Checkpointing OpenSHMEM Programs Using
Compiler Analysis

Md Abdullah Shahneous Bari*, Debasmita Basu®, Wenbin Lu*, Tony Curtis*, and Barbara Chalpman*T
{MdAbdullah.ShahneousBari, Debasmita.Basu, Wenbin.Lu, Anthony.Curtis, Barbara.Chapman} @stonybrook.edu
*Stony Brook University, TBrookhaven National Laboratory

Abstract—The importance of fault tolerance continues to
increase for HPC applications. The continued growth in size
and complexity of HPC systems, and of the applications them-
selves, is leading to an increased likelihood of failures during
execution. However, most HPC programming models do not
have a built-in fault tolerance mechanism. Instead, application
developers usually rely on external support such as application-
level checkpoint-restart (C/R) libraries to make their codes fault
tolerant. However, this increases the burden on the application
developer, who must use the libraries carefully to ensure correct
behavior and to minimize the overheads. The C/R routines will
be employed to save the values of all needed program variables
at the places in the code where they are invoked. It is important
for correctness that the program data is in a consistent state
at these places. It is non-trivial to determine such points in
OpenSHMEM, which relies upon single-sided communications to
provide high performance. The amount of data to be collected,
and the frequency with which this is performed, must also be
carefully tuned, as the overheads introduced by C/R calls can be
extremely high.

There is very little prior work on checkpoint-restart support in
the context of the OpenSHMEM programming interface. In this
paper, we introduce OpenSHMEM and describe the challenges
it poses for checkpointing. We identify the safest places for
inserting C/R calls in an OpenSHMEM program and describe a
straightforward approach for identifying the data that needs to
be checkpointed at these positions in the code. We provide these
two functionalities in a tool that exploits compiler analyses to
propose checkpoints and the sets of data for saving at them, to
the application developer.

Index Terms—Fault Tolerance, Check-pointing, Compiler As-
sisted Check-pointing, Compiler Analysis

I. INTRODUCTION

Determining how to build and deploy computer systems
to enable recovery from failure, and what importance to
place upon such capabilities (e.g., architectural redundancy
in the network), is a perennial problem for computer systems
designers. The greater the size and complexity of a system, the
more likely it is that one or more components will fail during
the execution of an application code. HPC (High Performance
Computing) systems are inherently large and with the growing
heterogeneity of processors and memory subsystems they are
also increasingly complex. In the race to higher computational
power, the number of components continues to increase and
in consequence, the Mean Time Between Failure (MTBF) of
these systems is decreasing [1], [2]. The smaller the MTBF,
the less stable the system is. Especially for long-running
applications, whose execution may take significantly longer
than the MTBF of the platforms they are deployed on, it is

vital that the interim results of a computation are not lost if
a system fault occurs. This could otherwise lead to not just
wasted computing resources, but potentially greater problems
if the results are time-sensitive (e.g., weather forecasting).
Thus strategies for resilience - in hardware, system software,
and application software - are essential in HPC. Since an
application program may run on a variety of platforms with
differing MTBFs, application developers who need to ensure
that failure does not compromise the timely production of
results must pro-actively adopt a strategy to accomplish this.
In other words, in most HPC contexts, the safe approach is to
build resilience into the application code.

Unfortunately, most traditional HPC programming mod-
els (e.g., MPI, OpenSHMEM, GASNet) lack the support
for resilience that is built into their Data Analytics coun-
terparts (e.g., Hadoop, Spark). Application developers must
therefore rely on other means to achieve fault tolerance. Es-
tablished techniques include but are not limited to Checkpoint-
Restart (C/R), containment domains, and replication of com-
putations. These techniques can be employed at the application
level, at the system level or both. Among them, Checkpoint-
Restart (C/R) is the most-used approach to implement fault
tolerance in HPC applications due to its versatility, and rela-
tively low overhead.

Checkpoint-Restart follows a simple strategy; one saves
the state of the program as a so-called checkpoint at certain
intervals during the execution. If the program terminates
for any reason (hardware or software failure/faults) prior to
completion, it restarts from the last checkpoint using the saved
information instead of starting again from the beginning. Since
the successful restart of an application relies on the data output
during the check-pointing process, saving enough information
to restart is very important.

However, care must be taken with respect to the amount
of data saved during the check-pointing process. Since check-
pointing results in a lot of data movement, oftentimes across
nodes, the communication and I/O overhead it incurs can
potentially result in severe performance degradation. Hence it
is very important, but also extremely difficult, to determine
the right amount of information to save, and a reasonable
frequency at which to do so.

Moreover, there is another important challenge involved in
implementing the Checkpoint-Restart process, that of finding
suitable places to checkpoint. One has to make sure that the
program is in a consistent and deterministic state with respect

to both computation and data when the state of the program
is saved at a checkpoint, otherwise it may result in a non-
deterministic and potentially incorrect restart of the program.
Finding these consistent and deterministic “safe points” can
be tricky in an application that uses a parallel programming
model such as MPIL. However, it can be significantly tougher
for an application that uses a programming model with asyn-
chronous communications such as OpenSHMEM and other
PGAS programming models (e.g., GASNet, UPC++).

Hence, the successful deployment of C/R depends on
solving these consistency and data optimization challenges
efficiently and effectively. However, to do so one has to have
a good understanding of not just the programming model,
and the checkpointing library being used, but also of the
entire application, which can be very difficult for large scale
scientific applications that have hundreds of thousands of
lines of code. Earlier research has coupled an understanding
of the semantics of a programming interface with compiler
techniques [3]-[9] to ease the burden on application developers
by identifying safe points for checkpointing, suggesting which
data to save and so on. However, prior work of this kind
has primarily focused on providing support for MPI and
not for other programming models such as OpenSHMEM.
OpenSHMEM’s user base is growing, especially as a result
of its benefits for computations with an irregular communica-
tion pattern (e.g., graph based applications). This is a result
of its reliance on asynchronous, one-sided communications
along with RMA (Remote Memory Access) support in recent
hardware, and its careful implementation. Hence, support for
developing resilient OpenSHMEM applications is needed. Yet
the features that provide some of its key benefits lead to
challenges when approaches created for MPI are applied to
it.

