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Abstract

Organic functionalization of semiconductor surfaces may be utilized to couple the properties of
semiconductor materials with organic molecules. In this work, the adsorption and thermal
reaction of phenol on the Ge(100)-2 x 1 surface were studied. A combination of multiple internal
reflection Fourier transform infrared (MIR-FTIR) spectroscopy under ultrahigh vacuum (UHV)
conditions and density functional theory (DFT) calculations was used to elucidate the surface
chemical reactions of phenol. While phenol initially chemisorbs on Ge(100)-2x1 via O-H
dissociation to form phenoxy (CsHsO*), annealing to 573 K transforms the adsorbate into phenyl
(CeHs*). A sequential reaction pathway for the migration of oxygen into substrate and formation
of phenyl is suggested, which requires significant thermal activation and vyields slight

exothermicity.



Introduction

With shrinking critical dimensions of electronic devices to the nanometer scale, there has
been continuing research interest on utilization of germanium (Ge) as a next-generation
semiconductor material, inspired by its advantageous material properties such as higher carrier
mobility and lower dopant activation temperature than those of Si 13, Still, challenges remain
toward integration of Ge into microelectronics fabrication, such as engineering of the dielectric-
semiconductor interface with sufficient reliability. On the other hand, organic functionalization
of semiconductor surfaces is a scheme to combine established knowledge of inorganic
semiconductor processing techniques with the tailorability of organic molecules %°, with
potential applications such as nanoscale patterning, molecular electronics, and chemical and
biological sensors. Functionalization of semiconductors has been studied on a variety of surfaces,
with specific focus on the (2x1) reconstructed (100) surfaces of Ge and Si that exhibit “dimer”
moieties with chemical properties of both zwitterion and double bond ©.

Various aromatic molecules’ adsorption chemistry has been studied on the Ge(100)
surface 7. Unlike on reactive surfaces of catalytic metals such as Ni or Pt at which molecular
decomposition readily occurs 213, the aromaticity of the molecules on Ge is often well preserved
upon adsorption due to the moderate reactivity of the surface 4. Even in some examples such as
adsorption of nitrobenzene (CsHs-NOz) and phenyl isocyanate (CsHs-NCO) on Ge(100), by which
post-adsorption transformation of the molecular structure was observed, an intact phenyl (Ce¢Hs-
) moiety was observed as part of the final reaction product >, The adsorption product of phenol
(CeHs-OH) on Ge(100) at room temperature also has been reported as a surface phenoxy moiety

(CeHsO*), formed by a proton transfer reaction to the Ge surface dimer 7.



In this work, the thermal transformation reactions of phenol adsorbed on the Ge(100)-2
x 1 surface are studied using Fourier transform infrared (FTIR) spectroscopy under ultrahigh
vacuum (UHV) conditions and density functional theory (DFT) calculations. While phenol initially
chemisorbs on the surface at 300 K to form adsorbed phenoxy, annealing the phenol-exposed
surface to 573 K yields phenyl directly bonded to the surface (CéHs*). Sequential migration of O

into the substrate is suggested as a possible reaction mechanism, as summarized in Figure 1.

Experimental and Computational Methods

FTIR spectroscopy experiments were conducted in a previously described UHV chamber
18 with a base pressure in the 1072 Torr regime. A trapezoidal Ge(100) crystal (Harrick Scientific,
19 x 14 x 1 mm3, 45" beveled edges) was used as substrate after alternative cycles of Ar*
sputtering and annealing. The 2 x 1 reconstruction of the surface was confirmed using low-energy
electron diffraction (LEED).'® The sample was radiatively heated by a resistive tungsten heater,
whose temperature was monitored by a type K thermocouple directly attached to the crystal.
Phenol (>99%, Acros Organics) was purified by repeated freeze-pump-thaw cycles. The Ge crystal
was exposed to phenol vapor at 300 K. IR spectra were collected in a multiple internal reflection
(MIR) geometry by a Nicolet 6700 FTIR spectrometer using an external HgCdTe detector. The CaF;
viewports of the UHV chamber resulted in a low-frequency cutoff of ca. 1050 cm™. The FTIR
spectra were corrected for baseline sloping by subtracting spline functions fit to points devoid of

spectral features. To observe the effect of annealing, the temperature of the Ge crystal exposed



to the precursor vapor was raised to and held at 573 K for 5 min and then cooled back to 300 K,
after which the IR spectra were collected.

