilic zwitterionic sulfobetaine-cyclooctene monomer. To modulate association, copolymers 

with about 17 mole percent of the sulfobetaine monomers have shown weaker binding affinity 

when complexed with DNA than the tetralysine-comb homopolymers; subsequently, this translated 

to a 2-fold increase in delivery efficiency with SCOV3 cells.446 
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Figure 13. (A) Oligoamine-grafted PGMA (P(GMA-oligoamine)) exhibits similar cell 

transfection efficiencies (RLU) of HeLa cells to branched PEI, while maintaining higher cell 

viabilities. Reprinted with permission from ref. 443 Copyright 2013 American Chemical Society. 

(B) Poly(cyclooctene-g-oligolysine) polymers showed enhanced transfection efficiencies in COS-

1 cells (GFP expression) when compared to linear PLL. Reprinted with permission from ref.454 

Copyright 2011 Elsevier.  

Overall, in this section, we have discussed how the study of polycations with multiple 

architectures have been a central pillar of the field of polymer-mediated nucleic acid delivery. 

Although initially limited to the used of “off-the-shelf” polycations, the field has exponentially 

grown in parallel to the development of new synthetic techniques that allow for the synthesis of 

macromolecules with diverse architectures. It is important to note that architecture is only one 
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variable to improve the delivery efficiency of cationic polymers; often changes in molecular 

weight and polymer composition are simultaneously examined, and these strategies will be 

discussed further in the following sections.  

 

3.2 Polymer Molecular Weight  

Polymer molecular weight plays a key role in optimizing transgene expression and 

delivery, with both higher and lower molecular weight polymer vectors possessing pros and cons. 

The molecular weight of polymers employed for gene delivery influences two key factors related 

to the success of a gene delivery vehicle: transfection efficacy and cytotoxicity.45,47,455,456 These 

effects have been evaluated in PEI,457,458 PLL,459 PDMAEMA,460 PAEMA,461 and other 

polycations. High molecular weight polymers possess improved transfection efficiencies, in part 

due to increased interactions with the cell membrane (Figure 14(A)).186,457,462–464 However, these 

enhanced membrane interactions are problematic, and lead to cytotoxicity which often increases 

when increasing the molecular weight of polymeric delivery vehicles.462,465,466 Alternatively, lower 

molecular weight polymers show reduced cytotoxicity and dissociate more readily from DNA 

leading to improved cargo unpacking.265 These trends in transfection efficacy and cytotoxicity tend 

to hold in the range of 1-100 kDa,455–457,462–464 however certain polymers display cutoff ranges 

where these trends no longer apply. For example, Mikos and colleagues found that PEIs of 1800, 

1200, and 600 Da showed no increase in transfection efficacy compared to naked pDNA indicating 

that for PEI there is a minimum threshold molecular weight to see such trends.457  

High molecular weight polymers exhibit higher transfection efficiencies, yet increased 

toxicity consistently across different architectures including dendrimers,467 stars,468 and linear 

polymers. For example, Xu et al. examined the effects of molecular weight as well as arm number 

and length on the transfection efficiency for a series of PDMAEMA star polymers.468 When the 

arm length was held constant, increasing the number of arms (which consequently increases the 

molecular weight of the star polymer) simultaneously improved transfection efficiency and 

increased toxicity towards HepG2 and COS7 cells (Figure 14(B)). In addition, when molecular 

weight was held constant, star polymers with longer, but fewer arms had higher transfection 

efficacy and more toxicity (Figure 14(C)). For example, at N/P = 9, increasing the number of arms 

from 4 to 21 while keeping molecular weight constant at 50 kDa, increased cell viability over 15%, 
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but decreased luciferase expression more than 10-fold in both cell lines. It is hypothesized that 

stronger interactions between these longer arms and the cell membrane lead to higher cellular 

delivery, but also higher toxicity. These observations are like those discussed above for linear 

polymers. 

Figure 14. (A) Representation of general trend: increasing molecular weight increases transfection 

efficacy and toxicity. (B) Increasing the molecular weight of PEI results in higher transfection 

efficiency. Reprinted with permission from ref.457 Copyright 1999 John Wiley and Sons.  (C) In 

star polymers, it is possible to increase the number of arms while keeping the molecular weight of 

arms consistent. (D) In the case of PDMAEMA, a higher number of arms within star polymers 

was found to increase transfection efficacy. (E) In another variation in star polymers, we can 

increase the molecular weight of arms while reducing the number of arms such that the molecular 

weight of the star polymer remains constant (F) Adopting the design from (E) was also found to 

increase transfection efficacy. (D) and (F) reprinted with permission from ref.468 Copyright 2013 

Elsevier.  

Although the trends of molecular weight on transfection properties discussed above hold 

true for many structures, there are examples where no trends or contrary effects are observed.469–

473 Volonterio et al. observed that when using PAMAM dendrimers of different generations (2,4, 

and 7), with higher generations having increasing molecular weights, there was no trend in pDNA 



 55 

transfection efficacy in HeLa cells.469 This seemingly contradictory observation could be due to 

the wide range of N/P ratios studied, which were in the range of 5-75. In another example that 

conflicts with the prevalent trend that increasing molecular weight increases transfection efficacy 

and cytotoxicity, Reineke et al. synthesized a series of diblock glycopolymers containing a non-

ionic hydrophilic glycopolymer block composed of 2-deoxy-2-methacrylamido glucopyranose 

(MAG) units, and a N-[3-(N,N-dimethylamino)propyl]methacrylamide (DMAPMA) cationic 

block.470 They evaluated the effect of the molecular weight of each block on pDNA transfection 

efficiency and cytotoxicity, and found that increasing the DMAPMA block molecular weight 

decreased pDNA internalization and transfection efficacy, yet also increased toxicity in HEPG2 

cells. Interestingly, the MAG block length had no effect on transfection efficacy or toxicity in the 

systems studied. The block length effects can also be dependent on the type of nucleic acid being 

delivered; Reineke and coworkers synthesized a series of three P(MAG)-b-poly(N-(2-aminoethyl) 

methacrylamide) P(MAG)-b-P(AEMA) diblock glycopolymers where the degree of 

polymerization of the AEMA block was 21, 39, and 48, respectively.471 They showed that when 

these diblock copolymers were used to transfect HeLa cells with pDNA, polymers with shorter 

AEMA block led to lower cell internalization but higher luciferase expression. In contrast, when 

using these diblock copolymers as siRNA delivery vectors to induce luciferase knockdown in U-

87 cells, only the polymer with the longer AEMA shown a gene knockdown statistically different 

from a siRNA-only control.  

Overall, we have summarized the key concepts and trends that relate the molar mass of 

polycationic vectors to their performance. Although particular trends are observed for specific 

polycationic systems, the lack of a general structure-property relationships that can be applied to 

all polymeric vectors (or even the contradictory observations between studies on the effects of 

molecular weight in gene delivery) implies that molar mass will still be one of the key parameters 

that needs careful optimization when designing new polycationic systems, especially for star, 

branched, graft, and self-assembled vehicles, where molecular weight is intrinsically tied to other 

properties, such as degree of branching, number of arms, number of end groups, and aggregation 

number.  
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3.3 Selection of charged groups  

3.3.1 Nitrogenous cations.  The benchmark design for synthetic gene delivery vectors centers 

in the incorporation of cationic charges into macromolecules that can electrostatically bind to 

nucleic acids (Figure 15). Typically, these cations consist of nitrogen-based moieties incorporated 

into the polymer chains by direct polymerization or by post-polymerization modifications. 

Additionally, they can be incorporated into a variety of different repeat units based on PEI, 

acrylates, acrylamides, sugars, peptides, and more. Nitrogenous cations, such as ammonium (from 

primary to quaternary), imidazolium, and guanidinium, as well as combinations of these inside the 

same polymer structure, are predominantly used throughout the nonviral gene delivery literature. 

The type of amine-based cationic center determines the pKa of the resulting polymer and therefore 

it dictates the percentage of protonated amines. Additionally, finding the “right” pKa is often cited 

as a way to improve endosomal escape through the proton sponge effect (Section 2.4).183 For 

polymers containing alkyl-substituted amines, the type of amine (primary, secondary, and tertiary) 

does not directly dictate the gene delivery performance. For instance, Leong et al. found that the 

amine type surrounding a hyperbranched poly(amino)ester with a tertiary amine backbone had 

little effect on the transfection efficacy, cytotoxicity, or degradation rate of the gene delivery 

vehicle.474 This is likely because the pKa is dependent on both the number of substituents and the 

type of substituent. Furthermore, for many alkyl-substituted amines, the pKa (~8-11) is generally 

too high to see significant differences between the number of amine substituents (primary, 

secondary, tertiary). The pKa values of the amine groups can be lowered by further adjusting the 

surrounding chemical environment so that it is in the range of physiological conditions. For 

example, P[Asp(DET)] and poly{N-(N’-{N’’-[N’’’-(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-

2-aminoethyl)aspartamide} (P[Asp(TEP)]), both have pKa values around 6, likely as a result of 

their closely packed amine groups.374 PICs of the polyaspartamide analogues and siRNA displayed 
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low toxicity, and high endosomal escape likely due to the low pKa, which could be tuned by 

optimizing the length of the alkyl spacers between amines.  

 

Figure 15. Structures of common cationic moieties used in gene delivery. Note that imidazolium 

cations can be linked to the polymer through R1 and R2 as well.  

Beside alkylamines, there are other nitrogenous cations that have pKa values close to 

physiologically relevant pH conditions. Imidazolium cations have a pKa around 7, depending on 

the functional groups surrounding the heterocycle. Pun and colleagues compared histidine and 

lysine as two amino acids in HPMA-co-oligoamino acid brush polymers.475 It was observed that 

when oligohistidine, an imidazole-containing amino acid, was incorporated at high enough 

amounts in the statistical copolymer (> 0.53 mmol histidine/gram polymer), the vector had greater 

transfection efficacy compared to the lysine-only derivative. Interestingly, inhibition studies 

showed internalization through the caveolar endocytic pathway, which does not rely on endosomal 

buffering capabilities as much as other pathways. This is cited as the reason why histidine 

incorporation only improved transfection efficacy by a maximum of three-fold to five-fold. Long 

and coworkers incorporated imidazolium into polyesters for DNA transfection to HeLa cells 

observing successful transfection and insignificant toxicity compared to untreated cells.476 

Additionally, quaternization of imidazole-containing polymers can be performed via post-

polymerization modifications. Long et al. observed that 25 percent quaternization of poly(1-

vinylimidazole) with 2-bromoethanol optimum for increased pDNA binding, higher transfection, 

and minimal cytotoxicity.477 
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The percentage of protonated amines determines, in part, transfection efficacy. This can be 

modified by monomer pKa design (as described above) or by copolymerization of cationic and 

non-ionic monomers. Fischer et al. compared linear PEI homopolymers and a statistical 

copolymers containing PEI and poly(2-ethyl-2-oxazoline) (PEtOx), synthesized through 

hydrolysis of PEtOx for DNA delivery.478 They observed that the density of PEI units was the most 

important factor in determining the polymers ability to bind to DNA and consequently transfection 

efficacy rather than the total number of PEI units. They observed that higher PEI unit density led 

to higher efficacy. However, cytotoxicity improved with lower PEI density polymers with equal 

number of PEI units. 

Besides providing the necessary positive charge to complex DNA, other nitrogenous 

cations present additional benefits when incorporated in polymeric gene delivery vectors. For 

instance, guanidinium is an especially attractive cation due to its ability to hydrogen bond with 

phosphate anions and guanine, both particularly useful for nucleic acid delivery.479–487 Pun et al. 

synthesized brush copolymers based on oligolysine macromonomers copolymerized with 

HPMA.449 Comparing the original brush to an analogue containing guanidinylated lysine groups, 

it was observed that the guanidinylated analogues had improved HeLa cell transfection efficacy. 

Stenzel et al. observed that micelles containing zwitterionic side groups, with guanidium and 

carboxylate groups, had high cellular uptake and low cytotoxicity.486 Benzimidazole is another 

promising nitrogenous cation. Algul and colleagues observed that small molecule analogues of 

benzimidazole improved transfection of a GFP expressing plasmid efficacy likely due to its ability 

to enhance cell penetration.488 They found that the analogue with the highest LogP value and three 

chloro-groups had a 3.5-fold increase in transfection efficacy of mammalian cells compared to the 

positive control and commercially available transfection reagent X-tremeGENE HP®, although 

slightly higher toxicity. 

3.3.2 Non-nitrogenous cations.  Additionally, a limited number of polycations containing 

charge centers based on phosphorus and sulfur heteroatoms have been reported for their use in 

gene delivery (Figure 16). The scarcer use of these non-nitrogenous polycations in the field is 

thought to be due to the few available synthetic pathways for their preparation as well as concerns 

for the chemical instability of cationic moieties and their precursors in biological relevant 

media.489,490 Despite these barriers, the need for more efficient and non-toxic delivery vectors 
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encourage the use of these type of cations, which show promise of better cytotoxicity profiles and 

higher transfection efficiencies when compared to nitrogenous analogues.491 Non-nitrogenous 

cations present differences in partial charge distribution between the heteroatom and adjacent 

carbon atoms due to the variant electronegativity in nitrogen, sulfur, and phosphorus atoms, which 

is thought to influence the binding of nucleic acids.489,492 Recent reviews on the synthesis of 

phosphonium-containing polyelectrolytes493 and in particular their use in gene delivery489 are 

available, therefore the focus herein is to summarize recent examples and key studies that highlight 

the advantages and nuances of the use of these cations in gene delivery.  

 

Figure 16. Chemical structures of polycations for gene delivery based on (A) phosphonium and 

(B) sulfonium non-nitrogenous cations.  

Long et al. reported the use of phosphonium-containing polycations as nonviral gene 

delivery vectors.103,174 Poly(triethyl-(4-vinylbenzyl)phosphonium chloride) (PTEP) and 

poly(tributyl-(4-vinylbenzyl)phosphonium chloride) (PTBP)174 homopolymers, as well as block 

copolymers of PTBP with either poly(oligoethylene glycol methacrylate) (POEGMA) or poly(2-

methacryloyloxyethyl phosphorylcholine) (PMPC)103 were synthesized by direct polymerization 

of the phosphonium-containing styrenic monomers. PTBP homopolymers showed enhanced DNA 

binding and transfection efficiency when compared to their ammonium analogs, at N/P ratios from 

2 to 10, in the in vitro transfection of HeLa cells with pDNA.174 Polyplexes formed between pDNA 

and POEGMA-b-PTBP or PMPC-b-PTBP diblock copolymers, showed enhanced colloidal 



 60 

stability compared to polyplexes formed with PTBP homopolymers, and displayed similar 

transfection efficiencies and cell viability to jetPEI® formulations when delivered to HepaRG 

cells.103 In another example of direct-polymerization of phosphonium-containing monomers, 

Mantovani et al.494 reported the synthesis of a library polyphosphonium polymethacrylates using 

RAFT polymerization and their use for RNA delivery. Comparing polymers with different cations 

(triethyl alkyl ammonium vs triethyl alkyl phosphonium), and spacers (i.e., the alkyl group 

between cation and polymer backbone), revealed a stronger siRNA binding with a phosphonium 

polycation made with a trioxyethylene spacer. Polyplexes formed between siRNA and this 

polycation showed high uptake, low cytotoxicity, but undetectable GFP knockdown in 3T3 cells.  

Post-polymerization modification strategies have also been employed to introduce cationic 

phosphonium groups into polymeric structures. Fréchet et al.495 reported water-soluble 

phosphonium-based polycations based on a two-step post-polymerization modification of 

polyacrylic acid. Esterification of poly(acrylic acid) (PAA) with triethylene glycol 

monochlorohydrin, and posterior quaternization of the side chains with different tris(alkyl) 

phosphines granted a library of phosphonium based polycations. The best performing polymer 

contained triethyl phosphonium pendant groups, and it exhibited stronger siRNA binding, lower 

cytotoxicity, higher gene knockdown, and better serum-tolerance than an analogous polymer with 

triethyl ammonium pendant groups. Similar examples of post-polymerization modification with 

tris (alkyl) and tris (aryl) phosphine have also been reported for the synthesis of phosphonium-

based carbosilane dendrimers,496,497 and branched copolymers with poly(ethylene glycol acrylate) 

(PEGA).498 An alternative post-polymerization modification strategy is the conjugation of pre-

synthesized phosphonium moieties into polymeric backbones. This strategy has been realized 

through alkylation,499 amidation,500 or photoinitiated thiol-yne addition501 to conjugate pre-

synthesized phosphonium groups into PEI, poly(aminopropyl-methacrylamides), and degradable 

polyphosphoester block copolymers, respectively. 

In addition to phosphonium-based polycations, polymers with tertiary sulfonium moieties 

are also an alternative to nitrogenous polycations. Matyjaszewski et al. reported the synthesis of 

sulfonium containing poly(meth)acrylates for their use in siRNA delivery.502 Their approach is 

based on thioether-containing (meth)acrylate monomers that can be alkylated either before or after 

polymerization to produce macromolecules with tertiary sulfonium moieties as pendant groups. 

ATRP polymerization using a PEG macroinitiator granted neutral-block-cationic water-soluble 
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block copolymers. The ability of these polymers to complex siRNA was a function of the length 

of the cationic polysulfonium block. Polyplexes based on these polymers showed glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) knockdown in vitro in MC3T3s cells. Similarly, Long et 

al. reported the conventional free radical as well as RAFT polymerization of thioether-containing 

methacrylate monomers as intermediates in the synthesis of sulfonium-containing homo and 

diblock copolymers.490 The sulfonium-containing polyelectrolytes, obtained via post-

polymerization alkylation of the thioether side chains with methyl iodide, contain about 90% of 

sulfonium repeating units and were explored as pDNA delivery vectors. These sulfonium-based 

polyelectrolytes complexed pDNA at charge ratios greater than one, form colloidally stable 

polyplexes (in water, serum-free, and serum-containing media), but show lower transfection 

efficiencies than Jet-PEI in HeLa cells. The absence of proton-sponge effect, due to the lack of 

protonatable species, is cited as a potential reason for the lower efficiencies, hinting to the need of 

incorporating extra functionalities to sulfonium-based polycations for pDNA delivery. 

The use of sulfonium-based polycations can bring additional advantages to the gene 

delivery field since some of these macromolecules are inherently degradable. For instance, Shen 

et al. reported  sulfonium-based polycations with the ability to degrade into neutral fragments in 

the presence of reactive oxygen species (ROS), as a mechanism to release DNA intracellularly 

(Figure 17(A)).503 This was achieved by combining sulfonium cations, incorporated in the 

polymer backbone, with ROS responsive phenylboronic acid and esters. Poly(thioethers) with 

different spacers between the sulfur atoms as well as different molecular were synthesized and 

alkylated post-polymerization with methyl triflate, affording polycations with sulfonium ions in 

the backbone. Non-degradable versions without the boronic ester group were also synthesized. 

These polycations were shown to efficiently bind DNA at charge ratios higher than two and showed 

degradation in the presence of H2O2. Polyplexes based in the best performing polymer, 6CBE12k, 

a 12 kDa polymer synthesized with a hexyl spacer between the sulfonium cations, showed 2-3 

orders of magnitude higher transfection efficiency than a control 25 kDa PEI, when tested in vitro 

HeLa cells, A549 cells, and NIH3T3 fibroblasts in the presence of 10% fetal bovine serum. The 

transfection efficiency of 6CBE12k polyplexes in ROS species-depleted HeLa cells, treated with 

either diphenyleneiodonium or ascorbic acid, decreased ~50% with respect to untreated cells 

showing the importance of ROS-mediated degradation in these systems. The antitumor efficiency 

of a formulation with the suicide gene pTRAIL, was tested in vivo in two different mice models 
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(i.p. inoculated mice with A549 and HeLa). The sulfonium-based polyplexes showed statistically 

significant reduction of tumor size and weight, in contrast to controls with PEI where no reduction 

was observed (Figure 17(C)-(D)). 

 

Figure 17. (A) Upon degradation in the presence of ROS, sulfonium-based polycation 6CBE12k 

degrades into neutral, non-nucleophilic, small molecule thioethers. The degradation provides a 

mechanism for intracellular pDNA release, (B) enhanced transfection, and (C-D) inhibiting tumor 

growth and dissemination. Reprinted with permission from ref. 503 Copyright 2017 John Wiley and 

Sons.  

Modulating the charge content and type in polyplexes formulations has been long utilized 

as a strategy to improve their efficacy. We further discussed the implications of this strategy and 

present a body of literature that expands on this and questions the very need of these charges for 

efficient gene delivery in Section 5.3. Nonetheless, it is in the nature of the polymer chemistry 

field to continue to diversify the types of macromolecules that can be synthesized and we thus 

expect the preparation of novel polycations based on N, P, S, and other heteroatoms and their 

utilization as gene delivery vectors will continue to be an active area of research. 
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3.4 Introducing hydrophilic moieties 

3.4.1 PEGylation. Colloidal stability is a crucial design parameter especially for in vivo gene 

delivery. Delivery vehicles could self-aggregate due to poor stability characteristics allowing for 

expeditious clearance by macrophages in a size-dependent manner. The high ionic strength of 

physiological environments is a major factor that can cause delivery vehicles to become colloidally 

unstable and aggregate.132 Beyond systemic clearance, cellular internalization, which is often a 

delivery bottle-neck, is also sensitive to polyplex aggregation and instability. Additionally, PEI and 

other amine-containing cationic gene delivery vehicles are inherently problematic for in vivo 

applications due to their inherent cytotoxicity, and the presence of protein-mediated fouling and 

aggregation. Negatively charged proteins found within the blood (e.g., albumin) can adhere to the 

nanoparticle vehicle, while creating a surface for protein fibrillation leading to the adherence of 

more proteins, such as opsonins.504,505 Opsonins are readily recognized by receptors bound on 

macrophages that facilitates phagocytosis and clearance of foreign materials or pathogens.506 

Protein-serum fouling and poor colloidal stability leads to rapid systemic clearance of gene 

delivery vehicles. As a consequence of protein fouling (opsonization) or polyplex aggregation, the 

RES is able to clear the foreign particles rapidly. Furthermore, protein fouling can also lead to 

particle aggregation causing particle entrapment in capillaries of the RES.119,507,508 Aggregation or 

particle size increase can significantly affect the clearance of the particle by compounding the 

specific clearance with non-specific clearance routes. Additionally, van der Waals, electrostatic, 

and hydrophobic forces can also promote further protein aggregation with the vehicles in 

vivo.507,509 Protein fouling, regardless of whether it proceeds rapidly or gradually, will inevitably 

lead to clearance from the blood by macrophages and necessitates mitigation.510 Systemic 

clearance should be minimized in order to maximize delivery of vectors. 

PEG has a long track record of being a viable option for addressing the challenges 

associated with in vivo applications of gene delivery vectors. PEGylation afford systems with a 

hydrophilic non-ionic inert corona that inhibit protein interaction, giving rise to its “stealth sheath” 

properties, described in 1977 by Davis et al.511 Since then, the application of PEG has expanded, 

and its FDA “generally recognized as safe” designation has allowed for expedited processing of 

medical applications, including for gene delivery.  
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There are several factors needing to be considered when incorporating PEG into a gene 

delivery system. In general, PEG chains offer steric repulsion that counteract other intermolecular 

forces that drive proteins to adhere to positively charged complexes and encourages fibrillation. 

This repulsion also stems from a large excluded volume and a dense hydration cloud. The 

hydration cloud is produced by the hydrophilic nature of PEG, which grants a layer of 2-3 water 

molecules per PEG unit.512 The efficiency of this “shielding effect” from proteins and other 

detection avenues can be tailored through selection of the PEG molecular weight and architecture, 

as well as optimizing the grafting density.100,513 Molecular weight and density can improve the 

steric repulsion of PEG up until a threshold – lying around 5 wt.% or at least 2000 Da – which 

would result in significant shielding at the lowest PEG content.513,514 For polymer brushes, density 

also plays a role in the PEG conformation. A more densely packed PEG segment will resemble 

more of a comb structure whereas a lower density is depicted as a ‘mushroom’ shape. A higher 

density of PEG chains across a smaller backbone length will force the chain to extend, leading to 

fewer available conformational changes (Figure 18).515 The reduction in conformations will 

inhibit proteins that are larger than the inter-brush spacing from penetrating the hydrophilic shield 

and would enable binding to the cationic segment or surface.515,516 However, if the protein is 

smaller than the overlap spacing between PEG brushes, there is little resistance against protein 

aggregation. The reduction in entropy following the loss of excluding water molecules from the 

PEG brushes is much lower compared to mushroom-like PEG chains.516,517 
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Figure 18. Schematic diagrams of PEG configurations on the upper hemisphere of a polymeric 

nanoparticle. In (A), the low surface coverage of PEG chains leads to the “mushroom” 

configuration where most of the chains are located closer to the particles surface. In (B), the high 

surface coverage and lack of mobility of the PEG chains leads to the “brush” configuration where 

most of the chains are extended away from the surface. Reprinted with permission from ref.513 

Copyright 2006 Elsevier. In (C) the mushroom-to-brush transition is highlighted, from a surface 

view, where PEG density forces chains to extend. Reprinted with permission from ref.518 Copyright 

2006 Springer Nature.   

Kataoka and coworkers demonstrated the importance of a higher PEG density (i.e., the 

crowdedness of the stealth shield) in prolonging systemic circulation of PLL rods.519 More 

recently, they have shown how PEGylating cationic micelles affects their stability under shear.520 

The shear stresses in blood flow impair the efficient fouling protection provided by PEGylation, 

which they suggested could be mitigated by crosslinking the polycation chains through disulfide 

bonds. Liang et al. further expanded on the effects of blood shear flow on PEGylated carriers by 

demonstrating that a denser incorporation of a PEG protective layer will withstand a higher shear 



 66 

flow before becoming perturbed and exposing the cationic core to serum proteins.521 A critical 

shear flow can be quantified via properties such as surface tension, PEG grafting density, and the 

elasticity which agrees well with the work from Liang’s group.522  At low shear flows the PEG is 

disturbed exposing the DNA/cationic core to protein, resulting in complex aggregation. At higher 

flow rates, the force deforms the complexes into smaller sizes thus preventing further aggregation. 

Finally, at the extreme end of high shear rates, the core of the micelle is forced to restructure and 

organize to incorporate protein aggregates within the core highlighted (Figure 19). Overall, the 

transitions between these regions can be tailored by increasing the PEGylation density. The 

grafting density and molecular weight of the PEG hydrophilic sheath are two key parameters to 

consider while improving polyplex resistance towards protein fouling. 

 

Figure 19. Schematic and graphical display of shear induced deformation and aggregation of 

PEGylated complexes in the presence of serum. Reprinted with permission from ref.521 Copyright 

2020 Royal Society of Chemistry.  

In addition to preventing protein aggregation, PEG provides complexes with a hydrating 

and charge-screening layer from other complexes in the same system.523,524 PEGylated polyplexes 

have shown a reduction in their zeta potentials.525–527 This charge screening leads to reduced 

polyplex aggregation. Hanes et al. were able to determine grafting density or surface coverage of 

the PEG block via zeta-potential readings.528 Further screening from PEG is beneficial to reduce 

contact with other charged entities such as extracellular DNA nucleases, heparin, heparin sulfate, 

or mucus.529–531 Limiting the interactions with these macromolecules minimizes the likelihood of 

payload degradation, loss, or immobilization. In an early instance of incorporating PEG into gene 

delivery vehicles, PEG was shown to offer improved colloidal stability and reduced aggregation 
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and immunogenicity to a PEI gene delivery vehicle.532 Wagner et al. coupled 5 kDa PEG 

derivatives to the primary amino groups of PEI, which demonstrated a reduction of interactions 

with blood components and an improved colloidal salt stability.533 PEGylation strategies have also 

been applied to other common cationic blocks, such as PLL,365,534,535 PDMAEMA,536 and 

polyspermine.537 Park and Healy grafted a lactide-PEG block onto a lysine polymer to enhance 

DNA binding and protection.538 This study demonstrated the importance of incorporating PEG to 

protect against DNase I degradation, an enzyme detrimental to the cargo. DNase I degradation is 

reliant on fitting into the minor groove of DNA; the lactide-PEG block hinders proper alignment 

and displays an improved resistance towards DNase I compared to lysine homopolymer.538  

Advances in overcoming the challenge for the spacing of the PEG were accomplished with 

architectural enhancements. PEG spacing is a parameter that will dictate if small proteins are to be 

able to penetrate and adhere to the delivery vehicle. Polymerizing PEG brush monomers or using 

more complex PEG architectures like multifunctional end groups of PEG resembling a star, 

dendritic, or bottlebrush shape helped reduce the spacing between PEG chains.539,540 Arima et al. 

showed 7-fold longer blood half-life comparing PEGylated fourth and third generation 

polyamidoamine dendrimers. In addition negligible cytotoxicity of the fourth generation 

dendrimer was achieved through PEGylation.541 

PEGylation has also been used to directly modified nucleic acids. Zhang and coworkers 

synthesized a densely packed PEG bottlebrush vector containing covalently bound siRNA. The 

PEG bottlebrush was synthesized through ROMP copolymerization of a norbornenyl PEG 

monomer and a functional norbornene monomer that allowed introduction of azide groups post-

polymerization. The brush was then functionalized with siRNA containing a clickable 

dibenzocyclooctyne group.542 The resulting non-cationic vehicle displayed excellent protection of 

nucleic acid cargo from degrading enzymes and protein fouling while allowing for cellular uptake 

and delivery of cargo to desired tumor cells.542 Nuclease degradation was monitored by 

fluorescence masking with an antisense RNA strand. Yet, when ribonuclease III was added to 

quench the binding, the bottlebrush displayed a prolonged half-life compared to control groups. 

Using dense PEG coatings is of particular interest in mucous-membrane gene delivery.100,543 

PEGylation, once used as a mucoadhesive, can be tailored to allow fast penetration and reduced 

immobilization in viscous media and mucus, allowing for the use of polymeric gene delivery to 

target the lungs544, brain545, vaginal tissue546, or ocular tissue.547,548  For an example, Hanes et al. 
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synthesized a PLL-b-10kDa PEG polymer, which was found to effectively deliver genetic cargo 

in vivo to the brain, eye, and lungs.544 However, they found this system is immobilized in the 

sputum of cystic fibrosis patients. A similar trend could have appeared in the vitreous humor of 

the eyes or spinal fluid of the brain where the viscous properties match the mucus found in lungs 

of cystic fibrosis patients that leads to immobilization. To improve the mucus penetration of their 

gene delivery system, they compared different lengths of PEG blocks (2, 5, 10 kDa). As a control, 

they formulated a non-ionic polystyrene-b-2kDa PEG. (PS-b-PEG) They found that the shorter 

PEG block diffuses quicker, most likely due to the smaller size fitting through the pores of the 

mucus network. Interestingly, the PS-b-PEG penetrated and diffused the most in the mucus 

suggesting that an even higher density of PEG is required to penetrate mucus and reduce 

interactions between the mucus and the PLL.544  

Although careful PEGylation of cationic polymer gene delivery vehicles can overcome 

many of the challenges associated with in vivo delivery of these vehicles, one serious issue remains 

-the marked decrease in cellular internalization that comes with PEGylation. Wagner and 

coworkers showed that moderate PEGylation could enhance transfection of PEI polyplexes; 

however, they also showed that further increasing the extent of PEGylation could decrease the 

uptake of the polyplexes.247 Other groups have shown similar trends of incorporating PEG to 

inhibiting the uptake of gene delivery vehicles.285, 549,550 The same phenomena that accounts for 

reduction of protein fouling and particle aggregation also reduces the ability of PEGylated gene 

delivery vehicles to be internalized efficiently. Many researchers refer to this problem as the 

PEGylation dilemma. This apparent reduction of gene delivery efficacy has been addressed in the 

field through the incorporation of active targeting groups or cell binding motifs. Targeting groups 

accessible by the cell will help to facilitate internalization without losing the stabilizing and anti-

fouling properties of the PEG groups. For example, incorporation of aptamers,551,552 

antibodies553,554, cell-penetrating peptides,530,555 peptides,556,557 and other targeting ligand 

moieties558 have been shown to increase the internalization of nanoparticles. Others have 

specialized in adapting responsive PEGylated systems to be responsive to environmental stimuli, 

like pH, wherein PEG chains are cleaved from  delivery vehicles in response to external triggers, 

thereby overcoming the shortcomings of PEGylation. 559–561  

 Recent evidence also shows that PEGylation can elicit two potential responses upon 

administration, shown in Figure 20.549,562,563 The first is a chronic immunogenic response leading 
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to accelerated blood clearance (ABC) of PEGylated systems. The second is an acute 

pseudoallergenic response leading to complement activation-related pseudoallergy (CARPA) and 

hypersensitivity reactions to PEGylated systems. Either of these responses should lead to concerns 

of safety and efficacy of PEGylated materials. Szebeni et al. provide an excellent discussion and 

review of such phenomena surrounding PEGylated material.563 

 

Figure 20. (A) Pathways for adverse immune effects to nanoparticles. The highlighted pathways 

are specific for PEG and the immunogenic consequences for using PEGylated materials. (B) 

Positive feedback cascade of PEGylated material activating the complement system (C activation) 

leading to CARPA and ABC. Reproduced with permission from ref.564 Copyright 2017 

John Wiley and Sons.  

Much of the early attention given to the ABC phenomena was towards PEGylated 

liposomes.565,566 Not to be overlooked, this knowledge should be translated to the design of 

PEGylated polymeric nanoparticles.567,568 Kiwada and coworkers showed that the spleen is an 

integral role in the phenomena by performing splenectomy in rats and measuring levels of 

immunoglobulin M (IgM) and G (IgG).569 Rats that were splenectomized before injected with 

PEG-containing liposomes showed the same levels of IgM as the control vehicle, whereas the 

injected group had an eightfold greater elevated IgM level. Recently, they also investigated the 

role IgM takes in the clearance of PEGylated complexes. They discovered both IgM and marginal 

zone containing B-cell (MZ-B cells) activation is required for splenic cells to be able to associate 

with PEG complexes.570 IgM in serum-free environments, however, does not facilitate the 

adhesion and removal of PEG liposomes. Kiwada and coworkers reported that IgM binds to the 

PEG complexes. In the presence of serum, the complement system is activated where the formation 
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of an immune complex containing the PEG liposomes, IgM, and complement proteins can be 

recognized via the MZ-B cell’s complement receptors. A serious issue arises for the incorporation 

of PEG to a delivery vehicle if a patient already possesses anti-PEG IgM; studies have shown 

patients have displayed anti-PEG antibodies without PEGylated nanoparticle exposure.571,572 This 

is an alarming revelation since patients who have never been subjected to PEGylated nanoparticles 

could elicit an unwanted severe immune response or have the PEGylated therapeutic rapidly 

eliminated. Lai and coworkers demonstrated that anti-PEG antibodies can be temporarily 

sequestered with free circulating high molecular weight (40 kDa) PEG in addition to PEGylated 

therapeutics for at least forty-eight hours.573 Gabizon and Szebeni recently shared their expertise 

on avoiding complement activation, the dangerous phenomenon associated with PEGylated 

nanomedicines, and review clinical and experimental data relating to ABC.563 Furthermore, Truong 

and coworkers published a review that details other factors that affect immunogenicity of PEG in 

humans and animals.574  

An additional problem that PEG encounters with long-term therapeutics is oxidation. 

Although PEG is touted as a safe compound due to its low toxicity profile, reactive oxygen species 

– such as hydroperoxides and peroxide free radicals – are generated from the metabolism of 

polyethers which can be problematic.575 These free radical byproducts can lead to oxidative stress 

causing tissue damage, reminiscent of age-related and neurological diseases.576 Likewise, payloads 

containing peptides, proteins, or DNA are known to be susceptible to peroxide radicals.577,578 

Oxidative damage to DNA represents the prevalent form of  DNA damage within human cells.579 

Thus, a complete pharmacokinetic analysis of the metabolic byproducts is needed before 

incorporating PEG into a genetic vehicle due to the potential damage of the cargo or neutralizing 

the therapeutic effect. Kumar and Kalonia presented an effective vacuum method to remove the 

majority of peroxide free radicals formed before implementing from commercially available PEG 

polymers.580 By removing the majority of peroxides formed from PEG polymers, the cargo is less 

likely to be degraded by the vehicle. As stated before, PEG is generally regarded as safe and only 

at exceedingly high doses has PEG been seen to present adverse effects. Taupin et al. have 

reviewed extensively the toxicity, metabolism, and clearance of PEG while addressing the previous 

concerns.581 

Overall, PEG excels at protecting and stabilizing polyplex formulations, and increases their 

blood circulation half-lives. Its incorporation can be tailored to meet specific characteristics 
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through its molecular weight, density of chains, and architecture and it continues to be a popular 

choice among researchers—especially in combination with targeting moieties—for its 

biocompatibility profile, stability, and fast track FDA approval record. However, the oxidative 

stress induced by PEG and its immunogenic effects must be taken into consideration, especially 

for therapeutic applications involving long-term use.  

3.4.2 Zwitterionic moieties. To circumvent the potential immunogenicity and reduction in 

internalization triggered by PEGylation, researchers have turned to alternative hydrophilic 

moieties. Zwitterionic polymers are one such class of polymers with the potential to replace PEG 

as a hydrophilic moiety of choice when designing polycations for nonviral gene delivery. Unlike 

PEG, zwitterionic polymers are made up of neutral monomers composed of stoichiometric 

amounts of positively and negatively charged ions. Schlenoff has extensively and concisely 

presented arguments and data that postulate the mechanism for zwitterion’s anti-fouling 

properties.582 Briefly, zwitterionic molecules provide favorable environmental interactions via four 

distinct mechanisms: watery surface, structuring of water, steric effects, and ion-coupled forces. 

Like PEG, zwitterionic molecules are effective at attracting water molecules and creating a dense 

hydration cloud.583,584 The hydrophilicity of zwitterionic molecules is driven via strong dipole 

interactions rather than perturbed hydrogen bonding as seen with PEG.585–587 This facilitates the 

ordering of water molecules to resemble bulk water in a thermodynamically favorable way. Thus, 

the perturbation of water molecules during protein adhesion would impose a much greater 

thermodynamic penalty. Others have used similar strategies for polymer design by increasing the 

grafting density of zwitterionic monomers for enhanced anti-fouling and colloidal properties for 

brush-like polymers.588,589 Ahmed and Leckband found a non-monotonic correlation between the 
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amount of protein adsorbed and grafting density for poly(zwitterionic) brushes (Figure 21),589 

which contrasts with the linear correlation present in for PEGylated surfaces.  