In this paper:

o We analyze the OpenSHMEM programming model from

a resilience perspective and define “safe points” for
inserting checkpointing library calls into OpenSHMEM
applications.

o We use a compiler’s data analysis to determine what data

to checkpoint.

o We describe a tool that we have created to support

the insertion of checkpoints into OpenSHMEM code.
It utilizes a safe point analysis and data analysis to
provide check-pointing suggestions (where to checkpoint,
what data to checkpoint) to the OpenSHMEM application
developer. The tool is based on an open-source compiler
framework, LLVM [10], which is becoming very popular
in both academia and industry.

II. BACKGROUND
A. PGAS Programming Models
The Partitioned Global Address Space (PGAS) [11] is a
parallel distributed programming model that typically uses a
Single Program Multiple Data (SPMD) approach to provide
local- and global-views of program data, split across commu-
nicating processes on 1 or more compute nodes. PGAS models

often take advantage of network capabilities such as Remote
Direct Memory Access (RDMA) [12] to allow efficient data
movement that is decoupled from synchronization. The PGAS
family includes libraries and languages: the former include
Global Arrays, GASNet, and OpenSHMEM; and the latter,
which are built on these libraries, include UPC, UPC++, and
Fortran’s Co-Arrays.

B. OpenSHMEM

The OpenSHMEM' Specification [13], [14] defines a
library-based PGAS programming model/interface for C and
C++. OpenSHMEM is an open-source community effort to
develop a software ecosystem for the scientific community
and hardware vendors to ensure portability. There is a number
of open-source implementations, e.g. OSSS-UCX [15], Ohio
State University [16], Sandia National Lab [17], Oak Ridge
National Lab [18], Open-MPI [19]; and some from vendors,
e.g. HPE/Cray [20], NVIDIA/Mellanox [21], IBM [22].

The OpenSHMEM API defines a library interface with
routines to satisfy the communication needs of parallel appli-
cations. Those of most relevance to this paper include: point-
to-point RDMA and atomic operations; and collective memory
management, communication, and synchronization operations.

1) OpenSHMEM Memory Model: OpenSHMEM programs
consist of processes (Processing Elements, or PEs; analogous
to MPI ranks) that communicate using point-to-point or collec-
tive operations. Data in the PEs can be marked as “symmetric”,
meaning it is exposed to the communication layer between
PEs (typically an inter-connect such as Infiniband [23], or
shared memory in a node) and can be read/written directly by
other PEs. Infiniband and other networks enable native one-
sided communication in hardware that frees the application
or OS from dealing with progress issues. Figure 1 shows the
OpenSHMEM memory model.

PEO PE1 PEN-1

Global and Static
Variables

———}
Variable: X | }

Global and Static
Variables

Global and Static
Variables

X = shmem_malloc(..)

==
Variable: X

Symmetric Heap O 0O

L
i1 Variable: X

Remotely Accessible
Symmetric Data Objects

Symmetric Heap

Local Variables

Fig. 1. Memory model in OpenSHMEM. The remotely accessible data
consists of: 1) Global or static variables 2) Data on the symmetric heap
(allocated by shmem_malloc)

Symmetric Heap

Local Variables Local Variables

Private
Data
Objects

2) Remote Memory Access Routines: Two of the main
OpenSHMEM RDMA routines are the generic forms
shmem_put and shmem_get?, which allow 1 PE to respec-

The OpenSHMEM copyright is owned by Open Source Software Solutions
Inc., a non-profit organization, under an agreement with Hewlett Packard
Enterprise.

2Explicit typed versions also exist for basic C types such as “int”, “short”,
“float”. The full list is in the specification.

tively write to, or read from, the symmetric memory of another
PE.

“Put” routines can allow for highly asynchronous low over-
head access to another PE’s symmetric memory, which can be
exploited by applications with irregular/sparse communication
patterns [24]. However, this asynchrony means that “put”
operations do not guarantee completion when they return. So
the application must provide later-synchronization to ensure
consistency when data is needed, with the most common
method being a global barrier.

3) Synchronization and Ordering Routines: OpenSHMEM
synchronization and ordering/completion is discussed below:

shmem_barrier, shmem _barrier all Provide col-
lective synchronization over a subset of PEs and all PEs
respectively.

shmem_quiet The PE calling quiet ensures remote com-
pletion of remote access operations and stores to symmetric
data objects.

shmem_fence The PE calling fence ensures ordering of
Put, AMO, and memory store operations to symmetric data
objects with respect to a specific destination PE.

4) Collective Communication Routines: OpenSHMEM pro-
vides collective routines for Broadcast, Collection, Reduc-
tion, All-to-All, synchronization/ barrier, and symmetric mem-
ory management. All or subsets of PEs determined by the
team (analogous to communicator in MPI) can participate in
the collective operations.

OpenSHMEM was designed to enable high performance
by exploiting the support for Remote Direct Memory Access
(RDMA) available in modern network interconnects. It allows
for highly efficient data transfers without incurring the soft-
ware overhead that comes with message-passing communi-
cation. However, this introduces challenges with respect to
providing fault tolerance support to OpenSHMEM applica-
tions. One of those challenges is finding points (safe points)
in a program where the memories are in a consistent and
deterministic state.

C. Checkpoint-Restart Methods for Fault Tolerance

Checkpoint-based rollback recovery methods can be primar-
ily categorized into three main groups: uncoordinated check-
pointing, coordinated checkpointing, and communication-
induced checkpointing [25].

In uncoordinated checkpointing, each process is in charge
of its own checkpoints and is allowed to take them at its own
convenience without coordinating with other processes. As a
result, coordination overhead during the checkpointing process
is reduced. It also reduces synchronization cost and energy
consumption during the recovery process [26] since a single
process crash does not result in all processes reverting back
to the last checkpoint and recomputing. However, since there
is no coordination, each process might have to keep multiple
checkpoints which could be detrimental to performance. These
protocols are also subject to domino effects and do not
guarantee progress [25].

In Coordinated checkpointing, where all processes coordi-
nate their checkpoints to form a consistent global state, is free

of domino effects and has a simple recovery process. However,
in the case of a large number of processes, these protocols may
suffer from scalability issues due to the necessity of global
coordination. Researchers have explored different approaches
such as, non-blocking checkpoint coordination, checkpoint
with synchronized clocks, minimal checkpoint coordination,
to alleviate this problem.

