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Abstract—Global warming is rapidly reducing glaciers and ice
sheets across the world. Real time assessment of this reduction
is required so as to monitor its global climatic impact. In this
paper, we introduce a novel way of estimating the thickness
of each internal ice layer using Snow Radar images and Fully
Convolutional Networks. The estimated thickness can be used
to understand snow accumulation each year. To understand the
depth and structure of each internal ice layer, we perform multi-
class semantic segmentation on radar images, which hasn’t been
performed before. As the radar images lack good training labels,
we carry out a pre-processing technique to get a clean set of
labels. After detecting each ice layer uniquely, we calculate its
thickness and compare it with the processed ground truth. This
is the first time that each ice layer is detected separately and
its thickness calculated through automated techniques. Through
this procedure we were able to estimate the ice-layer thicknesses
within a Mean Absolute Error of approximately 3.6 pixels. Such
a Deep Learning based method can be used with ever-increasing
datasets to make accurate assessments for cryospheric studies.

Index Terms—Ice Layer Thickness, Semantic Segmentation,
Fully Convolutional Networks, Radargrams

I. INTRODUCTION

Polar ice has been declining rapidly due to global warming.
Studies suggest that sea level will increase by almost a meter
at the end of this century [1]. To quantify and analyse this
change, airborne Snow Radars [2] are used which help in
detecting internal ice-sheet layers. These instruments give two-
dimensional grayscale images (Figure 1 for example) where
the horizontal axis corresponds to the flight direction of the
instrument and the vertical axis corresponds to the depth in
the sub-surface ice. The bright pixels correspond to signals
reflected with a higher power, while the dark pixels correspond
to signals reflected with a lower power [3]. By analysing the
depth of these ice layers, one can assess the snow accumulation
rate [4].

Snow radar imagery presents various challenges. Most of
the radar images are noisy, with indistinguishable layers,
especially the deeper layers. Moreover, the annotated layers
are incomplete. As can be seen in Figure 1 the lower layers
of the snow radar image are thinner and have lesser contrast
variation compared to the upper layers. This results in training
labels being available (either through manual annotations or
through traditional automated techniques) only for some parts

Fig. 1: A sample snow radar image.

of layers, and not for all parts of each layer. This is further
explained in Section III.

Detecting each layer separately is a challenge in itself. There
have been several automated techniques in the past which
detect ice layers from radar data [5]–[8]. But these methods
focused on a binary detection of an ice layer i.e. whether an
ice layer is present at a pixel or not. The uncertainty in these
binary outputs, along with the fact that an ice pixel could
belong to just any layer makes it very hard to calculate the
depth of each layer uniquely even through post-processing.

Recently, Convolutional Neural Networks (CNNs) have
shown a lot of promise in understanding complex images and
extracting features from them. They have especially been used
for computer vision problems such as image classification,
object detection, and semantic segmentation [9]–[13]. CNNs
contain convolving filters which can segregate the varying
shapes and textures in an an image similar to how human
vision works. CNNs have also been used to detect ice layers
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from radar images [7], [14]. But, extracting each internal layer
separately, and calculating its depth is still an issue. More
recently, Fully Convolutional Networks (FCNs) [15] have been
introduced for semantically segmenting an entire image. By
supplying enough diverse training labels to these networks,
we can get pixel-wise classification of each image. HED [16],
a multi-scale FCN for edge detection, was used in [17] to
detect internal ice layers in Snow Radar data. However, the
authors detected ice layers in a binary format, segmenting the
image into ice-layer pixels, and non-ice-layer pixels. We aim
to achieve a similar output but by detecting each layer (present
at different depths) uniquely.

In this paper, we use some state-of-the-art FCNs to under-
stand each internal ice layer uniquely, and thus semantically
segment Snow Radar images. We do so by first discarding
the incomplete layer-labels and populating the complete layer-
labels within the inter-layer regions. This will help us prepare
training data where every pixel across the depth of each layer
has a label. By pixel-wise annotating each layer uniquely, we
can feed its specific features to an FCN for it to learn. The
pixel-wise distribution of the labels in the FCN output can
then help us estimate the thickness of each layer.

