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ABSTRACT

Pragmatic Deep Learning techniques in recent years have
greatly influenced our approaches to data analysis. However,
in many real-world problems, even when a large dataset is
available, Deep Learning methods have shown less success,
for the lack of large labeled dataset, presence of noise, or
missing data. In this work, our goal is to track internal ice
layers in radar images gathered with various sensors in dif-
ferent years. We will show that transfer learning will not
generally work well. However, if the Deep Learning model
gets trained on noisy images, there would be a significant
improvement. Unlike spatial Transfer Learning, our exper-
iments show that temporal Transfer Learning can provide
considerably better results.

Index Terms—
neural network, radar images, automatic tracking, ma-

chine learning, multi-class classification

1. INTRODUCTION

Deep learning methods have displayed impressive success in
many areas of practical interest such in optical imagery, as
classification [1], object recognition [2], counting [3, 4, 5],
and semantic segmentation [6, 7]. However, it has been less
successful in problems related to non-optical sensors, such as
radar imagery, due to coherent noise in the data. The goal of
this work is to examine deep neural network for tracking the
internal layers of ice.

Surface and bottom tracking in radar images has been ex-
tensively studied in several works, [8, 9, 10, 11, 12]. But
tracking internal layers is a significantly more difficult task
because of the large number of layers in close proximity [13,
14]. MacGregor et al. [13] developed a semi-automated layer
tracker for the CReSIS radar depth sounder and applied it to
several seasons of data in the first large scale effort to do in-
ternal layer tracking. Even using the semi-automated method,
the task took several years to complete. Koenig et al. [14]
have tracked these interfaces and used the tracked layers to
measure annual snow fall over a large area. Since the tech-
niques are not able to detect all internal layers and are not

fully automatic, they cannot be easily scaled up to big dataset
for routine application.

In the present work, we aim to analyze snow Radar [15]
images produced by the Center of Remote Sensing of Ice
Sheets for NASA Operation IceBridge. The snow radar is
a profiling instrument which produces vertical sounding im-
ages of snow layers over ice sheets and ice caps. The radar
signal is sensitive to annual density changes that occur due to
the seasonal transitions from summer to winter; this density
change interface scatters the radar signal which is measured
by the radar’s receiver. For training our network we used the
output of semi-supervised layer tracking by [14], which were
corrected by human.

The best labeled data we have belongs to year 2012. This
is also our largest dataset from year 2008 to 2017. We used
this dataset for training. It must be noted that the labeled data
is produced semi-automatically. Our goal is to develop a deep
learning approach that can track ice layer boundaries in the
presence of noise and missing information.

2. METHODOLOGY

We denote our training dataset by X. Our dataset consists of
pair of vectors (X,Y ) whereX is the original image and Y is
the corresponding binary layer data. In a multi-scale learning
process, we define an edge detection function at each scale
s, and we denote it by Es . We pull out several side-outputs
at different scales in our network. Suppose we denote each
output at scale s by Os(X). Then the edge map prediction at
scale s is Ỹs = Ds(Os(X)), where Ds(·) is an upsampling
function to re-scale the output to match the size of the layers
vector. The final prediction is defined as a linear combination
of edge map predictions across all scales. In other words,

Ỹ =
∑
s∈S

wsỸs, (1)

where S is the set of all scales. We also define loss functions
at all scales, denoted by `s, and one loss function for the final
prediction Ỹ , denoted by `f . The learning process can be
described as
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(a) (b)

(c) (d)

Fig. 1. (a) The original image. (b) The result of training on
augmented BSDS500. (c) The result of training from scratch
on ICE2012. (d) Human labeled edges.

(θ, w)∗ = argmin
θ,w

(
`f +

∑
s∈S

`s

)
(2)

with θ = (θ0, θs)s∈S , where θ0 represents parameters of the
network, θs output parameters at scale s, and w = (ws)s∈S
the fusion weights.

3. EXPERIMENTAL RESULTS AND EVALUATION

We took two main approaches for the learning method. First
we examined transfer learning. We carried out several exper-
iments in transfer learning; the best result came from training
the model on an augmented BSDS500 data. In the second
approach, we trained the model on our 2012 dataset with a
normal distribution initialization. The test results in the sec-
ond approach was considerably better than the first approach,
that is transfer learning. In the training process, we have the
learning rate 10−6 and the momentum 0.9. We have also used
weight decay rate of 2×10−4. Fig.1 shows the outputs of both
experiments for one test sample.

As discussed in some recent works [16], deep learning
models are unstable in the presence of noise. Therefore, one
can expect that the first method do poorly in tracking the
edges, but, training from scratch provides much better results
even with respect to the human labeling (See Table 1).

Our dataset contains data from 2009 to 20017. However,
the quality of images in all years are lower comparing to 2012

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Left: original images from 2009 (a), 2011(c), and
2016(e). Right: corresponding prediction results.

data; also we have less labeled data in other years. There-
fore we were not able to use them in training process. Our
2012 dataset consists of 2360 train and 260 test images. We
have used our multi-scale learning approach, described in the
methodology section, on 2012 data. In Section sec.method, it
was mentioned that the model produces side-outputs in differ-
ent scales. In our model, there are five side-outputs. Finally,
there is the fusion of the side-outputs. Figure 3 provides a
sample of all six outputs of one input data. The fusion coef-
ficients are also learned during the training procedure. Each
time we apply the model on a test dataset, the model is going
to produce five side-outputs and a fusion result.

The test results for year 2012, is provided in Table 1. For
other years, we used transfer learning. Here we provide a
few examples of our results for different years. Fig. 2(a) for
instance is an image taken from our images in 2009. (b) shows
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Fig. 3. From left to right: the original images, side-outputs 1-5, and the fusion of side-outputs.