Communication-induced checkpointing (CIC) protocols
are a bridge between uncoordinated and coordinated C/R
protocols. These protocols avoid the domino effect without
requiring all checkpoints to be coordinated. In CIC, pro-
cesses take two kinds of checkpoints: local and forced. Local
checkpoints can be taken independently as with uncoordinated
protocols, while forced checkpoints must be taken to guarantee
progress. Forced checkpoints are not coordinated checkpoints;
rather, they are taken at the discretion of each individual
process based on the communication pattern and checkpoint
information received from other processes. However, these
protocols are unpredictable due to their dependence on the
communication pattern of the application [27].

Among these protocols, coordinated checkpointing tech-
niques are the simplest and often work best for PGAS pro-
gramming models [25], [28].

All these protocols can be implemented either at the system
level or at the application level. They differ in the abstraction
level at which the state of a process is saved. In system-
level checkpointing, the entire state of the process, such as
the contents of the program counter, registers, and memory are
saved [29]. However, the amount of data saved during system-
level checkpointing can be extremely large and the overhead
may impact the application performance adversely. As a result,
system-level checkpointing is not a popular choice for large-
scale HPC platforms [5].

In application-level checkpointing, applications implement
their own checkpointing code, usually by means of a third
party checkpointing library [30]-[32]. We assume the use of
such a library in the following. Applications decide which
data to checkpoint and at what points in the program to do
so. As a result, the amount of data to be checkpointed can be
significantly reduced, since the application developer can de-
cide exactly how much data needs to be saved, and moreover,
system-level data is not saved. Application-level checkpointing
also provides the added cushion of portability (not tied to
a specific system). As a result, it is a popular choice for
large-scale HPC systems. However, it places a huge burden
on the developer to choose the right data and right place
to checkpoint, including ensuring that the program state is
consistent at such locations.

D. Application-level Checkpointing and Challenges

Although popular, application-level checkpointing comes
with its own specific challenges, of which two important
ones are maintaining program correctness, and controlling
checkpointing overhead.

1) Program Correctness: Program correctness must not be
compromised when using an application-level checkpointing

scheme. To maintain the correctness of the program, check-
pointing calls must be inserted into the program at places in the
code where the program and its data are in a deterministic and
consistent state. Finding these points in an application can be
non-trivial and the complexity may vary across programming
models since it is dependent on the semantics of features of
the language or library. Section III discusses this issue further
and outlines how it can be handled for OpenSHMEM.

2) Checkpointing Overhead: Checkpointing overhead is a
major issue for any checkpointing scheme. Since checkpoint-
ing involves saving or copying a large amount of data (program
state) to a persistent storage or memory, the overhead associ-
ated with this process can be extremely large. To reduce this
overhead different optimization techniques are often used.

Three major optimizations utilized in practice are:

e Minimizing the amount of data to be saved at a
certain checkpoint: In a C/R scheme, we only need
to save the data that are necessary for restart, and, not
all data are necessary at every point of the program.
Hence, to minimize the amount of data to be saved
at a certain checkpoint, different techniques that utilize
compiler program analysis or operating system support
are used in practice. Some of these techniques are, incre-
mental checkpointing, region exclusion, and live variable
analysis.

o Choosing, and potentially adapting, the frequency of
the checkpoints: Having checkpoints too frequently may
result in overhead explosion, while too few checkpoints
may result in losing a lot of computation in case of
a failure. Hence, choosing the optimal checkpointing
interval is important. Checkpointing interval depends on
both the structure of the application and the MTBF of
the system it is running on. Finding optimal places for
checkpointing is an active research area.

o Optimizing the way the data is saved: Optimizing the
way the checkpointing data is saved in persistent storage
or in memory may result in a significant overhead reduc-
tion. Several optimization techniques such as buffering,
where intermediate storage such as burst buffer is used,
and saving different data to different types of storage,
exist in practice.

In this work, we focus primarily on the first optimization.

Details of the optimization are described in Section IV.

III. OPENSHMEM AND SAFE POINTS
A. Global Consistency and Safe Points

When checkpointing an OpenSHMEM application (or any
other parallel application for that matter), one has to make
sure that the checkpoint is taken at a point where the
application’s computation, communication, and memory are
in a consistent and deterministic state in order to ensure
deterministic recovery. We call these points “safe points”. Due
to the relaxed memory consistency nature of OpenSHMEM’s
memory model, non-blocking accesses to a PE’s symmetric
memory between two synchronization points may result in an
inconsistent state of the PE’s symmetric memory.

We use the code example shown in Figure 2 to explain
this in the context of an OpenSHMEM program. The code
snippet shows a part of a halo exchange, where PEs share
the updated values of elements at the edges of their sub-
regions with neighboring PEs. For simplicity we show the
interaction between two neighboring processes only. Here,
PEO (the host PE) uses shmem_put to write/copy the first
two elements of its host_halo array to the first two ele-
ments of PE1’s neighbor_halo array; neighbor_halo has been
allocated in symmetric memory so that PEO can access it
directly via OpenSHMEM routines. However, between the
call of shmem_put and that of shmem_barrier_all, the
symmetric array neighbor_halo of PEI is in an inconsistent
state since there are 3 possible states of neighbor_halo (shown
by 3 different scenarios in Figure 2). These states are no
update (Scenario 1), partial update (Scenario 2) and complete
update (Scenario 1). So if a checkpoint is taken at this place
in the code, the checkpointed data (neighbor_halo) would
be in an unknown state, resulting in non-deterministic behav-
ior during recovery. However, OpenSHMEM’s synchroniza-
tion routines (e.g., shmem_barrier_all, shmem_quiet)
do confirm the completion of communication routines (e.g.,
shmem_put) and in OpenSHMEM guarantee consistency
of some or all communications (no in-flight messages). The
shmem_barrier_all routine used in this example is a
global synchronization routine and it provides global consis-
tency guarantees across all PEs. Hence, the point in the code
immediately after shmem_barrier_all is a safe-point
and a checkpoint taken there would guarantee deterministic
recovery.

