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Abstract— In this paper, two control methods are investigated
for motion tracking of a particular class of trajectories, termed
local circular scan (LCS), defined by a non-raster scanning
algorithm for scanning probe microscopes. The methods are
further developed for multi-axis dual-stage nanopositioning
systems. In the first method, the long-range and short-range
actuators of a dual-stage system are controlled through model
predictive control (MPC) and a linear quadratic tracking
controller (LQT), respectively. This architecture lends itself well
to applications such as LCS scanning where a distinct high-
frequency, low-amplitude signal can be followed entirely by
the short-range actuator (SRA) because of the actuator’s high
bandwidth, but is not easily extended to more generic scenarios.
The second method is a discrete linear quadratic controller
(LQC) with a cascading reference structure. This scheme is
both more general and simpler to implement but does not take
advantage of trajectory prior knowledge. Both controllers are
validated through simulations on linear models of the planar
axes of an experimental dual-stage system, where three planar
reference trajectories are selected to evaluate the tracking
performances representing different imaging scenarios. Over-
all, the MPC-receding LQT controller has a better tracking
performance for LCS references, likely due to the dedication
of the high-frequency sinusoidal components to the SRA and
the a priori trajectory information used when calculating the
feedforward portion of the control efforts. The MPC-receding
LQT controller demonstrates about 30% improvement in the
maximum and root-mean-square error over the cascading
structure. Tracking is improved further when large steps in
the reference signal are desired; the cascading LQC is prone
to large overshoot while the MPC-receding LQT reduces the
integrated error by more than 70%.

I. INTRODUCTION

The atomic force microscope (AFM) is a powerful in-
strument that can resolve material surface properties and
dynamics at nanometer-scale, including topology, material
moduli, and surface potential [1]–[3]. However, the instru-
ment typically constructs images through raster scanning
over a sample pixel-by-pixel, resulting in slow imaging frame
rates well below one frame per second on most instruments.
Improving these frame rates to achieve video speeds, referred
to as high-speed AFM (HS-AFM) [4], generally follows
three main approaches: (1) improving system dynamics, (2)
employing alternative scan paths, and (3) using advanced
controller designs. Herein, the main focus is on a specific ap-
proach from the second category, local circular scan (LCS).
Figure 1(b) shows a feedback scheme designed for imaging
edges (such as cell boundaries) or string-like samples (such
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Fig. 1: Dual-stage actuator (DSA) concept: (a1) schematic of
the long-range actuator (LRA) and short-range actuator (SRA)
connected in series, (a2) lumped-parameter model where the SRA is
attached to the LRA mass element, and (a3) dual-input single-output
block diagram. (b) Local circular scan (LCS) algorithm concept,
where the coarse path is defined by the sample of interest and low
amplitude high-frequency circles are executed along the sample.
(c) Proposed control structure for a single DSA.

as biopolymers), that has recently emerged for probe-based
microscopy [5]. The fundamental idea of LCS is that by
driving the cantilever tip in a small circle, measurements
can be used in real-time to center the circle on the local
position of the sample and to scan the circle along the sample
path. This approach focuses the measurements where they
are needed, improving imaging rate without requiring faster
scanning speeds. The pattern is well suited for a class of
actuators known as “dual-stage”.

Dual-stage actuators (DSAs) consist of the serial com-
bination of a low-speed, large stroke long-range actuator
(LRA) and high-speed short-range actuator (SRA) with a
smaller stroke, as shown in Fig. 1(a1). The lumped-parameter
and input-output structure are shown in Fig. 1(a2) and (a3),
respectively. The combined efforts of these two actuators al-
lows for the full dual-stage system to exhibit simultaneously
large range, high bandwidth, and fine precision [6]. This
concept is largely associated with hard disk drives (HDDs),
which consist of a long-range voice coil motor (VCM)
moving a small piezoelement (PZT) that is attached to the
read/write head [7]. Other applications of dual-stage systems
include optic alignment systems [8], measuring machines [9],
and probe-based microscopes [6], [10].