 

Figure 21. Depiction of protein adsorption depending on grafting density of poly(sulfobetaine 

methacrylate) (P(SBMA)) zwitterionic brushes. (A) At the highest grafting density, proteins are 

unable to penetrate and adhere to the polymer. (B) At slightly less grafting density, the polymer 

chains are extended but the protein can penetrate and adhere to the polymer. (C) At intermediate 

grafting densities, the polymer is flexible and exposes more of its charges, allowing for more sites 

for protein adherence. (D) At the lowest grafting densities, the polymer is perceived as a mushroom 

and can be self-coiling, which can hide and hinder protein adherence. (E) A minimum limit of 

protein adherence occurs even without the charge found with P(SBMA), where protein adheres to 

the surface of the nanoparticles. Reprinted with permission from ref.589 Copyright 2020 John Wiley 

and Sons.  

Recent examples of zwitterionic incorporation that leads to minimal protein fouling has 

rapidly increased the focus on zwitterionic molecules to enhance anti-fouling behavior, salt 

stability, and biocompatibility.590–593 Figure 22 shows three zwitterionic monomers that gave rise 

to polymers which demonstrate minimal protein fouling: sulfobetaine methacrylate (SBMA), 

carboxybetaine methacrylate (CBMA), and 2-metylacrlyoloxylethyl phosphorylcholine 

(MPC).594,595 Notably the betaine derivatives have a more established history and are easy to 

synthesize. Conversely, MPC monomers originally difficult to synthesize, have been optimized to 

produce an inexpensive and pure product able to undergo controlled radical polymerization.596,597 
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The phosphorylcholine functional group of MPC resembles the lipid head-group of the cell 

membrane, which can be advantageous for both anti-fouling and cell membrane 

associations.434,594,598 MPC was recently shown to alleviate concerns arising with PEG. Repeated 

administration of MPC complexes in a murine model showed minimal histologic or immunogenic 

side effects while simultaneously showing a two-fold increase in internalization compared to 

jetPEI®, a commercial transfection reagent.599,600 The work carried out by Giorgio and Duvall was 

inspired from previous work that demonstrated high molecular weight zwitterionic polyplexes 

enhanced biocompatibility and uptake compared to PEG analogs.593 As an added benefit, 

zwitterionic polyplexes showed enhanced resistance to destabilization from increasing salt 

concentration.  Zwitterionic polymers are known to be unstable or form collapsed-coils in water 

but gain stability with increasing ionic strength from salt ions.601  However, zwitterionic polymers 

are not a catch-all replacement for PEGylation. Most recently, Giorgio and Duvall demonstrated a 

smaller therapeutic window for MPC than PEG containing polyplexes, requiring a deeper 

understanding in efficacies between zwitterionic polymers and PEG.602 

 

Figure 22. Commonly used zwitterionic monomers sulfobetaine methacrylate (SBMA), 

carboxybetaine methacrylates (CBMA), and 2-metylacrlyoloxylethyl phosphorylcholine (MPC). 

Erfani and coworkers highlight the effects of zwitterions and their interactions with 

biomolecules, noting key behavioral differences arising between zwitterions and PEG derivatives 

in aqueous media.603 A key behavioral difference between PEG and zwitterionic polymers is their 

protective action: with well-hydrated and extended polymer chains, the zwitterionic polymer is 

able to inhibit both aggregation of complexes and degradation of its payload. Like PEG, both the 
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molecular weight and grafting density of the zwitterionic polymers need to be considered, but the 

salt concentration and the zwitterionic self-association need to also be considered to provide 

superior hydration screening.604–606 Jiang’s research group, which has applied zwitterionic 

polymers to solve numerous biomaterial challenges, have employed both molecular simulation and 

experiments to shed light on the roles of zwitterionic charge density, composition and  

architecture.607–609 Reduction in payload degradation of the delivery vehicle arises from salts found 

near the chains. Salts are primarily associated with the anti-polyelectrolyte effect between 

zwitterionic chains, but also provide a stabilizing effect for genetic material like proteins.603 

Polymer architecture can tune and amplify the stabilizing effect of zwitterions and is reviewed by 

Erfani and coworkers.603  

Responsive polymers have been designed to respond to their environment and upon the 

application of the right environmental trigger, degrade into zwitterionic materials. The goal for 

producing a zwitterionic end-product is to reduce toxicity of the system. Like many cationic 

polymers, the cationic nature needed for condensing the genetic material is often a downfall due 

to its inherent toxicity. By engineering a polymer and producing a labile end group, Jiang and Carr 

addressed this concern by synthesizing a carboxybetaine ester diblock polymer containing a 

quaternary amine able to condense DNA, a tertiary amine able to buffer its environment, and an 

end group able to undergo hydrolysis to form a zwitterionic polymer resulting in minimal 

toxicity.610 This proof-of-concept study showed that this polymer system was able to produce a 

twenty-fold transfection efficiency compared to branch PEI without the associated cytotoxicity. 

Similar methodologies were carried out to produce a DNA vaccine platform, whose major 

complication for success is its associated toxicity.611 Jiang and Carr further optimized their 

responsive polymer system by comparing spacer length between the cationic moiety and the 

anionic moiety, as well as their monomer end group needed for hydrolysis.612 They found that a 

single carbon spacing was sufficient to shift the pKa of the tertiary amine within the endosomal pH 

and a ethyl ester end group provided an order of magnitude higher transfection comparatively 

while remaining nontoxic. Notably, they synthesized an ultraviolet (UV)-labile end group to 

determine the kinetics of DNA release from their polyplexes. After irradiating their complexes 

with UV light for 1 hour, roughly 73% of the DNA was released, demonstrating the benefit of 

switchable polymers for effective release of DNA once inside the cell. This work highlights the 
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benefit of switching potentially cytotoxic cationic polymers into nontoxic zwitterionic polymers 

for effective gene delivery. 

In addition to poly(zwitterions), polyampholytes are starting to be examined for their 

protein antifouling and colloidal stability properties.613 Like zwitterionic polymers, 

polyampholytes are charge-neutral ionic polymers that contain both cationic and anionic groups. 

However, unlike zwitterionic polymers, polyampholytes may not contain both cationic and anionic 

entities within the same monomeric unit and may not be charge-neutral at the repeat-unit level. 

There has been very little work with incorporating alternating singly charged monomers into a 

polymer delivery vehicle for gene therapy, but the benefits of incorporation may already be 

apparent, as seen in zwitterionic monomer incorporation. By using carefully designed sequences 

of singly charged monomers, a plethora of options exist for realizing the desired spatial 

organization of positively and negatively charged groups along the polymer.518,614 Emrick, 

Jayaraman, et al. showed the resulting relationship of distributing zwitterionic polymers 

throughout a cationic comb polymer.446 At 50 mol% incorporation of zwitterionic polymers, the 

total polymer still maintained its cationic nature while providing high levels genetic cargo delivery 

(double the amount compared to the control) and viability (>97%).446 By maintaining this charge 

without a screening effect from the zwitterionic polymer being incorporated, this polymer is able 

to complex the DNA. Furthermore, the incorporation of zwitterionic polymers into the delivery 

system weakens the strength of DNA binding. DNA binding can be optimized through stringent 

incorporation and control over monomer addition to facilitate both reliable protection of the 

genetic cargo as well as cargo unpackaging once within cells.  

In summary, the incorporation of zwitterionic into polycationic vectors affords colloidally 

stable polyplexes with suitable cytotoxicity profiles. Their use, limited by the small number of 

commercially available zwitterionic monomers, will continue to grow as a response to the growing 

biosafety concerns of the use of PEGylated polymers.  

3.4.3 Carbohydrate monomers.  One final class of hydrophilic moieties that confer colloidal 

stability and enhanced targeting to polycationic vectors are carbohydrate monomers. These  

monomers carry glycan moieties that can be incorporate either in polycation backbone or as 

pendant groups. Like PEG, the hydrophilic nature of carbohydrate-derived glycopolymers arises 

from their hydrogen bonding capability. Similar to ether linkages in PEG, carbohydrates can form 
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a dense hydration cloud from their abundant hydroxyl groups, providing enough steric and 

hydration repulsion towards proteins and aggregation between complexes. Acetylation of the 

hydroxyl groups is thought to extinguish the hydrophilic nature of the glycopolymers, reducing its 

over colloidal stability. Previous incorporation of sugar moieties into polymers were avoided due 

to its tedious requirement of protection and deprotection of hydroxyl groups during 

polymerization. The development of a  variety of methods allowing for the synthesis of 

glycopolymers including controlled radical polymerizations, and without the need of using 

protected monomers415,615–617 has helped the development of this class of polymers for several 

applications. Yu and Kizhakkedathu developed glycopolymer brushes for protection against 

protein interactions.618 These carbohydrate-containing monomers mimic the glycocalyx of cell 

membranes. The glycocalyx has many cellular processes, but an important trait worth mimicking 

is the prevention of non-specific cell or protein interaction.619  The modified surface substrate with 

glycopolymers showed super-hydrophilicity via low contact angles (10°).618 When placed in 

protein solutions containing bovine serum albumin and fibrinogen, the glycopolymers provided 

excellent protection from protein adsorption. Molecular dynamic simulations showed that 

hydroxyl-rich glycopolymers bind water molecules tightly, further justifying the resistance 

displayed towards protein adsorption and the need for maintaining the hydroxyl group’s integrity 

after polymerization.620   

Beyond similar traits to PEG, glycopolymers offer the additional benefit of 

biocompatibility due to composition being of naturally occurring sugar moieties. Degradation of 

glycopolymers can be easily metabolized into important biomolecules found within cells. Narain 

et al. used this concept and formed hyperbranched statistical copolymers of AEMA with sugar-

based monomer 2-lactobioamidoethyl methacrylamide.621 Polyplexes between these 

glycopolymers and siRNA elicited minimal toxicity, most likely due to the acid catalyzed 

degradation of the 2,2-dimethacroyloxy-1-ethoxypropane branches in the delivery vehicles. Small 

polymer fragments degrading in acidic conditions are then more readily processed by the cell due 

to its recognizable sugar structure. Ahmed and Narain demonstrated the enhancement of the 

delivery system’s stability, toxicity, and delivery by incorporating carbohydrates. After statistically 

incorporating 3-gluconamidopropyl methacrylamide, regardless of high or low amounts, these 

copolymers outperformed their cationic homopolymers roughly two-fold in transfection efficiency 

and provide minimal toxicity towards cells when compared to untreated cells. Additionally, the 
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cationic homopolymers PAEMA and poly(N-(3-aminopropyl) methacrylamide) PAPMA with no 

carbohydrate substitution only had a viability of roughly 20%.615 

  

Figure 23. P(MAGalNAc)-b-P(AEMA) diblock glycopolymers display high affinities to ASGPRs 

on liver hepatocytes, allowing for liver-targeted gene delivery. Adapted with permission from ref622 

Copyright 2016 American Chemical Society.  

Unlike the challenges highlighted with PEG, glycopolymers may circumvent the 

PEGylation dilemma by allowing the delivery vehicle to interact and target native carbohydrate-

binding domains (CBDs) present on the cellular surface.487,622 By using a hydrophilic carbohydrate 

block made of 2-deoxy-2-methacrylamido glucopyranose (MAG), these polymers can offer a 

similar hydrophilic sheath shield providing the necessary steric effects that inhibit complex 

aggregation.623,624 Furthermore, incorporating a methacrylamido N-acetyl-D-galactosamine 

(GalNAc) unit can promote selective binding with asialoglycoprotein receptors (ASGPRs) found 

on hepatocytes shown in Figure 23.622 Cationic diblocks synthesized with GalNAc as the 

hydrophilic block displayed similar colloidal stability as PEG-based analogs, as well as enhanced 
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targeted gene delivery both in vitro and in vivo. During in vivo studies in mouse models, these 

diblocks accumulated in the liver at concentrations 70-times higher than those observed in the 

lungs. Additionally, polymer composition and morphology effects were determined by comparing 

block and statistical copolymers and terpolymers incorporating MAG  and either one or both 

cationic monomers AEMA and DMAEMA.289 It was found that block copolymers formed more 

stable complexes in protein-containing media compared to statistical copolymers. Yet luciferase 

gene expression was not inhibited, concluding both architectures could efficiently deliver their 

genetic payload indicating that these polymers are still able to promote cell entry at high rates 

unlike similar structures with PEG (can show a decrease). However, Narain et al. reported a 

slightly different trend within their study, which showed statistical glycopolymers made out of 3-

gluconamidopropyl methacrylamide outperforming diblock glycopolymers.615 Even though both 

studies used HeLa cells, with differences in polyplex concentration and the sugar used it is hard to 

draw a direct comparison of performance between block and statistical polymer architecture.  In a 

similar study, a diblock copolymer formed with MAG and AEMA showed effective colloidal 

stability in protein-containing media over time compared to leading industry standard transfection 

reagents, jetPEI® and Glycofect.471 Furthermore, when compared to a PEG analog with similar 

molecular weight and architecture, the diblock glycopolymers from this study demonstrated better 

colloidal stability with increasing salt concentration, again highlighting glycopolymers’ potential 

as a PEG alternative.625   
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Figure 24. (A) pDNA polyplexes formulated from poly (methacrylamido trehalose)-b-PAEMA 

P(MAT-b-AEMA) diblock glycopolymers  preserve high transfection efficacy (~60 % luciferase 

expression in U87 cells) after lyophilization in contrast to controls formulated with jetPEI®, 

Glycofect, and a non-carbohydrate PEG-AEMA diblock copolymer. (B) Cell survival was also 

superior to those of commercial controls. (C) Chemical structure of P(MAT-b-AEMA).  Reprinted 

with permission from ref.104 Copyright 2012 American Chemical Society 

Another carbohydrate that has been used in lieu of MAG is trehalose, a disaccharide of 

glucose. Trehalose has an established track record as a super-hydrophilic functionality 

incorporated into gene delivery vehicles with the added benefit as a lyoprotectant.104,105,626,627 

Reineke and coworkers were first to produce a trehalose containing glycopolymers via click 

polymerization.627 Their work illustrated the stability and efficiency to delivery nucleic acids to 

cells with a trehalose-containing polymer in serum or serum-free media. This work established a 

short disaccharide like trehalose can provide a smaller, less bulky, alternative to PEG. Further 

reports focused on incorporating trehalose into gene delivery vehicles by formulating  diblock-

copolymers of trehalose with varying degrees of AEMA.104 This further gathered evidence of 

trehalose being able to act as a lyoprotectant, expanding from the paper’s finding that 
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poly(trehalose) is able to lower energy of phase transitions of liquid to solid and vice versa of an 

aqueous solution. The lowering of energy also allows for minimal loss of biological function after 

resuspension, demonstrated by the uptake of polyplexes by U-87 glioblastoma cell and resulted in 

lower cytotoxicity compared to untreated cells.104 

Further work from the Reineke group showed excellent colloidal stability of cationic-

trehalose copolymer in both salt and serum containing media, while simultaneously promoting 

high gene delivery with low toxicity in vitro and in vivo.105 Additionally, the trehalose containing 

polyplexes where reconstituted after lyophilization and shown to have minimal differences in 

polyplex size, measured via dynamic light scattering (DLS) and transmission electron microscopy 

(TEM), without loss in biological function (Figure 24).104 The ability to reconstitute polyplexes 

from a dry preserved powder could promote storage stability and promotes further ease of 

formulation preparation that could be advantageous for clinical translation and manufacture.  

Overall, glycopolymers stand as a suitable bio-inspired alternative to PEG, which can be 

tailored with a variety of beneficial characteristics, such as a lyoprotectant, a receptor target, or 

stabilizing agent. Recently, the Reineke group published a review article of work with cationic 

glycopolymers used for gene delivery highlighting their therapeutic benefits like degradability, 

targeting, and stability.628 The use of glycopolymers thus continues to be an active area of research 

in our laboratories as well as many others.  

3.5 Introducing hydrophobic moieties 

3.5.1 (Co)polymers with hydrophobic moieties.  Introducing hydrophobicity has been utilized 

as a tool to fine tune polymeric vectors in an effort to increase their gene delivery efficiency.492,629–

633 As previously discussed, the requirements for nucleic acid complexation outside and inside the 

cell are seemingly contradictory. Outside the cell, the vectors must compact and protect DNA from 

degradation and remain stable against competitive binding from negatively charged proteins 

present in the plasma. Polymers must also facilitate cellular internalization, as well as endosomal 

escape. On the other hand, once in the cytosol, the vector must release the nucleic acids, doing this 

at the right time, for the transfection to occur. Nucleic acid binding must therefore be carefully 

optimized, and introducing hydrophobicity is one of the parameters in the polymer chemist 

toolbox. The type (e.g., linear alkyl, cyclic alkyl, lipidic, aryl, cholesteryl) and content of 

hydrophobic moieties which are introduced into a vector are critical parameter that must be 
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optimized in a case-by-case scenario; introducing a hydrophobic moiety simultaneously affects 

several of the various processes that conduct to a successful transfection. The content of 

hydrophobic moieties in polymeric vectors has an upper limit since aqueous solubility of the 

polymers and colloidal stability of the polyplexes must be ensured. Multiple reviews of the 

hydrophobic modification of polymeric cations and how it affects nonviral gene delivery are found 

in the literature.492,629–633 Our focus on this section is to highlight the key concepts mentioned 

above with relevant and recent examples. 

Incorporating hydrophobic groups into a polymeric vector induce hydrophobic-

hydrophobic interactions with nucleic acids that modulate their binding.492 Additionally, 

introducing hydrophobic moieties into polycations decreases their charge density, which helps 

prevent polyplex destabilization by negatively charge proteins present in serum.634,635 For instance, 

Bhattacharya and coworkers show that tailored hydrophobization of primary and secondary amines 

of low molecular weight PEIs (Mw 800-2000 Da) with cholesteryl groups afforded vectors that 

showed high pDNA transfection efficiency ( > 60% GFP positive HeLa cells) even in the presence 

of 50% phosphate-buffered saline (PBS) during transfection.636 This is critical since polycation-

based polyplexes exhibit low transfection in the presence of serum, hindering in vivo applications. 

Polyplexes with enhanced serum stability display longer circulation times and slower renal 

clearance. 

The different strategies that have been employed to introduce hydrophobic moieties into 

polycationic vectors fall into one of three categories: post-polymerization modification, 

copolymerization with hydrophobic monomers, and end group modification. Low molecular 

weight PEI is reported as a prime candidate for introducing hydrophobicity to improve its 

efficiency.637–643 As discussed above, PEIs of low molecular weight are less cytotoxic than PEIs of 

higher molecular weight, but grant lower transfection efficiencies which can be improved by 

different hydrophobic modifications. In studies focusing on the alkylation and acylation of PEI, 

both the type of hydrophobic moiety and the length of the alkyl chains have been optimized 

extensively.  

Introducing hydrophobic moieties has also been explored in other cationic polymer 

systems. For instance Duvall et al. synthesized diblock copolymers composed of poly[(ethylene 

glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)] (PEG-b-
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P(DMAEMA-co-BMA)) via RAFT copolymerization of DMAEMA and BMA using a PEG macro 

chain transfer agent (macro-CTA) (Figure 25).644 The obtained vectors showed promising results 

for the delivery of siRNA in vivo. The molar content of BMA in the nucleic acid forming block 

was varied from 0 to 75 mol%, and its effect on the formation of micelles, binding of siRNA, cell 

uptake, transfection efficiency and cytotoxicity were explored. Cell uptake and transfection 

efficiencies were evaluated in NIH3T3 fibroblasts, and polymers with 50 % BMA showed the 

greatest transfection efficiency. High endolysosomal escape ability of this polymer and stability 

against heparan sulfate contributed to the high performance. In in vivo experiments in Balb/c mice 

models, the polymer vector with 50% BMA incorporation showed better peptidylprolyl isomerase 

B gene silencing in the liver, kidneys and spleen compared with a diblock copolymer with no 

BMA. The same system was explored for the in vitro delivery of pDNA to MDA-MB1-231 human 

breast cancer cells and IMDBF dermal fibroblasts.645  

Engbersen et al.267 studied the effect of acetylation and benzoylation of bio-reducible 

poly(amido amines) on the in vitro transfection of COS cells. The polymers where synthesized via 

Michael addition polymerization of N-boc 1,4-diaminobutane with cystamine bisacrylamide. After 

cleavage of the boc groups, the primary amines were modified with acetic anhydride or 

benzoylchloride, targeting different substitution degrees. Polymers with larger substitution degrees 

exhibited reduced charge density and enhanced buffering capacity as observed from lower pKa 

values, when compared with unsubstituted polymers. Unlike the acetylated derivatives, the 

benzoylated polymers self-assembled into nanometric aggregates. The DNA transfection 

efficiencies with benzoylated PAMAs were higher than the acetylated polymers with comparable 

degrees of substitution, and moreover they were not affected by the presence of serum during 

transfection. The more hydrophobic benzoylated polymers exhibited both serum protection and 

enhanced endosomolytic properties, as evaluated via a hemolysis assay.  
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Figure 25. Top. Duvall et al. synthesized a library of PEG-b-P(DMAEMA-co-BMA) diblock with 

varying incorporation of the hydrophobic BMA (0-50B) comonomer in the cationic siRNA binding 

block. Middle. The diblock copolymer with 50 mol% of hydrophobic BMA (50B) showed 

optimum cell internalization, gene knockdown and cell viability in vitro. Bottom. The 50B 

copolymer displayed enhanced tissue biodistribution in vitro due to longer circulation times and 

slower renal clearance. Reprinted with permission from ref. 644 Copyright 2013 American 

Chemical Society.  

Quantification of polymer hydrophobicity through partition coefficients or retention times 

in high pressure chromatography (HPLC) analysis is useful when comparing vector libraries that 
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incorporate different types hydrophobic units.646,647 For instance, Kataoka et al.647 showed how the 

partition coefficient (LogP) can be used as a metric for the hydrophobicity of polymeric vectors 

during their optimization for gene delivery (Figure 26). A poly (β-benzyl-L-aspartate) parent 

polymer was synthesized via ring opening polymerization of a N-carboxy anhydride monomer. 

Polymers with different hydrophobic groups, where synthesized via post-polymerization 

amidation of the parent polymer with diethylenetriamine and different aliphatic amines. Alkyl 

amines (from pentyl to dodecyl amine), cyclohexyl ethyl amine (CHE), and phenyl ethyl amine 

where used. The polymers were labeled with Alexa Fluor 647 to allow for the measuring of the 

partition coefficient into 1-octanol and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer mixtures using fluorescence spectroscopy. LogP values between -1.9 and -2.6 

were observed. All polymers completely condensed luciferase coding mRNA at N/P values greater 

than 2 in 10 mM HEPES buffer. The polymers containing CHE substituent with an intermediate 

value of LogP exhibited greater luciferase expression in mouse myoblast C2C12 and 

neuroblastoma Neuro-2a cells, when compared to all other polymers. These vectors exhibited an 

equilibrium of polyplex stability in the extracellular environment, and efficient mRNA release after 

cellular uptake.  
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Figure 26. (A) Kataoka et al. synthesized a series of amphiphilic polyaspartamides containing 

various amounts and types of hydrophobic moieties. (B) They employed LogP as a parameter to 

measure polymer hydrophobicity and relate it to gene delivery efficiency. (C-D) Derivatives with 

11 units of cyclohexyl ethyl (CHE11) hydrophobic pendant groups, bind efficiently to mRNA, 

exhibit high luciferase expression efficiencies in cultured C2C12 cells, and fast in vitro transcribed 

mRNA release within cells. Reprinted with permission from ref.647 Copyright 2019 American 

Chemical Society.  

Although most studies focus on the optimization of the amount and type of hydrophobic 

moieties introduced, a recent study suggests that the topology (i.e., how the hydrophobicity is 

distributed along the polymeric chain) can affect how these polycations are internalized by cells. 

Perrier et al.648 synthesized copolymers of di-boc-guanidinoethyl acrylamide with either 

hydrophilic hydroxyethyl acrylamide or hydrophobic N,N-dimethyl acrylamide via RAFT 

polymerization. The copolymers were synthesized in statistical, diblock, or tetrablock topologies. 

Comparing the statistical copolymer with the homopolymer of guanidinium ethyl acrylamide, it 

was found that introducing hydrophobicity increases the cell uptake into MDA-MB-231 and Caco2 
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cells. Regarding the microstructure, the statistical copolymer was internalized more than the 

diblock and tetrablock copolymers. Cellular trafficking studies revealed that polyplexes based on 

the statistical copolymer were internalized mainly via an endocytosis pathway, while the diblock 

copolymer was internalized via a combination of endocytosis and passive membrane crossing. 

That study suggests that the diblock topology results in polyplexes where the guanidinium groups 

are more compacted with DNA, thus reducing the overall cellular uptake, due to reduced 

interactions with the negative cell membrane, but potentially allowing for a second mechanism of 

uptake due to well-defined hydrophobic blocks that can interact with the membrane.  

One limitation of introducing hydrophobic moieties via post-polymerization modification 

or copolymerization with hydrophobic moieties, is the inherent decrease of the charge density, i.e., 

number of protonatable, or charged, repeating units per polymer chain. Although low charge 

density is not by itself a disadvantage for the transfection process,634 synthetic strategies where 

hydrophobicity can be untethered from charge density are necessary to establish structure property 

relationships. As a strategy to overcome this barrier Khan et al.649 reported the synthesis of 

amphiphilic homopolymers in which each repeat unit contains both a hydrophobic moiety and a 

cationic group via a polymerization modification of poly(glycidyl methacrylate). This strategy 

afforded a library of homopolymers with variety of hydrophobic (e.g., aliphatic and aromatic) and 

cationic (primary amine and guanidine) groups. siRNA gene silencing experiments on HT-29-luc 

luciferase reporter cells showed that the polyplexes form with a polymer containing pentyl chains 

and amine cations, at a N/P of 4.5, was more efficient (~80% luciferase reduction) than all other 

polymers in the library and linear (~25% luciferase reduction) and branched (~40% luciferase 

reductions) PEI controls. This optimum polymer showed a balance of siRNA binding, release and 

low cytotoxicity which contributed to its high performance. 

3.5.2 Polycationic micelles from amphiphilic block copolymers. 

 Water soluble polymeric micelles have been widely used in in the field of drug delivery650–652 

and have seen a recent surge in their application for pDNA and siRNA.653–660 Polycationic micelles, 

composed of amphiphilic block copolymers that contain cationic and hydrophobic blocks,661 are 

core-shell type nanoparticles that condense nucleic acids into complexes termed 

“micelleplexes”.662 Some polycationic micelles for gene delivery contain and additional 

hydrophilic non-ionic block that is incorporated for enhanced colloidal stability. Examples of 
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polycationic micelles with PEI,663 polypeptides,664,665 PDMAEMA,662,666–669 and quaternized 

PDMAEMA670 shells, and various hydrophobic, core-forming, blocks such as polybutadiene,671 

PS, poly(n-butyl methacrylate) (PnBMA),662,672 and various polyesters such as poly(ε-

caprolactone) (PCL),669 and poly lactic acid (PLA)664 have been explored.  Each of these 

hydrophobic blocks offer different core properties due to their varying glass transition 

temperatures: PS forms stiff and glassy micelle cores, while poly(n-butyl acrylate) (PnBA) and 

PnBMA form a rubbery core at room temperature, which has been linked to differences in 

transfection efficiency.673 In gene therapy, micelleplexes have been study for the delivery of 

DNA,663,666,671,674675 siRNA,654,665,676,677 miRNA,678 and recently as vectors carrying preformed 

CRISPR/Cas9 ribonucleoproteins.667  

The non-ergodic, process-dependent, self-assembly of block copolymer amphiphiles 

presents an opportunity to create a variety of topologies since micelles with various morphologies, 

sizes, and aggregation numbers, can be obtained through processing changes, even when using the 

same diblock copolymers.679,680 Self-assembled micelles exist above a threshold amphiphile 

concentration termed the critical micelle concentration. For polymeric amphiphiles these critical 

concentrations can be as low as 10-6-10-7 M, indicating that the micelles remain stable during 

dilution making them promising candidates for intravenous administration.660 Each polycationic 

micelle is formed by hundreds of block copolymer chains, which depending on the degree of 

polymerization of the cationic block, resulting in cationic shells with ~103-104 charged groups per 

micelle. Polycationic micelles and their complexes with nucleic acids used for gene therapy are 

nanometric (10–100 nm)652 which has been suggested to increase their internalization efficiency 

and binding capacity.681 Polycationic vectors are highly tunable vectors whose size, critical micelle 

concentration, and aggregation number can be tailored by adjusting block copolymer molecular 

weight, incorporating additional blocks, introducing hydrophilic moieties either in a statistical or 

block-like fashion, or modifying the micelle end groups.668,682–685  

Polycationic micelles formed from triblock copolymers containing a non-ionic hydrophilic 

block – in addition to a cationic and a hydrophobic block- have also been used as building blocks 

for micelleplex formulations. As discussed in Section 3.4 the introduction of hydrophilic blocks 

reduces toxicity, increases colloidal stability, and increases the circulation time of polyplex 

formulations.674,682 These triblock copolymers can be synthesized with different blocking orders 

(i.e., the spatial organization of the three blocks) that influence the corona properties and therefore 
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performance as gene delivery vehicles. Triblock copolymers synthesized with hydrophilic-

cationic-hydrophobic,665–667,682 hydrophilic-hydrophobic-cationic,670,675 and cationic-hydrophilic-

hydrophobic686 blocking orders have been evaluated as nucleic acid delivery vehicles. For 

instance, Bryers and coworkers synthesized a series of triblock copolymers composed of cationic 

PDMAEMA (D), hydrophilic poly(ethylene glycol methacrylate) (PEGMA, P), and hydrophobic 

P(DEAEMA-co-nBMA)(E) blocks with different block lengths and blocking orders: D-P-E, P-E-

D, and P-D-E. The performance of micelles formed from these triblock copolymers as mRNA 

vectors for the transfection of RAW 264.7 macrophages and DC2.4 dendritic cells was 

compared.686  All polymers formed polycationic micelles with hydrodynamic diameters between 

20-30 nm. mRNA micelleplexes formed with the DPE-triblock copolymers exhibit better 

transfection efficiency (68% GFP+ cells) than the copolymers with the other two blocking orders 

(<2% for both PDE and PED),  Lipofectamine controls (30%), and a diblock copolymer without a 

PEGMA block (8% for DE micelleplexes) in the macrophage model, A similar trend was also seen 

with these systems in DC2.4 dendritic cells (Figure 27(A)).686 

Amphiphilic polymeric micelles are used as drug delivery vehicles due to their ability to 

solubilize hydrophobic drugs in their cores.650,651 This property has also been extrapolated with 

micelleplexes, where the simultaneous delivery of  therapeutic nucleic acids (condensed around 

the micelle cationic shells) and small molecule cancer drugs (encapsulated in the micelle core) can 

display synergistic effects specially in cancer therapy.199,654,656,663,669,675,687,688 Figueiras and 

coworkers recently reviewed the opportunities and challenges for the use of micelleplexes in these 

types of therapies.659 

Morphological studies of pDNA-based micelleplexes have shown that these complexes 

typically contain more than one micelle per complex and that their size and composition is dictated 

by structural parameters on the nucleic acids and the cationic block copolymers. Several studies 

have shown the effect of the length of pDNA in the morphology of the micelleplexes.670,685 

Complexes containing long pDNA (~2000 bp or more) show a beads-on-a-string structure with 

DNA “threads” wrapped around the micelles via a beads-on-a-string structure resembling 

chromatin (Figure 27(C)) Complexes formed with shorter DNAs form spheroidal structures, in 

which more than one micelle per complex is observed (Figure 27(D)). In terms of the block 

copolymer structure, Reineke and coworkers explored the influence of the PEG block length on 

the morphology and composition of micelleplexes formed between a 2442 bp pDNA and PEG-b-
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PDMAEMA-b-PnBMA triblock copolymers.682 Triblock copolymers with larger PEG blocks (Mn 

= 10 kDa) formed micelleplexes that in average contain less micelles and DNA molecules per 

complex, when compared with micelleplexes formed with triblock copolymers with shorter PEG 

blocks (Mn = 2 and 5 kDa) or with PDMAEMA-b-PnBMA diblock copolymers where the PEG 

block was absent. 

 

Figure 27. (A) Triblock copolymers blocking order (i.e., DPE, PED and PDE) and length (DPE1-

3) were optimized for the delivery of mRNA to RAW 264.7 macrophages (LF=Lipofectamine 

control). Reprinted with permission from ref.686 Copyright  2012 Elsevier. (B) Cryo-TEM images 

of micelles from QPDMAEMA-b-PLMA-b-POEGMA triblock copolymers and their complexes 

with (C) long DNA (2000bp) and (D) short DNAs (113 bp).  Reprinted with permission from ref.670 

Copyright 2020 American Chemical Society.  

A distinction should be made between the micelleplexes discussed in this section and the 

polyion complex micelles introduced in Section 3.1.1. PIC micelles assemble during the mixing 

of double-hydrophilic poycationic block copolymers and nucleic acids, while micelleplexes are 

formed using pre-assembled polycationic micelles (Figure 28(A)). Several studies have 

systematically contrasted the efficiency of micelleplexes, polyion micelle complexes, and 
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polyplexes.662,666,676 Won and coworkers contrasted the efficiency of a PDMAEMA homopolymer 

(polyplexes), a double-hydrophilic PEG-b-PDMAEMA diblock copolymer (PIC micelles), and an 

amphiphilic PEG-b-PnBA-b-PDMAEMA triblock copolymer (micelleplexes) (Figure 28(A)) as 

either DNA662 or siRNA676 delivery vehicles for the in vivo transfection of HeLa cells. DNA 

complexes with all polymeric systems exhibited low transfection performance (<1% GFP positive 

cells), with the micelleplex formulations having a slightly lower performance than the other two 

systems. In the in vitro siRNA transfections experiments, the micelleplexes outperformed  the other 

two systems (23% of GAPDH mRNA silencing vs 14% for the polyplexes and 8% for PIC 

micelles), although  their efficiency was low compared to control Lipofectamine formulations 

(74% GAPDH mRNA silencing).676 A recent study from Reineke and coworkers compared pDNA 

transfection efficiency of HeLa and HEK293T cells, with polyplexes based on either a 

PDMAEMA homopolymer or a PEG-b-PDMAEMA diblock copolymer, and micelleplexes based 

on either a PDMAEMA-b-PnBMA diblock copolymer or PEG-b-PDMAEMA-b-PnBMA triblock 

copolymers.666 Both micelleplex formulations were shown to outperform the analogous polyplexes 

(more than 4-fold higher % GFP+ cells) (Figure 28(B)). Micelleplexes displayed higher levels of 

cell internalization when compared to polyplexes. Additionally, circular dichroism experiments 

showed that in micelleplexes, DNA wraps around micelles in a beads-on-a string morphology that 

preserves the helical DNA native B form, while in tightly bound polyplexes this structure is 

distorted, which could contribute to higher levels of GFP expression from the micellplex 

formulations.  



 91 

 

Figure 28. (A) Schematic representation of the formation process of polyplexes, PEGylated 

polyplexes (PIC micelles) and micelleplexes. Adapted from ref.676 (B) Micelleplexes (DB and 

ODB) displayed higher pDNA efficiency (% GFP+ cells) than polyplexes (D and OD) and jetPEI® 

controls for the transfection of HEK293 cells. Reprinted with permission from ref.666 Copyright 

2019 American Chemical Society.  

Recently Reineke and coworkers reported micelleplex formulations based on similar 

micelles (i.e., PDMAEMA-b-PnBMA, and PEG-b-PDMAEMA-b-PnBmA) for the gene editing 

of HEK293T cells with  Cas9/guide RNA ribonucleoproteins (RNPs).667 Due to their negative 

charge, granted by the guide RNA, RNPs could bind electrostatically to the polycationic micelles 

to form micelleplexes. Interestingly, the micelleplex formation process was greatly affected by the 

media in which these complexes were formed: in PBS small ~30nm micelleplexes (containing 14 

RNPs per micelleplex) were obtained, while in water larger 130-160 nm multi-micelleplex 

particles were obtained with both diblock and triblock copolymer micelles at N/P ratios of 2.5 and 

5. Micelleplexes formulated in water exhibited a higher gene editing efficiency (40% NHEJ 

editing) than the PBS formulations (~5%) and a Lipofectamine 2000 control (~22%), which is 

believed to be due to faster sedimentation of these larger particles onto the cells.  
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In summary, pre-assembled polycationic micelles possessing a hydrophobic core are novel 

vectors for the delivery on nucleic acids which use has focused mainly on 2 areas: (1) the 

codelivery of therapeutic nucleic acids and small molecule drugs for cancer gene therapy659 and 

(2) the precise characterization of the micelleplex structures to correlate the structure to gene 

delivery performance often in comparison to polyplexes. The development of micelleplex 

formulations for gene therapy will continue exploit concepts from the drug delivery field such as 

the use of stimuli-responsive and targeting moieties.689 Ultimately polycationic micelles with 

highly uniform and reproduceable formulations offer a tunable motif as  gene carriers with 

promising and untapped potential, for instance in the delivery of new cargos for gene editing.667 

3.6 Incorporating stimuli-responsive properties 

Polyplex formulations experience several environmental changes as they travel through the 

biological milieu, be it cell culture media, or circulatory systems within living organisms.  There 

is growing recognition that polymers must be engineered to sense changes within the physiological 

environment and to respond to these changes by rapidly switching between divergent sets of 

properties. Responsive polyplexes have been designed while, considering various types of signals, 

e.g., exogenous triggers such as temperature,690–693 light,694,695 or ultrasound,696,697 and endogenous 

signals such as pH,698–701 reactive oxygen species,702–707 enzymatic activity,559,708,709 or changes in 

redox environments.710–712 This section is not intended to serve as an exhaustive review of stimuli-

responsive polyplexes and we redirect the readers to more focused reviews.713–715 Here, we aim to 

briefly discuss chemical design concepts relevant to pH-responsive, photo responsive, and redox-

responsive polyplexes, with examples selected to reflect our emphasis on chemical synthesis and 

architectural modifications.  