PE@ (Host PE)

shmem_put (host_halo, neighbor_halo, 2, neighborPE);

PE1 (Neighbor PE)

[0 [0 [0 o o] neignor_halo

host_halo

Scenario 1

host_halo

nnnun neighbor_halo
nnnn neighbor_halo
nnn neighbor_halo

shmem_barrier_all();

Network Interface

Non-deterministic view of
communication and memory
NOT a safe point

shmem_barrier_all();

host_halo 11111 1|1 |0 |0 | o |neighbor_halo

Deterministic view of computation, communication and memory
Safe Point

Fig. 2. An example showing a safe point in an OpenSHMEM program

B. Why Global Synchronizations are the Best Safe Points for
OpenSHMEM

OpenSHMEM provides different types of synchroniza-
tion or memory consistency routines: local consistency
routines that only affect the operations initiated by the
calling PE (shmem_quiet), and global consistency rou-
tines that affect all operations initiated by all PEs
(shmem_barrier_all). In an ideal scenario, it is possible
to reason about the local consistency routines across PEs and
find safe-points. In a message-passing model such as MPI,

TABLE I
SAFE POINTS IN OPENSHMEM API. IT’S SAFE TO CHECKPOINT RIGHT AFTER A SUCCESSFUL CALL TO THESE FUNCTIONS.

Name Description Pre-requisite Suggestion
for Global Sync
shmem_barrier_all Global barrier None None

shmem_malloc
shmem_malloc_with_hintsg
shmem_calloc

shmem_align N
successful.

Symmetric memory allocation collective operations that require participation | Call to
by all PEs in the world team. Global synchronization on exit if the calls are

Add a check to make sure the
allocation is successful

these
functions have
to be successful

shmem_realloc

Symmetric memory reallocation routine (collective). May use global synchro-
nization on both entry and exit, depending on whether an existing allocation is

Add a check to make sure the
allocation is successful

call this func-
tion has to be

shmem_sync_all/
shmem_team_sync (world)

modified and whether new memory is allocated, respectively. successful
shmem_free Symmetric memory de-allocation routine (collective). Global synchronization | None None
at the entry.
shmem_init
shmem_init_thread OpensHMEM library initialization and finalization routines (collective). None None
shmem_finalize
shmem_quiet /
shmem_ctx_quiet
+ Combination of shmem_quiet/shmem_ctx_quiet routine called by all | None None

PEs, followed by a shmem_sync_all collective or shmem_team_sync
(on the world team) results in global synchronization.

each process knows what data it is sending and what it is
receiving (send-receive rendezvous pair). Hence, by perform-
ing a communication analysis for a certain code-block, it is
possible to reason about whether the process’s communication
and data are in a consistent state or not. In contrast, PGAS
models like OpenSHMEM are not based on send-receive
communication pairs. An active PE in OpenSHMEM initiates
communication to write to or retrieve data from the symmetric
memory of another PE. Since the latter is not involved in the
communication, it may not be aware that this is taking place.
Hence it can not locally reason about its own data consistency,
since it does not know if any communication initiated by
other processes is in flight which would leave the process’s
symmetric memory in an inconsistent state. It is similarly hard
for a compiler or tool to reason about the consistency of an
application program at any given time.

Hence, the easiest and safest way to identify places in the
code where data is in a consistent state in OpenSHMEM is
to exploit the global consistency achieved immediately upon
completion of global synchronization, where the network is
quiet (no in-flight messages).

Table I shows the OpenSHMEM routines that provide global
synchronization and can be used as safe points. However,
OpenSHMEM has the concept of user-defined communication
context or communication channel. A communication context
is a container for communication operations. Each context
provides an environment where the operations performed on
that context are ordered and completed independently of other
operations performed by the application. Each OpenSHMEM
program comes with a default communication channel called
“default context”.

The safe points described in Table I are for default context.
Applications with user-defined contexts must additionally en-
sure that those contexts are quiet (all the update/communica-
tion to symmetric memory is completed) before using those
routines as safe points. Calls to shmem_ctx_qguiet by all
PEs would ensure the completion of outstanding communica-

tion to symmetric objects (would quiet that specific context).

IV. CHOOSING THE RIGHT DATA TO CHECKPOINT

In the previous section, we discussed the importance of
finding safe points in order to ensure that, in the presence
of a fault, the data saved in a checkpoint will enable a correct
restart. We also identified OpenSHMEM routines that can be
used for that purpose.

While finding the safe points, and ensuring that we insert
checkpointing calls only at those points, solves the correctness
issue, we still need to optimize the amount of data to be saved
during the checkpointing process in order to avoid unnecessary
overhead. If insufficient attention is paid to reducing the
amount of data saved during a checkpoint, the overheads may
become insurmountable. In order to alleviate this problem, re-
searchers have investigated memory exclusion techniques both
at compiler level [33] and at runtime level [34]. In memory
exclusion, regions of a process’s memory are excluded from a
checkpoint because they are either read-only, meaning their
values have not changed since the previous checkpoint, or
dead, meaning their values are not necessary for the successful
completion of the program [35].

We apply and adapt the results of a standard compiler
analysis called “Live Variable Analysis” to identify vari-
ables (scalars and arrays) that we do not need to checkpoint at
a specific position in the program code. Live Variable Analysis
is traditionally applied to scalar variables in order to optimize
register usage, where it helps remove variables from registers
when they are no longer needed. Live variable (or liveness)
analysis is a data flow analysis that essentially determines
whether the current value of a variable may be used in the
future. A variable x is live at a program point/statement s if
some computational path from s to the end of the program
(or function) contains a use of x which is not preceded by a
new definition. In other words, it is live if the current value of
variable x may be used at a later point in the code. The set of
variables LIV E;,[s] that are live at a given statement s can
be calculated using the following formula:

LIV E;,[s] = (LIV Egu[s| - DEF[s)) | JUSE[s] (1)

where LIV E,,4[s] is the set of variables live after the
statement s, US E[s] represents the set of variables used by s,
and DEF'[s] represents the set of variables defined by s.