A wide variety of controllers have been developed for
dual-stage systems. Examples include proportional-integral-
derivative (PID) controllers [11], complementary filters [8],
or combinations thereof. More advanced controller archi-
tectures have demonstrated improvement in the positioner’s
performance, for example when performing nonlinear filter-
ing of references based on the DSA range limitations rather
than frequency content [10], or through direct compensation
of nonlinear effects such as hysteresis [12]. Furthermore,
optimal controllers have been shown to exhibit good perfor-
mance, such as robust H∞ control [6] and model predictive
control (MPC) [13].

Herein, two optimal controllers are designed for a dual-
input single-output (DISO) system based on the basic ar-
chitecture illustrated in Fig. 1(c). This design is specifically
tailored to LCS trajectories. The first approach divides the
LRA and SRA roles according to the LCS scan pattern.
Specifically, the SRA is dedicated to the low-amplitude,
high-frequency sinusoidal elements defining the repeated
circle; for this, a receding-horizon, linear quadratic tracking
(LQT) controller is exploited. The path of the sample is
then tracked using MPC. The second is a cascading linear
quadratic controller (LQC) with an augmented feedforward
control term to remove a priori reference input knowledge
requirements. To compare the relative performance of these
approaches, simulations based on models of an experimental
dual-stage nanopositioner are performed. The main contribu-
tions of this work are the development of the MPC-receding
LQT control paradigm, as well as the simulation performance
comparisons of the controllers to help guide future LCS
design and HS-AFM implementation.

The remainder of this paper is organized as follows.
Derivations of the proposed MPC-receding LQT controller
are provided in Section II; this section also includes details of
the cascading LQC design, although a more thorough expla-
nation is available in [14]. Section III describes the modeling
of an experimental multi-axis dual-stage nanopositioner and
the simulations selected to compare control performances. A
discussion of the simulation results is provided in Section IV
followed with concluding remarks.

II. CONTROLLER DESIGN

A. DSA Model and Observer
Dual-stage systems are multi-input, single-output (MISO)

systems with two inputs and a single output. Often, the total
dynamics are treated as separate linear time invariant (LTI)
single-input, single-output (SISO) systems, where interplay
dynamics between the actuators are ignored. These actuators
can be modeled by general discrete-time SISO linear state-
space equations, where L denotes the LRA and S denotes
the SRA. These are then combined in the total dual-stage
system dynamics given by[
xL(k + 1)
xS(k + 1)

]
=

[
AL 0
0 AS

] [
xL(k)
xS(k)

]
+

[
BL 0
0 BS

] [
uL(k)
uS(k)

]
,

y(k) = yL(k) + yS(k) =
[
CL CS

] [xL(k)
xS(k)

]
. (1)

This model can be expanded to include more intricacies, such
as nonlinearities and coupling effects. For convenience, these
effects are not considered to allow for a more direct com-
parison of the controllers based on linear system dynamics.

In previous work [15], the observability and controllability
of dual-stage systems is established. It is necessary to de-
velop an observer to provide estimates of the actuator states
in order to deploy controllers for the LRA and SRA. Herein,
a standard discrete Luenberger observer is used that takes
the form:

x̂(k + 1) = [A− LC]x̂(k) +Bu(k) + Ly(k), (2)

where A, B, and C represent the concatenated DSA state-
space matrices from (1), and x̂ and u are the column
vectors of both actuators state estimates and input variables,
respectively. The observer gain L is designed such that the
eigenvalues of A−LC are much faster than those of the DSA
dynamics. From the observer, the estimated outputs can be
defined as

ŷL = CLx̂L, ŷS = CSx̂S . (3)

B. MPC and Receding LQT
Combined with the LCS scanning pattern, the LRA at-

tempts to track an unknown sample path being imaged. In
real systems, there are physical constraints, including input
and output boundaries. The input limits for both actuators
are limited by the voltage signal provided to the amplifiers
of the dual-stage actuators, while the output boundaries
are determined by the physical stroke achievable by each
actuator. To account for these, an MPC design is used.