3.6.1 pH-responsive polyplexes. Macromolecules that are pH-responsive are an excellent 

strategy for designing gene delivery systems to selectively respond to different biological 

environments. Different organelles and cell types possess a range of pH values, such as: standard 

physiological (7.0-7.4716), cytoplasmic (7.4717), and endosomal (4.5-6.5718). These values can vary 

significantly depending on the cell type and over the course of an organelle's or cell’s life.719 

Moreover, tissues can vary in their extracellular pH values. Tumor tissue has a pH of 6.15-7.4,716 

while gastric pH is 1.7.720 Systems responsive to changes in pH within these relevant ranges may 

overcome biological barriers inhibiting effective transgene expression. Typical strategies to create 
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pH responsiveness include: (1) incorporation of monomers or functional polymeric backbones 

whose protonation state is based on pH (2) cleavable bonds that are common throughout the 

synthetic literature with some examples highlighted in Section 4.6, including Schiff bases and 

acetal/ketals, or (3) non-covalent changes in macromolecular structures such as the assembly or 

disassembly of alpha helices or micelles. All of these strategies can be employed to design gene 

delivery systems that respond to rapid changes in intracellular pH to effectively deliver nucleic 

acids. Many examples are described below, but for more comprehensive reviews on pH-responsive 

nanocarriers for gene delivery we redirect readers to Cho et al.721 and Park et al. 271 In this section, 

we will discuss pKa measurement techniques; then we will focus on pH-responsive strategies to 

promote endosomal escape and tumor targeting, which represent two key applications of pH-

responsive delivery in the literature. 

If polymer chemists wish to engineer polymers with pKa values targeting physiological or 

endosomal pH, then accurate pKa measurements of the gene delivery vehicles are essential to 

visualize the protonation state of these polymers in varying cellular environments.  The degree of 

protonation (α) can be determined from the pKa and pH using the Henderson-Hasselbalch 

equation, pKa =pH+log[α/(1-α)].722–724 The pKa of a molecule can be determined through a variety 

of methods with the most common including acid-base titration and nuclear magnetic resonance 

(NMR) spectroscopy.724,725 In acid-base titration, a base is slowly added to a solution of the 

molecule of interest while monitoring the pH value. Subsequently, the pKa can be determined using 

the Henderson-Hasselbalch equation. For pKa determination using NMR, the change in chemical 

shifts of nuclei close to the protonation site of the molecule is measured across a range of pH 

values and the chemical shifts are compared to the shifts of the fully deprotonated and protonated 

molecules to determine the pKa.725 Titration is often the preferred method due to simplicity and the 

ability to do relatively quick pH measurements compared to NMR experiments. Other parameters 

that can affect pKa  include solvent, solution ionic strength, temperature, and whether the 

protonatable group is in the form of a monomer or polymer.724,726 For example, Reineke et al. 

found that pKa decreased when a monomer was polymerized, which is due to the unfavorable 

interactions of charged groups in close proximity to each other.289 This work highlighted the 

importance of pKa measurements that reflect the conditions used in its application. For a more 

comprehensive perspective on these experiments and other methods for pKa determination, 

Reijenga and coworkers have published a review on this topic.724 In addition to delivery vehicle 
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pKa, the intracellular pH is another important factor in gene delivery that can be measured. 

Intracellular pH can be measured in three ways as outlined in the review by Loiselle et al.: (1) 

microelectrodes that measure the proton concentration via the electric potential across the probe, 

(2) NMR measurements that analyze intracellular molecules via pH-dependent NMR shifts, and 

(3) fluorescence measurements of pH-sensitive fluorophores.727 The use of pH-sensitive 

fluorophores is especially useful for understanding intracellular environments and has been widely 

used in the gene delivery field. Burgess et al. has an excellent review comparing the fluorescent 

dyes that have been used for intracellular pH measurement.728  

 

Figure 29. Example of the incorporation of monomers or functional polymeric backbones whose 

protonation state is based on pH. In this example Asp(DET) is monoprotonated in extracellular 

conditions but is diprotonated under acidic endosomal conditions causing membrane disruption 

under these acidic conditions. Reprinted with permission from ref.723 Copyright 2008 American 

Chemical Society.  

As previously mentioned in Section 2.4, another widespread strategy for designing 

polymers to overcome the endosomal escape barrier is to exploit the pH differential between 

intracellular and endosomal pH or promote interactions between polycations and endosome 

membranes that result in increased membrane permeability. The former method takes advantage 

of pH-dependent protonation changes to the polymers that cause osmotic pressure changes and 

rupture these vesicles. However, at physiological pH, the delivery vehicle is protonated to a lower 

degree, minimizing cellular membrane disruption and toxicity. For example, Kataoka et al. found 

that at physiological pH, poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P[Asp(DET)]) 
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was monoprotonated and had approximately 90% less membrane disruption when amino groups 

were at a concentration of 10 mM compared to the same polymer at pH 5.5, which was 

diprotonated at this endosomal pH. It was predicted that this membrane disruption, which occurred 

only under endosomal conditions, led to high transfection efficacy and low toxicity when 

compared to poly{N-[N-(3-aminopropyl)-3-aminopropyl]aspartamide} (PAsp-(DPT)), a fully 

protonated derivative control, and branched polyethyleneimine (BPEI) (25 kDa) (Figure 29).723 

This strategy has been used extensively with a wide variety of protonatable delivery systems.698,729–

731 

 

Figure 30. Example of non-covalent changes in macromolecular structures. The micelle 

dissociates under acidic endosomal conditions revealing melittin, a lytic protein which promotes 

endosomal release. Reprinted with permission from ref.732 Copyright 2016 John Wiley and Sons.  

 Another strategy for promoting endosomal escape includes acid-catalyzed degradable 

polymers that will break down under endosomal conditions. This breakdown is hypothesized to 

promote endosomal escape since lower molecular weight polymers bind less strongly to negatively 

charged genes265,733 and tend to be less cytotoxic.265,462,465 Yin et al. crosslinked low-molecular 

weight PEI with an acid-sensitive ketal moiety, which would degrade under reduced endosomal 
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pH.734 The crosslinked polymer encapsulated DNA effectively, but these crosslinks were 

effectively degraded in the endosome, thereby releasing DNA.734 Many papers have also used this 

strategy where endosomal conditions degrade the delivery vehicle to promote nucleic acid 

release.735,736 In addition, nanoparticles that undergo noncovalent degradation under endosomal 

conditions can also be used to promote endosomal escape. Bae et al. developed a pH-sensitive 

diblock that surrounds a PEI/DNA nanoparticle at physiological pH due to the electrostatic binding 

between the anionic diblock and cationic PEI/DNA nanoparticle. However, this pH-sensitive 

diblock detaches from the PEI/DNA nanoparticle once acidified and is neutralized under 

endosomal conditions allowing the cationic PEI to interact with the membrane for charge-mediated 

release.737 

Responsive peptides, lipids, or micelles can change their macromolecular structure and 

conformation in a pH-dependent fashion allowing them to interact with endosomal membranes in 

acidic environments. Pun et al. observed that a virus inspired polymer for endosomal release 

(VIPER), improved GFP expression in HeLa and KB cervical carcinoma cells compared to 

Lipofectamine and bPEI (Figure 30).732 Under physiological conditions, the VIPER self-

assembled into micelles, but dissociated under acidic conditions such as within the endosome. The 

dissociation also revealed lytic peptides which could promote delivery to the cytosol. This VIPER 

system, however, minimally transfected Jurkat and primary T-cells.738 Pun et al. predicted that 

VIPER had poor transfection efficiency in T-cells because their endosomes are less acidic than 

those of HeLa, minimizing micelle dissociation and therefore delivery.719 Furthermore, pH-

responsive fusogenic peptides, typically based on the HA-2 subunit of the influenza virus, are 

peptides that have the ability to destabilize membranes only at endosomal pH and have been used 

extensively in drug and gene delivery platforms.739–741 Hatefi et al. compared some of these pH 

responsive peptides for their different properties related to gene delivery.740 They found that 

GALA, a peptide comprised of 30 amino acid residues, displayed the highest endosomal 

membrane disruption and the least cell toxicity.740 The Szoka lab developed GALA so that at 

neutral pH, GALA is water-soluble and a random coil.742 Due to the glutamic acid residues, under 

endosomal conditions GALA undergoes a transformation self-assembling into an alpha helix with 

hydrophobic and hydrophilic domains.742 This alpha helix interacts with membranes, destabilizing 

the membrane often leading to endosomal escape.742 Many other examples of GALA application 

to drug and gene delivery has been reviewed by Li.743 Furthermore, we draw attention to recent 
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examples of pH-responsive macromolecules used in gene delivery to improve endosomal escape 

for a variety of nucleic acid delivery platforms.744–748 

 

Figure 31. Example of pH cleavable bonds. Amide bond hydrolysis under acidic extracellular 

tumor conditions causes the nanoparticle to shift from negatively to positively charged enhancing 

tumor cell specificity. Reprinted with permission from ref.749 Copyright 2020 American Chemical 

Society.  

The dysregulated extracellular environment of a tumor results in acidic pH and can be used 

for cancer-targeting gene delivery.750 Typically, either pH-sensitive protonation or acid-cleavable 

bonds have been used to effectively target the tumor cells by inducing charge-mediated cell 

membrane disruption only in the acidic tumor cell environment and not under normal physiological 

conditions. This approach requires delivery vehicles that are sensitive to minute changes between 

the physiological pH and intratumoral pH. For example, many of these cleavable bonds are amides, 

but have different neighboring groups to modify the pH at which cleavage is favorable. Guo et al. 

developed pH-responsive polymer coatings composed of PEI coupled to 1,2-

cyclohexanedicarboxylic via amide bonds.751 These pH-responsive polymers, which were anionic 

at physiological pH, were used to coat cationic PEI and DNA nanoparticles to minimize 

cytotoxicity and interactions with healthy cells at physiological pH. Under hypoxic tumor 

conditions, the polymer would neutralize and detach from the nanoparticles, leaving a cationic 

nanoparticle, which would then be internalized by tumor cells. Many other groups have also taken 
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advantage of moieties with differential charged states between physiological pH and extracellular 

tumor pH for targeted gene delivery with some cited here.720,752 Li et al. took advantage of a pH-

responsive cleavable bond to effectively deliver pDNA to tumor cells. They used an acid cleavable 

block polymer, of PEG and PAEMA modified with 2,3-dimethylmaleic anhydride (PPD, Figure 

31) that contains an amide bond and carboxylic acid groups which are negatively charged at 

physiological pH. Under acidic tumor conditions the amide bond would cleave shedding the 

carboxylic acid moiety and leaving a positively charged amine. This acid cleavable polymer, PPD, 

was coated around their CD-OEI/pDNA polyplex to effectively deliver pDNA. The negatively 

charged nanoparticle would be able to circumvent the high blood clearance and toxicity of 

positively charged nanoparticles. After acid-induced cleavage, the cationic nature of the 

nanoparticle would enhance charge-mediated cell uptake and endosomal escape for effective and 

targeted gene delivery (Figure 31).749 Although this pH-sensitive cleavable bond in PPD has been 

used extensively for drug delivery to cancer cells,653,753–755 there is a great interest in applying this 

method to gene delivery to either target tumors or to work around the PEGylation dilemma.561 

Similarly, Zhang et al. developed pH- responsive nanoparticles coated with PEI for targeted siRNA 

delivery to C6 glioma cells.756 Citraconic anhydride was conjugated to the primary amine groups 

of PEI, which is acid-cleavable under tumor extracellular pH, causing the charge to shift from 

neutral to positive charge. They observed almost no gene silencing at biological pH, but greater 

than 40% gene silencing at tumor pH (6.2) when dosed with 4 or 8 µg/well of Fe in their 

nanoparticles coated with this pH-responsive PEI. 

As we have seen so far, pH-responsive polymers have had a significant impact during both 

in vitro and in vivo delivery, thanks to the incorporation of diverse ionizable chemical moieties 

such as imidazoles, tertiary amines, etc.  Apart from spatiotemporal control over payload release 

kinetics, these polymers can also be engineered to “sense” the pH physiological environments, 

thereby serving as a diagnostic aid. To realize the theranostic potential of pH-sensitive polymers, 

we must work on improving their sensitivity to rapidly detect and respond to minute changes. 

Finally, most chemists have not considered the “nanobuffering-controlled local pH ” wherein 

polycations display high buffering capacities at close proximities and exert control over the local 

pH, independently of the global or bulk solution pH.757 This phenomenon is yet to be exploited in 

polymeric gene delivery to improve the sensitivity of pH-responsive vehicles but is expected to 

improve polyplex delivery performance.758 
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3.6.2 Photoresponsive polyplexes. Polymers that are responsive to light, typically ultraviolet, 

near infrared, or visible light, have been applied for spatially and temporally-targeted delivery.  

Optical penetration of target tissues is not a hindrance for in vitro or in vivo applications, but 

presents obstacles during phototherapy since the light intensity is diminished within a depth of 3.5 

mm, depending on the wavelength.759  Ultraviolet light is typically the most effective in causing a 

chemical change however, ultraviolet treatment has low penetration depth and poses mutagenic 

concerns.760 Longer wavelength, lower energy, light like near infrared and visible light have shown 

the ability to penetrate human tissue at larger depths, however are typically less efficient in 

triggering responsive motifs. Herein, we describe some examples showing the increased delivery 

due to the triggered response from ultraviolet, near infrared, and visible light. 

 

Figure 32. (A) Mechanism of photoreaction of o-nitrobenzene. Adapted from ref761 (B) 

Photoinduced disassembly of polyplex showing DNA release. Dye exclusion assay showing 

increased release as an increase in irradiation time. Reprinted with permission from ref.762  

Copyright 2015 John Wiley and Sons. 

  To date, the most common photolabile linker used for gene delivery is o-nitrobenzene 

(Figure 32(A)). The research groups of Yin and Chen were able to incorporate o-nitrobezene 

within the backbone of poly (β-amino esters) to create a degradable system when stimulated with 

UV light. Both studies showed that both the transfection efficiency and cell viability were higher 
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than their non-degradable control counterparts in mammalian cell types due to the triggered 

breakdown of the polymer.763,764 Haag et al. constructed a hyperbranched polyglycerol decorated 

with an oligoamine pendants using o-nitrobezene linkers. With 350 nm light induction, they 

observed controlled released of DNA (via cleavage of the oligoamine from the polymer 

backbone).765 In an in vivo study, Mei et al. demonstrated tumor targeted delivery in mice via tissue 

penetrating near infrared light. Nanoparticles were decorated with cell penetrating peptides linked 

with 4,5- dimethoxy-2- nitrobenzyl groups, which were able to show tumor selective 

accumulation, internalization and delivery of siRNA by near infrared light.766 Epps, Sullivan and 

coworkers has shown the development of photo-responsive block polymers for gene delivery by 

incorporation of o-nitrobezene on each pendent amine. They are able to form PIC micelles after 

the complexation of mPEG-b-poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) polymers 

with a nucleic acid cargo.767 The PEG serves as stealth corona, while the core is formed by a 

cationic core with pendant degradable linkages. Further information on the application of these 

photo responsive block copolymers can be found in their focused review by Sullivan et al.768 The 

use of o-nitrobezene as a photo stimulated backbone degradable or pendent linker cleavage site, 

has shown the benefit in overcoming release capabilities of cationic polymers in vitro and in vivo. 

Visible light provides the inherent advantage of penetrating human tissue while causing 

less damage. Hovig et al. co-delivered cationic β-cyclodextrin containing polymers with 

photosensitizer additives, which initiate photochemical endosomal and lysosomal membrane 

damage, to enhance release and delivery of siRNA into osteosarcoma and melanoma cell lines. 

They found an 80% increase in silencing effect after exposure to 420 nm visible light, attributing 

the release to endosomal/lysosomal escape.769 Liu et al. was able to show a similar result with 

using photosensitizers to increase endosomal/lysosomal escape and DNA unpacking using OEI 

based polymers conjugated with an aminoacrylate linker; this system was readily cleaved within 

the polymer backbone using visible light initiation (Figure 32(B)).762 With the use of jetPRIME®  

as the polymeric delivery vector, Takishima et al. was able to show that a preliminary exposure of 

cells to blue light inhibited delivery of pDNA complexes, while unexposed areas still resulted in 

uptake in HeLa, HEK293, and HepG2 cell lines. They hypothesized that this technique could 

facilitate spatioselective delivery by exposing surrounding areas to destabilize endosomal 

membranes with blue light before transfection, but not exposing the targeted area for delivery.770 

A further application used a novel silicone-based platform that promoted an increase in surface 
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potential caused by visible light illumination, thus promoting DNA release and cellular uptake.771 

Although photo-triggered release has been well documented in the field of drug delivery, it is 

slowly gaining ground in gene therapy through applications where polymers respond either 

directly or indirectly to light.760 

3.6.3 Redox-responsive polyplexes. Redox-responsive polymers or “bioreducible” polymers 

take advantage of the redox gradient existing between the intracellular and extracellular 

environment.772 The redox environment is regulated by glutathione, which is a key player in 

various physiological processes such as shielding against oxidative stress, transporting amino acids 

and synthesizing biomacromolecules such as DNA and proteins. Glutathione can exist either in its 

oxidized disulfide form or its reduced thiol form (GSH), with the latter being more dominant within 

the cytosol.773 While GSH exists in the micromolar concentration range outside the cytosol (Figure 

33), cytosolic concentrations range between one and eleven mM.773  This GSH concentration 

gradient ensures that nucleic acid payloads are strongly bound to polyplexes within the oxidizing 

extracellular environment.773 Interestingly, GSH concentration fluctuates widely within various 

cellular organelles, with the lysosomes and the endoplasmic reticulum offering more oxidative 

environments and the nucleus offering a more reducing environment than the cytosol. Disulfide 

chemistry is routinely used to impart bioreducible properties to polymeric vectors. Specifically, 

when thiol groups within GSH encounter disulfides within polyplexes, thiol-disulfide exchange 

reactions occur, resulting in new pairs of disulfide and thiol molecules (Figure 33).774 Research 

on bioreducible polyplexes has disproportionately focused on PAMAs, PEI, PLL, and PDMAEMA 

and expanding the scope of disulfide chemistry to other cationic polymers may prove to be 

interesting.  
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Figure 33. While bioreducible polyplexes are stable in the extracellular environment where 

glutathione concentration is low (2.8 µM), they undergo rapid degradation within the reducing 

environment of the cytosol through thiol-disulfide exchanges, which results in nucleic acid 

unpackaging. Reprinted with permission from ref.775 Copyright 2012 American Chemical Society.  

Thiol-disulfide exchange is inherently biomimetic since these reactions are critical in 

protein folding, enzymatic activity, and metabolic processes. There are several advantages in 

employing disulfide chemistry: (1) it is orthogonal to other bioconjugation schemes, allowing the 

incorporation of several other chemical moieties (targeting ligands, pH-responsiveness, PEG etc.), 

resulting in multifunctional dual-responsive polyplexes. (2) Covalent bonds are formed in a 

reversible manner under physiological conditions. Since the reaction kinetics are swift (half-life 

of 2 hours in the cytosol), polyplex disassembly and payload unpackaging proceed rapidly. (3) 

Since GSH is a weak acid, free thiols are unavailable even under slightly acidic conditions, 

effectively inhibiting the reaction in non-cytosolic environments. Apart from being highly pH-

specific, the reaction rate can be decelerated by using sterically hindered disulfides,776 and 

accelerated by using highly charged disulfides. Notwithstanding the numerous advantages of 

disulfide chemistry, several groups have explored the use of diselenide bonds777 instead of 

disulfide bonds since the former are more labile and can be cleaved more readily.  A recent paper778 

explored the use of zinc(II) coordinative modules to transform low molecular weight PEI from a 
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weakly binding inefficient vehicle into a bioreducible vector that could transfect challenging cell 

types efficiently.   

We note that disulfide chemistry has become almost ubiquitous in recently published reports 

on polymeric gene delivery and redirect readers to some excellent in-depth reviews on synthetic 

methodologies.773,775,779 We must caution readers that although disulfide exchange is a universally 

deployed synthetic strategy, mechanistic studies on the exact role of bioreducible functionalities 

are rare.780 Oupicky and coworkers have addressed this knowledge gap by probing the mechanisms 

through which bioreducible polyplexes outperform non-bioreducible structures. In an interesting 

report, they discovered that variations in GSH concentration can modulate the efficacy of reducible 

polyplexes. Importantly, they observed payload-specific effects, with improved transfection of 

mRNA polyplexes when bioreducible functionalities are incorporated, but no clear benefit for 

pDNA, oligonucleotides, and siRNA payloads.781  In a similar study, they varied the degree of 

disulfide incorporation within PAMAs and noted that although disulfide-rich polymers promoted 

DNA transfection levels by enhancing membrane uptake; there was no difference in the 

experimentally determined intracellular DNA release rates between reducible and non-reducible 

formulations.782 Oupicky and Mao employed atomic force microscopy to capture the 

depolymerization process through which DNA payloads were released by bioreducible 

polyamidoamines.783  Wagner and coworkers synthesized sequence-controlled lipo-oligomers with 

a controlled placement of redox-responsive functionalities and showed that reducible polyplexes 

showed more efficient gene silencing than their non-reducing counterparts.774 Wagner’s group also 

developed a PLL-PEG polymer that incorporated an endosmolytic peptide and covalently 

conjugated this polymer to siRNA via disulfide bonds, ensuring that payload disassembly occurred 

only when both heparin and glutathione were present.784 Oupicky and coworkers also developed 

similar conjugated polyplexes, wherein thiol-functional siRNA and a polymeric inhibitor 

(Plerixafor) of the chemokine receptor type 4 were coupled.785 Narain and coworkers prepared 

galactose-based hyper- branched polymers by incorporating a disulfide-based monomer and 

observed that bioreducible polyplexes achieved epidermal growth factor receptor silencing that 

was twice as high of Lipofectamine.786 The combination of fluorination with bioreducibility has 

also proven to be an effective strategy for imparting serum stability as well as cytosolic 

delivery.787–789 In these studies, cationic polymers were conjugated to fluorocarbon chains, 

facilitating the assembly of micelles with a fluorinated core and a polycationic corona. Subsequent 
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DNA condensation was accompanied by increased size and extremely high DNA binding affinities 

even at N/P ratios as low as one.788 In addition to lowered toxicity, these micelles were able to 

achieve almost 90% gene silencing in vivo due to the incorporation of bioreducible linkages, in 

contrast to the 30% silencing achieved by non-fluorinated and non-reducible equivalents.787 

Reversible shielding and PEG-shedding can be accomplished by engineering block copolymers 

incorporating a PEG block as well as cationic polymers linked through disulfide bonds.790,791  

While both stably and reversibly shielded polyplexes exhibited more than 80% cell viability and 

were demonstrated to be colloidal stable in ionic strengths as high as 150 mM, reversibly shielded 

polyplexes exhibited 28 times higher pDNA transfection efficacy as compared to stably shielded 

controls. Collectively, this work shows how glutathione-triggered degradation has been combined 

with other design elements such as hydrophobicity and PEGylation to improve polyplex properties. 

Future work should focus on systematic variation of not only the degree of incorporation of 

disulfide bonds, but also the  spatial organization of bioreducible functionalities within the polymer  

in order to probe the relationship between DNA release rates and transgene expression.  

In summary, we have briefly outlined some synthetic pathways for introducing pH-responsive, 

light-responsive, and redox-responsive functionalities within polyplexes. Inspired by examples 

from drug delivery, many researchers have creatively combined multiple chemical functionalities 

to generate dual/multistimuli-responsive polyplexes.792,793 These design approaches exploit the 

coexistence of multiple triggers within the physiological environment (e.g., pH and redox gradients 

are both present within tumors) to further improve delivery performance and circumvent biological 

barriers. While we do not discuss dual/multistimuli-responsive polyplexes here, we redirect the 

reader to some recent examples in the gene delivery literature.729,794–803 Interestingly, many of these 

studies apply dual/multistimuli-responsive polyplexes to co-deliver dual payloads consisting of 

drugs and nucleic acids, especially for treating drug-resistant cancers. We believe that these 

multifunctional design approaches will be more widely applied in the future, further driving the 

evolution of polyplexes from static unresponsive materials to intelligent, versatile, and adaptive 

actuators. 
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4 ENGINEERING MULTIFUNCTIONAL POLYPLEXES THROUGH CHEMICAL 

MODIFICATIONS 

4.1 Synthetic strategies 

The previous examples so far have highlighted polymer structures that inherently possess 

functionalities to bind, encapsulate and deliver nucleic acids. However, there have also been many 

recent synthetic strategies wherein these polymers have been chemically modified to improve their 

gene delivery function and circumvent the obstacles that plague many nonviral delivery vehicles 

such as cell targeting, improved colloidal stability, immune system circumvention and efficient 

cargo release.46,804–807 Mauri27 and Blasco804 succinctly discuss the methods in which polymers can 

be functionalized, which include: ester activation to form amides (e.g., through N-

hydroxysuccinimide or pentafluorophenyl ester activation), click chemistry (copper-catalyzed or 

copper-free strain-promoted azide-alkyne cycloadditions, CuAAC/SPAAC), thiol chemistry 

(disulfide exchanges or thiol-ene/-yne), Diels–Alder chemistry, pH-responsive linkages (e.g., 

imines, oximes, hydrazones, acetals), ring-opening reactions (epoxides, aziridines, azlactones), 

multicomponent reactions and host-guest interactions (Figure 34). Each of these chemical 

modifications serve a specific purpose such as increasing the stability of the polyplexes, 

attachment of targeting groups for improved cellular recognition, or environmentally responsive 

elements (e.g., pH, redox, thermal) to improve endosomal escape or unpackaging of the 

cargo.  Additionally, these methods of engineering multifunctional polymers can involve post-

polymerization functionalization via reactive polymer intermediates, telechelic polymers via chain 

transfer agents or initiators, incorporation of noncovalent affinity interactions or host-guest 

chemistry.  Reactive polymer intermediates are either derived from natural sources or synthesized 

synthetically via free radical polymerization, ATRP, RAFT polymerization, or peptide 

chemistry.807  Each of these methods and their current state-of-the-art for polymer functionalization 

are discussed below. 
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Figure 34. Scheme of main polymer functionalization techniques.  Polymers can be functionalized 

through reactive monomers, end group modifications, or cross-linking. 

4.2 Ester Activation 

Ester activation is a nearly ubiquitous strategy that is used to functionalize polymers and 

nanogels for a panoply of uses including gene delivery.27,805,808  This strategy has gained 

momentum in the polymer community since not only are activated esters stable toward radical 

polymerization, activated (meth)acrylates are also a facile route to post-polymerization 

functionalized poly(meth)acrylates and can give rise to a vast library of polymers with diverse side 

chains not available with conventional (meth)acrylate monomers.809  Early applications of post-

polymerization modifications for therapeutic gene delivery systems that incorporate functional 

monomers via activated esters involved poly(N-methacryloxysuccinimide). First synthesized by 

Ferruti and coworkers in 1972,810  these reactive electrophilic species enable facile nucleophilic 

substitution with primary or secondary acyclo- or cycloaliphatic amines, generating a series of 

chemically diverse derivatives capable of binding DNA for gene delivery. Early advancements in 
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this field have also been reported by the Muller group, who synthesized poly(N-

methacryloxysuccinimide methacrylate) (PNHSMA) and  circumvented the autopolymerization 

propensity of these monomers.  They subsequently successfully conjugated the anticancer drug 

doxorubicin to the pendant side-chains.811  Since then, Wong and coworkers have synthesized a 

library of functional polymers from PNHSMA that vary in their pendant groups (both cationic and 

hydrophobic) and molecular weight owing to the applicability of this chemistry.812,813  This library 

enabled rapid optimization of polymer characteristics for DNA binding and cytotoxicity.  As such, 

these polymers were subsequently evaluated for gene delivery efficacy.  They found the imidazole-

conjugated species showed the highest levels of transfection efficiency and had minimal 

cytotoxicological activity.  Alternatively, the Cheng lab has used the idea of activated ester and 

sulfonate conjugation to synthesize fluorinated poly(propylenimine) (PPI) dendrimers, which 

showed extremely high transfection efficacy (>90 %) to both HeLa and HEK293 cells at N/P ratios 

as low as 1.5.416,814  Other examples of this specific functionalization strategy include 

functionalizing: PEI and PLL with targeting moieties,45 chitosan for cell targeting,815–818 

endosomal escape,819 and polyplex stabilization.820–822 

Alternatively, pentafluorophenyl (PFP) esters have become the other common method of 

activating esters for functionalizing polymers. First introduced in 1973,823 PFP esters did not gain 

much traction as a tool for polymer functionalization until 2005, when the Théato group 

synthesized a PFP-modified poly(meth)acrylates.824  A distinct advantage of using these activated 

esters was exemplified by Klok and coworkers, where they show functionalization of linear 

pentafluorophenyl acrylate (PFPA) polymers with a series of cationic amines/ammonium salts, 

amino acids, sulfonates, and ethylene glycol proceeded smoothly and were thus able to generate a 

library of polymers with identical degrees of polymerization yet structurally diverse.825 This library 

was shown to lack substantial toxicity towards EaHy 926 human endothelial cells owing to the 

utility of this post-polymerization modification.  This strategy has also been adopted by other 

polymer labs to rapidly generate polymer libraries.826  A similar concept was done by Duong and 

coworkers, wherein they synthesized micelles that contained a PFPA block, which was used to 

crosslink the polymers with a diamine, and conjugated with a fluorescein isothiocyanate (FITC) 

labeling block via disulfide linkages that can then monitor the internalization of the micelles.827 In 

a different application, the Zentel lab used pentafluorophenyl methacrylate (PFPMA) monomers 

to synthesize a series of PPFPMA-b-PEGMEMA block polymers that were crosslinked by 
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nucleophilic bis-addition of spermine to produce hydrogels for siRNA delivery.828–831  These 

hydrogels formed stable complexes that were successful in gene silencing via the delivery of 

siRNA, however discovered only the smaller nanoparticles (40 nm in diameter) were able to 

produce gene silencing.  Other select examples of this chemistry are listed in Table 1. 

4.3 Copper-Catalyzed Azide–Alkyne Cycloadditions (CuAAC) 

Polymers that are used for gene delivery often are composed of chemically diverse moieties 

used for various functions such as nucleotide complexation, cellular internalization/targeting, or 

endosomal escape.  These charged, chemically complex molecules can often limit the chemistry 

that can be used to conjugate sensitive biomolecules to them.  Pioneered by the labs of Rostovtsev, 

Sharpless, and Meldal,832,833 copper-catalyzed azide–alkyne Huisgen cycloaddition (commonly 

referred to as “click chemistry”) has been a substantial breakthrough in the field of chemistry and 

chemical biology, as it can easily couple biologically relevant molecules together in a biorthogonal 

fashion.  Both copper-catalyzed azide-alkyne click chemistry (CuAAC) and copper-free strain-

promoted click chemistry (SPAAC) are highly lucrative for their high yields, great functional 

group tolerance of substrates, and simple reaction conditions.  Novel advancements in this field 

have provided a panoply of biomacromolecules related to gene therapy such as synthetic 

oligonucleotides, polymer nanocomposites, cell engineering and drug delivery.806,834–837  Although 

many researchers have now utilized this chemistry as a tool to synthesize nonviral gene delivery 

vehicles such as linear polymers,627 dendrimers,838 and liposomes,839 its use in derivatizing 

polymers will be discussed here. 

Table 1. Select examples of chemical modifications to polymers either through functional 

monomers, functional backbones or telechelic modifications (indicated by “topology”).  Each 

listed example includes the polymer name, delivered cargo and the general purpose of including 

these modifications in their scaffolds. 

Chemical 
Modification 

Polymer Topology Cargo Purpose(s) Refs. 

Activated 
Esters 

Fluorinated PPI Reactive Monomers DNA Improved Transfection 
Efficiency 

Reduced Cytotoxicity 

416,814 

Chitosan + Folate Functionalized 
Backbone 

DNA Improved Transfection 
Efficiency 

Reduced Cytotoxicity 

818 

Chitosan + Imidazole Functionalized 
Backbone 

siRNA Cell Targeting 816 

Chitosan + Stearic acid Functionalized 
Backbone 

DNA Cell Targeting 822 
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Chitosan + poly(propyl 
acrylic acid) 

Functionalized 
Backbone 

DNA Improved Transfection 
Efficiency 

Reduced Cytotoxicity 

819 

Chitosan + PEG Functionalized 
Backbone 

DNA Improved Transfection 
Efficiency 

Reduced Cytotoxicity 

820 

Chitosan + Lactobionic 
acid 

Functionalized 
Backbone 

DNA Cell Targeting 815 

Poly(alkyl amines) from 
Poly(MAS) 

Reactive Monomers DNA Improved Transfection 
Efficiency 

Reduced Cytotoxicity 

812 

Peptide-PLL Functionalized 
Backbone 

DNA Cell Targeting 840 

PEI-PEG-peptide Functionalized 
Backbone 

DNA Cell Targeting 841  
PEI + PEG-NLS Functionalized 

Backbone 
DNA Cargo Release   

Cell Internalization   
Improved Complexation 

803 

Poly(NHSA-co-N-
vinylpyrrolidone) 

Reactive Monomers DNA Oligos Improved Complexation 842,843 

PPFPMA‐b‐
PEGMEMA Nanogels 

Reactive Monomers siRNA Cell Targeting 
Cargo Release 

Reduced Toxicity 

828–831 

PEG-b-P[Asp(DET)] + 
Cholesterol 

Telechelic Backbone DNA Cell Targeting   
Cargo Release   

Improved Complexation 

844,845 

Functionalized PEI Reactive Monomers DNA Cell Targeting   
Cargo Release   

Reduced Toxicity 

846 

P(HPMA-r-APMA-b-
DMAPMA) 

Reactive Monomers siRNA Cell Targeting   
Improved Complexation 

847 

Poly[DMAEMA-b-
(DMAEMA-r-nBMA-r-

acrylic acid)] 

Telechelic Backbone siRNA Cell Targeting   
Improved Complexation 

848 

PEG-b-P(VBC-co-
PFPA) 

Reactive Monomers Dye Codelivery Cell Targeting   
Theranostics 

827 

CuAAC P(HEMA-co-HEMA-
PPA) + PDMAEMA-N3 

Reactive Monomers DNA Reduced toxicity   
Improved Complexation 

438 

Trehalose/CD/ 
Glycofect 

Click Polymerization DNA/siRNA Reduced toxicity   
Improved Complexation 

849 

CD-OEI Click Polymerization DNA Reduced toxicity   
Improved Complexation 

627,850 

PDMAEMA 
“sunflowers” 

Click Polymerization DNA Reduced toxicity   
Improved Complexation 

851,852  
P[AzEMA-b-
DMAEMA-b-

(DMAEMA-co-nBMA-
co-PrAA)] Micelles + 

Mannose 

Reactive Monomers DNA Cell Targeting   
Reduced toxicity 

853,854 

CD-OEI Reactive Monomers DNA Improved Transfection 
Efficiency 

855 

PAA-RGD/PEG-RGD 
Hydrogels 

Telechelic Backbone DNA Reduced toxicity 856 

γ-(4-
propargyloxybenzyl)-L-
glutamic acid based N-

carboxyanhydride 

Reactive Monomers DNA Cell Penetration   
Improved Transfection 

Efficiency 

857 

PLGA-PEGMA-Folate Telechelic Backbones DNA Cell Targeting   
Cargo Release   

Reduced Toxicity 

858 

PHEMA, PDMAEMA Reactive Monomers DNA Cell Internalization   
Reduced Toxicity 

438 

PHPMA + 
Carbohydrates 

Telechelic Backbone siRNA Cell Targeting 859 

Cross-linked PEI Functionalized 
Backbone 

DNA Cargo Release   
Reduced Toxicity 

860 

Poly(lactide-co-
TMCC)-g-PEG micelles 

Telechelic Backbone Antibody/siRN
A 

Theranostics   
Cargo Release 

861 
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Ketalized PEG + 
Galactose 

Reactive Monomers DNA Cargo Release   
Cell Targeting   

Endosomal Escape 

862 

TAPP Star-polypeptide Reactive Monomers DNA Endosomal Escape 863 
Fluorinated 

Poly(Glutamate) 
Reactive Monomers siRNA Cargo Release   

Cell Internalization 
864 

PLA-g-PEG + Peptide Reactive Monomers, 
Telechelic Backbone 

Dye Theranostics 
Cell Internalization 

865 

Disulfides PLL-linked protein Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

866,867 

PLL-linked peptide Functionalized, 
Telechelic Backbone 

DNA Cargo Release 
Cell Targeting 

868 

PEG-PLL Micelles Telechelic Backbone DNA Cargo Release 
Endosomal Escape 

367,368,869 

PLL-linked antibody Functionalized, 
Telechelic Backbone 

DNA Cargo Release 
Cell Targeting 

870 

PLL Functionalized 
Backbone 

DNA Cell Penetration 
Reduced Toxicity 

871 

Cross-linked PEI Functionalized 
Backbone 

DNA Cargo Release 
Reduced Toxicity 

860 

Cross-linked PEI Functionalized 
Backbone 

DNA Cargo Release 
Reduced Toxicity 

872,873 

Disulfide-linked siRNA 
+ PEI 

Telechelic Backbone siRNA Cargo Release 
Endosomal Escape 

874 

PEI-linked siRNA Functionalized 
Backbone 

siRNA Cargo Release 
Endosomal Escape 

875 

PEI-PEG-linked peptide Functionalized, 
Telechelic Backbone 

DNA Cargo Release 
Endosomal Escape 

791,876–878 
 

Cross-linked PEI + 
peptide 

Functionalized 
Backbone 

miRNA Cell Targeting 
Cargo Release 

Endosomal Escape 

879 

Disulfide-linked PEG-
PLA-PEI Micelles 

Functionalized 
Backbone 

miRNA Cargo Release 
Endosomal Escape 

880 

Disulfide linked PEI-
siRNA 

Functionalized 
Backbone 

siRNA Cell Penetration 
Cargo Release 

Endosomal Escape 

881 

Ab-linked PEG-PEI Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

882 

VIPER-Melittin Reactive Monomers DNA Endosomal Escape 
Cargo Release 

732,883 

Cross-linked 
poly(amido amines) 

Telechelic backbone DNA Improved Transfection 
Efficiency 

Reduced Toxicity 

884–887 

Cross-linked 
poly(amido 

ethylenimines) 