The rest of the paper is distributed in the following sec-
tions: Section II describes past work in ice-layer detection
using radargrams, and also covers some state-of-the-art FCNs
for Computer Vision in recent years. Section III describes
the Snow Radar dataset that we use, and the challenges
faced while detecting ice-layers from it. Section IV gives the
Methodology, and highlights how we process the available
training labels before feeding them to FCNs, the FCN architec-
tures in detail, and the post-processing we carry out in order to
obtain layered outputs. Section V explains the hyperparameters
that we use with every architecture, and the evaluation metrics
we use to assess their outputs. Section VI then quantifies the
results, and also highlights qualitative results. We conclude the
paper in Section VII.

II. RELATED WORK

Although there have been various automated techniques for
binary detection of ice layers from radar images [5], [7], [8],
[18], there is no technique to the best of our knowledge which
creates a multi-class output for radar images taken over ice-
sheets, especially using neural networks. In this section, we
briefly describe existing techniques and highlight some state-
of-the-art FCNs for semantic segmentation.

A. Ice Layer Tracking Techniques

Several automatic techniques are available for tracking
the ice surface and bottom [5], [7], [8], [18]. While [18]
focused on developing a hidden markov model to process
planetary radargrams, [5] coupled Steger and Weiner filtering
with denoising methods to detect linear features from radar
data acquired over icy regions. Further, [7] used a level set
approach to evaluate airborne radar imagery whereas [8] used
anisotropic diffusion followed by a contour detection model
to identify ice and bedrock layers. These methods, although

giving accurate results, resulted in a binary ice-layer detection,
i.e. they detected the presence or non-presence of ice for each
pixel. Moreover, these methods focused on detecting only the
surface and bottom layers of the radargrams.

Tracking the internal ice sheet layers is much more difficult
since the layers are compact and too close to each other.
Although there were several works in this field such as [4],
[18]–[20] which used automated techniques to detect internal
layers, none of these methods used deep learning; and hence
were not scalable for larger datasets. Several recent efforts
[17], [21]–[24] applied multi-scale deep learning techniques to
track and identify internal ice layers. Although these are very
efficient methods, they perform binary detection of layers, i.e.
they detect the presence or absence of ice at a given pixel.
As snow gets accumulated over the years, forming a separate
ice layer for each year, there lies a potential to detect which
layer an ice-pixel belongs to. We aim to solve this problem of
tracking the compact, closely spaced, internal ice layers and
identifying each layer uniquely. We use deep learning for its
recent successes and scalability to large datasets. Since we
wanted a pixel-wise distribution of each layer, we used FCNs
for semantic segmentation which is described in the following
subsection.

B. Semantic Segmentation

FCNs have been used extensively for semantic segmentation
of images. The immense applicability of these networks and
semantic segmentation in particular has resulted in it becoming
a fundamental topic in Computer Vision [25].

The concept of semantic segmentation was introduced in
[15], where the the terminating fully connected layers from
popular networks like VGG and AlexNet were replaced with
fully convolutional layers to bring pixel-wise classification.
Since then, these networks have further been modified by
various strategies such as global or average pooling [26], batch
normalization, different activation [27] and loss functions
[28], multi-scale architectures [16], [29], [30]etc. A fusion
of various training strategies have led to their success. In
this section, we briefly describe some of the very successful
semantic segmentation networks in recent times, explaining
their utility. In the following section, we give the details of
these network architectures.

a) UNet: This network [31] contains a contracting path
and an expansive path, which are almost symmetric to each
other, forming a U-shaped architecture. High resolution fea-
tures from the contracting path are concatenated with the
upsampled outputs in the expansive path in order to obtain
high localization. Such a network strategy, combined with data
augmentation, turned out to be useful in biomedical image
segmentation, especially for detecting tissue deformations.
The success of UNet in biomedical images [31] led to its
application and improvement for other domains such as remote
sensing and autonomous driving.

b) PSPNet: In [30], the authors observe that in a tradi-
tional FCN, most of the errors were due to a lack of global con-
textual relationship between different receptive fields. Hence,

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 09,2021 at 22:02:10 UTC from IEEE Xplore.  Restrictions apply. 