If a variable is not live at a certain checkpoint, then the
value that it currently has is not used in any subsequent code.
In other words, if the variable occurs at a later point in the
code, then any uses of the variable will be preceded by new
assignments to it. Therefore, we do not have to save it at
that specific checkpoint. This can potentially help a user (or
tool) identify and delete some unnecessary saves during the
checkpointing process. Figure 3 shows a simple OpenSHMEM
code segment that utilizes live variable analysis information
for checkpointing purposes. The program has 8 safe points,
shmem_init at line 3, shmem_malloc at line 4 and 5,
shmem_barrier_all atline 13 and 20, shmem_free at
line 27 and 28, and finally shmem_finalize at line 29.
Here, we only consider shmem_barrier_all for check-
pointing. At line 13, both A and B are live, hence, we have
to save both variables for a successful restart (shown in line
14). At line 20, we see that only B is live, therefore we only
need to save B instead of both A and B (shown in line 21).
At this checkpoint, live variable analysis helped us reduce the
checkpoint data to half.

int main()

shmem_init();
int *A = (int *)shmem_malloc(N * sizeof(int));//SP
int *B = (int *)shmem_malloc(N * sizeof(int));//SP

//safe point (SP)

for(int i = @; i<N ; i++)
{
A[i]
B[i]

init_A(i);
init_B(i);

}
shmem_barrier_all();
CHECKPOINT(A, B);

//safe point; LIVE = {A, B}

for(int i = @; i<N ; i++)

. = A[i]; //uses A

shmem_barrier_all();
CHECKPOINT(B);

//safe point; LIVE = {B}
//A is not live anymore

for(int i = @; i<N ; i++)
{

.. = B[i]; //uses B

}

shmem_free(A);
shmem_free(B);
shmem_finalize();
return 9;

//safe point
//safe point
//safe point

Fig. 3. A skeleton OpenSHMEM program showing the impact of Live variable
analysis for checkpointing

V. COMPILER TOOL: PUTTING IT TOGETHER
We developed a tool that incorporates the OpenSHMEM-
specific safe point analysis and data optimization discussed in
Section III and IV respectively. The purpose of this tool is
to provide a starting point for application-level checkpointing.

It identifies the safe points in an OpenSHMEM program and
provides suggestions as to what data to checkpoint at each of
them in case the user decides to use a given safe point as a
checkpoint.

We developed this tool based on the LLVM (Low Level
Virtual Machine) [10] compiler suite. LLVM is an open-source
compilation framework that uses an intermediate representa-
tion in Static Single Assignment (SSA) form. It has front ends
to support multiple languages that are transformed into LLVM
IR for analysis and optimization. It has been widely adopted
in both academia and industry which is one of the motivations
for our choice. One other interesting aspect of LLVM is its
“Pass Framework” where most of the interesting parts of the
compiler exist. Passes are used to perform analysis, transfor-
mations, and optimizations at the IR level. It also allows for
extension or addition of a new analysis or optimization in a
structured manner. We implemented our tool as LLVM passes.
It has three main parts: the safe point identification phase, data
optimization phase, and user-feedback phase. Figure 4 shows
the architectural diagram of the tool.

Safe Point User Feedback Phase

Identification Phase
=)
Fig. 4. Architectural Diagram of the tool

A. Safe Point Identification Phase

In this phase, we analyze the program to determine places
where the data and computation are in a consistent and deter-
ministic state (safe points). We utilize the analysis information
described in Section III. Since the safe points are dependent on
calls to a certain function or a series of functions that result
in global synchronization, we track these function calls and
retain this information for further data optimization analysis
discussed next.

Analysis Phase

Source level
debugging info

Live variable
analysis

B. Data Optimization Phase

In this phase, we perform live variable analysis on the
program. Based on the results, we determine which variables
are live at a given safe point. During the analysis process, we
treat arrays as a single entity i.e., if any element of an array
is live at a certain point, the whole array is live. However,
LLVM IR is in SSA form and every LLVM IR variable has
exactly one definition. Therefore, the access to an element of
an array may occur via multiple indirections and just from
the instruction that actually accesses the element, we may not
know which array it belongs to. To handle this problem, we
track each of the SSA definitions back to its source.

We adapt live variable analysis to allow it to correctly deal
with OpenSHMEM routines by furnishing definition and use
information on the variables referenced in associated calls.
In other words, we add partial awareness of the semantics
of OpenSHMEM calls to the LLVM compiler. For example,
shmem_free is used to free the symmetric memory allo-
cated by OpenSHMEM-specific allocation routines. Although

shmem_free uses a pointer (pass by reference) argument
passed to it to select which memory to free, it does not actually
use the value of the elements allocated on those memories,
nor would that value be used in the future (memory is already
freed after this call). Therefore this is not a use of any variable
and variables referenced in a shmem_free call should not,
on the basis of this reference alone, be considered to be live.
Without this information, the compiler would potentially be
forced to extend the live range of the corresponding values to
this point in the code.

C. User-feedback Phase

In this phase, we notify the user of the decisions made
by the framework based on the data optimization phase. We
provide information on where the safe points are and what
data needs to be saved if a certain safe point is used as
checkpoint. However, there is an additional problem. The
analysis is performed by the tool at the IR level of the program
where the source code level information (e.g., variable name,
line number) is lost. In order to provide useful feedback to
the user, we need to translate the IR-level information back
to the source-level code, since the application developer using
this will only have access to the latter. To solve this issue, we
utilize the “LLVM source level debugging information” to:

« Find source-level positions (e.g., line numbers) for po-

tential checkpoints

o Find source-level variable names and their position from

IR level temporary variables

For this reason, this tool has to be run with the debug (-g)
flag switched on and with no optimization enabled (optimiza-
tion may result in source level information loss).

VI. RESULTS AND ANALYSIS

In this section, we evaluate the safe point analysis and
data optimization carried out by the compiler tool. We expect
that the suggestions provided by this tool will be used by an
application developer to create a fault-tolerant OpenSHMEM
program by manually using a checkpointing library of their
choice. We assume that the checkpointing library allows users
to choose which data to save at each checkpoint i.e., has the
ability to register or deregister variables to be checkpointed
at each checkpoint. However, application-level checkpointing
library support for OpenSHMEM is very scarce, and to the
best of our knowledge, none exist at this point with the above-
mentioned capability. We are in the process of adapting an
existing library to serve this purpose.

Since there is no such library available for experimentation,
for this work, we present the calculated result (instead of the
execution result) that assumes such a library will be utilized.
The goal of this work is to find safe points for checkpointing
in an OpenSHMEM program and to optimize the data sets.
Evaluation of the former does not require program execution,
but rather a manual analysis to ascertain whether the points
reported by the tool are indeed safe points and vice versa. With
respect to the data optimization, the total amount of data used
by a program and the size of the optimized data set computed

via live variable analysis can be calculated accurately from
the source code if the input parameters are known. Therefore,
the results presented here should closely resemble the actual
execution run using a checkpointing library.