Functionalized 
Backbone 

siRNA Cargo Release 
Endosomal Escape 

888,889 

PGMA-lipoic acid Functionalized 
Backbone 

ssDNA/DOX Cargo Release 
Cell Targeting 

Co-delivery 

890 

Poly(GMA-lactide) 
Nanogels 

Reactive Monomers DNA/siRNA Cell Penetration 
Cargo Release 

Endosomal Escape 

891 

Disulfide-linked PCL-
PDMA 

Functionalized 
Backbone 

ssDNA/DOX Cargo Release 
Cell Targeting 

Co-delivery 

668 

Disulfide-linked PCL-b-
poly((GMA- 

tetraethylenepentamine)
-st-OEGMA)) 

Functionalized 
Backbone 

DNA Endosomal Escape 
Cargo Release 

892 

Disulfide-linked PAsp-
siRNA 

Reactive Monomers siRNA Cargo Release 
Endosomal Escape 

893 

Folate-PAsp-PEI-
Cysteine 

Telechelic Backbone RNA Cargo Release 
Cell Targeting 

894 

Cross-linked 
PDMAEMA 

Telechelic Backbone DNA Cargo Release 
Reduced Toxicity 

895 

PEG-b-PDMAEMA 
star copolymers 

Reactive Monomers siRNA Cell Internalization 430 
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Improved Transfection 
Efficiency 

Disulfide-linked PEG-
siRNA 

Telechelic Backbone siRNA Cargo Release 
Endosomal Escape 

896 

Disulfide-linked PEG-
siRNA 

Functional Backbone siRNA Improved Transfection 
Efficiency 

Reduced Toxicity 

897–900 

PPEGA-siRNA 
conjugates 

Telechelic Backbone siRNA Cargo Release 
Cell Targeting 

901 

Poly(cystamine 
bisacrylamide-

diaminohexane) + 
peptide 

Functionalized 
Backbone 

siRNA Cargo Release 
Endosomal Escape 

902 

HPMA Reactive Monomers DNA Oligos Cell Internalization 903 
Poly(GlcNAc 

methacrylate)-siRNA 
conjugates 

Telechelic Backbone siRNA Improved Complexation 904 

Gelatin-SH + 
Polymerized siRNA 

Reactive Monomers siRNA Cargo Release 
Cell Targeting 

Reduced Toxicity 

905 

HA Reactive Monomers siRNA Cargo Release 
Cell Targeting 

Reduced Toxicity 

906 

Thiol–Ene Gal-peptide-PLL Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

868 

PEG-PEI Functionalized/Telechel
ic Backbone 

DNA Cargo Release 
Endosomal Escape 

907 

Chitosan-protein Telechelic Backbone DNA Cargo Release 
Reduced Toxicity 

908 

PEG-poly lactide + 
DEAET 

Reactive Monomers DNA Cargo Release 
Reduced Toxicity 
Endosomal Escape 

909,910 

PEG-lipopeptide Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

911 

PAMAM + PEI + PPI Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

912 

PAMAM-PEG + 
peptide 

Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

913–915 

PMMA, PNIPAM, 
PHPMA 

Reactive 
Monomers/Telechelic 

Backbone 

DNA Improved Complexation 916 

PLA + Alkyl Amines Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 

22,909 

PEI-PEG-peptide Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

917 

PEI-PEG-peptide Functionalized 
Backbone 

DNA Cargo Release 
Cell Targeting 

918 

Thiol–
Michael 

PEG-siRNA Micelles Telechelic Backbone siRNA Cargo Release 
Cell Targeting 

Endosomal Escape 

384,389 

Thiol–Yne Poly(Tyr-alkyne)-g-(2-
aminoethanethiol)2 

Reactive Monomers DNA Cell Penetration 
Reduced Toxicity 

919 

Poly(2-ethyl-2-
oxazoline) 

Functionalized 
Backbone 

DNA Improved Complexation 
Improved Transfection 

Efficiency 

920 

Thioether cationic lipids Functionalized 
Backbone 

DNA/siRNA Cell Internalization 
Improved Complexation 

921 

Diels–Alder PEG-b-poly(styrene-alt-
maleic anhydride) 

Nanogels 

Reactive Monomers DOX Cargo Release 922 

PEGMEMA-
poly(furfuryl 
methacrylate) 

Hydrogels 

Telechelic Backbone FITC-BSA Theranostics 
Cargo Release 

923 

PEG, PPG Telechelic Backbone Antibody Theranostics 
Cargo Release 

924 
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Poly(lactide-co-
TMCC)-g-PEG micelles 

Telechelic Backbone Antibody/siRN
A 

Theranostics 
Cargo Release 

861 

Acetals/Ketal
s 

Core-cross-linked star 
Nanogels 

Reactive Monomers DNA Endosomal Escape 925 

Polyketal + chloroquine Functionalized 
Backbone 

siRNA Endosomal Escape 926 

Ketalized poly(β-amino 
ester) 

Functionalized 
Backbone 

DNA/siRNA Endosomal Escape 927,928 

Dendritic polyglycerol-
PEI 

Functionalized 
Backbone 

siRNA Cargo Release 
Endosomal Escape 

929 

Ketalized PEG Reactive Monomers, 
Functionalized 

Backbone 

DNA Cargo Release 
Endosomal Escape 

Improved Transfection 
Efficiency 

930,931 

OEI + cross-linked 
acetals 

Functionalized 
Backbone 

DNA Cargo Release 
Endosomal Escape 

932,933 

P(nBMA-DMAEMA)-
PEG 

Reactive Monomers DNA Cargo Release 
Endosomal Escape 

934 

Ketalized PLL Reactive Monomers DNA Cargo Release 
Endosomal Escape 

935 

Ketalized PEG + 
Galactose 

Reactive Monomers DNA Cargo Release 
Cell Targeting 

Endosomal Escape 

862 

Ketalized PEI Reactive Monomers DNA/siRNA Endosomal Escape 936,937  
Hydrazones Poly(ethylenimine-b-

EAA-b-nBMA) + 
cationic hydrazone 

grafting 

Reactive Monomers siRNA Endosomal Escape 938 

Poly(acryloyl 
hydrazides) 

Reactive Monomers siRNA Endosomal Escape 939  
PEG-PEI-peptide + 

DOX 
Reactive Monomers DNA/DOX Endosomal Escape 940 

PEI-DOX, Folate Functionalized 
backbones, Telechelic 

backbones 

siRNA/DOX Dual Delivery 
Endosomal Escape 

941 

Oximes PEG-PHLG Star 
Polymer 

Reactive Monomers siRNA Endosomal Escape 942 

Ring 
Opening: 

(Epoxides) 

Poly(GMA-
oligoamine), 

poly(GMA-TEPA)-b-
POEGMA-peptide 

Reactive Monomers, 
Telechelic backbones 

DNA Cell Targeting 443,943 

PEG-P[Asp(DET)] + 
Ca/PO4 nanoparticles 

Reactive Monomers siRNA Endosomal Escape 
Reduced Toxicity 

Cargo Release 

944 

Poly(lactones) Reactive Monomers siRNA Improved Complexation 
Improved Transfection 

Efficiency 

945 

Epoxide-derived 
nanogels 

Reactive Monomers DNA Imaging 
Theranostics 

946 

Poly(GMA)-g-DMEA/ 
DMBA/FITC 

Reactive Monomers DNA/Dye Theranostics 
Improved Complexation 

947 

PGMA Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 

423 

CD-conjugated PGMA Reactive Monomers DNA Theranostics 
Improved Transfection 

Efficiency 

948 

Poly(AEA-b-styrene) 
Anionic Nanorods 

Reactive Monomers, 
Telechelic Backbones 

siRNA Theranostics 
Improved Transfection 

Efficiency 

949 

Disulfide-linked Silica 
nanoparticles-PGMA 

Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 

950 

Functionalized PGMA Reactive Monomers, 
Telechelic Backbones 

DNA Reduced Toxicity 
Improved Complexation 
Improved Transfection 

Efficiency 

951–959 
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PGMA-based 
Glycopolymers 

Reactive Monomers siRNA Reduced Toxicity 
Improved Complexation 
Improved Transfection 

Efficiency 

960 

Pullulan-based PGMA Reactive Monomers DNA/lncRNA Reduced Toxicity 
Improved Complexation 
Improved Transfection 

Efficiency 
MRI Imaging 

961,962 

PCL-PGMA Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 

963 

Aminated PGMA-g-CD 
+ Gd3+ 

Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 
MRI Function 

964,965 
 

BIP-terminated PGMA Reactive Monomers DNA/CPT Gene/Drug Co-delivery 966 
PLGA + PLLA Reactive Monomers DNA/DOX Gene/Drug Co-delivery 967 

 
POSS-derived stars + 
PDMAEMA/PMPD 

Star polymers DNA/DOX Gene/Drug Co-delivery 
Cell Targeting 

Reduced Toxicity 

968,969 

PEG-PEI, peptide Star polymers DNA Cell Targeting 
Reduced Toxicity 

970 

Ring 
Opening: 

(Azlactones) 

Functionalized PVDMA Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency Cargo Release 

971–975 

Ring 
Opening: 

(Thiolactones
) 

Cationic 
polymer/lipidoid library 

Reactive Monomers DNA Reduced Toxicity 
Improved Complexation 
Improved Transfection 

Efficiency 

976,977 

Host-Guest: 
Chemistry 

PDMAEMA-b-
P(DMAEMA-r-BMA-
r-PAA) + biotin/avidin 

micelles 

Telechelic Backbone siRNA Cell Internalization 
Improved Transfection 

Efficiency 

978 

Dextran-spermine + β-
galactosylated 

cucurbituril 

Reactive Monomers DNA Cell Targeting 
Reduced Toxicity 

979 

Hyperbranched 
polyglycerol + β-CD 

library 

Telechelic Backbone DNA Cell Targeting 
Reduced Toxicity 

980 

β-CD + polycations Telechelic Backbone DNA Cell Targeting 
Reduced Toxicity 

525 

PAMAM + β-CD-PEI Telechelic Backbone N/A Improved Biodistribution 
Cell Targeting 

Reduced Toxicity 

981 

PGMA + β-CD Telechelic Backbone N/A Improved Complexation 
Improved Transfection 

Efficiency 

955 

PEG-adamantyl + β-
CD-MPC 

Telechelic Backbone DNA Cell Targeting 
Reduced Toxicity 

982 

PGMA-adamantyl + β-
CD amine conjugates 

Reactive Monomers DNA Reduced Toxicity 
Improved Complexation 
Improved Transfection 

Efficiency 

983–985 

Hyperbranched PGMA 
+ β-CD 

Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 

986,987 

PEI + β-CD Functionalized 
Backbone 

DNA/DOX Gene/Drug Co-delivery 988 

PEI + β-CD Functionalized 
Backbone 

shRNA/PTX Gene/Drug Co-delivery 989 

PEG-β-CD + 
ferrocenecarboxaldehyd

e-PEI-β-CD 

Telechelic Backbone DNA Cellular internalization 
Endosomal Escape 

Cargo Release 

990 

β-CD-EDI + adamantyl-
CPT 

Functionalized 
Backbone 

siRNA/CPT Gene/Drug Co-delivery 991 
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Silica-adamantyl + 
PGMA-β-CD 

Functionalized 
Backbone 

DNA/DOX Gene/Drug Co-delivery 992 

Aminated PGMA-g-β-
CD + Gd3+ 

Reactive Monomers DNA Improved Complexation 
Improved Transfection 

Efficiency 
MRI Function 

964,965 

PDMA star polymer + 
β-CD 

Functionalized 
Backbone 

DNA/DOTA-
Bd 

MRI Imaging/Gene Delivery 993 

Adamantyl-PEG-
transferrin + β-CD 

Functionalized 
Backbone 

siRNA Cellular internalization 
Cell targeting 

Reduced toxicity 

113,118,120,994

–996 

The landscape of chemical scaffolds employing CuAAC strategies stretches far and wide 

as many labs throughout the decade have used this technique to improve the biochemical properties 

of their delivery vehicles.997  CuAAC has been used to attach targeting moieties to cationic 

polymers (such as the ubiquitous PEI and PLL scaffolds), which has been reviewed 

previously.45,998  This strategy has also been used to crosslink hydrogels to form networks used for 

both drug and gene delivery.856,999,1000  There are also multiple examples of unique incorporations 

of this chemistry to synthesize polymers for nonviral gene delivery.  The Hennink lab synthesized 

a copolymer of poly(hydroxyethyl methacrylate-co-hydroxyethyl methacrylate propargyl alcohol) 

through ATRP, with a carbonate functionalized terminal alkyne, and grafted to this a terminally-

functionalized PDMAEMA azide.438  These brush-like polymers were then evaluated for their 

ability to transfect primate kidney fibroblasts (COS-7), and shown to improve efficiency in the 

presence of INF-7, a fusogenic peptide derived from the influenza virus, when compared to linear 

PDMAEMA and PEI.  Similarly, Gao and coworkers have made analogously constructed brushes 

via CuAAC with exceedingly high grafting density (1.34 sidechains per backbone carbon 

atom).1001  However, their utility as gene delivery vehicles has not been reported.  Reineke and 

coworkers have developed a set linear polymers synthesized by CuAAC employing a trehalose or 

cyclodextrin (CD) diazide monomers with a oligoamine monomer equipped with terminal 

alkynes.627,850,1002  The carbohydrate fixtures on the polymer served to improve aqueous solubility 

and biocompatibility, whereas the oligoamines could then complex the DNA payload.  Indeed, 

these oligoamine-carbohydrate copolymers showed lowered cytotoxicity and improved 

transfection efficiency to HeLa and H9C2(2-1) cells when compared to Jet-PEI.  The Pun lab used 

CuAAC to synthesize a PDMAEMA polymer with a “sunflower” macromolecular structure, along 

with similar comb-like polymers.852 This was achieved by cyclizing a poly(2-hydroxyethyl 

methacrylate) PHEMA functionalized with a both terminal azide and propargyl ester via CuAAC 

followed by further tailoring the macrocyclic PHEMA sunflower with DMAEMA to afford the 

“petals”.  These polymers were shown to display greater buffering capacity, strong DNA binding 
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ability, and effective mRNA and DNA transfection efficiency compared to similar non-cyclized 

polymers.851,883 Yin and coworkers have developed a unique star-shaped helical polypeptide 

anchored to 5,10,15,20-tetrakis-(4-aminophenyl) porphyrin (TAPP) which is functionalized with 

a cationic guanidyl side chain via CuAAC.863 These polymers were then complexed with DNA 

cargo and utilized for transfection studies. The incorporation of TAPP into this polymer not only 

enables multivalent cationic guanidinium side chains per polymer for increased cellular uptake, 

but also the inherent properties of TAPP as a photosensitizer enabled spaciotemporal control of 

nearly complete endosomal escape upon irradiation with light (661 nm) and consequently led to 

improved cellular transfection efficiency in HeLa, B16F10, and RAW 264.7 cells. 

CuAAC and other biorthogonal chemistries can be used as powerful tools to decorate 

micellar structures with small molecules for enhanced cell-specific targeting groups. One common 

concern in using this chemistry is the use of copper(I) in these reactions which can lead to 

undesired cytotoxicity due to residual copper content.1003 Although SPAAC is a great alternative 

to circumvent this problem, the cyclooctynes used in this chemistry can be expensive or difficult 

to synthesize.  The Giorgio lab has made polymeric micelles out of triblock polymers wherein the 

end group is decorated with an azide handle used to link alkyne-functionalized mannose targeting 

moieties to deliver siRNA to murine macrophages.853 Interestingly, they have also directly 

addressed these cytotoxicological concerns by rigorously studying the CuAAC-mediated 

conjugation efficiency and residual copper content of their micelles.854 They found an optimal 

window of conjugation efficiency which balances both transfection efficiency and cytotoxicity.  

This was measured primarily by the concentration of copper sulfate used during the click reaction, 

as copper sulfate concentrations between 0.25 – 0.75 mM showed reduced cytotoxicity compared 

to higher (1 mM) and lower (0.1 mM) concentrations. For their azide functionalized micelles, if 

azides are inadequately conjugated with mannose, there would not only be minimal cell 

recognition but the exposed unreacted azides themselves caused cytotoxicity. Additionally, using 

excess copper (1 mM) to fully functionalize these micelles results in appreciable copper related 

cytotoxicity. This study does not discourage CuAAC, but rather vehemently argues that reaction 

optimization should be of paramount importance for in vivo applications.  
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4.4 Thiol Chemistry 

Thiol chemistry, which includes the hydrothiolation of alkene/alkyne bonds, nucleophilic 

Michael addition, disulfide exchanges, and thiolactone modifications have been staples in the field 

of bio-active materials and polymer chemistry for several years, and has been reviewed 

extensively.805,1004–1007  Their ubiquity for these purposes is primarily due to the inherent benefits 

associated with these reactions such as high yields, rapid reaction rates, robust reagents insensitive 

to oxygen or water, and minimal side products. However, some of the benefits – such as high 

reactivity – can be simultaneously disadvantageous as thiols are prone to react via radical or base 

catalyzed processes under mild conditions with many types of substrates. This challenge requires 

knowing the specific purpose and functional groups required for the construction of the polymers 

of interest and applications thereof.  These thiol–ene click reactions have attracted much attention 

in the gene delivery field in the synthesis of peptide–polymer conjugates due to the high yields 

and fast rates of reaction, which can be applied to targeting delivery systems.1008  The most 

common thiol–ene conjugation reaction is the thiol–maleimide “click” reaction, as it has been 

shown to be a very efficient and facile method to conjugate large biomolecules together.1009  This 

reaction has been use to couple targeting biomolecules to cationic polymers to formulate 

multifunctional polyplexes.  For example, Lu et al. conjugated both a maleimide-terminal PEG 

and maleimide-terminal bombesin peptide designed to target the neuromedin B receptor of tumor 

cells  to their synthetic 1-aminoethyl iminobis[N-(oleicylcysteinylhistinyl-1-aminoethyl) 

propionamide]  multifunctional carrier that showed enhanced siRNA delivery in mice.911  The 

Jiang lab introduces a bacterial-derived peptide to PLL polymers in order to facilitate blood brain 

barrier penetration for enhanced DNA delivery to gliomas using the same thiol-maleimide 

chemistry.915,917  Using the same chemistry, the Wagner lab has made extensive libraries of 

polymer-targeting moiety conjugates that exhibit 10- to 100-fold more efficient gene delivery than 

their nonfunctionalized counterparts918 as well as catalogue various other chemistries that 

conjugate targeting moieties to polymers.45  In another application of thiol–maleimide chemistry, 

Talvitie and coworkers functionalized chitosan-derived nanoparticles decorated with maleimides 

with a TrkB binding peptide for a two- to four-fold increase in successful pDNA delivery to murine 

macrophages compared to polymers functionalized with a control peptide.908  Using a similar thiol 

Michael addition chemistry, Kataoka and coworkers directly linked lactose to siRNA for RNAi-

mediated gene editing to synthesize pH a responsive conjugate that can release the siRNA after 
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endocytosis allowing for rapid gene silencing of luciferase acitivity.384,389  In an interesting 

application of bis-maleimide crosslinkers, the Kim lab directly linked both sense siRNA and 

antisense siRNA, forming stable and efficient multimeric polyelectrolyte complexes that exhibited 

a near complete gene silencing effect of their siRNA complex.874 

A key characteristic of introducing thiols to polymers for functionalization is not only for 

their utility as nucleophiles, but as highlighted previously, their ability to form covalent and 

bioreducible disulfide bridges that can crosslink polymers to form hydrogels or attach functional 

handles for controlled release of cargo.  Several well-characterized polymeric scaffolds used for 

gene delivery have been modified with disulfide bonds such as poly(amido amines),722,884–886,888 

PLLs,367,368,868–870,1010 PEIs,860,872,889,907 and PDMAEMA.895  The propensity of a polyplex to 

deliver DNA to cells based on the network of disulfide linkages was examined by the Goepferich 

group wherein the transfection efficiency of their PEI-based siRNA delivery system is affected by 

the degree of PEI branching; not only does increasing the branching of PEI improve cellular 

uptake, but increasing the disulfide bridges also prompts a careful balance between the two 

parameters for efficient gene delivery.873  Indeed, Nam et al. used thiolated PEIs as nanogels for 

successful siRNA delivery.881  Ko and coworkers synthesized a redox-sensitive diblock copolymer 

for co-delivery of doxorubicin and single stranded DNA (ssDNA).930 The two blocks of this 

polymer were linked via disulfide bonds, and the assembled polyplex with doxorubicin and ssDNA 

was transfected with HeLa cells, showing high efficacy of DNA and drug delivery.  Many other 

examples are presented in Table 1. 

The Xu lab introduced α-lipoic acid, a naturally occurring antioxidant, to ethylene diamine-

functionalized PGMA polymers to form a bioreducible nanogel with a disulfide core from the α-

lipoic acid, which upon cellular internalization, successfully released the siRNA cargo for gene 

silencing, and showed a three-fold increase in eGFP-positive HepG2 cells compared to the 

unfunctionalized PGMA polymers.891  Zhu et al. designed triblock copolymer micelles, wherein 

the three blocks – PEG, PLA, and PEI – were each linked via disulfide bonds and reinforced with 

hydrogen bonds.880  These micelles showed improved efficiency of cellular uptake of miRNA 

cargo for potential gastric cancer therapy.   Both the Kataoka and Park groups have also used 

polyacrylates and PEG-derived polymers decorated with sulfides to directly tether – through 

disulfide bonds (cleavable linkage) or thiol-maleimide coupling (non-cleavable linkage) – siRNA 

for controlled release.896,1011  The Kim lab uses both bioreducible disulfide linkages and thiol-
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maleimide coupling chemistry to build thiolated branched PEI networks that are conjugated to 

peptides for tumor targeting via thiol–maleimide coupling, as well as reduceable once endocytosed 

to release the DNA efficiently.791,876–879  Overall, these functionalized PEI-based polymers showed 

improved transfection efficiency and uptake compared to their unfunctionalized counterparts. 

Thiol-alkyne chemistry has been briefly explored in the field of gene delivery, as the Cheng 

lab used it to “click” 2-aminoethane thiol to a polyester which was a propargyl-functionalized 

tyrosine mimic.919  These polymers showed excellent gene delivery properties, and could be a 

novel non-nucleophilic method to incorporate cationic amines into polymers whose backbones are 

sensitive to nucleophiles.  Cook and coworkers synthesized a small library of hyperbranched 

poly(ethylenimine-co-2-ethyl-2-oxazoline) copolymers using propargyl tosylate as the initiator 

and potassium ethyl xanthate as the nucleophilic end-capping agent.920 Aminolysis of the xanthate 

group followed by subsequent photopolymerization provided the hyperbranched thiol–yne 

functionalization.  The abundance of amine groups on the hyperbranched PEI derivatives 

synthesized through this route showed improved buffering capacity compared to commercial 

PEI.  Furthermore, these polymers have improved transfection efficiencies and were found to be 

less toxic, which emphasized the critical role of polymer architecture on gene deliverability.  Other 

applications of thiol–yne chemistry can be found in the design of hydrogels, but their utility for 

gene delivery has not been explored.1012 

4.5 Diels–Alder reaction 

The Diels–Alder reaction has been an integral part of polymer functionalization for 

multiple purposes such as polymer-drug conjugates, nanomaterial assembly, attachment of 

targeting moieties, and hydrogel synthesis.1013,1014  Akin to disulfides, these reactions are 

reversible, albeit thermally.  Therefore, the design and implementation of these functionalities can 

provide another crosslinking/de-crosslinking platform orthogonal to pH or redox-responsive 

linkers.  This technology has been used for both drug and protein delivery via hydrogels 

crosslinked via the Diels–Alder reaction.922–924  However, there are few examples in the literature 

that explore the utility of Diels–Alder chemistry as it relates specifically to polymer 

functionalization in gene delivery.  Brust and coworkers successfully attached DNA to silica-

coated gold nanoparticles via the Diels–Alder reaction by attaching a maleimide group to the end 

of a siloxane and reacting this to one of two different dienes linked to the phosphate group of an 
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oligonucleotide (synthesized directly from a modified phosphoramidite and subjected to 

automated DNA synthesis).1015  The Shoichet group both directly linked siRNA oligonucleotides 

to both poly(lactide-co-2-methyl-2-carboxytrimethylene carbonate)-g-PEG cationic polymer via 

CuAAC, and to trastuzumab, a monoclonal antibody, via a maleimide/furan Diels–Alder 

coupling.861  These structures showed improved gene silencing and toxicity when compared to 

commercial transfection reagents. The Hayes lab used the thermal degradability of a retro-Diels–

Alder reaction to release a tethered RNA maleimide from both furan and pyrrole-based linkages 

to silver nanoparticles.1016  This system can then be applied to promote osteogenesis in human 

adipose stem cells by the precise temporal photothermal release of siRNA using the retro-Diels–

Alder system.1017 

4.6 Schiff Bases and Ketals 

Schiff base chemistry, including imine and oxime linkages, allow for degradable polymers 

due to the instability of the hemiaminal intermediate generated under acidic aqueous 

conditions.  These modifications can be tailored to the specific aim of the polymer, such as pH-

dependent release of cargo or hydrolytically stable linkages.  Many polymers that are 

functionalized with these linkages for gene delivery are pH-responsive hydrogels used to release 

their cargo upon lysosomal or endosomal acidification post-endocytosis.808,1018  These oxime or 

imine-linked hydrogels have been used as both drug and gene delivery vehicles and will be 

discussed below with extra selected examples depicted in Table 1.925,1019–1021 

Similarly, another example of chemically reactive species are hydrazide-functionalized 

polymers, which can readily react with aldehydes to form the corresponding acyl hydrazones, and 

are sufficiently stable under most physiologically relevant conditions.939  Montenegro and 

coworkers have recently reported the efficient functionalization of poly(acryloyl hydrazide) with 

a cationic aldehyde or a hydrophobic, aliphatic aldehyde and screened their ability to deliver 

plasmid DNA, siRNA and mRNA to HeLa and HEK293 cell lines.939,1022  Lin and coworkers also 

used these hydrazone linkers to make comb-like polymers for siRNA delivery.938  These polymers 

contain a pH-sensitive ethyl acrylic acid block, hydrophobic butyl or hexyl methacrylate block, 

and finally either an N-acryloxysuccinimide or β-benzyl-L-aspartate N-carboxyanhydride block 

that can be used as a handle to fine tune the grafting density of the cationic block.  These comb-
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like polymers showed enhanced gene silencing when complexed to siRNA compared to 

commercial transfection reagents.  

 Dong and coworkers developed a dual deliverable polyplex of both doxorubicin and 

siRNA to cancer cells by designing a complex assembly of folate-conjugated PEI, doxorubicin-

conjugated PEI via hydrazine linkages and siRNA.941  Both the siRNA and doxorubicin were able 

to be released selectively upon internalization leading to improved gene silencing, and giving 

credence to systems with tandem drug and gene delivery capabilities.  Similarly, the Zhang lab 

made tandem gene/drug delivery vehicles through functionalizing a tumor-targeting PEI-based 

polymer with doxorubicin via imine linkages and complexing it to DNA for a synergistic 

codelivery complex.940 

Additionally, some alternative pH-responsive functional groups which do not include 

Schiff base chemistry are acetal/ketals, which can either be directly incorporated into the polymer 

backbone or be found as functionalized side chain(s).  For example, the Murthy lab demonstrated 

that complexing siRNA with 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), chloroquine, 

and a polyketal enhanced delivery efficiency of these nanoparticles to macrophages, as they 

efficiently released cargo under acidification compared to vehicles without the polyketal as evident 

by increased fluorescence of cells treated with the polyketal.926  The Kwon group used linearized 

PEI with acetal linked side chains to improve both DNA and siRNA delivery to NIH 3T3 cells, 

showing improved internalization via confocal microscopy and quantified by approximately four-

fold silencing of eGFP.927,936,937  Guk and coworkers have also made linear PEI polymers 

incorporating acetals into the backbone to enhance the delivery of siRNA to 

macrophages.928  These polyplexes resulted in higher RNAi efficiency when compared to linear 

PEI without acetals incorporated into the polymer, due to limited cellular unpackaging of these 

polyplexes without the acetals.  Dimde and coworkers have also developed a dual-functional 

dendritic polyglycerol hydrogel complete with benzacetal groups, terminal amines and linked to 

PEI-modified acrylamide via thiol-Michael addition.929  These acetal-linked polymers also showed 

controlled intracellular release of the siRNA and cause silencing of the GFP expression in HeLa 

cells.  
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4.7 Ring Opening Chemistry 

Ring-opening reactions, although omnipresent in polymer chemistry, have only recently 

been adopted for macromolecular modification applied to gene delivery.  These reactions are 

thermodynamically driven by ring strain relief facilitated by nucleophilic attack of an alcohol, 

thiol, or amine.  Three-membered heterocyclic rings (e.g., epoxides and aziridines) offer 

considerable strain and are often used for these polymer functionalizations.1023  Like activated 

esters, these functional groups serve as the foundation for post-polymerization modifications.  

GMA remains the most common monomer for the synthesis of epoxide-containing, 

biologically applicable polymers.1024  Leroux and coworkers synthesized PGMA linear and star-

shape polymers that were functionalized with different amines which gave rise to a mini-library of 

polymers that bound DNA oligonucleotides well and had improved transfection efficiency 

compared to linear PEI.953,1025  Gao went on to make a PGMA-derived multifunctional polymer 

conjugated with cyclodextrin (CD), ethylenediamine, and guanidine side chains that provided a 

system that was termed “aggregation-induced emission” to trace whether or not the polyplex 

formed successfully released the DNA cargo.948  In a similar study, the Liu lab reported the 

synthesis of PGMA-derived polymers functionalized with primary and secondary amines which 

showed improved transfection efficiency and a remarkable reduction in cytotoxicity compared to 

commercial PEIs.952,1026  Although an analogous post-polymerization functionalization strategy 

involving aziridine ring-opening has many examples in the literature, there have not been any 

substantial work done when applied to developing unique polymers for gene delivery.1027 

However, a different prime example of these monomer-based reactive precursors subject 

to post-polymerization modifications include azlactone-functionalized polymers.  A 

comprehensive review of these polymers has been reported previously.972  First utilized by 

Heilmann and coworkers in 1984, poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be 

functionalized by primary amines via a nucleophilic ring-opening reaction affording a chemically 

stable amide linkage.1028  Lynn and coworkers initially used azlactone-derived polymers to develop 

layer-by-layer assemblies,1029 and then subsequently utilized this chemistry to make PVDMA-

based polymers for gene delivery by incorporating both primary and tertiary amine functionalities 

into their polymers to make a library of twelve cationic polymers.971  They discovered improved 
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gene delivery was achieved when both shorter carbon chain lengths of pendant amine groups and 

tertiary amines were used.   

4.8 Host-Guest Chemistry 

Supramolecular assemblies – formed by noncovalent interactions such as electrostatics, 

hydrogen binding, pi-pi stacking, or Van der Waals interactions – have attracted interest in their 

biomedical applications.1030–1032 The propensity for these structures to self-assemble due to the 

association strength of these structures provides researchers a foundation to exploit these 

properties and design nanoparticles for gene delivery.1032  For example, the interaction between β-

cyclodextrin (β-CD) and adamantane (Ad) is a well-documented host-guest interaction.955  What 

is unique about this interaction is β-CD possesses a single hydrophobic core – whereby other 

hydrophobic moieties (such as Ad) can noncovalently interact – as well as a hydrophilic outer 

surface.  This property imparts unique amphiphilicity to β-CD and thus these structures can form 

inclusion complexes with other various hydrophobic guest molecules such as Ad. 

The Davis lab developed polycationic oligomer libraries containing β-CD in the backbone 

to delivery siRNA.113,118,994,995  These nanoparticles were shown to be less than 100 nm in size, and 

in order to circumvent hepatic clearance in vivo, Ad-PEG and Ad-PEG-transferrin conjugates were 

appended to the resultant polymer via host-guest interactions.  This improved gene delivery 

efficiency via tumor specific targeting in both mouse and cynomolgus primate models and helped 

avoid the rapid renal clearance of these particles.  Additionally, the prime candidate from these 

experiments (termed CALAA-01) showed enough promise to be taken to clinical trials using a 

siRNA sequence that blocks expression of the M2 subunit of ribonucleotide reductase.  This is the 

first example of these types of nonviral delivery vehicles taken to clinical trials, giving credence 

to its ability to condense siRNA, its low cytotoxicological profile, and tumor-specific targeting.  

The Xu lab functionalized PGMA polymers with an adamantyl amine, followed by 

complexing these polymers with an ethyleneamine-functionalized PGMA(PGEA)-β-CD polymer, 

creating a branched cationic polymer capable of complexing DNA exceedingly well.983 This 

system exhibited better complexation ability than either of the individual polymers themselves, 

and reduced cytotoxicity.  They also examined how the topologies of this host-guest chemistry 

affects gene delivery efficiency, by synthesizing polymers (Adamantyl-modified α-CD (Ad-CD) 

or α-CD- grafted PGEA (CD-PGEA)) with varying amounts of β-CD-cored CD-PGEAs and 
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discovered the α-CD-Ad polymers showed the highest gene delivery ability.  All these polymers 

showed reduced cytotoxicity compared to commercial transfection reagents as well. 

Another example of host-guest chemistry used in this way is by the Tang lab whereby they 

affixed PEI polymers with Ad/β-CD pairs to synthesize intriguing co-delivery vehicles for cancer 

treatment.988,989  This theranostic approach, where an adamantyl prodrug of paclitaxel (PTX) was 

conjugated to a β-CD-conjugated PEI-based polymer, enabled simultaneous release of short 

hairpin RNAs (shRNAs) and prodrug activation of PTX to provide a synergistic anticancer effect 

in vivo.  Their system downregulated the expression of surviving and Bcl-2 genes while also 

providing targeted release of PTX.  This synergy proved more effective than either a single dose 

of PTX or shRNA delivery for ovarian cancer therapy separately.  The same lab also developed 

co-delivery systems for both 5-fluoro-2′-deoxyuridine/DNA and doxorubicin/DNA using Ad/β-

CD host-guest chemistry with PEI polymers.1033,1034  Additionally, Zhao and coworkers developed 

a system for the codelivery of camptothecin (a topoisomerase inhibitor used for the treatment of 

cancer) and siRNA for cancer therapy.991  Again, a prodrug of camptothecin containing an 

adamantyl group and disulfide linker was conjugated to a β-CD-amino dendrimer to both deliver 

camptothecin and bind to siRNA, followed by release of the siRNA and glutathione-mediated 

disulfide reduction to release camptothecin.  These amphiphilic structures formed vesicles in 

aqueous solution, which then provided improved delivery for camptothecin (an otherwise poorly 

aqueous soluble drug) and simultaneous intracellular imaging as fluorescence was able to be 

detected upon camptothecin release.  Similarly, Xu and coworkers co-delivered doxorubicin and 

DNA using coated silica-based nanoparticles.992  The silica nanoparticles were functionalized with 

Ad and subsequently conjugated to a β-CD core tailored with two ethanolamine functionalized 

PGMA arms.  This system showed more evidence of a synergistic gene/drug co-delivery treatment 

option for cancer.  

Another example of host-guest chemistry used to develop polymeric gene delivery systems 

is the work done by Palanca-Wessels and coworkers, where they synthesized a biotinylated 

cationic block terpolymer composed of DMAEMA, nBMA and propylacrylic acid, and bound it 

to a streptavidin conjugated monoclonal antibody directed against CD22 for gene 

silencing.978  Taking complete advantage of the exceedingly tight binding of biotin to streptavidin 

(Kd ~ 10-14 mol/L), the pH-responsive cationic block can not only complex siRNA but easily and 

selectively associate with the antibody to specifically target DoHH2 cells, a transformed follicular 
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lymphoma cell line.  Additionally, HeLa-R cells expressing CD22 were shown to be transduced 

more effectively than CD-22 negative HeLa-R cells, giving credence to the stability of the biotin-

streptavidin linkage.  Other examples of host-guest chemistry are also depicted in Table 1. 

4.9 Polymeric Topology: Telechelic Backbones 

In addition to functional monomers that can act as chemical anchors for functionalization, 

there are known examples of functional macromolecules that can be conjugated post-

polymerization and applied as gene delivery vehicles.  Among the several different classes of 

functional polymers, end-functionalized polymers possess many important structural elements as 

vehicles for gene delivery.  Telechelic polymers are end-functionalized polymers that bear reactive 

end groups at both chain ends, and can either be homotelechelic (same functionality at both chain-

ends) or heterotelechelic (differing functionality).1035  These types of polymers necessitate well-

controlled polymerization techniques, such as ATRP or RAFT, to ensure high chain-end fidelity 

for functionalization.  Telechelic polymers can be used as cross-linkers, chain extenders, and 

precursors for block/graft copolymers.  Although these polymer types have been used for a broad 

range of applications such as drug delivery, peptide/protein conjugation, and imaging/sensing, and 

have been reviewed previously,1035,1036 their utility as gene delivery vehicles will be explored 

below and relevant polymers displaying this architecture are detailed in the “topology” column of 

Table 1. 

As discussed previously, functionalizing polymers via activating esters has been long 

established and it permits modifications to both the end groups or the polymer backbone. The 

Kataoka group synthesized a heterotelechelic polymer functionalized on one end with a cholesteryl 

steroid via carbodiimide-mediated amidation and a cyclic targeting peptide on the other.844,845  This 

enabled both improved colloidal stability of the complexes as well as cell-specific tumor targeting 

for the genetic material.  The Lewis lab synthesized a folic acid end-functionalized PMPC-b-

PDMAEMA diblock polymer for cell-specific folic acid receptor targeting.1037,1038  This 

multifunctional charged polyelectrolyte with a single folic acid end group linked via an amide 

linkage was found to be colloidally stable and achieved significant transfection efficiency to cells 

lines overexpressing folate receptors (MCF-7 and KB cells).1038 Similarly, Benoit and coworkers 

synthesized a macro-CTA end-functionalized with folic acid for tumor targeting.848 This enabled 

synthesis of cell-specific PDMAEMA-b-P(DMAEMA-co-BMA-co-propylacrylic acid) diblock 
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copolymers for efficient siRNA delivery, and provided a useful synthetic strategy to apply this 

CTA for other polymers as well. Saeed and coworkers also synthesized a similar system with a 

homotelechelic folic acid functionality, with an additional disulfide linkage incorporated in the 

backbone that tethered the hydrophobic poly(lactic-co-glycolic acid) (PLGA) and hydrophilic 

PEGMA blocks.858 Xu and coworkers successfully synthesized a heterotelechelic PHPMA 

homopolymer and attached a tetra-antennary mannose dendrimeric end group via pyridyl 

disulfide-mediated attachment, and a covalently linked thiol-modified siRNA oligonucleotide via 

disulfide bonds, which would release the siRNA cargo upon intracellular exposure to 

glutathione.859 Homo- or heterotelechelic polymers are also building blocks for the development 

of functional hydrogels. Networks formed with these can undergo decrosslinking via either Diels-

Alder chemistry,923 redox-responsive chemistry,881 or pH-responsive chemistry.856 Table 1 shows 

multiple examples of hydrogels and nanogels synthesized with chemoselective release of their 

nucleic acid cargo. These strategies for modifying hydrogels and nanogels were recently explored 

extensively in various reviews.27,1018  

From the diverse chemistry to functionalize polymers presented in this section, it is evident 

that each modification has been used to fulfill a certain biological purpose: aiding in endosomal 

escape, facilitating cargo release, cellular targeting, or improving polyplex stability. Although 

many of these reactions are robust, versatile, and possess both a broad substrate scope and a 

plethora of potential applications, a universal reaction for functionalizing all polymers to fulfill 

every biological need does not exist. While researchers can choose from several synthetic 

pathways when they impart functionalities to polymers, they are also bound by the limitations of 

each chemical method that is available. The constant innovation of efficient and bioorthogonal 

bioconjugation techniques will lead to exciting ways of functionalizing polymeric gene delivery 

vehicles that can be tailored  to meet precisely formulated therapeutic goals.  