3945

they introduced a pyramid pooling module which empirically
turned out to be an effective global contextual prior. They start
with global average pooling as a baseline for global contextual
prior, and then fuse it with different sub-region context hier-
archically so as to contain information from different scales.
They refer to this hierarchical structure as a pyramid pooling
module. Such a network strategy turns out to be very useful
for snow radar dataset, as not only do we need to extract
gradient changes in the noise locally, we also need to uniquely
identify each layer from a global perspective. More details of
the architecture are described in Section IV.

c) DeepLabv3+: This architecture [25] uses the concept
of spatial pyramid pooling and applies several parallel atrous
convolutions at different dilation rates to build an encoder
architecture. The output of this is further upsampled (decoded)
to extract features at the image scale. Such a combination
of pyramid pooling and encoder-decoder architecture helps in
learning multi-scale contextual information while also detect-
ing sharp object boundaries through spatial information.

We learnt that spatial pyramid pooling, such as that used in
PSPNet, helps in learning a global contextual prior, but it also
misses out on detailed object information due to the pooling
operation. Atrous convolutions, help in this regard by dilating
the receptive field in a controlled manner before it is pooled.
The subsampled pooled output can then be decoded to obtain
sharper spatial information. This network strategy can help
us get highly detailed information about each layer change in
the Snow Radar data. This architecture is further explained in
Section IV.

III. DATASET

A. Characteristics

We use the Snow Radar data from 2012 year, provided by
the Center for Remote Sensing of Ice Sheets (CReSIS) [32]
and having a resolution of 4 cm per pixel in the vertical
direction. This is publicly available and consists of 2361
training images and 260 test images. We have used the output
of a semi-supervised technique [4] as the ground truth. In
our ground-truth data, each unique ice-layer is marked as a
separate class.

B. Challenges

The snow radar images are quite noisy, and it is very hard
to distinguish where each layer begins. Moreover, there are
hardly any contrasting features which can help us distinguish
between layers. There are also certain anomalies, creating
vertical perturbations in the horizontal ice layers. All these
issues in the radar images can be seen in Figure 2a.

These issues in the radar images propagate to the their
labels, Figure 2b, which is the output of [4] and which we use
as ground truth. Most, if not all, the labels for the deeper layers
are missing here. Moreover, the labels which are available,
are incomplete as they do not cover the corresponding ice
layer completely. These significant anomalies and issues in
the original radar images, as well as the training labels, make
it challenging for them to be directly trained with any FCN.

(a) (b)

Fig. 2: Noisy radar image (a), having multiple indistinct layers,
and its corresponding training labels (b). The lower layers
of the radar image are not so easy to be distinguished by
human eyes, whereas the available labels do not span across
the corresponding layers completely.

As FCNs or CNNs are highly data dependent, any anomaly
or issue in the original data or labels will directly propagate
to the network output, leaving it to be of no practical use.

Thus, in order to get around these significant issues in the
data and labels, we introduce some steps to process the training
labels. These are described in Section IV-A and help us in
extracting only the complete labels for layers, by discarding
the incomplete labels. We follow this procedure to crop out
consecutive sets of complete training labels, and also crop
out the corresponding regions from the original radar image.
From the original CReSIS data of 2361 training images, our
cropping procedure leaves us with 1157 images. 20% of the
these training images, i.e. 232, are explicitly used for neural
network validation purposes. We use the entire 260 images
for testing purposes, the annotations of which we were able
to manually complete using the Darwin V7 platform [33].

IV. METHODOLOGY

In this section, we discuss how we process the incomplete or
missing training labels, the network architectures of the three
FCNs, and the post-processing we carry out to obtain layered
outputs. In the next section, we talk about the hyperparameter
setup for the FCNs, and the evaluation metrics we use to assess
their performance.