We use 3 Benchmark applications, Transpose, Matrix Mul-
tiplication (MM), and Mandelbrot Set to evaluate this work.
Due to the lack of benchmark applications written in Open-
SHMEM, we developed two of the benchmarks (Transpose,
and MM) used here.

We evaluate this tool based on two criteria: safe point identi-
fication and data optimization. For safe point identification, we
validate the safe points identified by the tool via a manual in-
vestigation of the program by an expert. For data optimization,
we compare the results of our optimization strategy against
Hao et al. [36], which to the best of our knowledge, is the only
prior work on OpenSHMEM application-level fault tolerance.
Hao uses the “default” approach of saving all the available
data during checkpointing. For a certain checkpoint, he saves
all the data that are within the scope and potentially necessary
for restart in any other checkpoints of the program. We use
the term “All data” to refer to that result while using the term
“lva-optimized” (Live variable analysis-optimized) to refer to
the data optimization using our approach.

A. Transpose

The transposition is a very common communication pat-
tern, which is commonly found in linear algebra calcula-
tions and FFT (Fast Fourier Transform) computations. This
benchmark transposes a N x N matrix using a blocked
approach. Each PE gets a sub-matrix containing a subset
of rows, performs a local transpose, and then combines the
results using an OpenSHMEM collective communication rou-
tine (shmem_fcollect). It has two functions, the main
function, and the transpose2D function that does the
transpose operation on the sub-matrix. We use the matrix size
of 2048 x 2048, and 16 PEs for the experimental calculation.

Our tool is able to identify all 13 safe points that are present
in the program; 6 of them are in transpose2D, and 7 of
them are in main.

We compare the result of data optimization using our
tool (lva-optimization) with Hao (“All data”) in Figure 5. We
show the result for all the safe points, although some of them
may not be suitable for checkpointing (e.g., shmem init
and shmem_finalize are often the first and last parts of
an OpensHMEM program; hence a checkpoint may not be
necessary). We leave the choice of choosing checkpoints from
these safe points up to the user.

In Figure 5, the X-axis shows the safe points in the program
along with their source line number; the Y-axis shows the
checkpoint data size at a specific safe point. We use normalized
data sizes, normalized by “All data” (all the available data at
that safe point). The blue bars (left) represent the amount of
data to be checkpointed at a certain safe point using the “All
data” approach, while the red bars (right) represent the amount
of data to be checkpointed using our approach. We observe
that our approach is able to optimize the amount of data to

be checkpointed significantly (checkpoints less than 1% of all
available data) compared to the “All data” approach for some
safe points, while requiring the same or close to the same
data for others. For the cases where the amount of data to
be checkpointed using our approach is negligible compared to
the “All data” approach, the red bar (lva-optimized) is so small
that it is not visible in the graph (e.g., shmem_finalize in
the main function).

In the main function, we see that our approach does
significantly better for the safe points that are at the latter
part of the function. Often the memory (both symmetric and
private) allocation and deallocation occur at the beginning and
the end of a function, respectively, for better code readability.
As aresult, the allocated memory may be freed much later than
its last use. This is potentially a problem for the “All data”
checkpointing approach. Although the data is not used any-
more, it is still part of the program memory; hence in the “All
data” approach, this unused data must also be checkpointed.
Our Live variable analysis approach can resolve this.

In the transpose?2D, we see a slightly different behavior
for the safe points in the latter part of the function. Although
we see improvement using our approach, it is not as sig-
nificant as we observed in the main function. This lack of
improvement is because we do live variable analysis at the
intra-procedural level; hence, we assume that any argument
passed to a function by reference is “live” at the end of the
function (the calling function may use updated values). In
transpose2D, one of the arguments is a large array that is
passed by reference. Since this variable can not be eliminated
in our current approach, we see smaller gains than with the
main function.

T All data MW Iva-optimized

-
=N

Checkpoint Data Size
o O O o
SR o ®

0

10 11

28 48 8 88 98 9
| transpose2d A main J

19 50 61 73

I I

Safe Points

Fig. 5. Checkpoint data sizes at all the safe points in Transpose. Smaller
is better (some bars for lva-optimized are not visible, because the value for
Iva-optimized is less than 1% of “All data”).

B. Matrix Multiplication (MM)

This benchmark provides an OpenSHMEM implementation
of Matrix Multiplication based on a variant of Cannon’s
algorithm. We use the matrix size of 2048 x 2048, and 16
PEs for the experimental calculation.

Figure 7 shows the comparison of our approach (lva-
optimized) with the “All data” approach. The benchmark
has 13 safe points, all of them in the main function.
Most of the safe points are initialization/finalization and

allocation/de-allocation routines while 3 of them are global
barriers (shmem_barrier_all). Our tool is able to identify
all of the safe points correctly.

In terms of data optimization, we observe similar results to
the main function of Transpose; and for the same reason.
Our approach is able to reduce the checkpoint data size
significantly for the safe points in the latter part of the main
function.

I All data W lva-optimized

=
[N}

1

o o
> o

o o
(SIS

0

Checkpoint Data Size

L .]
I

Safe Points

Fig. 6. Checkpoint data sizes at all the safe points in MM. Smaller is
better (some bars for lva-optimized are not visible, because the value for
Iva-optimized is less than 1% compared to “All data”).

C. Mandelbrot Set

This benchmark generates a greyscale image of the Man-
delbrot set using the quadratic iteration function. The image
is partitioned evenly across the PEs, and the computation is
embarrassingly parallel. We use a 3200 x 3200 image of the
Mandelbrot set, and 16 PEs for the experimental calculation.

The application has a total of 7 safe points, and our
tool is able to identify all of them. 5 of the safe points
are in the draw_mandelbrot function which does the
actual computation, and 2 are in the main function which
initializes/finalizes the OpensHMEM library and calls the
draw_mandelbrot function. Therefore, the important safe
points are in draw_mandelbrot, where all the data allo-
cation, de-allocation, and computation occur. For data opti-
mization, we see the familiar behavior already observed in
Transpose and MM; we achieve significant savings using our
approach at the latter safe points of the draw_mandelbrot
function.

I All data M lva-optimized

=
N

1

O O ¢
IS

Checkpoint Data Size
c o o
o > &

17 200 2 282 36¢ 377
l draw mandelbrot i main J

Safe Points

Fig. 7. Checkpoint data sizes at all the safe points in Mandelbrot. Smaller
is better (some bars for lva-optimized are not visible, because the value for
Iva-optimized is less than 1% of “All data™).