5 POLYPLEX PHYSICAL PROPERTIES AND THEIR IMPACT 

Although chemical composition and polymer architecture are powerful design parameters that 

can direct polyplex fate, the impact of physical attributes such as size, shape, and charge density 

cannot be ignored.  Biointerfacial phenomena that govern whether polyplexes can cross biological 

barriers are extremely sensitive to physical aspects of polyplex design. In this section, we discuss 

the roles played by polyplex size distribution, morphology, and surface charge. We also briefly 
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mention recent studies demonstrating the efficacy of decationized or “neutral” polyplexes that 

question long-held assumptions about the necessity of a net positive surface charge. We then 

examine the effect of mechanical stimuli on transfection outcomes, and finalize this section 

describing common and novel physicochemical characterization techniques used to shed light into 

the polyplex formation process and the properties of the resulting polyplexes. 

5.1 Size  

Size has long been recognized as a critical design attribute in nonviral gene delivery,1039,1040 

as the biological interactions of engineered nanoparticles with its physiological milieu are highly 

sensitive to particle size distribution.1041 To navigate multiple extracellular and intracellular 

delivery barriers, we must pay attention to how polyplex size distribution influences biointerfacial 

interactions pertinent to in vivo as well as in vitro administration. At an organism level, size has 

been implicated in margination and other vascular transport phenomena,1042 biodistribution and 

pharmacokinetics,1042,1043 protein corona formation,507,1044 and subsequent interrogation by 

immune cells such as macrophages.1045 At the cellular level, there is strong evidence that 

membrane association, internalization via a variety of pathways, and finally intracellular 

trafficking events are all size-dependent.159 In this section we will first describe the size 

specifications targeted for different therapeutic applications, summarize synthetic strategies used 

to control polyplex size distribution, and finally summarize research focused on elucidating 

polyplex size effects on transfection efficiency, toxicity, and inter-organelle transport. 

Upon encountering the plasma membrane of targeted cells, moieties larger than 1 kDa are 

prevented from permeating through the membrane and are instead processed via endocytotic 

pathways.1046 Larger particles ranging from 500 nm to 5 microns in size are rapidly cleared via 

phagocytosis while those smaller than 200 nm typically elicit responses similar to those of viral 

vectors.1039 Whether these sub-200 nm nanoparticles undergo macropinocytosis, caveolar-

mediated or clathrin-dependent pathways is undoubtedly cell-type dependent, because the 

composition of anionic proteoglycans and lipid domains on the plasma membrane can play a 

significant role. However, if polyplexes are designed to avoid clathrin-dependent modes of cellular 

entry, instead seeking pathways exploiting lipid rafts, they stand a higher chance of mimicking 

viral voyages within the cell, bypassing endosomal acidification and lysosomal degradation, and 

directly handing over nucleic acid cargo to the endoplasmic reticulum.159 In this context, Hoekstra 
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and coworkers have described an elegant example of employing size as a lever of control to 

manipulate intracellular routing and promote specific organelle targeting.248 They concluded that 

clathrin-mediated pathways are preferred by nanoparticles smaller than 200 nm in diameter, 

whereas larger particles (up to 500 nm in diameter) were internalized predominantly via caveolar 

channels, allowing them to evade lysosomal processing. Using chemical inhibitors of endocytotic 

pathways,1047 they also observed prominent differences between lipoplexes and polyplexes, with 

the former almost exclusively being transported via clathrin pits and polyplexes adopting a 

combination of caveolar and clathrin-mediated routes.1048  

 

Figure 35. Schematic summarizing the impact of aspect ratio, morphology and particle size on 

preferential accumulation in various organs of therapeutic interest. Reprinted with permission from 

ref.1049 Copyright 2017 American Chemical Society. 

In addition to intracellular routing, polyplex size specifications must also take into account 

the wide-ranging size constraints presented by diverse biological barriers, especially when 

systemic administration and long circulation lifetimes are desired (Figure 35). For instance, while 

particles smaller than the renal membrane pores (6 nm) are rapidly cleared via the kidneys, 

particles larger than 200 nm will be quickly cleared from circulation via the spleen and other RES 

mechanisms.1039 Brain-targeted delivery requires passage through the tight junctions of the blood 

brain barrier through receptor-mediated transport, transcytosis, or through carrier-mediated 

transport since passive diffusion allows only lipophilic molecules smaller than 400 Da.1050 It is 

widely agreed that an inverse correlation exists between nanoparticle size1051 and blood-brain 

barrier transport, necessitating the design of ultra-small polyplexes that are functionalized with 

ligands such as glucose, transferrin, or synthetic peptides.390,1051,1052Another recent study 
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highlighted the difficulty of precise size control to cross the lung periciliary layer (20–40 nm) to 

deliver anti-sense oligonucleotides for lung cancer treatment.1053 Particles larger than 100 nm in 

diameter would be vulnerable to alveolar macrophage capture (particles) while excessively small 

particles would accumulate in the kidney. Therapeutics for cancer generally are said to exploit the 

enhanced permeability and retention (EPR) effect, wherein solid tumors are perfused by leaky 

vasculature and dysfunctional lymphatic vessels, allowing nanomedicines to accumulate 

selectively in cancerous tissues. This “passive” EPR-based targeting strategy has been a strong 

motivation for designing nanoparticles possessing sub-100 nm diameters, however a recent report 

by Chan and coworkers offers compelling evidence that the EPR concept is not wholly 

accurate.1054 Using 3D imaging of patient-derived models of cancer tissue, they discovered that 

gaps in cancerous vasculature are extremely rare and that active trans-endothelial pathways are the 

preferred mechanism for nanoparticles to extravasate into tumors. This could explain the 

discrepancy observed between nanoparticle size specifications for cancer therapy and the actual 

dimensions of vascular gaps; although leaky blood channels supplying tumors can range in size 

from 380-880 nm,  particles larger than 100 nm do not penetrate tumor tissue as effectively as sub-

100 nm particles do.1055,10561057 Further, the EPR effect is much more pronounced in mouse models, 

which possess much denser vasculature than humans.1058 As a result, EPR-based accumulation of 

nanocarriers in solid tumors may not be viable when translated from mouse studies to large 

animals. Andersen et al.1059 reported highly heterogeneous trends in accumulation of nanocarriers 

between tumors implanted in eleven dogs, suggesting that  patient-to-patient variability and the 

stage of tumor growth are critical variables.1060 Choi and coworkers detailed the size-dependence 

of the EPR effect by studying the trade-off between circulation lifetime and non-specific tissue 

uptake of nanoparticles of varying sizes in tumor-bearing mice.1061 Hepatic gene silencing is also 

size-sensitive, since Kupffer cells, parenchymal, and non-parenchymal cells within the liver 

selectively uptake particles of different size ranges upon intra-portal administration.1062 

The use of gold or other metallic nanoparticles as templates enables facile modulation of 

particle size, allowing for systematic examination of particle size effects. In addition to ease of 

fabrication, and tunability of size and shape, gold nanoparticles can be readily functionalized with 

thiol-based molecules containing cationic moieties allowing nucleic acid payloads such siRNA 

and mRNA to be incorporated. 1063–1066 Among PEI-decorated gold nanoparticles, the transfection 

efficiency was found to be much higher among sub-10 nm populations compared to sub-100 nm 
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particles, a difference that the authors attributed to endosomal escape efficiency displayed by 

ultrasmall gold nanovectors.1067 In contrast, Narain and coworkers systematically examined the 

effects of size distribution among three subsets of gold nanoparticles  conjugated to glycocationic 

polymers (10, 40, 100 nm). They discovered that intermediate sizes had the highest transfection 

efficiency and that the smallest particles bound too tightly to their DNA payloads, hindering 

cytosolic release.1068 They observed that although larger particles exhibited higher cell uptake, 

these uptake pathways were associated with significant cytotoxicity. Another study concluded that 

sub-10 nm particles alone could permeate nuclear pores to deliver ODN cargoes,1069 although other 

reports suggest that nuclear entry by the nanoparticle vehicle may not be required for effective 

nuclear entry of the payload. Gold nanoparticles are well-suited for studying the effects of carrier 

size on biodistribution since the gold content can be easily evaluated via inductively coupled 

plasma-mass spectrometry, without the need for fluorescent or radioactive labels. A recent study 

found that while larger particles (42.5 and 61.2 nm) accumulated mainly in the liver and the spleen, 

smaller particles (6.2 and 24.3 nm)  were broadly distributed all over the body, including 

therapeutically relevant organ targets such as the heart and the lung.1043 Silica nanoparticles are 

also attractive scaffolds for studying particle size effects since their diameters can be tuned by 

modulating process parameters during nanoprecipitation as well as via microfabrication.1042,1070 

Moreover, the incorporation of aminosilanes during silica nanosphere preparation as well as the 

large surface areas afforded by its mesoporous architecture1071 enables high DNA loading and 

control over charge density. It was discovered that as silica nanosphere diameter increases, DNA 

binding capacity is diminished even while cell uptake was improved many-fold (ostensibly due to 

the higher sedimentation velocity of larger particles). Due to this trade-off between uptake and 

DNA binding, nanospheres of intermediate diameters (330 nm) were identified as the best-

performing vectors.1072  

Sequence-defined cationic polypeptides have also been proven to form ultrasmall and 

monodisperse polyplexes (<10 nm), making them an effective vehicle for targeted tumoral 

delivery, especially with the addition folate tags.1073 Merely changing the sequence, composition, 

and degree of polymerization of the polypeptides allows the realization of different polyplex size 

regimes. In a study that focused on understanding the role played by peptide/pDNA complex size, 

although large complexes worked best during transfection, small complexes (400 nm) were 

internalized more efficiently.1074 Segura and coworkers have employed bovine serum albumin 
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(BSA) as the nanoparticle core, wherein native BSA molecules were functionalized with ATRP 

initiator groups, following which cationic PDMAEMA brushes were grafted from the BSA core 

via SI-ATRP.1075 Polyplex diameter was tuned by modifying the length of the PDMAEMA chains 

during ATRP, however no discernible size effects were found, possibly due to the narrow range of 

sizes accessed (5-15 nm). Nevertheless, this synthetic strategy can be applied to protein cores of 

various sizes and shapes to create polyplexes of diverse morphologies and size regimes.  

Unlike with inorganic nanoparticle cores and polypeptides, precisely controlling the size 

distributions of nucleic acid assemblies formed using synthetic polymers presents greater 

challenges. Multivalent polymer architectures such as dendrimers208 and star polymers1076,1077 rely 

on molecular weight modulation of polymeric arms to achieve desired size distributions.  Whereas 

in the case of linear polymers, the relationship between molecular weight and polyplex size may 

be non-monotonic due to differences in polymer-DNA binding strength.1078,1079 A common 

observation across these studies is that even though larger polyplexes may enjoy inherent 

advantages of higher settling velocities and enhanced cellular contact, smaller polyplexes 

internalize in a more efficient fashion and are able travel more rapidly through the crowded 

cytosolic environment to reach the nuclear periphery.251,1080 Polyplexes of intermediate size ranges 

are perhaps best positioned to balance cell uptake, payload release and intracellular dynamics.1081 

Although larger particles performed better in vitro, intermediate sized systems worked best in 

balancing circulation stability with cell uptake. Zentel and coworkers engineered nanogels 

constituted from well-defined cationic triblock polymeric micelles that were cross-linked to 

preserve their size and morphology even after siRNA complexation, allowing precise adjustment 

of nanogel size distributions to tune gene silencing outcomes.828–830 Using this platform, they 

demonstrated that size could be used to manipulate the intracellular polyplex distribution, with 

smaller nanogels found to evade endosomal capture at higher rates than their larger sized 

counterparts.  

Tuning self-assembly conditions as well as block copolymer compositions to generate 

micellar architectures of targeted size ranges would be a powerful way to resolve the trade-off 

between prolonged circulation and cellular uptake.662,1082,1083 However, the synthesis and 

processing of micelles with well-defined size distributions is not only experimentally challenging 

but also requires careful physical characterization. Although polymeric micelles are a promising 

platform for engineering size-controlled polyplexes, their excessive reliance on PEG blocks of 
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varying lengths and architectures to prevent undesired aggregation is problematic since PEG does 

not always guarantee colloidal stability. For instance, Reineke and coworkers reported that starting 

from a uniform population of PEGylated micelles,  micelleplexes formed by complexing micelles 

with ribonucleoproteins (RNPs) in water were severely aggregated and their diameters were found 

to be five times larger than those complexed in PBS.667 On the other hand, when pDNA payloads 

were used instead of RNPs, the same micelleplex delivery system formed well-defined populations 

with narrow size distributions in both PBS and in water,666 underscoring the numerous 

experimental subtleties inherent to the use of micelles as gene delivery vectors.  

We also draw attention to the creative applications of nanoparticulate systems in gene 

delivery, particularly nanocarriers engineered from inorganic materials such as gold and other 

metallic nanoparticles,1084,1085 silica-based nanoparticles,1086,1087 quantum dots,1088,1089 

recombinant proteins,1090,1091 carbon nanotubes,1089 as well as organic-inorganic hybrid 

systems.1092  These approaches allow us to directly control polyplex size by engineering particle 

cores of desired morphologies.  We redirect readers to more focused reviews summarizing these 

developments.86,1092–1094  While measuring polyplex size distributions, most researchers employ 

DLS by default, although these readings do not accurately represent the actual polyplex size 

distribution within serum-rich biological environments. Flow cytometry,1095 nanoparticle tracking 

analysis,1096 and Taylor dispersion analysis1097 could be incorporated into polyplex 

characterization workflows to complement DLS. Further, most studies focused on examining 

polyplex size effects tend to be observational in nature rather than deliberately designed. 

Thoroughly understanding the contribution of polyplex size to pharmacokinetic and toxicity 

profiles of gene therapeutics relies on adopting highly controlled polyplex formulation methods 

that enable us to “dial in” precise polyplex size polyplex size distributions. Examples of such 

approaches, such as microfluidics-assisted assembly and confined impingement jet mixing are 

discussed in Sections 6.4 and 6.5. Transitioning from “a posteriori” to “a priori” frameworks of 

studying polyplex size will lead to safer and more effective polymeric vehicles.  

5.2 Shape 

The recognition of particle shape as a key design parameter has been growing steadily in 

the biomaterials community, largely due to the recent spurt in fabrication methods being innovated 

to create complex non-spherical morphologies. The challenge inherent to accessing exotic non-
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spherical shapes is that spherical conformation is most energetically favorable to nanoparticles 

since it possesses the least surface area to volume ratio. Unlike with engineered nanoparticles, non-

spherical shapes are abundant in nature, with bacteria, viruses, and pollen employing particle 

geometry as a key design motif to accomplish their biological functions.  The fact that viral 

pathogens exist in a wide range of shapes, from spherical, worm-like, rods, and ellipsoids, is 

thought to be a contributing factor to tissue-specificity or viral tropism. Theoretical models of 

vascular transport often favor nanoparticles possessing non-spherical morphologies since the 

rolling or tumbling motions of high aspect ratio particles could align them with the blood flow, 

imparting favorable vascular transport characteristics and enhancing margination (Figure 

36).1098,1099 Long circulation times, immune evasion, biodistribution profiles that avoid first-pass 

organs such as the liver, kidneys, and spleen, and enhanced cellular uptake are some of the benefits 

of engineering nanoparticles with controlled geometries.1100–1107 While the role of nanoparticle 

shape in cell uptake,1108 organelle distribution, and in vivo transport has been extensively studied 

by the drug delivery community,1090,1091 particle shape and particle orientation at the time of 

endocytosis has largely been unexplored in polymeric gene delivery.1049,1109–1112 

 

Figure 36. Effect of particle shape on margination and hydrodynamics within blood vessels. The 

particle shape and anisotropy can also be exploited to enhance cellular targeting and uptake. 

Reprinted with permission from ref.1049 Copyright 2017 American Chemical Society.  
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Shape control of polyion complex micelles have been demonstrated in several studies. Mao 

and coworkers  assembled PEG-b-polyphosphoramidate (PPA) polymers with plasmid DNA 

payloads in solvents of varying polarity to achieve morphologies ranging from spherical to rings, 

flexible worms, and rigid rod-shaped micellar structures.1113 Subsequently, Mao’s group moved 

away from block copolymers to explore the roles of PEGylation length, and graft density in PPA-

g-PEG polymers to effect shape control.1114 Shape variation was achieved without resorting to 

organic solvents during micelleplex assembly and computation calculations aided in systematic 

exploration of design parameters of graft polymers such as charge density, PEGylation length and 

graft density. The “DNA compaction factor” summarized how the competition between PEG steric 

repulsion and electrostatically driven DNA condensation influenced morphology as well as 

transfection outcomes. PEGylation has been a convenient lever of control to engineer 

morphological transformation519 with cleavable PEG coronas mediating rapid changes in shape. 

While worm-like micelles had superior colloidal stability and longer circulation lifetimes, PEG 

shedding induced transformation to spherical micelles,1115 that exhibited superior transfection 

performance.1116 Modulating PEG brush density and length in multi-arm structures to vary 

“crowdedness” has been shown to control polyplex aspect ratios, and with higher PEG loadings 

promoting rod formation, and impart structural rigidity.1117 Other studies focused on optimizing 

polyplex aspect ratio through PEGylation control have pointed out that for aspherical polyplexes 

moderate aspect ratios must be employed, with cell uptake hindered when extremely elongated 

polyplexes were generated.1118 PEG-alternatives such as zwitterionic molecules446,1119 and poly(2-

ethyl-2-oxazoline)588 (Section 3.4) have also proven to be effective in obtaining polyplexes of 

desired aspect ratios. Brush polymers are highly versatile scaffolds for shape control of polyplexes 

since charge density, backbone lengths, arm lengths, and brush density can be independently 

controlled to yield rods and cylinders of varying aspect ratios and rigidities.176 

Since engineering non-spherical nanocomplex shapes through polymeric self-assembly 

processes is challenging, several researchers have turned instead to inorganic particle templates of 

varying morphologies. A modular approach combining gold,1120,1121 graphene,1122 carbon 

nanotubes,1123 silica,1124 or magnetite1125 nanoparticles possessing unique geometries such as 

peapods,1125 rods, or ellipsoids1124 with surface modification tools such as ATRP has generally been 

effective. For instance, nanostructured microrods were prepared by using filtration membrane 

pores as templates, and LbL coatings consisting of PEI vehicles and plasmid DNA cargo were 
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applied subsequently to enhance phagocytosis by alveolar macrophages.1126 When mesoporous 

rod-shaped silica particles were exposed to human serum and plasma, they not only acquired a 

much larger quantity of coated proteins than their spherical counterparts, but also displayed distinct 

shape-dependent adsorption patterns when the composition of the protein corona was analyzed.1127 

The Steinmetz group has developed a unique approach to accessing non-spherical morphologies, 

wherein plant viruses such as the Tobacco Mosaic Virus are PEGylated and used as delivery 

vehicles. Since the Tobacco Mosaic Virus can be engineered to be rod-shaped or spherical, they 

offer a means to systematic study the contribution of particle geometry on biodistribution and 

pharmacokinetic profiles.1128 Similarly, virus-mimetic “nanoberries” have exploited 

supramolecular assembly and aspect ratio engineering to recapitulate the pH-sensitive disassembly 

of viruses within host cells.1129 Desimone and coworkers have employed Particle Replication in 

Non-Wetting Templates to encapsulate siRNA within PLGA particles (80 × 320 nm in size, Figure 

37) with up to 50% encapsulation efficiency.1130 Subsequent to soft lithographic processing, these  

particles were coated with lipids and silenced genes associated with prostate cancer. The Desimone 

lab has also engineered bioreducible hydrogel carriers of siRNA of controlled morphologies1131 

using this templated particle fabrication method and has demonstrated protein particle templates 

for RNA replicon-based vaccination.1132  

 

Figure 37. (A) Scanning electron microscopy (SEM) and (B) TEM images of lipid-coated PLGA 

nanoparticles encapsulating siRNA. Atypical aspect ratios and rod-shaped complexes could be 
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achieved using soft lithography. Reprinted with permission from ref.1130 Copyright 2012 American 

Chemical Society. 

Similar to the diversity of viruses, nonviral gene delivery research must take polyplex 

shape into serious consideration; indeed, the development of non-spherical polyplexes that possess 

suitable nucleic acid condensation and delivery capabilities can dramatically transform 

transfection outcomes. In particular, polyplexes wherein sizes are jointly optimized with aspect 

ratios, promise to overcome multiple intracellular and extracellular barriers faced by spherical 

particles.1133  

5.3 Surface Charge 

The zeta potential is a commonly used estimate of polymer charge density and is typically 

calculated from electrophoretic mobility measurements in capillary cells, under the assumptions 

of Helmholtz-Smoluchowski model. In addition to the electrokinetic characteristics of the 

uncomplexed polymer, polyplex zeta potentials are also an important part of the characterization 

workflow and are usually studied as a function of charge ratios or N/P ratios. Electrokinetic 

characterization is motivated by three reasons: (1) In conjunction with gel migration assays, zeta 

potential values help researchers determine the optimal N/P ratio to achieve complete payload 

encapsulation and protection. (2) Polyplex zeta potential has frequently been touted as a strong 

predictor of transfection efficiency as well as cytotoxicity stemming from membrane disruption 

and rupture. (3) Polyplex colloidal stability, protein corona composition and complement 

activation are intricately linked to the charge density of the polymeric vectors. In this section we 

will discuss the modulation of zeta potential to optimize cellular uptake, whether high transfection 

can be achieved even at lowered charge densities, and charge-switchable polyplexes.  

Early studies pointed out the necessity of a net positive charge for polymers to condense 

nucleic acids into tightly packed toroidal structures, to prevent nuclease entry1134 and more 

importantly, mediate non-specific endocytosis by exploiting electrostatic attractions with the 

negatively charged cell membranes.1135 However, polyplexes possessing a positive zeta potential 

were neutralized through the adsorption of negatively charged proteins, explaining why 

transfection is frequently inhibited in serum-rich media.1136 Given the critical biophysical role 

played by polyplex charge within each mechanistic step of the nucleic acid delivery process, right 

from uptake to endosmolytic escape, several groups embarked on systematic experimental efforts 
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to delineate the effects of charge density and molecular architecture. Anderson and coworkers 

developed a library of nearly 500 PBAEs and concluded that the top performing polymers shared 

a common structural motif characterized by a high charge density.464 High surface charge was 

identified as pre-requisite for effective nucleic acid delivery in multiple studies,1137 spanning 

diverse cell types such as macrophages,1138 pulmonary epithelial cells,1139 and even in mouse 

xenograft models of cancer.1140 Instead of assuming a linear monotonic relationship between 

surface charge and transfection performance,  several groups adopted to a more nuanced approach 

to optimizing surface charge, recognizing that electrostatic interactions are influenced by polymer 

architecture11411142, molecular weight,1140 and environmental parameters such as solvent pH and 

counterion valency.1143 Architectural tuning of cationic polymers by adjusting the proximity 

between charged groups in complex multivalent architectures such as comb polymers, brushes, 

dendrimers and  hyperbranched polymers can have a profound impact on the charge density and 

rigidity of the polymeric vehicles even when identical cationic functional groups with the same 

pKa are utilized.454 A combined experimental and theoretical study of ionenes revealed that the 

complexation mechanism between the polymer and its payload is dictated by the interplay between 

molecular weight and charge density.1144 Statistical design of experiments (DoE) aided 

investigation of a library of poly(2-ethyl-2-oxazoline)/PEI copolymers revealed that the optimal 

combination of molecular weight and charge density was payload dependent and that the sweet 

spot was much narrower for RNA payloads compared to plasmid DNA.1145 Borrós and coworkers 

synthesized PBAE polymers incorporating different mixtures of oligopeptides of anionic/cationic 

charge residues with the objective of tuning polyplex zeta potential.1146 Surprisingly, they found 

that polyplex zeta potential did not follow the expected trend in accordance with the charge density 

of the cationic/anionic oligopeptides used; instead the charge borne by polyplex surfaces was 

shaped by the packing distribution of the polymers and the nature of cationic functional groups 

employed. Ultimately, zeta potential must be treated with caution as it is not a simple additive 

quantity that can be “dialed in” by  stoichiometrically balancing cationic and anionic moieties. It 

is an approximate global measurement of surface charge that does not capture the inherent 

heterogeneity of charge distributions and binding states.  While zeta potential measurements may 

be useful in comparing formulations from multiparametric libraries and deriving structure-activity 

correlations, they may not always be predictive of cellular interactions and transfection 

outcomes.1147 
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Several reports describe formulations that exhibited efficient transfection despite low 

charge densities and sometimes net negative zeta potential values, questioning the validity of the 

overly simplistic “positive surface potential” heuristic. Enhancing hydrophobic interactions 

between nucleic acids and polymers through the incorporation of lipophilic functional groups 

seems to be a common design strategy to increase the effective charge density.492 Incorporation of 

fluoroalkyl groups101,788 resulted in effective DNA condensation properties at N/P ratios as low as 

one, and micellization through the formation of hydrophobic core599,644,645 has generally been able 

to prolong colloidal stability even in high ionic strength environments, unlike electrostatically 

assembled polyplexes. Imparting hydrophobic modifications to  the polymer backbone,634,1148,1149 

end groups, or pendant chains,267,1150 have yielded polyplexes with extremely low charge densities, 

thereby resolving the toxicity-efficiency tradeoff. Architectural tailoring that result in multivalent 

topologies such as brushes can also eliminate the need to employ high charge densities and N/P 

ratios to engineer efficient polymeric vectors.1151 

While hydrophilic motifs such as PEG and zwitterionic functionalities are frequently 

incorporated to prolong circulation time and provide stealth properties, they inevitable lead to 

screening of positive charges,1152 possibly preventing electrostatically mediated non-specific 

endocytosis. Unlike neutral and negatively charged polyplexes, positively charged polyplexes are 

prone to the formation of a protein corona, which marks them out as targets for immune clearance. 

For highly specific cellular delivery, a highly positive surface potential can be detrimental since 

the protein corona may interfere with biorecognition processes driving targeted cellular uptake. 

Further, for intra-dermal and intro-muscular delivery routes, which are relevant to DNA vaccine 

delivery, cationic polyplexes tend to get sequestered or trapped by oppositely charged extracellular 

proteins instead of activating T-cells.1152 As described previously, several groups have engineered 

pH-responsive polyplexes that dynamically “shed” their hydrophilic stealth layer in tumoral 

environments where the extracellular pH is lower, thereby “unmasking” the positive charge and 

allowing polyplexes to enter tumor cells.1153–1156 Considerable synthetic ingenuity is involved in 

ensuring pH-dictated targeting of distinct cellular phenotypes (healthy vs cancerous). These 

systems have to be carefully engineered to narrow pH range, since the pH ranges from 7.4 in 

normal physiological environments to values ranging between 6.5-7.2 wherever tumoral acidosis 

is present.749 Additional strategies to reduce excess surface charge include the deliberate inclusion 
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of polyanions to  form ternary complexes and the decationization and cross-linking of polyplexes 

following electrostatically mediated DNA condensation.1157  

In the face of ambiguous experimental studies, simulation, and molecular modeling studies 

can help us arrive at a clear understanding of the role of charge density on nucleic acid compaction 

and release, interactions with serum proteins, cell membrane, and endosomal vesicles. Researchers 

also need to deploy a battery of characterization techniques to understand the chemical 

heterogeneity of polyplex surfaces in biological media and measuring charge distributions.1127 

5.3.1 Decationized polyplexes.  Polyplexes with a net positive charge tend to complex nucleic 

acids effectively and deliver them to cells in vitro with high efficiencies and yet they frequently 

underperform when used for in vivo applications.1158 Depending on their physicochemical 

characteristics, many polyplexes with positive charge display undesired biodistribution, high 

toxicity, poor serum stability, and may exhibit the inability to release the nucleic acid 

intracellularly. In this section we summarize a synthetic approach that allows for initial DNA 

complexation through positively charged polymers, but subsequently neutralizes this positive 

charge through the incorporation of degradable linkages and eventual loss of ionizable functional 
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groups. By rendering the polyplexes neutral after DNA compaction, the drawbacks of a net positive 

charge (Figure 38) can be circumvented while ensuring payload protection.  

 

Figure 38. Hennink et al. reported the synthesis of cross-linkable and decationizable PHDP -PEG 

polymeric vectors. Decationized polymer displayed improved biodistribution when compared to 

their cationic counterpart during in vivo experiments with systemic administration. Reprinted with 

permissions from refs. 1157,1159 Copyright 2013 Elsevier. Copyright 2014 Elsevier  

In 2013 Hennink et al.1157 reported a synthetic approach to prepare neutral polyplexes, by 

cleaving the positive pendant groups of the polycation used to complex pDNA after polyplex 

formation and crosslinking. This process results in the formation of either neutral polyplexes or 

polyplexes with slightly negative charge densities. For this goal, the authors employed N-[2-(2-

pyridyldithio)]ethyl methacrylamide (PDTEMA) to synthesize a PEG-b-P((HPMA-DMAE)-co-

P(PDTEMA)) terpolymer polycation. The HPMA-DMAE (carbonic acid 2-dimethylamino-ethyl 

ester 1-methyl- 2-(2-methacryloylamino)-ethyl ester) repeating units, contain tertiary amines (used 

for electrostatic complexation of DNA) linked to the polymer backbone via a carbonate ester group 
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suitable for cleaving via hydrolysis. The PDTEMA repeat units include pyridyldithio units that 

undergo efficient disulfide exchange under mild conditions, providing a mechanism for 

crosslinking the polyplexes prior to the decationization process.  

After decationization the polyplexes are stable in HEPES-buffered saline, and no release 

of DNA was observed in gel electrophoresis experiments. Exposing the decationized polyplexes 

to 1,4-dithiothreitol, a thiol reagent used to simulate the reductive intracellular environment, causes 

DNA release, which was not observed with the cationic polyplexes. The decationized polyplexes 

show a more than 50-fold lower cell-uptake into HeLa cells when compared to the cationic 

counterparts as well as to ExGen-500, a linear PEI control. The low non-specific cell-uptake of the 

decationized polyplexes provided an opportunity to combine the stealth properties of these 

polyplexes with targeting strategies to achieve cell-specific uptake. This concept was demonstrated 

by introducing folate targeting moieties into the decationized polyplexes by linking folic acid to 

the PEG macroinitiator prior to polymerization to display it on the polymer end groups.1160 Folate-

containing decationized polyplexes displayed higher cellular uptake (3-4 fold higher) in vitro in 

OVCAR-3 and HeLa cells, two cell lines that overexpress folate receptors, when compared to 

polyplexes that lack the folate targeting. It was also found that this trend in cell uptake was reversed 

in A549 cells, a folate receptor negative cell line. The folate-containing PEG-b-P(HPMA-DMAE)-

co-P(PDTEMA) terpolymer was also optimized to form stable decationized polyplexes with 

another payload type, siRNA.1161 Optimized polyplexes were developed through tailoring of the 

molar ratio of the PDTEMA crosslinkable units in the statistical cationic block as well as the 

chemistry of the dithiol crosslinker. Even at higher PDTEMA contents the siRNA polyplexes 

remain degradable in the presence of extra 1,4-dithiothreitol after decationization. Moreover, 

folate-containing decationized siRNA polyplexes displayed gene knockdown, even in the presence 

of serum, in Skov3-luc cells, a cell line where folate receptors are overexpressed. In vivo1159 studies 

in zebrafish models resulted in lower toxicity and teratogenicity when compared to cationic 

polyplexes. Fluorescent labeling of the decationized polyplexes revealed superior colloidal 

stability in plasma, longer circulation times, and higher tumor accumulation than their cationic 

counter parts.  

 Overall, decationization is a polymer design principle that could be strategically 

incorporated in therapeutic delivery vehicles, to prevent non-specific uptake and encourage 

specific cellular targeting.  
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5.4 Mechanical properties 

Cells are extremely sensitive to microenvironmental cues, particularly mechanical 

properties such as rigidity, elasticity, and compressibility. This is true of both cells cultured in lab 

settings as well as those in their native physiological niches. Mechanical cues from the 

environment are transduced into biochemical signals that have cascading effects on cell adhesion, 

migration, and differentiation. Therefore, mechanical properties of the cell culture substrate have 

long been a critical focus of the tissue engineering community but are severely under-investigated 

in the context of nonviral gene delivery.1162 Mooney and coworkers reported that cell proliferation 

and apoptosis were regulated by elastic modulus of the culture substrate, with stiffer substrates 

promoting both polyplex dissociation as well as transgene expression.1163 However these early 

studies performed in 2D cell culture formats, which do not accurately recapitulate the 

physiological environment. Segura and coworkers employed extracellular matrix-mimetic 3D 

hydrogels based on hyaluronic acid to study the interplay between adhesive ligand presentation 

and elastic modulus.1164 They tested hydrogels varying in compliance from soft to stiff and 

concluded that transgene expression can be modulated through mechanical manipulation of cell 

culture scaffolds. In contrast to earlier studies that favored high stiffness, they concluded that 

intermediate values of elastic modulus were optimal for maximizing transfection efficiency.1165 

This discrepancy is not unexpected since the regulation of endocytotic pathways by substrate 

mechanics was found to be a complex function of cell type, properties of the nanomaterial tested, 

and the time points chosen for measurements.1166 Indeed, a follow-up study1167 by Mooney’s 

research group found unlike with DNA payloads, siRNA delivery remained unaffected by changes 

in substrate modulus.  

Other studies compared 2D and 3D cell cultures during polyplex-mediated gene delivery 

and concluded that while endocytic pathways differed significantly, cytoskeletal dynamics, and 

molecular signals driving high transfection were quite similar.1168 Apart from engineering 

hydrogels to match the stiffness of different tissue types (e.g., bone (>109 Pa), or muscle (103–104 

Pa)) scaffold architecture and porosity can also be modified to enhance cell spreading, thereby 

promoting transfection.1169 Instead of employing polyplexes formulated from commercial PEI-

based reagents Yang et al. identified a biodegradable PBAE through systematic synthesis and 

screening, and tested hydrogel scaffolds varying in moduli from 2 to 175 kPa.1170 Hydrogels with 

moderate degrees of stiffness (28 kPa) demonstrated the best transfection performance when 
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employed in concert with the polymer lead structure. This study suggests that mechanical 

modulation of cell culture platforms must be accompanied by careful optimization of synthetic 

vector properties through polymer chemistry approaches. In general, the gap between tissue 

engineering platforms such as PEG and hyaluronic acid, and polymer synthetic tools must be 

bridged by co-development of the cellular microenvironment as well as the delivery vehicle to 

exploit synergies. Similarly, mechanoresponsive polyplexes can be engineered to sense 

mechanical contrasts between healthy tissue and diseased tissues and release their nucleic acids 

upon application of a mechanical trigger in vivo. These “smart” polyplexes will be enormously 

useful to induce production of therapeutic proteins or growth factors in conditions such as 

atherosclerosis where healthy arteries are supple and diseased arteries are stiff.1018  

Several avenues of research exist to combine particle cores of varying stiffness, using a 

vast palette of particle engineering tools at our disposal, and subsequently incorporating 

polycationic surface chemistries via surface-initiated polymerization. Orthogonal control over 

particle mechanics and chemical functionality would be a powerful step forward in understanding 

the interwoven effects of stiffness and chemically driven interactions between cells, nucleic acids, 

and vectors.  

Investigating the roles played by physical design parameters such as size, shape, charge, 

and mechanical stimulation is very important to progress in polymer-mediated nucleic acid 

delivery. Although these parameters have been shown to modulate organ distribution, membrane 

interactions, and cellular uptake, systematic exploration of the physical design space is lacking. 

Polymeric gene delivery must exploit advances in particle fabrication techniques to control 

physical properties and improve delivery outcomes to exploit the full tunable parameter space in 

this area.  

5.5 Physicochemical characterization of polyplexes and their formation 

Since physicochemical characteristics of polyplex formulations such as size, shape, and 

surface charge are influential in determining the fate of polymeric gene delivery vehicles, 

characterization techniques used to quantify these properties assume a vital role in polymer 

development. In addition, we note the importance of the molecular organization of polyplex 

assemblies, particularly polyplex composition, quantification of unbound polymers and nucleic 

acids, binding affinities, binding configurations, nucleic acid helicities within assemblies, and 
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other structural descriptors. In this sub-section, we draw attention to several physical and chemical 

analytical tools: NMR spectroscopy, isothermal calorimetry (ITC), surface plasmon resonance 

(SPR), Fourier-transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy 

(XPS), DLS, static light scattering (SLS),  small-angle X-ray scattering (SAXS), small-angle 

neutron scattering (SANS), TEM, turbidimetric titration, electrophoretic light scattering (ELS), 

circular dichroism spectroscopy (CD), ultracentrifugation (UCF), fluorescence correlation 

spectroscopy (FCS), and atomic force microscopy (AFM). 

Table 2, we briefly describe how these techniques improve our understanding of the 

solution properties of polymers and polyplexes, thermodynamics of nucleic acid-polymer binding, 

and the molecular understanding of polyplex architectures.  