DFT calculations were performed using Orca 3.0 software package 2°. PBEO hybrid
functional with D3BJ dispersion correction was used with def2-TZVP basis set for H, C, and O
atoms, and def2-SVP basis set for Ge. A GeisHis “two-dimer row” cluster was used to model the
Ge(100)-2 x 1 surface, whose top two Ge layers were allowed to relax from the ideal Ge crystal
positions. The transition state geometries were initially obtained from relaxed scan of the
potential energy surface between the reactant and product, and then confirmed after
optimization to have a single imaginary vibrational frequency along the reaction coordinate. In
the simulated FTIR spectra, the frequencies were scaled by a factor of 0.9682, which is obtained
by averaging the scale factors for the experimental ! and calculated frequencies for the 4 strong
vCC/BCH (CC stretching / CH in-plane bending) modes of the gaseous phenol molecule (Table S1,
Supporting Information). The bond dissociation energies (BDEs) of Ge-Ge, Ge-0O, Ge-C, and C-O
are obtained by calculating energy change accompanying homolytic cleavage of the respective

bonds between Ge(GeHs)s, -C(CHs)s, and -O(C;Hs).

Results and Discussion

Figure 2a shows the FTIR spectra of 40 L phenol (1 L = 107® Torr-s) adsorbed on Ge(100)-2
x 1 at 300 K. The positions and assignments of the peaks are summarized in Table 1. The current
data well reproduce previously reported FTIR spectra of 40 L phenol exposed to Ge(100) at 310

K 7. Given this exposure, a quasi-saturation of surface phenoxy (CeHsO*) is formed upon



dissociative chemisorption of the O-H moiety with “lying down” configuration, whose coverage
can be assumed to be ca. one adsorbate per two Ge dimers *’. Also, DFT-calculated spectra for
the phenoxy on Ge(100) (Figure 2d) match well with the initial experimental FTIR spectra after
chemisorption at 300 K. Unlike phenyl isocyanate adsorbed on Ge(100)-2 x 1, which showed
spectral changes over timescale of minutes 6, no noticeable change in the IR spectra is observed
within several hours after phenol adsorption at 300 K.

Then, annealing the Ge(100) surface exposed to phenol to 573 K significantly changes the
spectra (Figure 2b). While the CO stretching mode of surface phenoxy at 1226 cm™ becomes
absent, the peaks related to characteristic symmetric vibration of the aromatic ring show distinct
red-shifts, which can be due to the phenyl group becoming bonded to a heavier substituent 22.
Especially, the positions of the remaining peaks resemble those of phenyl adsorbates directly
bonded on various surfaces, such as those on Ni(100) 23, Au(111) %4, and Mo2C/Mo(100) 2.
Therefore, DFT calculations were carried out assuming formation of CsHs* on the Ge(100)
surface. The DFT-calculated FTIR spectra of phenyl adsorbate as shown on Figure 2d match well
with the experimental FTIR spectra of phenol upon annealing. The three distinct FTIR peaks were
assigned to stretching modes of the C¢Hs ring directly bonded to the Ge surface by evaluating the
DFT-calculated displacements in each vibrational mode (Table 1).

Upon thermal activation, the oxygen atom that link phenoxy of initial chemisorption
structure may migrate into the surface. Similar reactions were observed for organic molecules
that bond to Si and Ge surfaces through a nitro (-NO;) functionality, by which interfacial

oxynitride-like structures are formed !>26-2%, Detailed mechanistic investigation for the nitro



groups’ surface chemistry suggested that O atoms detached from the organic adsorbate
sequentially were inserted into Si-Si or Ge-Ge bonds of the substrate.

Figure 3 shows energies of critical points along a possible thermal reaction pathway of
chemisorbed phenol on Ge(100). In the present study, we suggest that stepwise transformation
of phenoxy to phenyl occurs via the following mechanism. First, a metastable intermediate state
(111, +26.8 kcal/mol) can form by insertion of the phenoxy O into the Ge dimer bond. Through the
transition state Il, the dimer Ge bond becomes broken (Ge-Ge: 2.463, 3.182, and 3.761 Ain |, II,
and I, respectively), and O becomes bonded to the dimer Ge with the H adatom (Ge-O: 3.563,
2.246, and 1.889 A in I, II, and III, respectively). This step involves a significant activation energy
of 53.1 kcal/mol (transition state Il) from the phenoxy state, and thus would not readily occur
during initial adsorption at 300 K. Then, the phenyl moiety becomes directly bonded to the Ge
surface, and the oxygen atom of phenoxy would become inserted into the dimer Ge-Ge bond (V,
-7.2 kcal/mol). Via the transition state |V, the CsHs moiety forms bond with the Ge atom on which
phenoxy was originally bonded (C-Ge: 2.944, 2.169, and 1.939 A in IlI, IV, and V, respectively),
losing the bond with O (C-O: 1.387, 1.708, and 2.952 A in Ill, IV, and V, respectively). This second
step of phenyl migration (transition state 1V) also requires thermal activation: the energy barrier
height is estimated as 35.0 kcal/mol from the intermediate Ill, and 61.8 kcal/mol from the initial
phenoxy (1). It is noted that other reaction pathways, such as emergence of gaseous byproducts,
similarly to those observed for propanol on Si(100) ?° and nitrobenzene on Ge(100) *°, or
reactions involving multiple Ge surface dimers 3°, may be also available, but are not considered

in this work for clarity of the discussion.