VII. RELATED WORK

This work can trace its roots back to three overlapping
research areas,

o Checkpoint-Restart Techniques
o Fault Tolerance in PGAS Programming Models
o Compiler and Tool Based Fault Tolerance

A. Checkpoint-Restart Techniques

Research on Checkpoint-Restart Techniques for Fault
tolerance can be traced back to work performed as early as
the 1960s by David Jasper [37]. Over the years, different
checkpointing schemes such as uncoordinated, coordinated,
communication-induced, incremental and multi-level check-
pointing have been developed to meet the need of ever-
changing computing environments and applications. Most of
these schemes have been implemented to be used at the system
level, at the application level, or both. In recent times many
of these techniques have been developed or adapted for use in
conjunction with Message-Passing Systems and Programming
Models (e.g., MPI) as a result of their popularity in High
Performance Computing. Surveys by Elnozahy et al. [25] and
Dongara et al. [38] are excellent resources for information on
these techniques.

B. Fault Tolerance in PGAS Programming Models

PGAS programming models such as OpenSHMEM are
becoming popular in the HPC community due to their pro-
grammability, utilization of modern hardware, and perfor-
mance affinity for applications with irregular communication
patterns. However, consideration of fault tolerance for PGAS
programming models is still scarce. Besta et al. [28] was
one of the first to develop a generic model for reasoning
about resilience in applications that use Remote Memory
Access (RMA) and to introduce schemes for in-memory
checkpointing and logging based protocols for them. Among
other notable works that focus on specific PGAS programming
models other than OpenSHMEM are [39] and [40]. In [39],
Ellis et al. introduced a coordinated checkpointing protocol for
UPC applications while in [40], Shahzad et al. developed tools
to support fault tolerance in GASPI applications. The tools
included a Health Check Library and a Fault-aware C/R library
which in combination provide fault detection, propagation, and
communication recovery.

Hao et al. [36], [41] was one of the first works to explore
fault tolerance in the context of OpenSHMEM. Here the
authors proposed an application-level checkpointing mecha-
nism based on User Level Fault Mitigation (ULFM) where
the shared global memory (symmetric memory) regions are
replicated (backed up) across peer processes. However, it
was up to the programmer to make sure that any data that
may be necessary for restart is allocated in the symmetric
memory. Since it was an application-level C/R scheme, the
user code was responsible for managing the checkpoint and
restart operations. Our work is designed to help application
developers navigate the process of managing C/R operations
and use schemes like this efficiently.

Garg et al. [42] introduced a different approach that utilized
a system-level transparent checkpointing scheme for achieving
OpenSHMEM fault tolerance. In their approach, they saved the
checkpoints in stable storage which allowed them to save the
computation to be used at a later time or on a different cluster.
Despite these efforts, OpenSHMEM lacks an error model to
provide proper error detection, propagation, and recovery. To
address this issue, Bouteiller et al. [43] proposed such an error
model as an extension to the OpenSHMEM API to solve
these issues. However, so far this has not resulted in any
modification to the specification. Compared to those works,
ours is the first work to define and identify safe points for
checkpointing in OpenSHMEM.

C. Compiler and Tool Based Fault Tolerance

Although application-level C/R can be the most effective
C/R technique for overhead efficiency, doing it in a large-
scale application can introduce huge implementation effort.
Hence, researchers have looked into compilers and tools to
ease this process via checkpointing suggestions or automatic
checkpointing to recover from both soft [44] and hard fail-
ures [3]-[9].

Most of these works are based on source to source compilers
and primarily focus on MPI programs. Porch [4] utilized
a source to source compiler and user inputs (checkpointing
routines and frequency) to insert checkpoint operations in a
sequential C program. Bronevetsky et al. [5], [6], Yang et
al. [7], and Rodriguez et al. [8] used source to source compilers
to automatically insert checkpoints in MPI applications. In
contrast to these efforts, our work focuses on OpenSHMEM,
a PGAS programming model which introduces the added
complexity of global consistency issues and utilizes an open
source general-purpose compiler, LLVM. As a result, we
are able to benefit from the on-going innovations in this
rapidly evolving compiler infrastructure and plan to exploit
the analyses already available in the LLVM infrastructure for
future extensions of our tool. Rodriguez et al. [9] also provide
an LLVM-based implementation that builds on top of their
previous work [8], however it still targets MPI applications.

Another notable difference of our work from other re-
search is that we do not perform automatic checkpointing,
rather we focus on providing user feedback and facilitating
checkpointing by the application developer. This is primarily
due to the lack of checkpointing libraries in OpenSHMEM.
Due to this scarcity, a user may have to modify or use
application-based checkpointing libraries developed for other
programming models (e.g., MPI). Hence, in this work we
focus on helping the application developer use whatever library
they choose. In the future, we plan to extend this work to do
automatic checkpointing as well.

VIII. CONCLUSION AND FUTURE WORK

In this work, we analyzed the OpenSHMEM programming
model from a resilience perspective and defined “safe points”
for inserting checkpointing library calls into OpenSHMEM
applications. Moreover, we provide the set of data to be

saved at each potential checkpoint. We adapted live variable
analysis for OpensHMEM to optimize the amount of data to
be checkpointed at a certain safe point. We show that this
optimization can sometimes result in a large improvement in
the amount of data to be checkpointed (in some cases, less
than “1%” of the available data is checkpointed).

Clearly, much needs to be done to provide comprehensive
fault tolerance support for OpenSHMEM based on C/R. We
are working to develop an application-level checkpointing
library for OpenSHMEM that would enable application de-
velopers to directly exploit the results of our work. Moreover,
we are developing additional techniques to further reduce the
amount of checkpointed data, where feasible. In particular we
are applying “memory exclusion” techniques that are based
on memory read/write operations in OpenSHMEM programs.
Finally, not all safe points are suitable for use as checkpoints.
In this work, we left the decision of choosing which safe
points should be used as checkpoints to the user. However,
we plan to investigate ways to suggest suitable positions for
checkpointing based on program analysis and the detected safe
points.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant no. CCF-1725499. The
authors would also like to thank Stony Brook Research Com-
puting and Cyberinfrastructure, and the Institute for Advanced
Computational Science at Stony Brook University for access
to the HPC systems.