Some of these techniques (such as DLS, NMR, and zeta potential measurements) have been 

developed as turnkey platforms that are inexpensive, facile, and highly accessible to non-experts. 

On the other hand, some other techniques (such as SAXS) requires considerable expertise during 

data acquisition and interpretation. Despite the analytical challenges involved, we posit that the 

mechanistic insights provided by these powerful methods are irreplaceable in identifying and 

understanding the intermolecular forces implicated in polyplex formation. We note that a few of 

these methods (such as SANS and cryoTEM) require dedicated infrastructure and deep analytical 

expertise, which emphasizes the importance of close collaborations between polymer chemists, 

characterization facilities, and biophysics experts. The development of cutting-edge 

physicochemical characterization tools provides fundamental insights on polymer-nucleic acid 

interactions, the uniformity and reproducibility in formulation, and ultimately provides 

mechanistic understanding that is essential for clinical translation. 

Table 2. Summary of methods used to measure physicochemical properties of polyplexes 
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Method Measurements Vector Cargo Purpose(s) Refs. 

NMR Changes in 
broadness and 

intensity of NMR 
signals (1H,19F, 31P 

13C-1H HSQC) 
upon 

complexation. 
Relaxation 

dynamics of 
polymers and 

DNA upon 
binding (CPMG-, 
DOSY- and PFG-

NMR) 
Polymer-nucleic 

acid spatial 
proximity 

(NOESY-NMR) 

Lactosylated-PEG-b-poly 
(silamine)-b-PDMAEMA 

pDNA Follow PIC complexation 369 

PEI pDNA Measure free and bound polycation 1171 
PEG-PAMAM dendrimer 20-mer 

DNA 
Study polymer/DNA binding, polyplex size and 

composition 
222 

PEG-PAMAM dendrimer 29-mer 
TAR-
RNA 

Study polymer/RNA binding, polyplex size and 
composition 

223 

Eu3+,Gd3+-chelating 
Oligoethyleneamines 

pDNA Proof-of-concept for developing polyplexes with 
intrinsic MRI detection 

1172 

Fluorinated PEI DNA Determine polymer stability 1173 
Phospholipids pDNA Self-assembly of phospholipids 1174 
Phospholipids siRNA Self-assembly phase (lamellar or hexagonal) 1175 
Phospholipids ODN ODN encapsulation efficacy 1176 

PEI- αCD, PEI- 
phenylboronic acid 

siRNA Confirm supramolecular assembly of delivery 
vehicle 

1177 
 

Mannose-CD and 
adamantane-PEI 

saRNA Confirm supramolecular assembly of delivery 
vehicle 

1178 

PEI-CD-Cholesterol 
micelle 

siRNA Determine drug in core of micelle with siRNA 
surrounding 

1179 

PEG-PAMAM dendrimer DNA Monitor binding between minor groove of DNA 
and dendrimer 

1180 

PAMAM siRNA Determine polyplex size 1181 
PEG-b-PDMAEMA-b-

PnBMA 
PDMAEMA 

pDNA Determine polyplex composition 666 

ITC Equilibrium 
binding constants. 
Thermodynamics 

of binding 
 

Branched-cationic 
tripeptides (CPPs) 

pDNA Compare binding thermodynamics between two 
CPPs 

1182 

Poly(glycoamidoamine) 
derivatives 

pDNA Role of hydroxyl groups and amide bond spacing 
in determining pDNA binding affinity. 

1183 

PEG-b-PGBA, PEG-b-PLL mRNA Determine effect of polymer rigidity on binding 1184 
Cationic liposomes pDNA Differentiate between exothermic  electrostatically 

driven and endothermic lipoplex rearrangement. 
1185 

PAMAM pDNA Effect of dendrimer generation on binding 1186 
DOTAP and derivatives pDNA Separated thermodynamics of protonation and 

binding 
1187 

PEI pDNA Determine equilibrium constants, stoichiometric 
number of binding and enthalpy 

1171 

Chitosan oligosaccharides siRNA Separation of ion-pairing and aggregation binding 
thermodynamics 

1188 

Agmatine- maltotriose-
PEG-OCH3 

dsDNA Thermodynamic dependence on complexation 
methods and N/P ratios 

1188 

PEG-AEMA stars dsDNA Determine stoichiometry for optimal nanoparticle 
formation 

1077 

Poly(glycoamidoamine) pDNA Detect different binding events: electrostatic 
complexation, aggregation, protonation-based 

1189 

Chitosan pDNA Effect of pH, buffer, and deacytalation of polymer 1190 
PAMAM siRNA Understand thermodynamics of polyplex 

assembly 
 

1191 
Chitosan siRNA 1192 

PAEMA, PMAG-b- 
PAEMA 

pDNA, 
DNA 

Effect of hydrophilic block on polyplex binding 1193 

Chitosan pDNA, 
DNA 

Effect of chitosan length on binding 1194 

SPR 
 

Binding of 
polymer to nucleic 

acids/proteins 

PAMAM dendrimers with 
folate and riboflavin 

targeting groups. 

dsDNA Effect of targeting moieties on polyplex formation 
and protein binding 

1195 

Acylated Chitosan 
derivatives 

miRNA Effect of chitosan acylation on binding 1196 

PEI or PDMAEMA DNA Understand polyplex interactions with 
glycoaminoglycans 

1197 

PEI-PEG-cetuximab 
PEI-PEG-trastuzumab 

pDNA, 
siRNA 

Understand polyplex binding to cell surfaces 
antibodies 

1198 
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PAMAM-Cholesterol siRNA Confirm formation of core-shell nanoparticles 1199 
FTIR 

 
Peak shifts and 

changes 
 

PAMAM DNA Discriminate between bound and free DNA 
molecules within polyplexes 

1200 

PAMAM pDNA Monitor polymer/ DNA binding, and changes in 
DNA secondary structure 

1186 

DOTAP, DOPE pDNA Monitor lipid/ DNA binding, and changes DNA 
secondary structure 

1201 
DOTAP, DMPC pDNA 1202 
RALA peptide pDNA Confirm pDNA encapsulation 1203 

Poly(glycoamidoamine) pDNA Understand non-electrostatic driving forces for 
polyplex binding 

1189 

Turbidimetric 
titrations 

 

Turbidity changes 
during DNA 

(polymer) titration 
with polycation 

(DNA) 

PDMAEMA-b-PnBMA DNA, 
PSS 

Correlate binding and micelleplex stability to 
polyanion flexibility 

1204 

PEG-b-PDMAEMA-b-
PnBMA 

pDNA Correlate binding and polyplex stability to PEG-
block length 

682 

PDMAEMA-b-PnBMA DNA Correlate binding and polyplex stability to DNA 
shape and size and ionic strength 

685 

CD 
 

Circular dichroism 
(CD) spectra of 

nucleic acids and. 
Monitor changes 

on spectra maxima 
wavelengths and 

molar ellipticities. 

P(HPMA-co-APMA)-b-
PDMAPMA 

siRNA 
DNA 

Evaluate protection from RNAse degradation by 
block copolymers 

1205 

PDMAEMA-b-PnBMA dsDNA Study dependence of DNA helicity on 
polyplex/micelleplex architecture and establish 

histone-mimetic binding configurations employed 
by micelleplexes 

1204 

PEG-PAMAM dendrimers DNA Study polyplex binding 1180 
PGAAs pDNA Monitor changes in DNA structure during binding 1189 

mPEG-PAMAMA 
dendrimers 

DNA Monitor DNA structure during complexation as a 
function of polycation complexation 

1200 

PDMAEMA, PTMAEMA, 
PLL 

pDNA Monitor changes in DNA structure when 
complexes to different polycations 

1206 

Peptide-functionalized PLL pDNA Monitor changes in DNA structure in polyplexes 
before and after lyophilization/reconstitution 

1207 

PEG-g-PEI, 
PLA coating 

pDNA Monitor DNA stability during polyplex 
encapsulation into PLA nanoparticles 

1208 

PEI, Alkylated-PEIs DNA Monitor differences in binding due to PEI 
alkylation 

1209 

PAMAM dendrimers DNA Monitor DNA structure in complexes as a 
function of dendrimer generation (G2-G9) 

1186 

PDMAEMA-b-PnBMA dsDNA Monitor changes on DNA secondary structure 
upon complexation 

1204 

PEG-b-PDMAEMA-b-
PnBMA 

PEG-b-PDMAEMA 
PDMAEMA-b-PnBMA 

DNA Correlate changes on DNA secondary structure 
inside polyplexes to the structure of the 
polycationic vector (linear vs micelles) 

666 

PEI, PEG-PEI siRNA Correlate changes in siRNA secondary structure 
with polyplex PEGylation and N/P ratios 

1210 

Linear and branched PEI siRNA Correlate changes in siRNA secondary with 
differences in binding due to polycation 

architecture 

873 

PAEMA 
POEGMA-b-PAEMA 

PMAG-b-PAEMA 

pDNA Compare changes in DNA structure when 
complex with polycations with different 

hydrophilic blocks 

623 

UCF Sedimentation 
coefficients, 

quantification of 
unbound polymer 

content 

PEI siRNA Quantitate polyplex composition 
 

1211 
Alkylated-PVP pDNA 1212 

PEG-b-P[Asp(DET)] pDNA 1213 
PEI pDNA Examine DNA conformations in solution, 

hydrodynamic properties of polyplexes as a 
function of N/P ratio 

220 

PEG-b-P[Asp(DET)] pDNA Quantify the associating number of  PEGylated 
block copolymers within micelleplexes as a 

function of PEG architecture 

845 

PEG-poly(aspartamide) siRNA Quantitate polyplex composition 
 

375 
PEG-b-P[Asp(DET)] mRNA 1214 

P(HPMA-co-APMA)-b-
PDMAPMA 

siRNA 
DNA 

Correlate cationic charge density, siRNA binding 
affinities, and transfection levels. 

1205 

PEI and Chitosan ODN Calculate the porosity of complexes 1215 
Quaternized PVP pDNA Quantitate polyplex composition 1216 
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PEG-b-P[Asp(DET)] pDNA Monitor complexation and releasing of DNA 1217 

PEG-b-P[Asp(DET)]-b-
PLL 

pDNA Determining micelle composition 1218 

PEG-b-P[Asp(DET)]-
cholesteryl 

pDNA Correlate toxicity with proportion of free 
polymers 

 

844 

FCS Size and diffusion 
coefficient of 
fluorescently 

labelled 
polycations and 

nucleic acids 

PEG-poly(aspartamide) siRNA Determine polyplex composition 375 
PEG-b-P[Asp(DET)] pDNA Determine polyplex composition as a function of 

pH 
1213 

DMAEMA, 
PEI, DAB 

ODN Characterize ODN-polymer complexation as a 
function of formulation ratios 

1219 

Lipids siRNA Lipoplex stability in the presence of serum 1220 
PEI mRNA Payload assembly/disassembly 1221 

PEG-PLL-Au-NPs siRNA Determine polyplex composition 1222 
Cationic oligomers siRNA Evaluate complex stability in the presence of 

serum 
1096 

PEI pDNA Monitor intracellular fate of PEI 1223 
PEI pDNA Purify polyplexes from free polymers and monitor 

heparin-triggered disassembly 
219 

Stearic acid-P[Asp(DET)] siRNA Evaluate stabilizing effects of hydrophobic 
moieties 

1224 

cRGD-PEG-b-PLL Cholester
ol-siRNA 

Correlate colloidal stability to polymer and 
nucleic acid functionalization 

370 

PEG-b-PAPNBMA siRNA Monitor siRNA intercellular trafficking 1225 
P[Asp(DET)] siRNA Prove that siRNA-polymer conjugation improves 

serum stability through diffusion coefficient 
determination 

1011 

PHPMA-b-PEG 
P(HPMA-co-DTEMA)-b-

PEG 

siRNA, 
pDNA 

Monitor payload release 1161 

ELS Zeta potential 
 

PEI-g-PEtOx DNA Correlate polyplex zeta potential to N/P ratio, and 
temperature 

588 

PEI/HA DNA Monitor zeta potential changes upon addition of 
hyaluronic acid 

1226 

PEI-b-PLL-b-PLG DNA Polyplex zeta potential as a function of pH 720 
PGAA pDNA Monitor zeta potential changes upon addition of 

glycosaminoglycans 
1227 

P(HPMA-co-APMA)-b-
PDMAPMA 

siRNA 
DNA 

Effect of charge density on electrostatic binding 
strength and gene knockdown 

1205 

PDMAEMA-Cholesterol DNA Correlate zeta potential to cholesterol content 1228 
PEG-b-PDMAEMA-b-

PnBMA 
pDNA Correlate zeta potential to PEG block length 682 

PEG-b-P[Asp(DET)] pDNA Correlate zeta potential to N/P ratio 1217 
XPS Atomic 

composition and 
chemical states 

 

PLGA, PDADMAC, 
PAA nanofibers, 

PAMAM dendrimer 

pDNA Confirm grafting of cationic dendrimers to 
electrospun PLGA nanofibers 

1229 

Hyperbranched PAMA, 
PEI 

pDNA Confirm immobilization of polymers 1230 

PLGA nanocapsule, siRNA Confirm protein conjugation 1231 
PEI-PEG-coated 
manganese oxide 

nanoparticles 

siRNA Confirm surface functionalization 
 

1232 

PLL-coated mesoporous 
silica nanoparticles 

ODN 1233 

PDMAEA-coated 
mesoporous silica 

nanoparticles 

siRNA Confirm PDMAEA attachment 1234 

Alginate-sulfate 
nanoparticles 

pDNA Nanoparticle composition and interaction strength 
between pDNA and polymer 

1235 

Polysaccharide hyaluronan-
sulfate 

siRNA Confirm ternary complex formation between 
siRNA, polysaccharide, and calcium ion bridges 

1236 

DLS Size of polyplexes 
upon 

Lipids mRNA High throughput characterization of lipoplexes 1237 
PDMAEMA-b-PnBMA dsDNA Measure long-term stability of complexes 1204 
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complexation and 
over time 

PDMAEMA-b-
P(DMAEMA-co-PAA-co-

BMA) 

siRNA Monitor polymer/siRNA binding 1238 

PEG-b-PDMAEMA-b-
PnBMA 

pDNA Study stabilization due to PEG-block length 682 

PDMAEMA-Cholesterol DNA Monitor effect of DNA addition rate on polyplex 
size 

1228 

PEG-b-PAEM pDNA Polyplex stability in presence of heparin 625 
PEI-g-PEtOx DNA Correlate polyplex size and stability to N/P ratio 

and temperature 
588 

PGAA pDNA Polyplex size evolution in the presence of  
glycosaminoglycans 

1227 

PDMAEMA-b-BMA DNA Micelleplex size and stability 685 
PEI siRNA Correlate polyplex size and stability to N/P ratio 1211 

Cationic oligomers siRNA Study the limitations of DLS vis-à-vis AFM, FCS 
and NTA during size determination of 

heterogeneous populations 

1096 

SLS 
 

Polyplex 
molecular weights 

PDMAEMA-Cholesterol DNA Determine polyplex size and composition 1228 
PEG-b-PDMAEMA-b-

PnBMA 
pDNA Correlate micelleplex size and composition to 

PEG-length 
682 

PDMAEMA-b-PnBMA DNA Measure micelleplexes size and composition and 
correlate to DNA topology 

685 

SAXS 

 

 

 

 

Internal structure 
of polyplexes and 

micelleplexes 
 

PEG-b-PDMAEMA-b-
PnBMA 

pDNA Micelle core radius was shown to be independent  
PEG corona block length 

682 

PDMAEMA-Cholesterol DNA Rg measurements for polyplexes with non-
spherical morphology (unsuitable for SLS based 
measurements), probe hydrophobic interactions 

on polyplex structure. 

1228 

PS-b-P4VPQ ODN Effect of DNA concentration on micelleplex 
aggregation. Structural description of DNA 

binding to micelle corona and location of DNA 
within aggregates 

1239 

DEAE/dextran mRNA Quantify compactness, polymer content, and RNA 
encapsulation as a function of charge ratio 

1240 

PMPC-b-PVBTMA 
PEG-b-PVBTMA 

PEG-b-PLK 

Sodium 
acrylate 

Quantify PIC morphology  (sizes of core and 
corona) as well as stability in various ionic 

strengths 

1241 

PLL,PEG-b-PLL, 
PVBTMA, PEG-b-

PVBTMA 

DNA Effect of DNA stranded-ness (ssDNa vs dsDNA) 
on coaxial stacking of DNA helices within 

polyplexes 

1242 

SANS Probe-free 
analysis of the 
structures of 

multicomponent 
systems 

Lipids DNA Lipoplex formation kinetics and geometry of 
complexation intermediates 

1243 

CryoTEM Imaging of 
polyplex size and 

morphology in 
hydrated stated. 

PDMAEMA-b-PnBMA dsDNA Effect of cationic polymer architecture and 
polyanion flexibility on PIC morphologies 

1204 

PEG-b-PDMAEMA-b-
PnBMA 

pDNA Visualize  beads-on-a-string micelleplex 
morphology attained using triblock copolymers of 

optimized block lengths 

682 

PEG-b- PAEM pDNA Correlate polyplex morphology to DNA amount 
and type 

625 

PEG-b-PDMAEMA-b-
PnBMA 

pDNA Effect of block order and hydrophobicity on  
micelleplex morphology 

662 

PDMAEMA-b-PnBMA DNA Effect of block copolymer architecture and  
pDNA size on micelleplex morphology 

685 

TEM 
 

Imaging of 
polyplex size and 

morphology. 
Tracking cell 

internalization of 
labelled particles 

Coumarin-PLGA BSA 
protein 

Track internalization of labeled nanoparticles 1244 

P4VPQ ODN Visualize  micelleplex morphology 1239 
PEI-g-PEtOx DNA Visualize polyplex morphology 588 

PEI/HA DNA Polyplex stability and shape 1226 
PGAA pDNA Study glycosaminoglycan-polyplex interactions 1227 

PEI-b-PLL-b-PLG DNA Correlate polyplex morphology to pH 720 
PEG-b-P[Asp(DET)]-b-

PLL 
pDNA Measure DNA packaging inside polyplexes 1218 
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6 EXPERIMENTAL CHALLENGES ASSOCIATED WITH POLYPLEX 

FORMULATION: SOLUTION PARAMETERS AND TRANSPORT LIMITATIONS 

Like many interfacial phenomena in nanoscience, polyplex formation is shaped by the 

competition between thermodynamics and kinetics. While thermodynamic limits tend to favor 

highly aggregated and hydrophobic equilibrium structures, researchers circumvent these 

challenges by kinetically trapping polyplexes in metastable non-equilibrium structures with 

attractive properties such as narrow size distributions. Kinetic trapping exploits the fact that even 

though initial interactions between nucleic acid and polymers are extremely rapid, occurring in 

less than 50 ms, subsequent rearrangement of polyplexes and eventual aggregation are much 

slower processes, taking place over a time scale of hours. While a thorough theoretical treatment 

of polyplex formation physics is outside the scope of the review, we emphasize that electrostatics 

are not the sole intermolecular forces driving polyplex formation. When polyplexes are formed, 

this process is typically accompanied by the release of counterions, the loss of the hydration layer 

bound to the phosphodiester backbone, , hydrophobic aggregation, as well as the formation of 

hydrogen bonds.  

Recognizing that polyplex properties are impacted by the manner in which the nucleic acids 

and their polymeric binders come into contact with one another, the primary goal during polyplex 

assembly is to ensure predictable and reproducible experimental conditions that promote consistent 

production of polyplexes of the desired sizes, morphologies, and compositions. While polymer 

structure and composition has been exhaustively examined, the manipulation of polyplex 

PEG-b-P[Asp(DET)] pDNA Image DNA packaging and conformation changes 1217 
AFM Size and 

morphology of 
polyplexes 

Cationic oligomers siRNA Monitor polyplex size and shape 1096 
Poly(lysine‐co‐histidine) pDNA 1245 

DMAEMA-MPC pDNA 1246 
Spermine-modified dextran 

and pullulan 
siRNA 1247 

Cyclodextran pDNA 990 
PEI pDNA Identify correlations between polyplex 

morphology and polycation architecture 
273 

Hyperbranched PAMAM siRNA Monitor assembly/disassembly of bio-responsive 
polyplexes 

1248 

PLL multilayer films ODN Study coating morphology and rigidities 1249 
PLL multilayer films DNA Study coating morphology 1250 

PAMAM, PEI DNA Polyplex assembly/disassembly 1251 
DMAEMA multilayer films DNA Film rigidity and assembly/disassembly 1252 
PEI-siRNA multilayer films siRNA Measure polyplex sizes as a function of N/P ratio 1253 

PDMAEMA-Cholesterol DNA Monitor polyplex size and shape 
 

1228 
PHPMA-PLL DNA 1254 
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properties through systematic optimization of assembly conditions is an under-investigated and 

sometimes-overlooked approach to improving the biological outcomes of polymeric gene delivery. 

In this section, we review: (1) traditional methods to modulate polyplex properties via the 

optimization of formulation parameters such as solvent environment and N/P ratios, (2) 

hydrodynamic methods that overcome transport limitations by achieving rapid and controllable 

mixing  of polymer and payload streams, and (3) encapsulation of polyplexes within polymeric 

particles, and fibers via emulsion methods, electrospinning, and electrospraying. 

6.1 Exploring the roles of formulation parameters during polyplex assembly 

Several research groups have tried to remediate the intrinsic lack of reproducibility and 

standardization associated with the polyplex assembly process by understanding and controlling 

the underlying formulation parameters. Through step-wise exhaustive exploration of the vast 

experimental space within polyplex assembly, Candiani and coworkers identified the best-

performing complexation conditions for four commonly employed polycationic vectors, PEI, 

branched PEI, PLL, and PAMAM dendrimers.1255 They discovered that optimal limits for 

experimental factors such as plasmid dose, incubation time after polyplex formation, polyplex 

dilution, polymer molecular weight, the N/P ratio (the ratio of ionizable nitrogen groups to 

phosphate groups within nucleic acids), buffer composition, sequence of addition, and volume 

ratios had strong effects on both transfection efficiency as well as  cytotoxicity. Importantly, their 

study suggests that each of these formulation parameters had to be separately optimized for 

different polymeric reagents, underlining the high variability observed in polyplex assembly 

conditions across different studies. Even though this study was extensive, they focused on 

optimizing one variable at a time, while keeping other variables constant, an experimental design 

strategy that is tedious, uneconomical, and inadequate in capturing strong second-order 

interactions between two or more experimental factors. In contrast, studies that employ statistical 

design of experiments methodologies1256–1258 to optimize formulation parameters tend to produce 

more clear-cut conclusions since multiple experimental factors are varied simultaneously to 

discover hidden interactions.  
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Figure 39. The effect of sequence of addition on polyplex size and composition. Addition of PEI 

to siRNA results in aggregation while the reverse order leads to uniform well-dispersed 

populations. Reprinted with permission from ref.1259 Copyright 2015 Royal Society of Chemistry. 

To develop a robust protocol for formulating polyplex particles from PBAEs, Green and 

coworkers investigated the roles of buffer composition, pH, polymer storage conditions and 

polyplex mixing in detail. Surprisingly, they discovered that mixing volume ratios between 

polymer solutions and payloads had no impact while the polyplex incubation time post-mixing  

proved to be consequential, with both short and long incubation times proving detrimental to 

transfection efficacy.1260 Incubation time is a particularly challenging experimental factor to 

optimize since it has ramifications for polymer degradation (and loss of delivery efficacy for 

degradable polymers) as well as polyplex size distributions. Wide discrepancies have been 

observed while studying whether the sequence of addition (e.g., polymer or nucleic acid added 

first) is of significance. The order of formulation steps has shown to impact polyplex formation, 

which has been described in detail by Kwon and coworkers;1259 they reported the formation of a 

numerous population of smaller polyplexes (60 nm) when plasmid DNA or siRNA was added to 

PEI. When the reverse sequence was employed, a fewer number of aggregated polyplexes (200 

nm) were formed instead, resulting in both improved transgene expression and higher cytotoxicity 
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(Figure 39). Another study1261 compared drop-wise addition of polymer reagents and vigorous 

pipette mixing and concluded that the former resulted in larger polyplexes (~400 nm for drop-wise 

addition as opposed to ~150 nm for mixing), which enhanced transfection in serum-free media 

through gravitational settling. In serum-supplemented transfection media, however, these size 

differences were completely neutralized by severe polyplex aggregation in both samples.  

Polyplex stability and polymer-nucleic acid binding efficacy are both highly sensitive to 

environmental pH1262 as well as ionic strength and identity.1111 To ensure reproducibility, most 

groups choose to formulate polyplexes in standard buffers such as HEPES and PBS, instead of 

water, although divalent cations seem to improve delivery efficiency.1263 Lowering the pH during 

polyplex assembly promotes strong binding between cationic polymers (charged groups are 

generally below their pKa increasing protonation) and their payloads.1257,1258 Whereas polyplexes 

are also more prone to aggregation in high-ionic strength buffers due to charge-screening.1264 This 

suggests that systematic investigations of ionic environment must be performed every time a novel 

polymeric delivery system is developed, since conclusions cannot be generalized from one 

experimental condition to another.  

6.2 Ternary complexes 

Coatings prepared from biopolymers such as heparin sulfate,302,1265 hyaluronic acid,1263,1266 

gelatin,1267 and basic fibroblast growth factor1268 have been shown to enhance the biological 

performance of polyplex formulations in diverse contexts. For instance, in applications requiring 

the controlled release of drugs or growth factors, Hammond and coworkers were among the first 

to demonstrate the benefits of incorporating biological derived polyanions such as heparin sulfate, 

chondroitin sulfate, and basic fibroblast growth factor to improve the performance of 

polyelectrolyte complexes.1269–1271 Reineke and coworkers demonstrated that membrane 

association, cellular internalization and transfection efficiency could be significantly improved 

many-fold by heparin-coating trehalose-based polyplexes.302 The biological enhancements 

effected by this glycosaminoglycan (GAG) additive was not only found to be dose-dependent, but 

also composition-dependent. While polytrehalose vehicles exhibited improvements in transfection 

efficiency, transfection was completely suppressed in PEI-based vectors upon the addition of 

heparan sulfate. Combining glycopolycationic vehicles with heparan sulfate seems to be an 

effective approach to transfecting challenging cell types such as primary fibroblasts and pluripotent 
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stem cells. Hyaluronic acid (HA) is another GAG additive that has been widely used in cancer 

therapy owing to the overexpression of HA-binding CD44 receptors by tumor-forming cells.1272 

HA-coating seems to impart colloidal stability in biological media in a molecular weight-

dependent manner,1273 modify cell uptake kinetics,1268and reduce toxicity.1274 Similarly, gelatin-

coated polyplexes were found to be stable for up to 24 hours in serum-rich media while still 

retaining their transfection efficiency, a result that contrasts with traditional PEGylation 

approaches. This study suggests that gelatin, which is ubiquitously used in the food and 

pharmaceuticals industries, could be a plausible steric stabilization alternative to resolve the 

PEGylation dilemma. Poly(glutamic acid) (PGA) peptide coatings were found to alter 

biodistribution profiles and impart tissue-specificity to polyplexes depending on the quantity of 

PGA used.1275 At low concentrations, large micron-sized particles were formed and mostly 

localized within the liver while higher PGA concentrations imparted serum stability and reduced 

polyplex sizes, promoting spleen and bone marrow targeting. These approaches demonstrate the 

potential of applying biopolymer coatings to polyplexes through physisorption to modulate cellular 

internalization, receptor targeting, and achieve stealth properties. However, the coating process 

must be engineered to achieve precise surface densities and reproducible results so that fully 

defined polyplex nanoparticles are produced to fulfill diverse therapeutic niches. 

6.3 The importance of formulation ratio or charge ratio (N/P) 

The dilemma confronting polymeric gene delivery is that efficient intracellular delivery is 

frequently accompanied by high levels of cytotoxicity.1276 Apart from molecular weight, polymer 

architecture and composition, the N/P ratio, or the charge ratio between nitrogen atoms in polymers 

to phosphates in nucleic acid cargoes, is the single most influential experimental variable used to 

resolve the efficacy-toxicity conundrum. It is generally agreed that excess polymer is required for 

the formation of colloidally stable polyplexes owing to the net positive surface charge resulting 

from the surfeit of cationic polymers.1277 However the implications of using excess polymer are 

both complex and consequential due to the existence of intertwined relationships between polyplex 

formulation ratios and downstream biological events. Adverse effects range from serum protein-

induced aggregation and altered biodistribution profiles,116 possibly provoked by enhanced 

interactions between polymers and extracellular proteins,1247 and cellular membrane disruption 

caused by the induction of  nanoscale pores and membrane leakage.1278 On the other hand, excess 

polymer and high N/P ratios have also been shown to promote endosomal escape,215,1279 disrupt 
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the nuclear envelope,137 ensure payload protection from degradation, and  prevent aggregation. 

Typically, the role of charge ratio on key biological responses such as transfection efficiency, 

toxicity, hemocompatibility, and payload binding has been studied in isolation. Most of these 

studies have noted a strong N/P-dependence of both cell viability and transfection efficiency and 

generated trade-off curves at the intersection of which the optimal N/P ratio can be identified to 

maximize viability in an efficacy-constrained manner.1280 However, we believe that the best 

approach is to co-investigate the role of N/P ratio in tandem with other attributes such as 

PEGylation,844,1281 hydrophobicity,599 and molecular weight.849 We also draw attention to the 

creative use of physical characterization tools (Section 5.5) such as whole cell patch clamp 

measurements of membrane currents,1282 scattering techniques such as SAXS and SANS,1240 AFM, 

NMR,222,223,1171 as well as polyplex purification approaches such as ultrafiltration,1283 asymmetric 

fractional flow fractionation, and Taylor dispersion.1097 The above tools allow us to thoroughly 

probe the binding state of polymers within polyplexes, visualize the dynamic equilibrium between 

bound and unbound states, and understand the role played by free polymers during transfection. 

These studies will also help researchers to answer several pressing questions in this field. Is the 

membrane porosity caused by free polymers merely an undesirable side-effect or an indispensable 

cellular entry pathway? Are excess polymers essential to prevent development of late 

endolysosomal vesicles and facilitate rapid intracellular payload release or do they merely activate 

cellular defense mechanisms such as cytosolic nucleases1282 that depress transfection? It is difficult 

to draw conclusions on the effects of N/P ratios since we cannot compare across divergent 

experimental set-ups and polymer compositions and architectures. We speculate that the question 

of whether the “burden of transfection” is mostly borne by free polymers of polyplex-bound 

polymers must be explored on a case-to-case basis, making the optimization of N/P ratio a vital 

development exercise. We also note that the decationization of polyplexes (Section 5.3.1)1161 and 

the development of polymeric vehicles that do not rely on electrostatic interactions for polyplex 

assembly will minimize the need to carefully optimize the N/P ratio. 

6.4 Directing polyplex assembly through microfluidics 

Microfluidic systems are miniaturized flow chambers wherein at least one dimension of 

the flow channel is less than a millimeter. Due to these small dimensions, it becomes easier to 

achieve a highly predictable flow regime termed laminar flow, defined by a region where the 

Reynolds number is less than 2100. Low Reynolds number flows have special properties, since 
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polymers, fluid, and complexation processes behave quite differently at such small dimensions 

compared to bulk mixing conditions. Microfluidic tools, therefore, have been harnessed to control 

the mixing and assembly conditions during polyplex formulation, offering a powerful way to 

manipulate the physical properties of polyplexes, notably size distribution and composition. 

Polyplex preparation “on a chip” was initially explored as a means of improving the properties of 

commercial PEI-based reagents.1284 Despite extensive optimization of addition sequence, 

concentrations and mixing speeds, it was recognized that standard pipette mixing and vortexing 

procedures were unable to prevent polyplex aggregation and formation of heterogeneous 

populations.1285 In contrast to bulk mixing, polyplexes assembled in a microfluidic device not only 

had smaller diameters and narrower dispersites, but also retained payload integrity and 

compaction, resulted in superior transfection efficiency and lowered toxicity.1284 By confining the 

assembly process within picolitre-sized droplets through emulsion formation,1286 the quantity of 

cationic polymer and plasmid within each polyplex can be tailored precisely while droplet 

dispersion within a buffer can ensure that aggregation does not occur.1287 This microfluidics-

assisted confinement approach was able to produce homogeneous polyplex populations that were 

resistant to aggregation and resulted in lowered cytotoxicity compared to standard mixing 

procedures (Figure 40). Further improvements to the microfluidics-assisted confinement approach 

were effected by hydrodynamically focusing of flows at the intersections between multiple 

microchannels.1288 This modification shrinks the diffusion length scales, allowing for faster mixing 

and more uniform polyplex particles. 2D hydrodynamic focusing can be restricted to a single 

plane1289 but greater confinement and improved mixing profiles can be achieved using 3D 

hydrodynamic focusing.1290,1291 Integration of dielectrophoretic separation step within these 

droplet microfluidic tools can enable in situ screening sorting of polyplexes based on size 

specifications, improving polyplex properties even further.1292 While hydrodynamic and droplet-

based methods are subject to diffusion limitations and rely on passive mixing, acoustic waves can 

be used to accelerate mass transport, thereby increasing mixing efficiency by reducing the length 

scale over which diffusion occurs.1293 These “acoustofluidic” methods1294,1295 have been shown to 

produce even narrower polyplex sizes compared to traditional microfluidic tools.1290 Overall, we 

conclude that batch mixing techniques such as pipette-mixing for the most part do not ensure 

reproducible results with many systems, which is important for scale-up, clinical testing, or animal 
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studies; indeed, continuous flow protocols via microfluidic tools for polyplex formation may be 

an important tool to solving this issue.1296–1298  

 

Figure 40. Microfluidics-assisted confinement was applied to generate picoliter droplets, thereby 

controlling polyplex size distribution and composition through confinement. Reprinted with 

permission from ref1287 Copyright 2011 American Chemical Society.  

Microfluidic technologies can be a valuable tool  to screen a multitude of polymer designs 

and formulation variables by integrating cell culture, transfection and microscopy modules within 

the same microfluidic chip.1299,1300 A microfluidics based high-throughput screening strategy 

minimizes the quantity of biological reagents consumed, ensures experimental consistency, and 

enables rapid discovery of hit polymers for diverse payloads and therapeutic applications (Figure 

41). Since small volumes (<10 microliter) can be reliably and rapidly mixed within these devices, 

numerous combinations of polymer and payloads concentrations mixing conditions, N/P ratios and 

flow rates can be screened rapidly.1301 If these high-throughput microfluidic platforms are 

integrated with in-line tools to monitor the evolution of polyplex sizes as well as the binding 

interactions between the polymers and nucleic acids.1302 
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Figure 41. Formation of lipoplexes for high-throughput screening enabled by microfluidic 

formulation. Reprinted with permission from ref.1301 Copyright 2012 American Chemical Society.  

Powerful as microfluidic tools may be, they still require access to dedicated cleanroom 

facilities to fabricate intricate microdevices based on polydimethylsiloxane as well as specialized 

know-how.  Further, to achieve scale-up for clinical translation, multiple units have to be operated 

in parallel to produce the requisite quantities of polyplexes. Millifluidic devices such as confined 

impinging jet mixers can be fabricated more easily using standard machining tools. Unlike 

microfluidic devices that are based on laminar flow, confined impinging jet mixers operate in the 

turbulent flow regime, where the characteristic mixing time can be reduced to tens of 

milliseconds.1303 This time scale compares well to the 50 ms time span that was observed for 

spontaneous electrostatically driven assembly to occur  between cationic polymers and nucleic 

acid payloads. Rapid turbulent mixing narrows the temporal window for polyplex aggregation, 

creating well-defined polyplex formulations characterized by tailored nucleic acid loadings, 

tunable diameters and narrow dispersities. Drawing inspiration from the pioneering work of 

Johnson & Prudhomme, who first described the role played by turbulent mixing during flash 

nanoprecipitation to achieve narrow crystal size distributions for pharmaceutical manufacturing, 
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Mao et al. used confined impinging jet mixers to engineer polyplexes with improved physical 

properties and transfection.1304 

 

Figure 42. Leong and coworkers used confined impingement jet mixers to engineer uniform 

polyplex populations via flash nano-complexation. Turbulent mixing was exploited to reduce the 

characteristic time of mixing, preventing undesired aggregation. Reprinted with permission from 

ref.1305 Copyright 2019 American Chemical Society.  

6.5 Kinetic control of polyplex assembly through turbulent mixing 

The term “flash nanocomplexation” was coined to describe this assembly process wherein 

a fluid stream comprising the cationic polymer solution comprising linear PEI would meet an 

opposing fluid stream containing plasmid DNA at extremely high velocities to create highly 

controlled assemblies through confined impingement of these jets. By tuning the channel 

diameters, the volume of the mixing chamber, concentrations and flow rates, different mixing 
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times can be achieved, thereby varying the kinetic regimes for polyplex assembly.1306 The most 

recent report of confined impinging jet mixer-mediated polyplex formation1305 illustrated how 

careful modulation of the characteristic mixing time  could be used to obtain polyplexes with any 

desired number of plasmids per nanoparticle (between 1-21) as well as diameters as low as 35 nm 

(Figure 42). Kinetic control over polyplex mixing served to reduce the mixing time relative to the 

characteristic assembly time and yielded polyplexes with altered biodistribution profiles and 

minimized the formation of necrotic tissue in the liver during in vivo delivery. In addition to 

demonstrating in vivo efficacy, this study thoroughly characterized polyplex size and composition 

through DLS and SLS, underlining the intimate relationship between polyplex physical properties 

and biological behavior. A potential risk of this confined impinging jet mixer-mediated flash 

nanocomplexation is that only robust payloads like pDNA can be used, which do not undergo chain 

breakage or scission during turbulent mixing. Flash nanocomplexation is yet to be explored for 

RNA and protein-based payloads, but it is expected that subtle modifications to the flow geometry 

and slight reduction of flow rate could prevent payload damage while retaining turbulent flow and 

high energy dissipation rates. Overall, confined impinging jet mixers are highly promising tools 

that can be explored to alleviate polyplex aggregation and modulate payload dosing within 

polyplexes.  