Overall, formation of phenyl from phenoxy is exothermic, so that once V is formed by
thermal activation, the probability for the reverse reaction to Ill or | would be small. However,
the magnitude of the estimated release of energy is smaller for the thermal reaction of phenol (-
7.2 kcal/mol, current work) compared to that of nitrobenzene/Ge(100) (ca. -25 kcal/mol per O
atom, ref. 1°). Such a difference can be described by the nature of the chemical bonds present in
each adsorbates 4. First, many nitro-aromatic compounds are often utilized as highly energetic
materials that contain large chemical potential energy in their bonds 3. Therefore, structural
decomposition of nitrobenzene adsorbates is expected to involve large release of energy, which
is confirmed by our previous analysis on the DFT calculations along the reaction of the nitro
group, where weaker N-O bonds are replaced by stronger Ge-O bonds *°. Meanwhile, for the
thermal transformation reaction of surface phenoxy, i.e., formation of Ge-O and Ge-C bonds at
the expense of C-O and Ge-Ge bonds’ breakage, the BDEs of the involved bonds are rather similar.
The calculated BDE values are similar for (Ge-O, 78.3 kcal/mol; C-O, 82.2 kcal/mol) and (Ge-C,
66.0 kcal/mol; Ge-Ge, 69.8 kcal/mol) pairs, respectively. Therefore, it can be understood that
new bonds are formed along with breakage of similarly stable bonds, and therefore the
magnitude of overall energy change accompanying thermal reaction of phenoxy/Ge(100) is small.
Also, although structures with further subsurface migration of O were also attempted by DFT
calculations, no structure with additional stability compared to the state V could be located,

possibly due to low reactivity of the Ge substrate toward oxidation 3233,



Conclusions

The structural transformation of phenol chemisorbed on the Ge(100)-2 x 1 surface upon
thermal annealing is studied via UHV FTIR experiments and DFT calculations. Phenol initially
forms phenoxy adsorbates at 300 K upon adsorption on Ge(100). After annealing to 573 K, phenyl
directly bonded to surface Ge is observed, preserving the aromaticity of the adsorbate. A
sequential O-migration pathway is suggested as the mechanism for the thermal transformation,
which involves a significant activation energy, but is overall exothermic. The resulting product
structure has the O atom inserted into substrate Ge-Ge bond. Our study provides new
fundamental knowledge on the organic functionalization of semiconductor surfaces and the

thermal reactions of the adsorbates on the Ge surface.
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Table 1. Summary of the vibrational peak positions (cm™) and assignments for phenol on

Ge(100)-2 x 1 and related CeHs adsorbates. B: bending, v: stretching, vas: asymmetric stretching

of CeHs, vs: symmetric stretching of CsHs,

Mode Exp. 300 K Exp. 573 K Phenoxy DFT | Phenyl DFT Phenyl Phenyl Phenyl
(Fig 2a) (Fig 2b) (Fig 2¢) (Fig 2d) /Ni(100) 2 /Au(111)#* | /Mo2C/Mo %5

B(CH) 1157 1150 1171 1188 1150
v(CO) 1226 1256

Vas(ring)1 1283 1325 1322

Vas(ring)2 1429 1427

vs(ring)1 1473 1467 1485 1475 1469 1459

vs(ring)2 1574 1564 1611 1598 1557 1550
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Figure 1. Suggested thermal reaction mechanism of phenol adsorbates on the Ge(100)-2 x 1

surface.
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Figure 2. Experimental (a,b) and DFT-calculated (c,d) FTIR spectra of phenol adsorbed on the
Ge(100)-2 x 1 surface. a, after 40 L adsorption at 300 K; b, after 573 K annealing of the sample
probed in a; c, surface phenoxy (structure | in Figure 3b); and d, surface phenyl (structure V in

Figure 3b).
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Figure 3. a, DFT-calculated reaction coordinate diagram for thermal reaction of phenol adsorbed
on Ge(100); b, optimized geometries of the critical points: I) surface phenoxy formed by
adsorption of phenol, Il) O-insertion transition state, Ill) phenoxy-inserted metastable state, 1V)

phenyl migration transition state, and V) surface phenyl. In b, the subsurface atoms are hidden

for clarity; Ge=green, O=red, C=gray, and H=white.
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