MPC uses a discrete time model of the dynamic system to
predict the system performance in a predefined time horizon
in the future in order to arrive at the optimal control action
subject to the constraints at each instant of time [16]. In this
work, MPC is applied to the LRA to achieve output tracking
of the sample trajectory. The corresponding optimal control
problem is

min
uL

1

2

Np∑
i=0

||(ŷL(k + i)− rL(k + i))||2Q

+

Nm−1∑
i=0

||uL(k + i)||2R

subj. to umin ≤ uL(k + i) ≤ umax, k = 0, 1, · · · , Nm − 1,

yLmin
≤ yL(k + i) ≤ yLmax

, k = 0, 1, · · · , Np.

where k is the current step, Np is the length of the prediction
horizon, Nm is the length of the control horizon (Nm ≤ Np),
and rL is the reference trajectory for the LRA, taken to be the
path of the sample being tracked using LCS. The notation
‖ · ‖M refers to the norm ‖x‖M = xTMx. Solving this
quadratic problem at each point in time gives the control to
be applied to the LRA. Note that while in practice the sample
trajectory rL(t) is unknown in advance, it can be predicted
locally based on recent data (see [17]).

Remark: The authors recognize that this is a simple
formulation for MPC tracking. Including features such as



feasibility of the desired trajectory with respect to system
constraints, terminal costs or constraints to guarantee stabil-
ity, and including the state in the cost function together with
the impact of the observer are subjects of ongoing work.

In the proposed design, the SRA follows the circular
portion of the LCS trajectory. Since this circular path is
entirely designed by the user, it is assumed to be selected
so as to satisfy all constraints of the actuator and thus
those constraints are not considered in the control design.
A linear quadratic output tracking controller (LQT) to track
the repetitive motion is used. The concept of LQT is an
extension of the linear quadratic regulator (LQR) and is used
when the system output needs to track a desired reference
trajectory and reject a given disturbance with an optimized
cost function. Typically, LQT control is applied over a finite
time horizon and uses a priori knowledge of the signal to
be tracked [18]. The cost function in discrete time is

min
uS

1

2
‖Cx̂S(N)− rS(N)‖2P̄

+
1

2

N∑
k=0

(
‖Cx̂(k)− r(k)‖2Q + ‖u(k)‖2R

)
,

where rS is a sinusoidal reference signal and P̄ , Q, and R,
are scalar weights for tracking and input efforts. Following
standard derivations, the state feedback control law is

u∗(k) = −Kfb(k)x̂(k) +Kff (k)v(k + 1). (4)

The gain matrices and feedforward terms are found by
solving the matrix Riccati equation and vector difference
equation over the finite time horizon using

Kfb(k) = [BTP (k + 1)B +R]−1BTP (k + 1)A, (5a)

P (k) = ATP (k + 1)[A−BKfb(k)] + CTQC, (5b)

v(k) = [−BKfb(k)]Tv(k + 1) + CTQrS(k), (5c)

Kff (k) = [BTP (k + 1)B +R]−1BT , (5d)

with P (N) = CT P̄C and v(N) = CT P̄ r(N). Kfb is the
optimal feedback gain, while Kff is a feedforward gain that
depends on the auxiliary sequence v determined from the
reference signal via a difference equation (note P and v are
backward difference equations). Clearly, the solution depends
on knowing rS(N) and the horizon, N . In practice, however,
while the reference is a given sinusoid, there is no pre-defined
terminal time N . To overcome this, a receding time horizon
LQT design is used, solving over an N-step horizon, applying
the first control value, and then repeating.

C. Cascading LQC

To contrast the proposed MPC and receding LQT con-
troller, a control architecture that is derived from optimality
conditions but generalized to be implementable without a
priori trajectory knowledge is also used. This controller, first
presented in [14], derives individual linear quadratic com-
pensators for the LRA and SRA, but the actuator references
effectively cast them into a cascading form. Specifically, the

LRA attempts to track the entire reference trajectory for that
axis, while the SRA tracks the LRA’s error, written as

rL(k) = ydes(k), rS(k) = ydes(k)− ŷL(k),

where rL,S denotes the trajectory that each actuator is
tracking. In the LCS setting, the single reference ydes is the
sum of the sinusoidal component to generate the circular
scan and the (estimate) of the sample path being tracked.