6.6 Electrohydrodynamic processing of polyplexes 

Encapsulation of polyplexes within polymeric nanofibers via electrospinning1307 is a 

powerful way to prolong release kinetics, which is particularly critical while delivering nucleic 

acids for wound healing and tissue regeneration.1308 Electrospun polymer mats are applied as 

Extracellular matrix (ECM) mimics due to their high surface area-to-volume ratio, conformal 

adherence to cells, porous architecture and tunable mechanical properties. In contrast to substrate-

mediated gene delivery of naked DNA from the outer surface of electrospun fibers, several groups 

have developed inventive methods to incorporate DNA within the core of the fibers, where they 

are likely to be more stabilized. By condensing nucleic acids payloads with chitosan1309,1310 or PEI-

based carriers1311,1312 prior to embedding these polyplexes within fibers via electrospinning, it is 

possible to prolong release lifetimes of polyplexes to up to a month instead of obtaining burst 

release within a few hours. However, some groups have also reported prolonged release profiles 

and efficient gene silencing mediated by naked siRNA embedded within nanofibers, despite the 

lack of a complexation pre-step,1313,1314 suggesting that different techniques may need to be 
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adopted for diverse payload types. An interesting formulation approach is the physical entrapment 

of pDNA/PEI polyplexes within degradable PLGA microspheres via emulsion techniques.1208 This 

method can be adapted to electrohydrodynamic processing through coaxial electrospraying of 

pDNA within a sheath of PEI, resulting in preservation of pDNA integrity without sustaining any 

damage due to high electric fields.1315 Although the N/P ratio could be modulated by tuning flow 

rates during electrospraying, polyplex size distribution was found to be highly variable across 

different processing conditions.  Though electrohydrodynamic polyplex formation outperformed 

bulk mixing, it needs to be further optimized to expand application to other polymeric vehicles 

beyond PEI. A particularly interesting capability afforded by electrohydrodynamic processing of 

polyplexes is the compartmentalization of imaging modalities and pH-sensing functionalities 

within distinct hemispheres of bicompartmental microparticles.1315 While the hydrophobic PLGA 

compartment facilitated incorporation of fluorescent molecules of microparticle visualization, the 

cross-linked PEI compartment induced endosmotic swelling and bursting, promoting siRNA 

release and gene silencing. The authors argued that synergistic effects result from 

compartmentalization cannot arise from using mixtures of individual particles. While 

electrohydrodynamic formulation of polyplexes is a creative way to control morphology, 

composition and internal architecture, further research is essential to obtain narrower formulation 

size distributions and fine-tune release kinetics.  

Overall, we have presented an overview of diverse approaches to polyplex formulation that 

go beyond manual methods and exploration of solution parameters such as pH, ionic strength, or 

polymer dose. We expect that the application of microfluidic, electrohydrodynamic, and millifluidc 

methods in gene delivery will continue to grow, accessing interesting material properties and 

enabling tight control over size distribution and nucleic acid dosing.  

7 ALTERNATIVE BIOMATERIAL PLATFORMS FOR TRANSFECTION 

In contrast to polymeric vehicles obtained via controlled radical polymerization or post-

polymerization modification, some biomaterial platforms rely on polymer processing methods 

rather than chemical synthesis to obtain desired material properties. Examples include substrate-

mediated gene transfer from protein-coated planar substrates, hydrogel-mediated gene transfer in 

3D cell culture environments and core-shell nanoparticles where polycationic coronas are grafted 

from inorganic nanoparticle templates. Although these atypical biomaterial platforms lack 
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chemical sophistication and do not require complex chemical synthesis procedures, they are simple 

yet powerful tools to probe physical design parameters in polymer-mediated gene delivery.  

7.1 Substrate-mediated transfection in 2D and 3D cell culture environments 

Tissue engineering seeks to reprogram cellular behavior with the goal of controlling 

proliferation, differentiation, migration, or the induction of desired cellular phenotypes. 

Bioengineers achieve these goals by impregnating tissue engineering scaffolds with growth 

factors, trophic factors, and transcription factors to manipulate cellular responses. However, 

engineering sustained release of these protein-based cargoes is crippled by the instability of these 

large and complex biomolecules, which have half-lives as low as two minutes in physiological 

milieus.1316 Further, delivery strategies and processing conditions must be individually optimized 

for each bioactive cargo, making allowances for the size, charge, surface chemistry and stability 

of each protein. Despite advances in protein delivery, large doses and repeated injections are a 

frequent necessity. To counter the cost and stability constraints imposed by protein delivery, 

genetic cargoes encoding for the desired protein or protein fragment were explored as alternatives 

to protein depots. Gene delivery presents several advantages over protein delivery: its universality 

is attractive since delivery platforms need not be redesigned for different DNA sequences, it lowers 

costs and does away with the need for repeated and large doses since transfected cells function as 

“biofactories” secreting the protein or growth factor of interest in a sustained fashion, maximizing 

its bioavailability. However, gene delivery is associated with a significant time lag that can span 

several days, which contrasts with the immediate availability of bioactive cues guaranteed by 

protein delivery. 

A common gene delivery approach employed by tissue engineers is the immobilization of 

DNA to the substrate on which cells are cultured, thereby placing the genetic cargo within 

immediate proximity of its cellular target (Figure 43). It has been argued that substrate-mediated 

gene delivery is inherently biomimetic in its design, since both viral vectors as well as 

endogenously produced growth factors exploit interactions with the extracellular matrix to mediate 

cellular internalization.1317 Cells growing on nucleic acid-immobilized substrates can either 

endocytose the DNA directly or ensure DNA release from the substrate by disrupting chemical or 

physical associations between the nucleic acid and the substrate. By engineering concomitant 



 161 

delivery of multiple nucleic acid payloads or by co-delivering genes with proteins, we can engineer 

complex tissue architectures where multiple cell types are organized in a hierarchical fashion.1318   

 

Figure 43. Substrate-mediated gene delivery from 2D substrates wherein naked nucleic acids of 

polyplexes, either specifically or non-specifically immobilized to the substrate are transferred to 

adherent cells. Mechanism of substrate-mediated gene delivery: (1) vector release (2) membrane 

association (3) endocytosis, (4) early endosome, (5) late endosome, (6) escape from endosome, (7) 

nuclear translocation (8) nuclear entry (9) transcription into RNA, (10) transport of RNA to 

cytoplasm, and (11) translation of RNA into protein. Reprinted with permission from ref.1319 

Copyright 2005 Materials Research Society 

Polymeric biomaterials intended to deliver therapeutic nucleic acids typically focus on 

optimization of material properties with systemic routes such as intravenous, oral, intradermal, and 

intramuscular administration in mind. However, precise targeting of disease sites such as tumors, 

or specific tissue types is almost impossible with systemic delivery approaches. The need to 

engineer targeting modalities can be obviated by employing local delivery or substrate-mediated 

delivery.1320 Substrate-mediated gene delivery platforms can also be designed to mimic the 

extracellular matrix, wherein cellular targets can infiltrate the matrix, eventually leading to local 

cellular uptake of DNA embedded within the matrix.1321 Substrate-mediated gene delivery seeks 

to alleviate several shortcomings associated with “bolus transfection”. Firstly, the local 

concentration of nucleic acids at the cell-polymer interface is much higher for substrate-mediated 

delivery compared to bolus methods, ensuring that transfection is not bottlenecked by transport 

limitations, such as slow diffusion of polyplexes and diameter-dependent settling velocities, 
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ultimately minimizing serum-induced degradation en route to cells and promoting opportunities 

for polyplex-cell contacts. Second, the high local concentrations achieved by substrate-mediated 

methods eliminates the need to use high loadings of nucleic acids as well as polymeric vectors, 

minimizing cost as well as cellular toxicity. Finally, by sustaining a therapeutically-relevant release 

rate of nucleic acids for prolonged durations, substrate-mediate delivery can dramatically improve 

the delivery efficiency by mediating repeated transfection events. While synthetic vectors for gene 

delivery are typically evaluated on standard 2D tissue culture polystyrene plates, cellular responses 

to polyplexes in 2D culture are not necessarily predictive of in vivo outcomes.  In general, 3D 

polymeric scaffolds or matrices are considered to be more realistic models that simulate the native 

physiological milieu of living tissues. Moreover, cellular phenotypic expression varies 

dramatically between 2D and 3D environment and loss of key phenotypes has been observed for 

cells cultured for long durations in 2D culture. In the context of gene delivery, “dimensionality” 

has repeatedly been demonstrated to have profound effects on endocytosis pathways, cytoskeletal 

dynamics, mechanisms of gene transfer, and cellular signaling pathways. Nevertheless, 2D studies 

have several advantages: simplicity, throughput, and homogeneous access to nutrients in the cell 

culture media. In this section, we will briefly summarize substrate-mediated gene delivery 

approaches attempted in both 2D and 3D cell culture environments and outline directions for future 

studies. The reader is redirected to several review articles1317–1320,1322–1325 on this topic where they 

will find a more biologically focused discussion of substrate-mediated transfection. We will restrict 

our focus to material design and synthetic considerations.  

7.1.1 Substrate-mediated transfection in 2D cell culture environments. Surface 

immobilization of nucleic acids is performed by depositing either naked DNA or pre-complexed 

polyplexes or lipoplexes on tissue culture polystyrene substrates that are pre-coated with gelatin, 

chitosan, PLL, or poly(lactic-co-glycolic acid) (PLGA) that promote both cell adhesion as well as 

DNA entrapment. While embedding uncomplexed or naked DNA within coated cell culture 

substrates is facile and allows for rapid payload internalization, it requires high DNA loadings to 

facilitate transfection. In contrast, preformed polyplexes or lipoplexes offer better protection to 

DNA from serum nucleases, and mediate efficient transfection even at low nucleic acid doses. A 

potential disadvantage of using synthetic materials to complex DNA is that the vector properties 

can drastically alter the size distribution and surface charge, and aggregation-prone materials such 

as PEI could adversely affect transgene expression. Another design parameter in substrate-
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mediated gene delivery is the choice between specific and non-specific immobilization 

approaches.1326 Specific approaches such as avidin-functionalized substrates to bind to 

biotinylated polyplexes, adamantane-cyclodextrin interactions,1327 self-assembled 

monolayers,1325,1328–1331 covalent chemistries,1332 or antibody-antigen binding1333 offer greater 

control over the transfection process since the immobilization density1326,1334 and nucleic acid 

dosing1335–1337 can be precisely tuned. Moreover, immobilization approaches can employ cleavable 

peptide sequences as covalent tethers such that polyplexes are released from the substrate through 

cellular degradation processes mediated by matrix metalloproteinase (MMP).1338 Substrates can 

be functionalized with an optimized mixture of biochemical cues driving cellular adhesion and 

matrix, thereby prolonging nucleic acid release and maximizing transgene expression.  A less 

elegant, albeit highly effective approach to nucleic acid immobilization is through non-specific 

interactions such as electrostatic forces1339 or mere physical entrapment within a polymeric matrix 

(PLGA is typically used).1332,1340–1343 While the release kinetics cannot be controlled, these 

substrate-mediated approaches are easy to implement and facilitate rapid release of DNA from the 

substrate. Another effective non-specific approach is the use of extracellular matrix coatings such 

as collagen, fibronectin, or laminin on planar substrates. The groups of Pannier, Shea, and Segura 

have devoted extensive efforts to studying the interplay between the cellular microenvironment 

and transfection mechanisms (Table 3). Shea and coworkers noted that transgene expression could 

be amplified on serum-coated substrates compared to uncoated ones, and systematically probed 

the role of protein density and identity on gene delivery.1326,1334,1340,1344,1345 Segura and coworkers 

concluded that fibronectin coatings promote polyplex internalization and uptake by guiding 

polyplexes through more favorable clathrin-mediated endocytosis, in contrast to collagen coatings 

which tend to favor the less effective caveolar routes.1346 They have also probed the roles of 

RhoGTPases in modulating substrate-mediated gene transfer to mesenchymal stem cells on 

fibronectin coated surfaces.1347 Mixtures of recombinant ECM proteins were deployed to 

understand the effects or surface chemistry on cell morphology, spreading, and integrin expression 

and their downstream impacts on polyplex internalization.1348 A recent study from Pannier and 

coworkers extended this idea further to elegantly demonstrate the impact of cellular 

microenvironment on substrate-mediated transfection. Combinatorially-designed binary and 

ternary mixtures of glycosaminoglycans such as heparin sulfate, and adhesion peptides such as 

RGD were deposited to generate a library of 20 ECM-mimetic cell culture substrates.1349 These 
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combinatorially-generated substrates resulted in a two-fold to twenty-fold higher transgene 

expression than homogeneous protein coatings. The authors hypothesized that cell adhesion, 

spreading and polyplex internalization could be maximized by screening for the most suitable 

ECM substrates within this library. 

Table 3. Summary of 2D platforms for substrate-mediated transfection 

Substrate DNA complexation 
agent 

Summary Refs. 

Tissue Culture 
Polystyrene 

Naked Chitosan and hyaluronic acid coatings employed to immobilize DNA 1350 
Lipid coatings employed to immobilize DNA 1351 

PEI Col I-coated surfaces employed to immobilize DNA 1346 
Examined the effects of ECM coating composition and density on 

cytoskeletal dynamics. 
1348 
1347 
1326 

Lipoplexes Enhanced substrate-mediated lipofection through peptide incorporation 1352 
PEI/Lipoplexes Compared recombinant and full-length fibronectin coatings 1344 

Lipoplex/ 
Polyplex 

Screened a library of ECM-mimetic substrates 1349 

PLGA Fibronectin Guided neurite extension using NGF-patterns  
PEI Neurite extension using NGF-patterns 1341 

Covalent binding of PEI polyplexes to PLGA through EDC/NHS 1332 
Lipoplexes Investigated ECM coating composition to heal spinal injury 1340 

Lipoplexes/PEI Effect of serum deposition on DNA loading and transfection 1334 
Polydopamine Protamine Inducing rapid endothelialization of implanted vascular devices 1353 

Naked Studied cell spreading, morphology and membrane perturbation induced by 
silicon nanowires 

1354 

Avidin/ 
Neutravidin 

PLL Effect of polyplex immobilization density 1355 
PLL/PEI 1336 
Chitosan N/P ratio AND biotinylation degree regulated gene delivery 1356 

Coculture 
models 

Lipoplexes/PEI Neuronal architecture controlled by engineering gradients of growth factors 
secreted by transfected cells in a co-culture model 

1357 
Lipoplexes 1358 

Chitosan 
 

Naked Reprogramming of human fibroblasts into neural crest stem-like cells 1359 
Directed differentiation of HGFs along neural pathways 1360 

SAM Lipoplexes Surface chemistry, hydrophobicity, charge density studied on SAM libraries 1329 
PEI Effect of PEG incorporation on polyplex size distribution and stability. 1330 

His-PEI Histidine-NTA linkages immobilize polyplexes on SAMS of Ni/Au 1331 
Silicon-based 
nanosheets/  
nanowires 

Lipoplexes Silica network architecture used to modulate transfection outcomes 1361 
PAMAM/Ad 

+PEI/Cd 
Specific binding of polyplexes on Silicon nanowires 1327 

Steel/Titanium PEI Polymer brushes functionalized with adhesion ligands (RGD) 1362 
Polyallylamine 
bisphosphonate 

Anti-DNA antibody Gene-eluting stents engineered using covalent immobilization 1333 

Polyurethane Naked Impact of nanotopography on cellular motility and spreading 1363 
Intestinal sub 

mucosal 
PEI Non-specific immobilization of polyplexes on biological substrates 1339 

 

In addition to biologically-derived cell culture substrates, graphene and graphene oxide 

substrates can either be covalently or non-covalently modified with cationic polymers such as PEI 
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to immobilize DNA on its surface.1364,1365 These graphene oxide based platforms are highly 

promising to modulate cell proliferation, differentiation, and survival through the use of 

nanotopographical cues, spatial patterns, and dual release of drugs and nucleic acids.1366–1369 

Microcontact printing of self-assembled monolayers can be used to create microarrays of 

transfected cells,1370–1373 creating a high-throughput screening platform for probing correlations 

between gene expression and cellular responses to environmental cues.1329 Further, microcontact 

printing and similar patterning techniques are of use in tissue engineering applications such as 

neurite guidance, which require well-defined patterns of gene expression promoting neural growth 

factor secretion along delineated areas.1341,1358 Finally, 2D platforms for substrate-mediated 

delivery can be valuable tools to understand the impact of nanotopography and surface chemistry 

on cellular responses such as integrin signaling, cytoskeletal activation, cell migration, adhesion, 

with the ultimate goal of improving the “transfectability” of challenging cell types through 

environmental modulation.1363 

7.1.2 Substrate mediated transfection in 3D culture environments. The earliest attempts at 

scaffold-mediated transfection utilized simple polymer matrices such as PLGA or poly(vinyl  

acetate), generally described as “gene activating matrices”.1374 The release rate of nucleic acids 

could be tuned by modifying the pore architecture of PLGA through appropriate modifications to 

polymer processing conditions. Although these were initial 3D model systems for matrix-mediated 

gene delivery, PLGA-based systems provided valuable insight on the mechanistic differences 

between substrate-mediated and bolus delivery approaches. These systems were also probed to 

evaluate whether specific nucleic acid immobilization could affect improvements in delivery 

efficiency, over non-specific impregnation of PLGA with DNA.  

Among 3D cell culture substrates (Table 4), hydrogels are more widely used than PLGA 

or other polymer matrices since the former combine a rich aqueous environment with structural 

support for cells to adhere to and proliferate, while the latter provide structural support alone. By 

providing large open spaces for cellular migration and infiltration, hydrogels have recapitulated 

the extracellular matrix of native cellular environments. Cells can either be seeded onto the 

hydrogel surface, from where they can subsequently infiltrate the porous matrix, or they can be 

encapsulated within the hydrogel by mixing cellular suspensions with hydrogel precursors prior to 

cross-linking.1375 The beauty of hydrogel formation is that extremely mild chemical cross-linking 
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procedures can be implemented, minimizing damage to cellular processes. It has been shown that 

the “seeding onto” approach is superior to cellular encapsulation since cell migration and 

infiltration is necessary to degrade the hydrogel matrix and release genetic payloads for uptake. 

Similarly, polyplexes or lipoplexes can be introduced into the hydrogel either through 

encapsulation or through surface immobilization (through biotin-avidin interactions,1345 

electrostatic interactions, or covalent bonds). The former approach was found to be ineffective 

even when the hydrogel mesh size was much smaller than the polyplex, since polyplex diffusion 

is hindered and the hydrogel must degrade to release complexes.1376 Other challenges include the 

optimization of hydrogel-vector interactions such that polyplexes are retained long enough on 

hydrogels to sustain prolonged DNA release for the duration of cell migration. However, extremely 

strong interactions between polyplexes and the matrix can hinder cellular uptake and DNA release. 

Polyplex aggregation can also drastically alter transgene expression profiles since smaller 

polyplexes tend to transfect a larger number of cells during substrate-mediated transfection. Segura 

and coworkers developed a “caged nanoencapsulation” approach to prevent polyplex aggregation 

and enhance transgene expression efficiency.1376 Balancing hydrogel degradation rates to match 

the rate of cell migration is especially tricky. Any attempt to tune degradation kinetics would 

inevitably be accompanied by changes in hydrogel composition, adhesion ligand density 

crosslinking density, swelling ratio, and mechanical properties, all of which are critical to 

achieving efficient transfection.1377  
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Figure 44. Design considerations for 3D hydrogels. Reprinted with permission from ref.1318 

Copyright 2018 Elsevier.  

Independent control of all these key material properties (Figure 44) is relevant to hydrogel-

mediated gene delivery, which in turn requires creative use of synthetic chemistry and expanding 

the toolbox of hydrogel building blocks beyond PEG. Although PEG is synthetically convenient 

and ensures structural integrity, it does not interact specifically with cellular receptors, unlike 

biologically derived polysaccharides and ECM-mimetic materials such as hyaluronic acid.1378 

Blending PEG with ECM-based materials such as HA, collagen or fibrin is a common strategy to 

enhance hydrogel biofunctionality. Further, materials such as hyaluronic acid and fibrin can be 

degraded by cell-secreted enzymes, unlike PEG hydrogels, which require the enzymatic action of 

matrix metalloproteinases, a family of zinc-based endopeptidases. Cross-linked hydrogels can 

incorporate matrix metalloprotease-responsive peptides, and DNA release rates can be readily 

tuned within these enzymatically degradable hydrogels to prolong transgene 

expression.1165,1379,1380 These studies suggest that degradability allows for cell infiltration and 

migration and is therefore a key requirement for matrix mediated gene delivery to be effective. 

RGD peptide motifs are frequently incorporated within cross linked hydrogels to facilitate 

cellular adhesion and proliferation.1377,1380 It is important to note that the spatial presentation of 

RGD motifs, rather than the surface density alone, is critical in determining cell proliferation and 

migration behaviors that ultimately impact transfection. In 2D culture, it was demonstrated that a 

clustered presentation of RGD was more effective than uniform spatial distributions.  Several 

studies have noted the strong effects of RGD density1381 within hydrogels, with some studies 

observing a non-monotonic relationship between RGD concentration and transgene efficiency.1165 

Mooney and coworkers systematically varied RGD density in conjunction with alginate hydrogel 

modulus observed that RGD density was much a more influential design parameter than hydrogel 

stiffness in shaping gene silencing efficiency.1167 To engineer tissues with vasculature or to guide 

the extension of neural conduits, it’s necessary to ensure spatial localization of genetic payloads 

along well-defined regions within hydrogels. Shea and coworkers generated cross-linked 

hydrogels bearing spatial patterns of immobilized polyplexes through biotin-streptavidin 

interactions.1345 They note that specific immobilization strategies are essential to pattern hydrogels 

and that the spatial organization of cell adhesive cues such as RGD is critical in determining 

transgene expression. The placement of bioactive cues such as RGD can be a useful lever of control 
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to modulate transfection outcomes. For instance cellular migration has been shown to promote 

cell-polyplex contact but this requires the creation of gradients of bioactive signals through 

microfluidic synthesis of hydrogels.1382 Spatially-patterned hydrogels can also  lead to the creation 

of cellular microarrays for screening studies.  Lipoplexes encapsulated by fibrin hydrogels could 

be spotted as a microarray allowing for discrete hydrogels spots allowing pDNA densities, 

fibrinogen concentration, and cell densities to be varied independently.1383  

Many future directions for research in hydrogel-mediated gene delivery exist and one 

particularly interesting approach focuses on photoresponsive hydrogels, wherein both mechanical 

and chemical properties can be easily modified with exquisite spatiotemporal selectivity.1384 

Moreover, design rules elicited from hydrogel platforms can be readily implemented for 

electrospun polymer mats, another promising class of tissue engineering scaffolds.1385 While many 

studies have preferred to encapsulate genetic cargo within coaxially generated polymeric 

microfibers and nanofibers to protect DNA from harsh processing conditions,1386 it would be 

highly desirable to functionalize electrospun fibers with ECM coatings and effect gene delivery 

from these bioactive matrices.  

 

Table 4. Summary of 3D platforms for substrate-mediated transfection 

Scaffold material DNA complexation Summary Refs. 
PLGA Naked Platelet-derived growth factor delivered from porous PLGA for angiogenesis 1387 

Vascular morphogenesis through delivery of Del-1 from injectable implant 1343 
Spinal cord repair by delivering plasmids over extended durations 1388 

Layered design of porous and non-porous PLGA scaffold 1388 
Subcutaneous implantation of DNA-loaded scaffold 1389 

PEI BMP-4 delivery to heal critical bone defect 1342 
PEI/PAA/PDA/PLL Initial plasmid dose, choice of promoter and vector composition studied 1335 

PLGA Probe effects of pore architecture on DNA stability and release kinetics 1337 
Fibrin Naked Full thickness wounds healed by delivering EGF to keratinocytes 1390 

Fibrin encapsulation did not enhance VEGF plasmid delivery 1391 
Peptide lipoplexes Therapeutic angiogenesis through delivery of transcription factor HIF-

1alpha 
1392 

Lipoplex Spatial control of transfection through fibrin microarrays 1383 
Comparing cell encapsulation vs “seeding onto” approach 1375 

Alginate 
 

PEI Hydrogel-mediated VEGF delivery outperformed bolus delivery 1393 
Naked Role of RGD density and hydrogel stiffness during siRNA delivery 1167 

Atellocollagen 
 

Naked Gene silencing for inhibiting tumoral growth 1394 
Intramuscular gene delivery 1395 

Chitosan Naked Peripheral nerve regeneration through BDNF delivery to MSCs 1396 

Collagen 
 

Naked Platelet-derived growth factor to heal chronic wounds 1397 
Inhibit collagen deposition through anti-sense delivery 1374 
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Lipoplex Dual delivery of VEGF and BMP-2 for healing critical bone defects 1398 
Gelatin Naked Intramuscular delivery of FGF-4 for ischemia 1399 

PEI Bone growth through dual delivery of bFGF and BMP-2 1400 
Hyaluronic acid 

 
Naked, PEI Interactions between PEI and hyaluronic acid modulated transgene 

expression 
1378 

PEI Effect of polyplex diameter gene delivery 1345 
RGD density and matrix stiffness evaluated conjointly 1165 

Effect of pore architecture on vascularization 1376 
Extended DNA release over 30 days mediated by multiple transfection 

events 
1401 

PEI/Lipoplex Caged nanoparticle encapsulation sued to prevent polyplex aggregation 1377 
PEG 

 
PEI MMP-degradable peptides incorporated via Michael addition chemistry for 

MSC transfection 
1379 

Bioinstructive hydrogels created using RGD gradients to guide cell 
migration 

1382 

Electrospun mats functionalized with MMP-responsive peptides for diabetic 
wound healing 

1382 

Cellular infiltration is key to obtaining extended DNA release in MMP-
responsive hydrogels 

1380 

Transfast Affinity peptides enhanced polyplex retention to improve transfection 1402 
Lipoplexes Tuning RGD density to control cell migration to balance hydrogel 

degradation rates 
1381 

7.2 Polyelectrolyte multilayers 

Layer-by-layer assembly is a rapidly evolving materials platform for nucleic acid delivery 

that combines exquisitely tunable release kinetics, co-delivery of diverse cargoes encompassing 

drugs1403, nucleic acids,1404,1405 and imaging modalities,1406,1407 in a sequential or “scheduled” 

manner1408 and a vastly diversifying substrate scope. The inherent simplicity of LbL synthetic 

methodologies and its unique capabilities have allowed LbL based materials to address complex 

therapeutic challenges in creative ways.1409 LbL coatings are assembled by alternately depositing 

two or more macromolecules that share complementary interactions with each other through 

electrostatic attractions, hydrogen bonding,1410 DNA base-pairing, covalent bonds,181,1411,1412 or 

metal-ligand chelation.1413 Originally reported by Decher and Hong in 1991,1414 the first reported 

synthesis of LbL coatings exploited electrostatic interactions to build alternating layers of 

poly(styrene sulfonate) and poly(allylamine hydrochloride) starting from a charged substrate.1414 

Deposition steps are interwoven with washing steps in order to remove unbound polymers, 

ensuring the formation of monolayers and cyclical charge reversion over the course of each 

immobilization sequence. Iterative repetition of deposition/washing steps can create multilayered 

architectures of controllable film thickness, composition, and hydrolytic stability. LbL assembly 

is well suited for the encapsulation, protection and release of therapeutic nucleic acids such as 
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pDNA, siRNA, and others since the negative charge on nucleic acid backbones facilitates 

complexation with cationic polymers such as PLL,1250,1415–1417 chitosan,1418–1420 and PEI.1421–1423 

In the context of gene delivery, LbL coatings are typically synthesized in the following formats: 

(1) the traditional approach to LbL assembly employs planar substrates, onto which 

polyelectrolytes are sequentially immobilized, creating nanometer-thick multilayer films (Figure 

45(A)).1421,1424–1426 Further, nucleic acid cargoes can be impregnated within these films in the form 

of naked DNA or RNA, polyplexes,1427 lipoplexes,1424,1428 or simply as adenoviral capsids. (2) LbL 

coatings can be applied to nanoparticle1429,1430 or microparticle1431,1432 “cores” of desired shapes 

and sizes, such that the particle surface can be successively modified with polyelectrolytes, thereby 

transforming its interactions with cellular targets (Figure 45(B)).1433 (3) Micron-sized polymeric 

capsules1434–1438 composed of “free-standing” LbL multilayer films can be formed through 

sacrificial particle templates1439–1442 or through template-free methods (Figure 45(B)).1443  

 

Figure 45. Schematic of layer-by-layer assembly of polyelectrolyte multilayer films on (A) planar 

substrates and (B) nanoparticles. Reprinted with permission from ref.1444 Copyright 2012 

Elsevier. 

In this section, we will discuss (1) engineering targeted film properties by optimizing layer 

architecture and LbL assembly conditions (2) tuning degradation kinetics, triggering release using 

chemical and physical stimuli, and co-delivering multiple cargoes along individualized release 

trajectories to meet complex therapeutic objectives and (3) applying LbL coatings to biomedically 

relevant substrates such as catheters, bandages, and stents. We will conclude by outlining 

challenges involved in the clinical translation of LbL-based vectors and directions for future 

research.  
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LbL film properties can be controlled by modifying polymer composition,1445 layer 

architecture, that is the number, composition and ordering of layer components1446 and finally by 

varying features of the solvent environment1447 such as pH and ionic strength.1249,1448,1449 Lynn and 

coworkers developed PBAE libraries1450 to probe structure-property relationships that shed light 

on the relationship between film thickness, charge density, hydrophobicity, and the erosion profiles 

and release rates of anionic payloads.1451–1453 Further, by combining PBAEs with contrasting 

payloads into a single coating, the authors were able to control the timing and sequence in which 

disparate pDNA payloads were delivered.1451 In addition to hydrolytic cleavage and enzymatic 

degradation,1425 they also explored the use of charge-reversal as a film disassembly mechanism. 

This was accomplished either by incorporating pH-responsive tertiary amines within the polymer 

pendant groups974 or through ester hydrolysis to unmask carboxylate groups.1454  

The use of an additional barrier-layer to prevent interlayer diffusion can reduce the mobility 

of the nucleic acid payload transform the release profile from a “bulk process” to a more sustained 

surface-mediated process.1455 Oupicky and coworkers elegantly demonstrated this concept by 

comparing degradation behavior of bioreducible LbL layers with and without a PEI interlayer.1251 

They concluded that in the absence of the interlayer, film degradation proceeded through the 

release of large micron-sized fragments of DNA and cationic polymer, culminating in burst release 

in a reducing environment, while the interlayer-incorporating films degraded at a more controlled 

rate over the span of five days by breaking down into nanoparticles. Compared to tuning the release 

kinetics of a single payload, managing the pharmacokinetics of dual or multiple payload1438,1456 

systems presents a greater challenge, since the design space for multifunctional LbL assemblies is 

significantly more complex. Hammond and coworkers have reported several powerful case-studies 

demonstrating the utility of multifunctional “onion-like” LbL nanoparticle platforms1457 capable 

of co-delivering diverse cargoes such as siRNA and chemotherapeutics,1403 and biosensor peptides 

that can serve as urinary reporters for the recurrence of metastatic cancer.1458 By focusing on 

polyelectrolyte composition, layer architecture, and the surface chemistry of the outermost shell, 

they identified critical design parameters for electrostatic assembly of dual payloads towards 

cancer treatment. 

Several responsive LbL assemblies have been engineered with the goal of  disrupting the 

interactions holding layers together to release the payload on demand upon application of 

appropriate physical stimuli.1444 LbL films have been used to enhance transfection efficiencies 
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during ultrasound-mediated gene delivery by coating a microbubble or gas core with alternating 

layers of cationic polymers and DNA, thereby delivering a higher quantity of DNA than via 

ultrasound treatment alone.1416,1459 Wang and coworkers employed polyphosphoester to engineer 

degradable multilayers for osteoblast regeneration.788 Similarly, electrochemical1460,1461 and 

electrical1423,1462 triggers have also been used to engineer on-demand film disassembly and cargo 

release. Incorporating redox-responsive moieties such as disulfide bonds that can undergo 

cleavage by glutathione within the reducing environment of the cytosol has been a popular strategy 

to tune the degradation kinetics of LbL films.772 Disulfide bonds can be placed either in the 

polymer backbone1252,1463,1464 in the form of degradable crosslinkers1440 to tune layer rigidity and 

stability. Additionally, the degree of cross-linking181,1252 can also be modulated to extend the 

duration of payload release. In addition to the temporal control afforded by LbL assembly, 

patterned films can also be easily created, allowing for spatial control1253,1422,1423,1465 transfection 

outcomes and the creation of microarrays for high-throughput experimentation. 

Unlike other platforms for local or substrate-mediated gene delivery,1466 LbL coatings can 

be conformally applied on a broad range of surfaces, including  highly tortuous geometries such 

as stents, without the need for pretreatment. Oupicky and coworkers coated a stainless steel mesh, 

which bears a net negative charge, with alternating layers either a bioreducible form of 

hyperbranched PAMAM or a PEI positive control, with plasmid DNA interspersed between 

cationic layers.1230 In contrast, Park and coworkers pre-treated the steel surface with dopamine-

functionalized hyaluronic acid to facilitate immobilization of DNA/PEI polyplexes, instead of 

relying on electrostatic interactions with the bare steel surface.1467 LbL coatings are attractive 

alternatives to the use of polymer-coated (such as PLGA) stents since they function as a degradable 

matrix from which drugs or genes can be slowly eluted. In contrast to bulk degradation of a 

polymeric matrix, LbL coatings not only offer more precise control of DNA release kinetics, but 

also enhance the cellular internalization and endosomal escape of nucleic acid payloads within 

diseased vascular cells.1468 Several examples of gene-eluting stents based on LbL platforms have 

been reported1467,1469 including the use of PBAE-based films from Lynn and coworkers.1470 While 

gene-eluting intravascular stents are long-term interventions for the treatment of atherosclerosis, 

other therapeutic contexts demand the application of DNA-loaded LbL films on catheter 

balloons.1471–1473 Hammond and coworkers have pursued meshes or bandages as substrates for 

LbL-mediated gene silencing and demonstrated sustained release during the entirety of the wound 
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healing process.1474 Percutaneous or intradermal gene delivery has been extremely challenging 

since the stratum corneum bars even the diffusion of small molecule drugs, ensuring that 

macromolecular therapeutics such as DNA-based vaccines, genetic medicines for skin cancer, and 

proteinaceous drugs cannot penetrate the skin.1475 To penetrate the skin barrier, microneedle arrays 

have been developed as safer and pain-free alternatives to traditional needle-based administration. 

In the context of DNA vaccine delivery, the groups of Irvine and Hammond developed 

microneedle-based polymer multilayer “tattoos” wherein polymer-coated microneedle patches 

carrying both DNA vaccines, immune-stimulatory RNA were transferred into the epidermis to 

achieve sustained month-long release and immune response, unlike intradermal injection of DNA 

alone.1476 Other studies have reported the use of PLGA microparticles1477 and pH-responsive 

polymers1478 to promote microneedle-mediated DNA vaccination while Lynn and coworkers took 

advantage of their tunable PBAE platform to functionalize stainless steel microneedles with 

multilayers containing either DNA or a model protein.1479 Wang and coworkers modified PCL-

based microneedle arrays with polyelectrolyte multilayers consisting of a pH-responsive polymer 

and a plasmid DNA intended to treat subdermal tumors.1480 These LbL-functionalized microneedle 

patches outperformed both intravenous injection as well as unfunctionalized DNA-loaded 

microneedles in inhibiting tumor growth. While microneedle-based DNA vaccination will 

undoubtedly regain relevance in the face of the COVID-19 (coronavirus disease of 2019) 

pandemic, polymers for LbL-based surface modification of microneedle patches must allow for 

tunable release kinetics, DNA dose control, and payload protection against heat and mechanical 

stress.  

Although LbL research has been gradually moving away from manual film assembly in 

favor of automated production methods that employ liquid handling robots, the scalability, 

robustness, and reproducibility of the LbL coating process needs further improvement. 

Incorporating process control modules to maintain pH and ionic strength within the narrow 

windows demanded by precise LbL assembly will be a step towards creating reproducible 

formulations. Additionally, LbL nanoparticles have so far been restricted to spherical geometries 

and systematic explorations of size and shape in conjunction with LbL film composition and 

architecture have potential to be productive avenues for future research. 
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7.3 Polymer brushes 

Polymer brushes are typically employed as cell-instructive coatings and non-fouling 

surfaces in biomedical research and hence their gene delivery capabilities have remained woefully 

under-investigated. Gautrot and coworkers, who have been enthusiastic proponents of polymer 

brushes in gene delivery, argue that unlike drug delivery, where polymer brushes are severely 

limited by their low loading capacities, gene delivery presents no such obstacles.1481 Compared to 

small molecule drugs, which require high dosages, moderate loadings of nucleic acid therapeutics 

would suffice to bring about the desired clinical outcomes.  Further the versatility of surface-

initiated (SI) polymerization tools such as SI-RAFT and SI-ATRP allows for orthogonal control 

over particle core composition, size, shape and polymer brush architecture, composition, density, 

and thickness. For instance, graphene,1482 nanodiamonds,1483 and magnetic nanoparticles1484 have 

been employed, imparting a highly desirable mixture of properties originating from physically 

interesting inorganic cores and chemically tunable polymer coronas. This modularity is more 

challenging to achieve with other platforms, making polymer brushes an ideal approach to 

independently probe the effects of physical as well as chemical properties of polyplexes and arrive 

at meaningful structure property relationships, unlike with free polymer chains, where independent 

control of these attributes is near-impossible.1485 Investigators must however be cautioned that 

interactions between substrate-bound polymer brushes and nucleic acids bear very little 

resemblance to what is observed with their free polymer counterparts. The grafting density of 

polymer brushes, in particular, has been shown to be the most critical determinant of nucleic acid 

binding affinity, loading density and release rate. While sparsely grafted polymer brushes (where 

the reduced grafting density Σ < 1) can be easily obtained through “grafting-to” approaches, 

densely bound polymer brushes ( where Σ < 1) require the controlled immobilization of 

polymerization initiators at sufficiently high surface densities.1486 Moreover, nucleic acids may 

bind to cationic brushes via one of two binding configurations: superficial adsorption, where they 

do not penetrate the brush layer or brush infiltration, wherein they overcome steric barriers to bind 

to charged sites within the brush. While the choice of binding configuration is dependent on brush 

density, with denser brushes forbidding infiltration, the size, stranded-ness and the backbone 

composition of the nucleic acid payload also play key roles. Gautrot and coworkers demonstrated 

that smaller oligonucleotides (10-22 bp) easily permeate even densely grafted polymer brushes, 

but bind weakly and result in low levels of loading.1487 Adsorption of larger payloads such as 
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pDNA is hindered by high-density brushes. This results in low pDNA loading levels, but these 

complexes display extremely strong binding affinities. Gautrot’s group also demonstrated that 

RNA payloads are much more easily captured by polymer brushes, irrespective of grafting density, 

and that the grafting density can be modulated to in order to attain the desired loading of RNA 

payloads.1488 Further, they have also drawn attention to the role played by buffer composition, 

ionic strength, and pH in influencing brush conformation and swelling and ultimately deciding the 

fate of DNA complexation.1481 Although polymer brushes are attractive tools for producing serum-

stable and highly efficient polyplexes, their synthesis and biological testing must be accompanied 

with rigorous physicochemical characterization by employing SPR, ellipsometry, light scattering 

techniques, and themogravimetric analysis. Further, research on polymer brush functionalized 

nanoparticles must move past heavy reliance on PDMAEMA and incorporate polycationic brushes 

containing varied charge centers, monomer distributions, and architectures. The effect of particle 

size and curvature on brush conformation and DNA complexation is also an apt subject for further 

studies. We would also like to point out the promise of using mixed-brush systems comprised of 

PAA and polycationic polymers such that the PAA termini can be decorated with RGD motifs1362 

as well as growth factors in order to modulate biointerfacial behavior. 