A. Processing the Training Labels

As some of the training labels available to us were incom-
plete (such as the second, fourth and fifth layer in Figure
2b), we removed these completely, that is turn them into
background pixels. Then, starting from the topmost layer, we
searched for a consecutive set of at least two layers. For every
consecutive set found, we calculate the row index of the peak
of the top layer, and the row index of the valley of the bottom
layer. We then added a margin of five to both these indices
setting these as the y- coordinate values of the bounding box
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Fig. 3: Processing the Training Labels: First, consecutive sets of completely labeled layers are cropped out. In the second step,
pixels in between two layers are filled up with the label of the upper layer. This pixel-wise annotation across the thickness of
the layers will help FCN models to learn features of every layer uniquely. Each label color represents a unique layer. Note
that the colors are generated in a spectrum, and are not necessarily consistent across the ground truth and the semantic output.
The red curly braces represent the row indices for cropping.

for cropping this consecutive set of layers. The bounding box
spans across all the columns of the training labels, i.e. its
x- coordinate values are the first and the last column index
of the ground truth image respectively. These bounding box
coordinates are then used to crop out the same region from
the corresponding, original radar image.

Consider Figure 3 as an example. The available ground truth
here has the following layer-labels available: 2, 3, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 18, 19, 20. There are no layers labelled
as 1, 4, 15, 16, and 17. Also, layer labelled 12 is incomplete,
and doesn’t span across the width of the image. To process
this ground truth, we first completely remove layer labelled
12, i.e. we turn it to background. We do this by converting
all pixels having value 12, to have value 0 (the background
class). So now we are left with layers labelled as: 2, 3, 5, 6, 7,
8, 9, 10, 11, 13, 14, 18, 19, 20. Out of these, the consecutive
sets available are: {2,3}, {5, 6, 7, 8, 9, 10, 11}, {13, 14}, and
{18, 19, 20}. The first layer in each set is its top layer, and
the last layer in each set is its bottom layer. By calculating
the row indices of the peaks of the top layers of each set, i.e.
layers 2, 5, 13, and 18; and row indices of the valleys of the

bottom layers of each set, i.e. layers 3, 11, 14, and 20; we are
able to crop these sets out into separate images, after adding
a margin of five pixels to the aforementioned row indices.

The bounding box coordinates are explained in Equation
1. For a peak row index p and a valley row index v, of an
image with width w, the bounding box used for cropping has
coordinate values (the top-left coordinate, and the bottom-
right coordinate) as computed by Equation 1. These same
coordinates are used for cropping the corresponding radar
image, as shown in Figure 4.

(x1 , y1 ) , (x2 , y2 ) = ( 0 , p− 5 ) , (w , v + 5 ) (1)

Further, in order to feed FCNs for semantic segmentation,
we need training labels which are annotated for each pixel
of the image. To accomplish this in the cropped subsets, we
fill all the intermediate background pixels between two layers
with the label of the upper layer. This leaves us with labelled
pixels across most of the image, except for the background
pixels above the top-most layer of the image. This layer-filling
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Fig. 4: This is the radar image for the training labels of
Figure 3. This image is cropped at the same regions as its
corresponding label-image in Figure 3. The red curly braces
represent the row indices where it was cropped to generate
‘Cropped Images’.

process is also shown in Figure 3, where we generate the
‘Semantic Layers’ from the ‘Cropped Layers’.

B. Network Architectures

We carried out semantic segmentation of Snow Radar im-
ages using three state-of-the-art FCNs: UNet [31], PSPNet [30]
and DeepLabv3+ [25]. In this Section, we give some details
about their architectures.

1) UNet: The architecture of UNet [31] consists of a
contracting path and an expansive path. The contracting path
(left side) has repeated applications of two 3×3 unpadded
convolutions and 2×2 max pooling (of stride 2) operation for
downsampling. Each convolution is followed by a rectified
linear unit (ReLU) activation and at each downsampling step,
the number of feature channels are doubled. The expansive
path (right side) then focuses on upsampling the feature maps
followed by 2×2 convolutions which half the number of
channels, which are then concatenated with the corresponding
cropped features maps from the contracting paths. These are
then convolved by two 3×3 filters each having a ReLU
activation function. Finally, a 1×1 convolution is used to
reduce the feature vector to the desired number of classes.