The LQC laws for the actuators are determined through
the same formulation as the LQT controller discussed prior,
but with two modifications for easier implementation. First,
the steady-state solution of the feedback gain is used, solved
from the discrete algebraic Riccati equation. Second, the
feedforward term in (5c) is solved forward in time assuming
zero initial conditions,

vj(k + 1) = [Aj −BjKj,fb]vj(k) + CT
j Qjrj(k), (6)

where j ∈ {L, S}. This result is an implementation of
LQT where the feedforward term sacrifices optimality for
the capability of tracking an arbitrary reference trajectory
without pre-computation.

III. PERFORMANCE COMPARISON

A. Experimental System
The two controllers outlined in the previous section are

compared below through simulations on models of an ex-
perimental multi-axis dual-stage nanopositioner, designed
specifically for LCS and other similar algorithms [19]. This
device, shown in Fig. 2(a), consists of two planar piezostack
actuators interfaced into a mechanical flexure mechanism
to guide and amplify their motion. The center platform of
this mechanism houses a single three-axis shear actuated
piezoelement which serves as the SRA for both the x- and
y-axes. An aluminum cap, the output port of the positioner,
is affixed to the top of this shear actuator. Samples can
be attached to this cap and the faces are used as the
measurement surfaces for capacitive sensors.

Linear models of the planar actuators are found by fitting
dynamic models to frequency response data obtained via
swept sine measurements taken with low input voltages to
mitigate hysteresis effects; these are shown in Fig. 2(b).
Fits are empirically made to the measured data rather than
through first principles, as the LRA flexure mechanism ex-
hibits additional resonance shapes before the SRA resonance
is excited. The LRA dynamics are modeled using a 3rd order
system with a dominant resonance at approximately 1.4 kHz,
while the SRA dynamics are modeled as a 15th order system
with resonances and anti-resonances predominantly between
1.4 kHz to 40 kHz. The LRA frequency response is from
100 Hz to 3 kHz and the SRA responses are measured from
1 kHz to 20 kHz, so creep effects are negligible. Note that
the effect of nonlinearities such as hysteresis and creep are
ignored in order to focus on a comparison of the two control
techniques in a simpler, linear setting.

Input and output boundaries, which are used in the MPC
formulations and incorporated as constraints in the simula-
tion models, are determined from the nanopositioner stroke



TABLE I: Controller parameters used for simulation.

MPC-receding LQT

Cascading LQC

MPC

LQT

LRA

SRA

P Q R

1 1

0.25 1

1

1

25,000

125,000

3,750

length and the electronics used to power the actuators. The
LRAs for both axes have a maximum displacement of ±8 µm
while the SRAs’ displacements have maximum values of
±0.35 µm. Input voltages for all actuators are based on
the inputs to the high voltage amplifiers for the stages and
were set to ±10 volts. These limits are explicitly considered
in the controller formulations for the MPC-receding LQT
design and are experienced by both compensation approaches
through saturation calculations before the linear dynamic
models. The horizons for the MPC controller are set to
Np = Nm = 10 and the receding-horizon LQT horizon is
set to N = 10.

B. Simulation Details
The controllers described in Sec. II are applied to the

actuator models described above through simulation using
the parameter values in Table I. These values are chosen
through trial and error to achieve good performance. To
highlight potential conditions where these controllers may
be beneficial, three trajectory scenarios are explored. These
consisted of different periodic coarse 2D paths with high-
frequency circular scanning as described for the LCS algo-
rithm. Thus all three scenarios examined here have the fine
reference trajectories

rx,SRA(k) = 0.1 cos(2π2000k∆t), (7a)
ry,SRA(k) = 0.1 sin(2π2000k∆t), (7b)

where time step ∆t is taken to be ∆t = 2.5 µs (400 kHz).
Note that while this time step is challenging for MPC, there
are existing results in implementing MPC at these rates (see,
e.g. [20]).