REFERENCES

[1] J. T. Daly et al., “Application mttfe vs. platform mtbf: A fresh perspec-
tive on system reliability and application throughput for computations
at scale,” in CCGRID 2008.

[2] 1. P. Egwutuoha et al., “A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing
systems,” The Journal of Supercomputing, vol. 65, no. 3, pp. 1302—
1326, 2013.

[3] C.-C. J. Li et al., “Compiler-assisted full checkpointing,” Software:
Practice and Experience, 1994.

[4] B. Ramkumar et al., “Portable checkpointing for heterogeneous archi-
tectures,” in FTCS 1997.

[5] G. Bronevetsky et al., “Automated application-level checkpointing of
mpi programs,” in PPoPP 2003.

[6] G. Bronevetsky et al., “C 3: A system for automating application-level
checkpointing of mpi programs,” in LCPC 2013.

[71 X. Yang et al., “Compiler-assisted application-level checkpointing for
mpi programs,” in /ICDCS 2008.

[8] G. Rodriguez et al., “Cppc: a compiler-assisted tool for portable check-
pointing of message-passing applications,” Concurrency and Computa-
tion: Practice and Experience, vol. 22, no. 6, pp. 749-766, 2010.

[9]1 G. Rodriguez et al., “Compiler-assisted checkpointing of parallel codes:
The cetus and llvm experience,” International Journal of Parallel
Programming, vol. 41, no. 6, pp. 782-805, 2013.

[10] C. Lattner et al., “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[11] K. Yelick et al., “Productivity and performance using partitioned global
address space languages,” in Proceedings of the 2007 international
workshop on Parallel symbolic computation, 2007.

[12] T. S. Woodall et al., “High performance rdma protocols in hpc,” in
European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting, 2006.

[13] B. Chapman et al., “Introducing openshmem: Shmem for the pgas
community,” in PGAS 2010.

[14] O. Community, “Openshmem application programming interface version
1.5.” http://www.openshmem.org/, 2020.

[15] “Open source software solutions (0sss) openshmem implementation on
top of openucx (ucx) and pmix,” https://github.com/openshmem-org/
0SSS-UcX.

[16] “Mvapich2-x,” http://mvapich.cse.ohio-state.edu/.

[17] “Sandia-openshmem (sos),” https://github.com/Sandia-OpenSHMEM/
SOS.

[18] P. Shamis et al., “Designing a high performance openshmem im-
plementation using universal common communication substrate as a
communication middleware,” in OpenSHMEM 2014.

[19] “Openmpi,” https://github.com/open-mpi/ompi.

[20] N. Namashivayam et al., “Introducing cray openshmemx-a modular
multi-communication layer openshmem implementation,” in OpenSH-
MEM 2018.

[21] “Hpe-x™ openshmem,”
hpc-x-software/hpc-x-openshmem.

[22] “Ibm spectrum™ mpi,” https://www.ibm.com/products/spectrum-mpi.

[23] G. E. Pfister, “An introduction to the infiniband architecture,” High
performance mass storage and parallel 1/0, vol. 42, no. 617-632, p.
102, 2001.

[24] J.Jose et al., “Designing scalable graph500 benchmark with hybrid mpi+
openshmem programming models,” in ISC 2013.

[25] E. N. Elnozahy et al., “A survey of rollback-recovery protocols in
message-passing systems,” ACM Computing Surveys (CSUR), vol. 34,
no. 3, pp. 375408, 2002.

[26] R. Riesen et al., “Alleviating scalability issues of checkpointing proto-
cols,” in SC 2012.

[27] E. N. Elnozahy et al., “Checkpointing for peta-scale systems: A look
into the future of practical rollback-recovery,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 2, pp. 97-108, 2004.

[28] M. Besta et al., “Fault tolerance for remote memory access programming
models,” in HPDC 2014.

[29] P. H. Hargrove et al., “Berkeley lab checkpoint/restart (blcr) for linux
clusters,” in Journal of Physics: Conference Series, vol. 46, no. 1, 2006,
p. 494.

[30] L. Bautista-Gomez et al., “Fti: high performance fault tolerance interface
for hybrid systems,” in SC 2011.

[31] F. Shahzad et al., “Craft: A library for easier application-level check-
point/restart and automatic fault tolerance,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 30, no. 3, pp. 501-514, 2018.

[32] B. Nicolae et al., “Veloc: Towards high performance adaptive asyn-
chronous checkpointing at large scale,” in IPDPS 2019.

[33] J. S. Plank et al., “Compiler-assisted memory exclusion for fast
checkpointing,” IEEE Technical Committee on Operating Systems and
Application Environments, vol. 7, no. 4, pp. 10-14, 1995.

[34] J. Heo et al., “Space-efficient page-level incremental checkpointing,” in
Proceedings of the 2005 ACM symposium on Applied computing, 2005,
pp. 1558-1562.

[35] J. S. Plank et al., “Memory exclusion: Optimizing the performance
of checkpointing systems,” Software: practice and experience, vol. 29,
no. 2, pp. 125-142, 1999.

[36] P. Hao et al., “Check-pointing approach for fault tolerance in opensh-
mem,” in OpenSHMEM 2014.

[37] D. P. Jasper, “A discussion of checkpoint restart,” Software Age, vol. 3,
no. 10, pp. 9-14, 1969.

[38] J. Dongarra et al., “Fault tolerance techniques for high-performance
computing,” in Fault-Tolerance Techniques for High-Performance Com-
puting. Springer, 2015, pp. 3-85.

[39] M. Ellis et al., “Fault tolerance for remote memory access in unified
parallel c.”

[40] F. Shahzad e al., “Building and utilizing fault tolerance support tools for
the gaspi applications,” The International Journal of High Performance
Computing Applications, vol. 32, no. 5, pp. 613-626, 2018.

[41] P. Hao et al., “Fault tolerance for openshmem,” in PGAS 2014.

[42] R. Garg et al., “System-level transparent checkpointing for openshmem,”
in OpenSHMEM 2016.

[43] A. Bouteiller et al., “Surviving errors with openshmem,” in OpenSH-
MEM 2016.

[44] C. Chen et al., “Care: compiler-assisted recovery from soft failures,” in
SC 2019.

https://www.mellanox.com/products/