2) PSPNet: The pyramid pooling module fuses features
from four different pyramid scales . The coarsest level gen-
erates a single bin output through a global pooling scheme,
whereas other levels generate pooled representations for dif-
ferent sub-regions. These low dimension pooled outputs from

different levels are then upsampled to get feature maps of the
same size as the original feature map via bilinear interpolation.
These different features are then concatenated to give the final
prediction. The pyramid pooling module that we adopt has four
bin size of 1×1, 2×2, 3×3 and 6×6 respectively.

The baseline CNN that we use in the PSPNet architecture is
ResNet-50 [34]. However, contrary to the ResNet architecture,
PSPNet incorporates an additional, auxiliary loss after the
fourth stage (residual block) of ResNet to deeply supervise
[35] the network architecture. The entire network is trained
by a weighted loss that balances between this auxiliary loss
and the main, terminal loss.

3) DeepLabv3+: We build DeepLabv3+ [25] using a
ResNet-50 [34] as the baseline. We then apply multiple
atrous convolutions with different dilation rates (6, 12 and
18) to extract the spatial information. This is then fused with
the pooled output of the feature maps and later convolved
with 1×1 filters. These encoder features are then bilinearly
upsampled by a factor of 4, to be later concatenated with
the low-level features from the network backbone which have
the same spatial resolution. Further, in the decoder path,
1×1 convolutions are applied on these features to reduce the
number of channels and make the training easier. Feature maps
are then concatenated and convolved with a couple of 3×3
filters to refine the features, which are then upsampled by a
factor of 4 by using bilinear interpolation.

C. Processing the Network Outputs

The fully convolutional networks described above are ex-
pected to give us pixel-wise outputs, like those shown in
‘Semantic Layers’ column of Figure 3. In order to convert
them back to individual layers (such as ‘Cropped Layers’ of
Figure 3), we iterate over each row of every column of the
output to convert all duplicate labels to the background pixel.
Thus, each column of the output will have only one unique
pixel for every label. We do this for all the columns, thus re-
constructing layered output similar to the ‘Cropped Layers’
column of Figure 3.

V. EXPERIMENTAL SETUP

This section explains the setup of our experiments and
describes the metrics we used to assess the FCNs’ performance
to segment the images and calculate the ice-layer thickness.
The maximum number of unique layers we had available were
27, and we trained all networks on 28 classes to predict layer
pixels as well as background pixels.

In order to understand the usability of our networks espe-
cially for internal ice layer tracking, we calculate the metrics
on the test images having more than 1, and more than 3 layers.
As there were a lot of images with less than 3 layers, this test
will give us an idea of how the networks perform for deeper
layers. Furthermore, as each layer corresponds to the snow
accumulated in a particular year, we calculate the performance
on the top 10 layers of the test set. This is to study the changes
in the past decade which can help us predict any changes in
the near future.
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A. Hyperparameters

All the networks were trained with ResNet-50 [34] as the
baseline network, and an initial learning rate of 0.01. We
used a weight decay of 10−4 and a momentum of 0.9. We
performed two types of experiments for each network, one
where the learning rate scheduler was ’Poly’ and the other
where it was ’OneCycle’. In the Poly learning rate scheduler,
the learning rate is linearly reduced from the initial value
(0.01) to zero as the training progresses (Figure 5a), while the
momentum remains constant at 0.9. In the OnceCycle learning
rate scheduler, the learning rate is annealed according to the
one-cycle learning rate policy [36] (Figure 5b). This means
that, during the initial 30% of the training, the learning rate
increases from a tenth of its (0.001) value to its full value
(0.01). For the remainder of the training, the learning rate
decreases from its full value to a quarter of its value. The
momentum is also changed in a similar but opposite way.
It decreases from 0.9 to 0.8, and then later increases to 0.9
again during second half (remaining 70%) of the training. All
networks were trained with a cross entropy loss having a mini-
batch size of 8 images for 200 epochs.

(a)

(b)

Fig. 5: (a) Poly Learning Rate Scheduler and (b) One Cycle
Learning Rate Scheduler.