The coarse path for Scenario I consists of a repeating
circle pattern with a radius of 5 µm, followed at a rate
of 20 circles per second. Scenario II follows a string-like
path (e.g., a biopolymer strand), moving end-to-end along
the strand five times every second. The last coarse trajectory
consists of several 1–2 µm steps, where each step can be
interpreted as a separate biopolymer strand to be scanned
with the LCS algorithm. The resulting 2D path resembles the

TABLE II: Tracking errors for MPC-receding LQT and cascading
LQC for the y-axis of the 2D trajectories.

Trajectory Controller emax erms e1
(µm) (µm) (µm)

Circle MPC-receding LQT 0.0318 0.0186 0.0165
Cascade LQC 0.0429 0.0261 0.0233

String-like MPC-receding LQT 0.0286 0.0181 0.0163
Cascade LQC 0.0455 0.0257 0.0231

Staircase MPC-receding LQT 2.0019 0.0544 0.0134
Cascade LQC 2.3003 0.1545 0.0464
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Fig. 2: (a) Experimental multi-axis dual-stage nanopositioner mod-
eled for controller performance and (b) the measured frequency
responses and linear models for the x-axis and y-axis LRA and
SRA behaviors.

steps of a “staircase”, so this moniker will be used herein.
These trajectories and the tracking performances of the MPC-
receding LQT and cascading controllers are shown in Fig. 3.

C. Results
Due to initial conditions mismatch arising from the sim-

ulation environment, the cascading controller has a large
initial error. To avoid skewing the metrics due to the initial
transients, all shown results are after the initial convergence
period. Thus, all plots and tables show results only after
the controllers reach the initial steady state. Note that the
staircase pattern re-excites these transients as part of the
trajectory and those transients are quantified in the metrics
of performance.

Both proposed controllers have good tracking results as
shown in Table II. Three metrics are included to quantify
the error of a single axis. Note that due to space limitations,
results are only shown for the y-axis. Results in the x-
direction are similar. The maximum error emax and root-
mean-square (RMS) error erms are calculated using

emax = max
k
|e(k)|, (8)

erms =

(
1

Ne

Ne∑
k=0

e(k)2

)1/2

, (9)

where Ne is the number of samples for a period of the error
signal. In addition, the normalized l1-norm of the error over
one period is reported, given by

e1 =
1

Ne

Ne∑
k=0

|e(k)|. (10)



Reference MPC-receding LQT Cascade LQC

x-distance (µm)
-6 -4 -2

y
-d

is
ta

n
ce

 (
µ

m
)

-6

-4

-2

0

2

4

6

-6-4-20
x-distance (µm)

-6 -4 -2

y
-d

is
ta

n
ce

 (
µ

m
)

-6

-4

-2

0

2

4

6

-6-4-20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
-d

is
ta

n
ce

 (
µ

m
)

x-distance (µm)

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

4.0 µm

3.2 µm
-3.6 µm -3.0µm

-2.6 µm -2.1 µm
-2.8 µm

-2.2 µm

1.8 µm

2.2 µm

2 µm 2.3 µm

y
-e

rr
o
r 

(n
m

)

y
-e

rr
o
r 

(n
m

)

-50

50

Time (ms)

1000 11001025 1050 1075

0

10601057

y
-e

rr
o
r 

(n
m

) 40

-35

5

0

-5L
R

A
 I

n
p
u
t 

(V
)

1000 11001025 1050 1075

Time (ms) 10601057

L
R

A
 I

n
p
u
t 

(V
) 4.4

3.2

S
R

A
 I

n
p
u
t 

(V
) 4

-4-4

0

1000 11001025 1050 1075
3.2

-3.2S
R

A
 I

n
p
u
t 

(V
)

Time (ms) 10601057

-50

50

0

1000 14001100 1200 1300

1000 14001100 1200 1300

L
R

A
 I

n
p
u
t 

(V
) 4

-4

-2

2

0

S
R

A
 I

n
p
u
t 

(V
) 4

-4-4

0

1000 14001100 1200 1300

40

-40

y
-e

rr
o
r 

(n
m

)

Time (ms) 12521249

Time (ms) 12521249

3.8

2.5L
R

A
 I

n
p
u
t 

(V
)

Time (ms) 12521249

3.2

-3.2S
R

A
 I

n
p
u
t 

(V
)