In this section we highlighted some interesting examples of non-traditional material design 

approaches to polymeric gene delivery. These examples demonstrate that hybrid polymer 

engineering approaches employing tissue engineering scaffolds, crosslinked hydrogels, engineered 

nanoparticle templates, and polyelectrolyte multilayer coatings can be as powerful as traditional 

polymer synthetic approaches.  

8 CLINICAL OUTLOOK FOR POLYMER-MEDIATED GENE THERAPY 

Synthetic advances and an improved understanding of structure-function relationships have 

accelerated progress in ex vivo and in vivo delivery applications of polymeric vehicles. Yet very 

few polymers have progressed to clinical trials and testing in human subjects. In this section, we 

will focus on the clinical translation of gene therapeutics, restricting our attention to synthetic 

vehicles such as lipid nanoparticles and polymers. We will begin our clinical perspective by 

drawing attention to recently approved gene therapy products. Then we will describe clinical trials 

involving lipid-based and polymeric vehicles and discuss promising developments from these 

nonviral clinical studies, particularly with lipids. 
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Although the first demonstration of gene therapy was published in 1972, it was not until 2017 

that the USFDA granted approval for clinical use of gene therapeutics.1489 The intervening years 

have witnessed an explosion of clinical trials and USFDA approvals with several gene therapeutics 

reaching the market.1489 Salient examples have been mentioned in Table 5 with notes on approval 

history and cost.  

Table 5. Summary of gene therapeutics on the market. Prices gathered from press releases. 

Therapeutic 
Name 

Disease target Manufacturer Approval 
granted 

Notes Approx. Cost 

Gendicine Squamous cell carcinoma Shenzhen SiBiono 
Genetech 

2003 China Turned down by 
USFDA, 

withdrawn by EMA 

$360 per dose 

Macugen Age-related macular 
degeneration 

OSI pharmaceuticals 2005 US Intravitreal 
injection every 6 

weeks 

$9000 per eye per 
year 

Glybera Lipoprotein lipase deficiency UniQure 2012 EU Withdrawn from 
market in 2017 

>$1 M in total 

Kynamro Familial hypercholesterolemia Genzyme corporation 2013 US Rejected by EMA 
in 2012 & 2013 

$176,000 

Imlygic Melanoma Amgen 2015 US First oncolytic 
virus approved 

$65000 in total 

Strimvelis Adenosine 
deaminase deficiency 

Orchard Therapeutics 2016 EU “bubble boy 
disease” 

$665,000 

Spinraza Spinal muscular atrophy Biogen 2016 US First gene 
therapeutic  for 

SMA in US. 

$750,000 for the 1st 
year and $375,000 
per year thereafter 

Exondys 51 Duchenne's muscular dystrophy Sarepta Therapeutics 2016 US Conditional 
USFDA approval 

$892,000/year 

Kymriah B-cell lymphoma Novartis 2017 US 
2018 EU 

First USFDA-
approved cell-

based gene therapy 

$475,000 in total 

Luxturna Leber congenital amaurosis Spark Therapeutics 2017 US 
2018 EU 

Developed with 
Children’s Hospital 

of Pennsylvania 

$425,000 in total 

Yescarta B-cell lymphoma Gilead Pharma 2017 US 
2018 EU 

Cheaper than 
Kymriah 

$373,000 

Defitelio Veno-occlusive disease Jazz Pharmaceuticals 2017 US & 
EU 

ssODN mixture $160,000 in total 

Onpattro Transthyretin-mediated 
amyloidosis 

Alnylam 
Pharmaceuticals 

2018 US siRNA with lipid 
vehicles 

$450,000 

Zynteglo Beta thalassemia Bluebird Bio 2019 EU Yet to seek USFDA 
approval 

$1.8 M 

Zolgensma Spinal muscular atrophy Novartis 2019 US Most expensive to 
date 

$2 M 

Givlaari Acute hepatic porphyria Alnylam 
Pharmaceuticals 

2019 US GalNac-conjugated 
RNAi therapeutic 

$575,000 
Oxilumo Primary hyperoxaluria type 1 2020 EU  and 

US 
$493,000 

Leqivo Reducing LDL cholesterol Novartis 2021 EU $15,000 per year 
Tozinameran or  

BNT162b2 
Vaccine for SARS-COV2 Pfizer/BioNTech 2020 US and 

EU, 
emergence use 

mRNA vaccines 
based on lipid NPs 

~$20 per dose 

mRNA-1273 Vaccine for SARS-COV2 Moderna 2020 US, 
emergence use 
authorization 

~ $40 per dose 

All but six of the above therapeutics are based on viral vectors, which may have contributed 

to the high treatment costs.1490 Recognizing the importance of developing synthetic alternatives to 

engineered viruses, there has been increasing efforts to test formulations based on lipids and 
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polymers in the clinic. As of December 2019, 3025 clinical trials have been initiated using 

therapeutic nucleic acids. The recent approvals granted to Givosiran, Oxlumo, and Leqivo (siRNA 

therapeutics functionalized with GalNAc residues) represents an exciting development for siRNA-

glycan conjugates.1491 At the time of submitting this manuscript, two lipid-based mRNA vaccines 

for SARS-CoV-2, mRNA-1273 (Moderna) and BNT162b2 (Pfizer) released interim results from 

their respective Phase 3 trials, based on which emergency use authorization was granted by the 

FDA and the EU. 

 If we break down the trials by disease area (Figure 46(A)), cancer treatment emerges as 

the most widely targeted therapeutic area, a trend we attribute to advances made by molecular 

biologists in understanding the genetic basis of cancer progression.1492 Surprisingly, inherited 

disorders underlying monogenic diseases constitute a rather small proportion of clinical trials, 

possibly because these disorders are extremely rare among the population and present financial 

challenges to development.1493 We believe that ocular disease, vaccine development for infectious 

diseases such as SARS-CoV-2, and cardiovascular diseases will constitute a great proportion of 

clinical trials in the years to come. A breakdown by delivery modality reveals a stark picture: 

nonviral methods such as lipofection, gene guns, electroporation, and naked payload delivery 

constitute a small fraction of the 3000+ trials initiated thus far (Figure 46(B)). Although the 

delivery landscape was historically dominated by adenoviruses, retroviruses and lentiviruses, 

adeno-associated viruses are quickly emerging as safer viral alternatives since they have been 

shown to elicit more predictable and less severe immune responses during clinical trials.44 Now, 

we will briefly survey recent clinical developments with drugs composed of polymers/nucleic 

acids, compare the contrasting clinical fates of polymeric vehicles with those of lipid vehicles, and 

conclude with some recommendations for improving clinical outcomes of polymeric vehicles.  
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Figure 46. Summary of clinical trials by (A) therapeutic area, (B) delivery modality. Data 

obtained from The Journal of Gene Medicine. Copyright 2019 John Wiley and Sons. Database 

updated December 2019.  

Table 6. Summary of clinical trials involving polymeric vehicles. 

# Vehicle Sponsor Therapeutic 
name 

Payload type 
& target 

Condition Phase Status Identifier 

1 PEI Genetic 
Immunity 

DermaVir plasmid DNA 
expressing 
fifteen HIV 

antigens 

HIV/AIDS 2 Completed NCT00711230 

2 Cyclodextrin 
based polymer 

and 
adamantane 

PEG stabilizer 

Calando 
Pharmaceuticals 

CALAA-01 siRNA 
targeting M2 

subunit of 
ribonucleotide 

reductase 
(R2) 

Solid tumors 1 Terminated NCT00689065 

3 PEI Senesco 
Technologies, 

Inc. 

SNS01-T RNAi-
resistant DNA 

plasmid 
expressing 

non-
hypusinable 

eIF5AK50R + 
eIF5A 

targeting 
siRNA 

B-cell 
lymphoma 

2 Unknown NCT01435720 

4 PEG-PEI-
cholesterol 

Lipopolymer- 

EGEN Inc EGEN-001 IL-12 Plasmid Colorectal 
peritoneal 

carcinomatosis 

2 Terminated NCT01300858 

5 Gynecologic 
Oncology 

Group 

Ovarian cancer 2 Completed NCT01118052 
6 1 NCT01489371 

7 Poloxamer 
CRL1005– 

benzalkonium 
chloride 

Astellas VCL-CB01 CMV vaccine End organ 
disease 

2 Completed NCT00285259 
8 ASP0113 2 Completed NCT01903928 
9 ASP0113 3 Active, not 

recruiting 
NCT01877655 
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10 Mixture of 
polymer/siRNA 

Arrowhead 
Pharmaceuticals 

ARC-520 siRNA 
targeting 

HBV proteins 

Hepatitis B 1 Completed NCT01872065 
11 2 Terminated NCT02065336 

12 PEI University 
Hospital, 
Toulouse 

CYL-02 plasmid DNA 
encoding 
SST2 + 

DCK::UMK 
genes 

Pancreatic 
adenocarcinoma 

2 Recruiting NCT02806687 

13 Spherical 
nucleic acids 

Northwestern 
University 

NU-0129 siRNA 
targeting 
Bcl2L12 

Recurrent 
glioblastoma 

1 Active, not 
recruiting 

NCT03020017 

14 biodegradable 
polymeric 

matrix 

Silenseed Ltd siG12D 
LODER 

anti 
KRASG12D 

siRNA 

Pancreatic ductal 
adenocarcinomas 

1 Completed NCT01188785 

15 Advanced 
pancreatic 

vancer 

2 Recruiting NCT01676259 

16 PEI Anchiano 
Therapeutics 

Israel Ltd. 

DTA-H19 plasmid 
diphtheria 

toxin A 
(DT-A) 

Diphtheria 2 Completed NCT00595088 
17 BC-819 Ovarian cancer 2 Completed NCT00826150 
18 DTA-H19 Pancreatic 

neoplasms 
2 Completed NCT00711997 

19 BC-819 Non-muscle 
invasive bladder 

cancer 

2 Terminated NCT03719300 

The Davis lab has extensively reported on the systemic administration of siRNA-based 

therapeutics using polymeric delivery platforms not only in primate models,120 but also in human  

subjects.113,995,996,1494 Clinical trials conducted with CALAA-01 (#2 in Table 6), a cyclodextrin-

based delivery system for siRNA silencing of ribonucleotide reductase subunit 2 have been 

described in detail in another report,112 where a detailed analysis of clinical trials conducted up to 

2015 can be found. Therefore, we will restrict our attention to more recent clinical candidates in 

this review article. PEI features in seven out of nineteen trials involving polymers, underscoring 

the versatility of PEI-based vehicles across therapeutic applications ranging from acquired 

immunodeficiency syndrome (AIDS) vaccination (#1 in Table 6), Diphtheria vaccination (#16 in 

Table 6), and cancer treatment (#3,12,17-19,  in Table 6). Among active PEI-based trials, the 

combination therapy CYL-02 that consists of  plasmid DNA encoding SST2 (a tumorigenesis 

suppressor) and a chemotherapeutic, gemcitabine (#12 in Table 6), seems particularly promising 

for the treatment of pancreatic ductal adenocarcinoma, a leading cause of death. This nonviral 

therapeutic developed by the University hospital, Toulouse resulted in mild toxicities, and no 

serious adverse events were recorded. CYL-02 DNA was detected in blood and tumors, while 

therapeutic RNAs were detected in tumors. The authors noted that nine patients exhibited disease 

symptoms for 6 months following treatment, while two of these patients experienced long-term 

survival.1495 Since this therapeutic is well-tolerated and led to disease stability, it will be interesting 

to examine results from phase 2 studies towards the end of next year. For the same disease, another 

combination therapy is under clinical investigation (#15 in Table 6). This siRNA-based therapeutic 
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from Silenseed Ltd has not provided the composition of the “miniature biodegradable bio 

polymeric matrix” employed to encapsulate the drugs and nucleic acids.  

Spherical nucleic acids, where nucleic acids and polycations are conjugated to a gold 

nanoparticle core, have also entered the clinical pipeline, with NU-129 (#13 in Table 6) being 

tested in glioblastoma patients. In phase 0 or early phase 1 studies, no significant toxicities were 

seen in a cohort of eight patients. Since two patients reported adverse events (one grade 3, one 

grade 4) and were removed from the trial, tumor tissue could be collected from only six of the 

eight patients. Since gold nanoparticles can be quantified via inductively coupled plasma-mass 

spectrometry,  gold accumulation was verified in the tumor tissue of all six of these patients.1496 

Finally, an investigational therapeutic (BC-819, #19 in Table 6) that relies on the tendency of 

diphtheria toxin to be expressed specifically in malignant cells  reported its phase 2 results 

recently.1497 This PEI-complexed plasmid DNA was found to be well tolerated among thirty-eight 

patients and did not contribute to toxicity during intravesical therapy of  non-muscle invasive 

bladder cancer. However, this trial did not progress to phase 3 due to lack of efficacy.  

Table 7. Summary of clinical trials involving lipids, electroporation, and transposons. 

# Vehicle Sponsor Therapy 
name 

Payload 
type & 
target 

Condition Phase Status Identifier 

1 GAP-
DMORIE
– DPyPE 

US Army 
Medical 

Research and 
Material 

Command 

Tetravale
nt 

dengue 
vaccine 

DNA 
vaccine 

Dengue  
vaccine 

1 Completed NCT01502358 

2 Lipid NPs Arbutus 
Biopharma 

PRO-04
0201 

siRNA APB Hyperchole
sterolemia 

1 Terminated NCT00927459 

3 TKM-08
0301 

siRNA PLK1 Cancer 2 Completed NCT01262235 

4 TKM-10
0201 

siRNA 
VP24, VP35 

and 
Zaire Ebola 

l-polymerase 
gene 

Ebola 1 Terminated NCT01518881 

5 Imperial College 
London 

pGM169
/GL67A 

plasmid 
DNA  

expressing 
CFTR 

Cystic 
Fibrosis 

2 Completed NCT00789867 
6 NCT01621867 

7 Silence 
Therapeutics 

Atu027 siRNA 
PKN3 

Advanced 
cancer 

1 Completed NCT01808638 

8 Nitto Denko 
Corporation 

ND-L02
-s0201 

siRNA 
SERPINH1 

Fibrosis 1 Completed NCT01858935 

9 Alnylam 
Pharmaceuticals 

ALN-VS
P02 

siRNA 
targeting 

KIF11 and 
VEGF 

Solid 
tumors 

1 Completed NCT01158079 

10 ALN-PC
S02 

siRNA 
targeting 
PCSK9 

Hyperchole
sterolemia 

1 Completed NCT01437059 
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11 Patisiran 
(ALN-

TTR02) 

siRNA  
targeting  
abnormal  

transthyretin. 

Transthyret
in (TTR)-
Mediated 

Amyloidosi
s 

3  
Approved 

NCT01960348 

12 Dicerna 
Pharmaceuticals, 

Inc. 

DCR-
MYC 

siRNA 
targeting 

MYC 

Solid 
tumors 

1 Terminated NCT02110563 

13 SynerGene 
Therapeutics, 

Inc. 

SGT-53 p53 plasmid 
DNA 

Glioblasto
ma 

2 Terminated NCT02340156 

14 Metastatic 
Pancreatic 

Cancer 

2 Recruiting NCT02340117 

15 Pediatric 
cancers 

1 Recruiting NCT02354547 

16 MD Anderson 
Cancer Center 

EphA2–
DOPC 

siRNA 
EPHA2 

Advanced 
cancer 

1 Recruiting NCT01591356 

17 Electropor
ation 

University of 
Pennsylvania 

RNA 
CART19 

cells 

ex vivo cell 
therapy 

messenger 
RNA anti-

CD19 CAR 

Hodgkin 
Lymphoma 

1 Terminated NCT02624258 

18 Lipid NPs Translate Bio, 
Inc. 

MRT500
5 

mRNA 
encoding 

CFTR 

Cystic 
Fibrosis 

1 Recruiting NCT03375047 

19 National Cancer 
Institute (NCI) 

(NCI)-
4650 

mRNA 
vaccine 

Cancer 2 Terminated NCT03480152 

20 Sleeping 
Beauty 

Transposo
n 

Sleeping 
Beauty 

Transpos
ed PBL 

CD-19 
specific 

CAR 

Cancer 2 Recruiting NCT04102436 

21 Lipid NPs Moderna TX, 
Inc. 

mRNA-
2416 +  

 
Durvalu

mab 

mRNA  
encoding 
 Human 
OX40L 

Solid 
tumors 

1 Recruiting NCT03323398 

22 mRNA-
1273 

mRNA 
encoding S-
2P antigen 

SARS-
CoV-2 
vaccine 

3  
Approved 

NCT04470427 

23 Pfizer and 
BioNTech SE 

BNT162
b2 or 

Tozinam
eran 

3 Approved NCT04368728 

24 Genprex, Inc. DOTAP:
Chol-

TUSC2 

plasmid 
encoding 

TUSC2 gene 

non-small 
cell lung 
cancer 

1 Active, 
 not 

recruiting 

NCT01455389 

25 GPX-
001 

Small cell 
lung cancer 

Not yet 
recruiting 

NCT04486833 

 

We have tabulated a representative list of twenty-two clinical trials involving lipid 

nanoparticles,  of which three have already gained FDA approval. We have also highlighted recent 

trials involving electroporation and the Sleeping beauty transposon systems. We draw attention to 

some notable examples that entered Phase 3 clinical trials successfully. Patisiran (#11 in Table 7) 

is an RNA interference therapeutic agent marketed by Alnylam Therapeutics that relies on 

encapsulation of a double-stranded siRNA within lipid nanoparticles to inhibit hepatic synthesis 

of transthyretin.1498 This is the first lipid-based gene therapeutic to be granted FDA approval (2018) 

and has renewed industry interest in lipofection as a viable nonviral platform.  
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The approval of two lipid-based mRNA vaccines for SARS-COV-2 has lent further impetus 

to the clinical translation of non-viral gene delivery platforms.   For mRNA-1273, a vaccine 

efficacy rate of 94.5 % was reported, with 90 of the COVID-19 cases occurring in the placebo 

cohort, and only five in the vaccinated cohort.13 All eleven instances of severe illness occurred in 

the placebo group. Results from the trials of BNT162b2 indicated a vaccine efficacy above 

95%.1499 While lingering concerns about the use of PEG in mRNA-1273 and BNT162b2 persist, 

we anticipate that unpleasant side-effects resulting from both the inherent immunogenicity of 

mRNA as well as the presence of anti-PEG antibodies in some patients, will spur the development 

of PEG alternatives such as carbohydrates, polyoxazolines, and zwitterionic moieties.  The success 

stories of lipid nanoparticle platforms such as mRNA-1273, BNT162b2, and Patisiran motivate us 

to learn from the design philosophies of lipid nanoparticle development and apply these to 

polymeric gene delivery. 

9  CONCLUSIONS & FUTURE OUTLOOK 

Owing to breakthroughs in synthetic tools and physicochemical characterization methods, 

polymeric vehicles for gene delivery have grown in sophistication, multifunctionality, and 

precision. As more and more creative examples of polymer architectures and biofunctional 

monomers continue to be developed, we have witnessed unprecedented improvements in the 

properties and delivery capabilities of polymeric vehicles. Serum stability, immune evasion, 

payload protection, and intracellular trafficking are formidable biological barriers that demand 

numerous material properties be engineered and calibrated with care. Several classes of polymeric 

materials highlighted in this review have juggled these competing design requirements to 

demonstrate exquisite spatiotemporal control in vivo and ex vivo. These improvements have 

allowed us to both visualize and to manipulate the complex cascade of biological events leading 

up to intracellular gene delivery, and to harness a delicate web of intermolecular interactions, 

ultimately facilitating the desired polyplex-cell interactions. For instance, researchers have 

innovated ingenious polymer design strategies to navigate the toxicity-efficiency trade-off through 

decationization and use of hydrophobic motifs, to alleviate aggregation in serum-rich 

environments while yet ensuring payload integrity through triggered shedding of hydrophilic 

stealth layers, and to ensure highly precise delivery of genetic cargoes to specific cellular targets 

through the use of  variegated targeting moieties. Ultimately, successful gene delivery approaches 
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benefit from an interdisciplinary effort and a balance between investigating fundamental 

mechanistic questions and solving development challenges that may hinder clinical translation.  

  Surprisingly, progress in polymer chemistry and engineering has not been accompanied by 

commensurate progress in the clinical translation of polymeric gene delivery vectors. We believe 

that clinical progress has been hindered by the workflows that are currently being used for 

biological evaluation and screening of polyplex formulations.  Typically, formulations that do not 

achieve efficient delivery during in vitro screening are excluded from subsequent in vivo studies. 

For instance, Langer and coworkers1500 employed statistical design of experiments to optimize 

formulation parameters using in vitro evaluation. After having triaged inconsequential process 

parameters during in vitro studies, they again employed DoE to reduce the in vivo experimental 

burden to further optimize the lipid nanoparticle composition. This approach assumes that in vitro 

gene delivery experiments are good predictors of in vivo outcomes, an assumption that has been 

called into question repeatedly.1500 Instead of screening polyplex libraries in vitro before 

identifying a small subset of promising candidates for further in vivo evaluation, some groups have 

eschewed in vitro studies altogether, reasoning that experimental conditions during cell culture do 

not faithfully reproduce physiological barriers faced by formulations within living organisms.1501 

Dahlman and coworkers have improvised a powerful approach to boosting in vivo experimental 

throughput by employing multiplexed signals in the form of DNA barcodes, to tag chemically 

distinct lipid formulations.  Recognizing the reliability, rapidity, and large multiplexing bandwidth 

afforded by storing and retrieving information from oligonucleotide strands, they demonstrated  

simultaneous in vivo analysis of  over 150 nanoparticles using their customized workflow, Joint 

Rapid DNA Analysis of Nanoparticles (JORDAN).1502 We believe that adopting similar high-

throughput in vivo experimental platforms will allow us to explore the polymer design space more 

efficiently and in a physiologically relevant environment. Currently, polymers have 

underperformed relative to lipids when tested in clinical gene therapy settings, with no polymer 

candidate having reached phase 3 to date. This is rather surprising, given that polymers offer 

incontestable advantages over lipids when we consider reproducibility and scalability. We posit 

that this performance differential can be bridged if polymer formulations are optimized through 

multiplexed in vivo studies rather than a sequential strategy where in vitro screening is followed 

by in vivo validation.  



 184 

Secondly, logistical planning of preclinical studies is critical to facilitate agile transitions from 

early phase development to preclinical studies, ensuring timely submission of investigational new 

drug dossiers.1503 Proper planning of in vitro and in vivo pharmacokinetic studies that measure 

absorption, distribution, metabolism, and excretion properties; immunogenicity evaluation via 

antibody screening; and toxicology studies that identify dosing ranges and quantify the toxicity 

induced by repeat dosing is essential. The clinical potential of polymeric vehicles can be fully 

realized only if we work in a coordinated fashion with clinicians, regulators, and entrepreneurs 

when the discovery and development processes are still in their nascency.  

A number of challenges should be addressed for polymers to tackle critical therapeutic 

challenges: 1) The question of whether polymers that are highly efficient with a certain cell type 

can extend their performance across diverse cell types has not been sufficiently investigated. We 

do not yet know whether polymer structure and composition should be tailored independently for 

each cell type, given that endocytosis pathways are known to be cell type-dependent. 2) On a 

similar note, tissue-specificity of engineering polyplexes also remains an open question and the 

lack of clarity on this aspect has hindered in vivo translation. While synthetic vector platforms 

based on lipid nanoparticles have established design guidance for liver-targeted and lung-targeted 

delivery, similar investigations are still at their nascent stage with polymers 3) The overlap in 

polymer design criteria across multiple nucleic acid modalities (mRNA, pDNA, RNP etc.) must 

be probed in detail. While some investigators have reported that certain nucleic acid payloads have 

more stringent design spaces for polymeric vectors than others, other studies have laid claim to 

“universal” delivery platforms that are functional across a broad selection of nucleic acid cargoes. 

4) Although biodegradable polymers are considered most favorably in the light of regulatory 

approval, the long-term safety profile of these vehicles must be evaluated and the immune 

responses to degradation products must be examined in detail. 5) Synthetic chemists must develop 

monomers that possess theranostic capabilities, by coupling delivery functionalities with imaging 

capabilities (such as Raman imaging,1504 magnetic resonance imaging (MRI), or aggregation-

induced emission(AIE)). Theranostic polyplexes will combine efficient delivery with a detailed 

mechanistic view of intracellular events that are often challenging to monitor via traditional 

microscopy. 6) Modular approaches to polymer synthesis must be developed since specialty 

monomers are often difficult to polymerize. Polymer chemists must continue to develop post-

polymerization approaches that allow us to plug in arbitrary ratios of desired functionalities on 
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polymer scaffolds of precisely controlled lengths and architectures 7) Advances in experimental 

automation, high-throughput polymerization and data science must be leveraged to develop a 

materiomics approach to polymeric vector discovery.1505 Accompanied by in-depth 

characterization, polymer synthesis and processing are well-poised to tackle fundamental 

biological questions and ultimately facilitate widespread clinical deployment of polymeric 

biomaterials in therapeutic gene delivery. 
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ABBREVIATIONS 

ABC: Accelerated blood clearance 

AEA: Acrylamidoethylamine 

AEMA: N-(2-Aminoethyl) methacrylamide 

AFM: Atomic force microscopy 

AIDS: Acquired immunodeficiency syndrome 

AIE: Aggregation-induced emission 

APMA: N-(3-Aminopropyl)methacrylamide 

APNBMA: 5-(3-(Amino)propoxy)-2-nitrobenzyl methacrylate 

ASGPR: Asialoglycoprotein receptors  

ASO: Antisense oligonucleotides  

ATPase: Adenosine triphosphatase 

ATRP: Atom transfer radical polymerization 

AzEMA: 2-Azidoethyl Methacrylate 

Bcl2L12: B-cell lymphoma 2-like protein 12 

BDNF: Brain-derived neurotrophic factor 

BIP: 2,6-Bis(1-methylbenzimidazolyl)pyridinyl 

BMA: Butyl methacrylate 

BMP: Bone morphogenetic protein 

BPEI: Branched polyethyleneimine 

BSA: Bovine serum albumin 

CARPA: complement activation-related pseudoallergy 

CBD: Carbohydrate-binding domains 

CBMA: Carboxybetaine methacrylate 

CD: Cyclodextrin and circular dichroism 

CFTR: Cystic fibrosis transmembrane conductance regulator 

CHE: 2-Cyclohexylethyl 

https://docs.google.com/document/d/192VSYLGDChXww4bnFqpk8bbqKoqcpc8TYhH20gSnDsU/edit#heading=h.anjuvr47htnh
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CLIC: Clathrin-independent carrier 

CMV: Cytomegalovirus 

COVID-19: Coronavirus disease of 2019 

CPMG: Carr-Purcell-Meiboom-Gill pulse sequence 

CPP: Cell-penetrating peptides 

CPT: Camptothecin 

CRISPR: Clustered regularly interspaced short palindromic repeat 

CTA: Chain transfer agent 

CuAAC: Copper-catalyzed azide-alkyne click chemistry 

DAB: Diaminobutane-dendrimer 

DCK::UMK: Deoxycytidine kinase::uridine monophosphate kinase 

DEAE: Diethylaminoethyl 

DEAET: 2-(Diethylamino)ethanethiol hydrochloride 

DLS: Dynamic light scattering 

DMAE: 2-(Dimethylamino)-ethyl  

DMAEMA: 2-(Dimethylamino)ethyl methacrylate 

DMAPMA: N-[3-(N,N-dimethylamino)propyl]methacrylamide 

DMBA: N,N′-dimethylbutylamine 

DMEA: N,N′-dimethylethanolamine 

DMPC: 1,2-Dimyristoyl-sn-glycero-3-phosphocholine 

DNA: Deoxyribonucleic acid 

DOPC: 1,2-Dioleoyl-sn-glycero-3-phosphocholine  

DOPE: 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine 

DOSY: Diffusion ordered spectroscopy 

DOTA: 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid 

DOTAP: 1,2-Dioleoyl-3-trimethylammonium propane 

DOX: Doxorubicin 

DPT: N-[N-(3-aminopropyl)-3-aminopropyl] 

DPyPE: 1,2-Diphytanoyl-sn-glycero-3-phosphoethanolamine 

DTS: DNA nuclear targetting sequences 

EAA: Ethyl acrylic acid 

ECM: Extracellular matrix 

EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide  
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EDI: Azido-functionalize PAMAM dendrimer 

EGF: Epidermal growth factor 

eIF5A: Eukaryotic Translation Initiation Factor 5A 

ELS: Electrophoretic light scattering  

EMA: European Medicines Agency (?) 

EPHA2: Ephrin type-A receptor 2 

EPR: Enhanced permeability and retention 

ER: Endoplasmic reticulum 

FCS: Fluorescence correlation spectroscopy 

FDA/USFDA: Food and Drug Administration 

FGF: Fibroblast growth factor 

FITC: Fluorescein isothiocyanate 

FTIR: Fourier-transform infrared spectroscopy 

GAG: Glycosaminoglycan 

GalNAc: N-acetyl-D-galactose 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase  

GAP-DMORIE:(±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(cis-9-tetradecenyloxy)-1-
propanaminium bromide 

GEEC: GPI-Anchored protein-enriched early endosomal compartment 

GFP: Green fluorescent protein 

GlcNAc: N-acetyl-D-glucose 

GMA: Glycidyl methacrylate 

GPI: Glycosylphosphatidylinositol 

GSH: Glutathione 

GTPase: Guanosine Triphosphatase 

HA: Hyaluronic acid 

HBV: Hepatitis B Virus 

HDR: Homology-directed repair  

HEMA: 2-Hydroxyethyl methacrylate 

HEPES: 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HGF: Hepatocyte growth factor 

HIF: Hypoxia-inducible factor 

HIV: Human immunodeficiency viruses 
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HPLC: High presssure liquid chromatography 

HPMA: N-(2-Hydroxypropyl)methacrylamide 

HSQC: Heteronuclear single quantum coherence spectroscopy 

IL: Interleukin 

ITC: Isothermal titration calorimetry 

JORDAN: Joint Rapid DNA Analysis of Nanoparticles 

LODER: Local drug eluter 

MAS: Methacryloxysuccinimide 

MAT: Methacrylamidotrehalose 

MPC: 2-Methacryloyloxyethyl phosphorylcholine 

MRI: Magnetic resonance imaging 

MSC: Mesenchymal Stem Cells" 

N/P Ratio: Ratio of amine groups in the polymer vector to phosphate groups within nucleic acid 
payloads 

nBMA: n-Butyl methacrylate 

NGF: Nerve growth factor 

NHEJ: Non-homologous end-joining  

NHS: N-Hydroxysuccinimide 

NHSA: N-(Acryloxy)succinimide  

NHSMA: N-(Methacryloxy)succinimide methacrylate 

NLS: Nuclear localization sequence 

NMP: Nitroxide-mediated polymerization 

NMR: Nuclear magnetic resonance spectroscopy 

NOESY: Nuclear Overhauser effect spectroscopy 

NPs: Nanoparticles 

NTA: Nitrilotriacetic acid or Nanoparticle tracking analysis 

ODN: Oligodeoxynucleotides 

OEGMA: Oligoethylene glycol methacrylate 

OEI: Oligoethylenimine 

P4VPQ: Poly(N-methyl 4-vinylpyridine iodide) 

PAA: Poly(acrylic acid) 

PAAs: Poly(amidoamines) 

PAEM: Poly(aminoethyl methacrylate) 
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PAEMA: Poly(2-aminoethylmethacrylamide) 

PAMA: Poly(amidoamine) 

PAMAM: Poly(amidoamine) 

PAsp(DET): Poly(N-[N’-(2- aminoethyl)-2-aminoethyl]aspartamide) 

PAsp(TEP):Poly(N-(N’-{N’’-[N’’’-(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-2-
aminoethyl)aspartamide) 

PBAE: Poly(β-amino ester) 

PBL: Peripheral blood lymphocytes 

PBMA: Poly(butyl methacrylate) 

PBS: Phosphate-buffered saline 

PCL: Poly(ε-caprolactone) 

PCSK9: Proprotein convertase subtilisin/kexin type 9 

PDA: Polydopamine 

PDADMAC: Poly(diallyldimethylammonium chloride) 

PDMA: Poly(N,N-dimethylamino-2-ethylmethacrylate) 

PDMAEA: Poly(N,N-dimethylamino-2-ethylacrylate) or Poly(2-(dimethylamino)ethyl acrylate) 

PDMAEMA: Poly(N,N-dimethylamino-2-ethylmethacrylate) or Poly(2-(dimethylamino)ethyl 
methacrylate) 

pDNA: Plasmid DNA 

PDTEMA: Poly(N-[2-(2-pyridyldithio)]ethyl methacrylamide) 

PEG: Poly(ethylene glycol)  

PEGA: Poly(ethylene glycol) acrylate 

PEGEEMA: Poly(ethylene glycol) ethyl ether methacrylate 

PEGMA: Poly(ethylene glycol) methacrylate 

PEHA: Pentaethylenehexamine 

PEI: Poly(ethylenimine) 

PFG: Pulsed-field gradient 

PFP: Pentafluorophenyl 

PFPA: Pentafluorophenyl acrylate 

PFPMA: Pentafluorophenyl methacrylate 

PGA: Poly(glutamic acid) 

PGAA: Poly(glycoamidoamine) 

PGBA: Poly(glycidylbutylamine) 
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PGEA: Ethanolamine-functionalized poly(glycidyl methacrylate) 

PGMA: Poly(glycidyl methacrylate) 

PHPMA: Poly(N-(2-Hydroxypropyl)methacrylamide) 

PIC: Polyion complex 

PKN3: protein kinase N3  

PLA: Poly(lactic acid) 

PLG: Poly(L-glutamate) 

PLGA: Poly(lactic-co-glycolic acid) 

PLK: Poly(L-lysine) 

PLK1: Serine/threonine-protein kinase 

PLL: Poly(L-lysine) 

PLLA: Poly(L-lactic acid) 

PLMA: Poly(lauryl methacrylate) 

PMAA: Poly(methacrylic acid) 

PMAG: Poly(2-deoxy-2-methacrylamido glucopyranose) 

PMMA: Poly(methyl methacrylate) 

PMPC: Poly(2-methacryloyloxyethyl phosphorylcholine) 

PMPD: Poly[N-(3-(methacryloylamino) propyl)-N,N-dimethyl-N-(3- sulfopropyl) ammonium 
hydroxide] 

PnBA: Poly(n-butyl acrylate) 

PnBMA: Poly(n-butyl methacrylate) 

PNIPAM,: Poly(N-isopropyl acrylamide) 

POEGMA: Poly(oligoethylene glycol methacrylate) 

POSS: Polyoctahedral silsesquioxanes 

PPA: Poly(phosphoramidate) 

PPG: Poly(propylene glycol) 

PPI: Poly(propylenimine) 

PS: Poly(styrene) 

PSS: Poly(sodium 4-styrenesulfonate) 

PTBP: Poly(tributyl-(4-vinylbenzyl)phosphonium chloride) 

PTEP: Poly(triethyl-(4-vinylbenzyl)phosphonium chloride) 

PTMAEMA: Poly((2-trimethylamino)ethyl metacrylate chloride) 

PTX: Paclitaxel 
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PVBTMA: Poly((vinylbenzyl) trimethylammonium) 

PVDMA: Poly(2-vinyl-4,4-dimethylazlactone) 

PVP: Poly(N-ethyl-4-vinylpyridinium bromide) 

QPDMAEMA: Quaternized PDMAEMA 

RAFT: Reversible addition-fragmentation chain transfer 

RES: Reticuloendothelial system 

RISC: RNA-induced silencing complex  

RLU: Relative luminescence units 

RNA: Ribonucleic acid 

RNPs: Ribonucleoproteins 

ROMP: Ring-opening metathesis polymerization 

ROP: Ring-opening polymerization 

ROS: Reactive oxygen species 

SAM(S): Self-assembled monolayer(s) 

SANS: Small-angle neutron scattering 

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2  

SAXS: Small-angle X-ray scattering 

SBMA: Sulfobetaine methacrylate 

SEM: Scanning electron microscopy 

SERS: Surface-Enhanced Raman Spectroscopy 

siRNA: Small interfering RNA 

SLS: Static light scattering 

SMA: Spinal Muscular Atrophy 

SPAAC: Strain-promoted azide-alkyne cycloaddition 

SPR: Surface plasmon resonance 

SSOs: Splice-switching oligonucleotides  

TALENS: Transcriptor activator-like nucleases  

TAPP: 5,10,15,20-Tetrakis-(4-aminophenyl) porphyrin 

TAR: Transactivation response element" 

TCPS: Tissue culture polystyrene  

TEM: Transmission electron microscopy 

TEPA: Tetraethylenepentamine 

TLR: Toll-like receptor 
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TMCC: 2-methyl-2-carboxytrimethylene carbonate 

TNF-α: Tumor necrosis factor alpha  

TRAIL: TNF-related apoptosis-inducing ligand 

TREN: Tris(2-aminoethyl) amine  

UCF: Ultracentrifugation 

UV: Ultraviolet 

VBC: Vinyl benzyl chloride 

VEGF: Vascular endothelial growth factor 

VIPER: Virus-inspired polymer for endosomal release 

XPS: X-ray photoelectron spectroscopy 
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