B. Evaluation Metrics

We assess the performance of these networks with overall
accuracy and mean IoU (intersection over union) per label.

For k labels, these metrics are given as

Accuracy =

k∑
i=1

TPi+TNi

TPi+TNi+FPi+FNi

k
(2)

mean IoU =

k∑
i=1

Predicted Outputi ∩ Ground Truthi

Predicted Outputi ∪Ground Truthi

k
(3)

where TP, TN, FP, FN are True Positives, True Negatives,
False Positives, and False Negatives, respectively. This is done
on pixel-wise (semantic) outputs and ground truth in the
format of ‘Semantic Layers’ of Figure 3.

We also calculate the mean thickness of each layer in
every predicted image, and compare it with the corresponding
ground truth semantic layers. For calculating this mean thick-
ness, we first count the total number of pixels for each unique
class, and divide it by the number of columns (width) of the
image. We then calculate the Mean Absolute Error (MAE)
between the predicted output and the ground truth across all
the layers of a given image. This is given by

MAE =

k∑
i=1

| pi − ti |

k
(4)

where pi is the predicted mean thickness and ti is the true
mean thickness of the ith layer.

VI. RESULTS AND DISCUSSION

Network-LRS Train Val Test
UNet-Poly 0.755 0.681 0.714
UNet-OneCycle 0.856 0.754 0.792
PSPNet-Poly 0.948 0.875 0.899
PSPNet-OneCycle 0.938 0.844 0.867
DeepLabv3+-Poly 0.957 0.907 0.887
DeepLabv3+-OneCycle 0.935 0.876 0.886

TABLE I: Accuracy of various networks on the Training,
Validation and Test set computed over all the 27 layers. LRS
denotes the Learning Rate Strategy - i.e. Poly or OneCycle.
The highest values obtained over the Validation and Test sets
are highlighted in bold.

Network-LRS Train Val Test
UNet-Poly 0.387 0.288 0.343
UNet-OneCycle 0.549 0.378 0.438
PSPNet-Poly 0.737 0.576 0.65
PSPNet-OneCycle 0.728 0.538 0.589
DeepLabv3+-Poly 0.734 0.609 0.59
DeepLabv3+-OneCycle 0.676 0.552 0.595

TABLE II: Mean Intersection over Union (IoU) of various
networks on the Training, Validation and Test sets computed
over all the 27 layers. LRS denotes the Learning Rate Strategy
- i.e. Poly or OneCycle. The highest values obtained over the
Validation and Test sets are highlighted in bold.

We calculated the accuracy and mean IoU per (layer) class
based on Equations 2 and 3 respectively. We tabulate these
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Radar Image (Semantic) Ground Truth DeepLabv3+ PSPNet UNet

Fig. 6: Comparing the outputs of DeepLabv3+, PSPNet and UNet with respect to the test images and available ground truth.
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Radar Image Ground Truth DeepLabv3+ PSPNet UNet

Fig. 7: Comparing the outputs of DeepLabv3+, PSPNet and UNet with respect to the test images and available ground truth.
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for all six experiments (three networks, and two learning rate
schedulers per network) in Tables I and II. In these tables we
further highlight the highest accuracy and mean IoU obtained
over Validation and Test sets obtained over all the 27 layers.
We also calculated the performance metrics on the test images
having more than 1 and more than 3 layers, with the metrics
calculated over the top 10 layers; which is more relevant for
climate studies. These are shown in Tables III and IV.

Network-LRS > 1 layers > 3 layers
UNet-Poly 0.633 0.778
UNet-OneCycle 0.626 0.82
PSPNet-Poly 0.797 0.947
PSPNet-OneCycle 0.681 0.888
DeepLabv3+-Poly 0.733 0.915
DeepLabv3+-OneCycle 0.831 0.943

TABLE III: The accuracy calculated over the top 10 layers of
the test set. The results here are for images having more than
1, and more than 3 internal layers, which is more useful for
our analysis.