1000 11001025 1050 1075

y
-e

rr
o
r 

(µ
m

)

-2

2

0

1000 11001025 1050 1075

L
R

A
 I

n
p
u
t 

(V
)

0

10

20

-20

-10

1000 11001025 1050 1075

S
R

A
 I

n
p
u
t 

(V
)

0

10

20

-20

-10

Saturation

Time (ms) 10581054

y
-e

rr
o
r 

(µ
m

)

-0.3

1.1

Time (ms) 10581054

L
R

A
 I

n
p
u
t 

(V
) 14

-14

Saturation

Time (ms) 10581054

S
R

A
 I

n
p
u
t 

(V
) 14

-14

Fig. 3: Simulation results for the proposed MPC-receding LQT controller and the cascading LQC designs. 2D LCS trajectory tracking
results are shown for the (a1) circular, (b1) string-like, and (c1) staircase paths. Time response results are also included, where (a2)–(c2)
highlight error for the y-axis of the DSA, (a3)–(c3) depict control efforts for the y-axis LRA while (a4)–(c4) show the SRA efforts. For
all plots, black is the reference, blue are the MPC-receding LQT results, and red is the cascading LQC results. Green dashed borders
indicated zoomed in results, and yellow sections refer to control efforts that are saturated when applied.



Plots of the system’s joint output, as well as single-axis
outputs, errors, and control efforts are shown in Fig. 3.

IV. DISCUSSION

The 2D tracking and y-axis time response plots in
Fig. 3(a1)-(a4) illustrate that the MPC-receding LQT and
cascading LQC both track well for high, with maximum and
RMS error values less than 1% of the total amplitude of
the circular trajectory. Table II catalogs these errors, as well
as those for the other two trajectory scenarios. While both
controllers perform well, the MPC-receding LQT controller
improves upon the cascading numbers by 25–37% for these
maximum and RMS errors, indicating a notable improvement
over the causal controller. Note that the cascading LQC on
the SRA exerts significantly lower effort than the receding-
horizon LQT controller, shifting that effort to the LRA.
This likely contribute to the lower performance. Similarly, in
Scenario II (Fig. 3(b1)-(b4)), the MPC-receding LQT tracked
the string-like path better than the cascade LQC for these
same metrics. One particular point to note is that the turn-
around point at the ends of the path resulted in bigger spikes
in error for the cascading controller, contributing to the larger
maximum error observed in these results.

Scenario III, Fig. 3(c1)-(c4), the staircase trajectory, high-
lights the clearest differences in the controller performances.
The large transients of the cascading controller occur be-
cause the cascading controller does not predict these future
transitions. To minimize its cost function, the cascading
controller will then drive large control signals to bring the
DSA quickly back to the sample trajectory, see Fig. 3(c3)-
(c4). Therefore, at each step point, the cascading controller
yielded large control signals which surpassed the equipment
voltage constraints. Table II also indicates that the maximum
and RMS errors for this path were much larger than the other
scenarios, due to this instantaneous jump in the reference
signal. Thus a more indicative metric to consider for this
scenario is the L1-norm in (10). This shows that while both
controllers were still effective for this scenario, the MPC-
receding LQT compensator shows 71% reduction in the
error signal’s integral, demonstrating the utility of the non-
causal calculations in scenarios with large step changes in
the reference signal.

V. CONCLUSIONS

This paper compared two control strategies for a dual-
stage scanning system with a focus on trajectories relevant
to local circular scanning for high-speed imaging in AFM.
The first controller divided the LRA and SRA according
to the LCS algorithm, applying an MPC to the LRA to
achieve sample trajectory tracking and a receding LQT to
the SRA to follow the repetitive motion. This was compared
to an optimal cascading LQC that eliminated a priori re-
quirements for trajectory tracking. The comparison between
these two controllers revealed that the performance of the
MPC-receding LQT for LCS trajectories outperformed the
cascade controller, especially for the staircase path. Note that
the conclusions in this paper are not expected to hold for

generic trajectories but are specific to the LCS algorithm. In
future work, the MPC approach will be tested on a physical
dual-actuation stage designed for high-speed AFM.
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