Network-LRS > 1 layers > 3 layers
UNet-Poly 0.266 0.302
UNet-OneCycle 0.292 0.351
PSPNet-Poly 0.387 0.419
PSPNet-OneCycle 0.366 0.413
DeepLabv3+-Poly 0.392 0.424
DeepLabv3+-OneCycle 0.425 0.435

TABLE IV: The mean IoU calculated over the top 10 layers
of the test set. The results here are for images having more
than 1, and more than 3 internal layers, which is more useful
for our analysis.

From tables I and II we see that, the Poly learning rate
gives higher performance with the multi-scale networks of
PSPNet and DeepLabv3+. For UNet, the OneCycle learning
rate works better. The gradual increase in the learning rate does
not help with the multiple pooling strategies that PSPNet and
DeepLabv3+ incorporate. For DeepLabv3+, both the learning
rate schedulers give similar accuracy and mean IoU over the
test set. Overall, DeepLabv3+ gave a higher mean IoU over
the 27-layered Validation and Test sets, while also giving the
highest accuracy over the Validation set. UNet performed the
worst, both qualitatively (Figures 6 and 7) and quantitatively
(Tables I and II). For most of the images in Figure 6, UNet
creates botchy patches, not being able to predict a layer
completely across its width. This further leads to a lot of
broken lines when we convert the semantic outputs to layered
outputs (Figure 7).

We believe that the poor performance of UNet is due
to its primitive architecture, as compared to PSPNet and
DeepLabv3+. DeepLabv3+ captures not only a global con-
textual prior, but it is also able to retain intricate spatial
information. Due to these reasons, it is able to decipher the
highly ambiguous ice-layers while detecting them from a
broader perspective.

We also calculated the thickness of each layer in the
networks’ predicted output and compared it with the semantic

Network-LRS Train Val Test
UNet-Poly 7.95 10.14 8.75
UNet-OneCycle 5.22 7.66 6.17
PSPNet-Poly 2.80 4.79 3.63
PSPNet-OneCycle 4.03 7.34 5.62
DeepLabv3+-Poly 2.36 3.66 3.75
DeepLabv3+-OneCycle 3.08 4.53 3.59

TABLE V: The Mean Absolute Error (MAE) in pixels of all
the layers calculated over the Training, Validation and Test
sets. Values highlighted in bold are the least thickness values
obtained over the Validation and Test sets.

ground truth layers (such as those present in Figure 3). We
report the Mean Absolute Error (MAE, Equation 4) of all the
layers across all the images of each dataset (i.e. Training,
Validation and Test sets) in Table V. From this table, we
see that the semantic segmentation networks have predicted
well, resulting in an average MAE across all datasets and
all networks to be 5.28 pixels. Further, DeepLabv3+ gave
the best outputs with its MAE falling between 3 to 4 pixels
for the Validation and Test sets; closely followed by PSPNet
which gave an MAE between 3.5 and 7 pixels. UNet’s outputs
gave the worst thickness estimates, with an MAE of upto 10
pixels. This is majorly due to the botchy semantic output that
it generates over the deeper layers.

Although training till 200 epochs could not improve UNet’s
output, tuning other hyperparameters apart from learning rate
should definitely improve its results. Further, as UNet is a
’lighter’ model in terms of number of weights, complexity,
and mathematical operations involved, experimenting with it
would be useful.

VII. CONCLUSION

Global warming is rapidly melting glaciers and ice sheets
across the world. This calls for automated accurate methods
which can process the large amount of data that is available
from Earth observation. In this paper, we use Snow Radar data
to track internal ice sheets and estimate the thickness of each
layer. More specifically, we mitigate some of the challenges
of the data set and its ground truth by a set of pre-processing
techniques. We also use state-of-the-art fully convolutional
networks to understand the pixel-wise distribution and extent
of each ice-layer. By using this methodology, we are able to
estimate the thickness of these layers within a Mean Absolute
Error of 3 to 4 pixels.

Even a slight change in the polar ice-sheets can be dev-
astating for the world. Our work can thus be expanded by
incorporating datasets from multiple years, and creating data-
driven, real-time monitoring solutions which can go beyond
label ambiguities.
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