Table 1. Evaluation results for different time intervals
Test on 2011 Test on 2012 Test on 2016 Test all, no 2012 Test all

ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP
Side 1 0.164 0.131 0.087 0.320 0.465 0.261 0.325 0.436 0.270 0.249 0.325 0.182 0.218 0.398 0.167
Side 2 0.703 0.565 0.672 0.763 0.779 0.760 0.710 0.732 0.657 0.703 0.742 0.696 0.722 0.771 0.722
Side 3 0.731 0.659 0.680 0.796 0.824 0.786 0.729 0.746 0.709 0.759 0.799 0.740 0.778 0.819 0.774
Side 4 0.595 0.553 0.511 0.732 0.769 0.645 0.700 0.724 0.594 0.727 0.765 0.637 0.740 0.784 0.647
Side 5 0.549 0.566 0.405 0.512 0.572 0.399 0.574 0.609 0.468 0.547 0.582 0.401 0.507 0.565 0.371
Fuse 0.738 0.662 0.733 0.815 0.854 0.815 0.751 0.766 0.742 0.753 0.803 0.768 0.770 0.833 0.784

Fig. 4. Precision-recall curves for fusion results of different
temporal samples.

our prediction result. The prediction result is the fuse of all
side-outputs as described in Section 2. In all three examples
in Fig. 2, some fainted layers are also detected, which are not
normally detected by humans.

We report three different quantities for evaluating our re-
sults; the Optimal Dataset Scale (ODS) or best F-measure on
the dataset for a fixed scale, the Optimal Image Scale (OIS)
or aggregate F-measure on the dataset for the best scale in
each image, and the Average Precision (AP) on the full recall
range (equivalently, the area under the precision-recall curve),
see [17].

We evaluate the result on datasets of each year. Table 1
contains information for years 2011, 2012, and 2016. The last
column in the table shows evaluation results for a test set that
contained images from all different years, while the forth col-
umn contains the same evaluation metrics without data from
2012. As expected, the best evaluation results pertains to year
2012, then to the test set that contained 2012 data (approxi-
mately 10% of the data is from 2012). Table 1 also contains
the evaluation metrics for all side-outputs and their fusion.
As we should expect, the fusion results are the best results in
each column. The Precision-recall curves for fusion results
are shown in Fig .4.

4. CONCLUSIONS

There are two main obstacles in applying deep learning meth-
ods on complex data, such as radar data. The first and most
important obstacle is the lack of labeled data. In our case, we
have a semi-automated system to generate labeled data; how-
ever, it can generate a limited amount of labeled data, and
will not work well when the image is too noisy. The sec-
ond obstacle is the high frequency of noise in our images. In
this case, transfer learning works very poorly. Normally, deep
learning models get trained on optical images with low back-
ground noise; therefore, they are unstable in the presence of
too much noise.

To address the first issue, we used a multi-scale deep
learning architecture. That is a more robust approach, as
shown in our experiments. To deal with the second issue, we
trained the model on the largest available dataset in one year
only. We showed that a transfer learning technique works
quite well for other years.
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[2] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik,
Simultaneous Detection and Segmentation. Cham:
Springer International Publishing, 2014, pp. 297–312.

[3] M. Rahnemoonfar and C. Sheppard, “Deep count: fruit
counting based on deep simulated learning,” Sensors,
vol. 17, no. 4, p. 905, 2017.

[4] ——, “Real-time yield estimation based on deep learn-
ing,” in Autonomous Air and Ground Sensing Systems
for Agricultural Optimization and Phenotyping II, vol.
10218. International Society for Optics and Photonics,
2017, p. 1021809.

[5] M. Rahnemoonfar, D. Dobbs, M. Yari, and M. J. Starek,
“Discountnet: Discriminating and counting network for
real-time counting and localization of sparse objects in
high-resolution UAV imagery,” Remote Sensing, vol. 11,
no. 9, p. 1128, 2019.

[6] M. Rahnemoonfar, M. Robin, M. V. Miguel, D. Dobbs,
and A. Adams, “Flooded area detection from UAV im-
ages based on densely connected recurrent neural net-
works,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2017 IEEE International. IEEE, 2018, pp.
3743–3746.

[7] M. Rahnemoonfar and D. Dobbs, “Semantic segmenta-
tion of underwater sonar imagery with deep learning,” in
Geoscience and Remote Sensing Symposium (IGARSS),
2017 IEEE International. IEEE, 2019, pp. 9455–9458.

[8] S. Lee, J. Mitchell, D. J. Crandall, and G. C. Fox, “Esti-
mating bedrock and surface layer boundaries and confi-
dence intervals in ice sheet radar imagery using mcmc,”
in Image Processing (ICIP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 111–115.

[9] J. E. Mitchell, D. J. Crandall, G. C. Fox, M. Rah-
nemoonfar, and J. D. Paden, “A semi-automatic ap-
proach for estimating bedrock and surface layers from
multichannel coherent radar depth sounder imagery,” in
SPIE Remote Sensing. International Society for Op-
tics and Photonics, 2013, Conference Proceedings, pp.
88 921–88 926.

[10] M. Rahnemoonfar, M. Yari, and G. C. Fox, “Automatic
polar ice thickness estimation from sar imagery,” in
SPIE Defense+ Security. International Society for Op-
tics and Photonics, 2016, pp. 982 902–982 902.

[11] M. Rahnemoonfar, G. C. Fox, M. Yari, and J. Paden,
“Automatic ice surface and bottom boundaries estima-
tion in radar imagery based on level-set approach,” IEEE
Transactions on Geoscience and Remote Sensing, 2017.

[12] M. Rahnemoonfar, , A. Abbassi, and F. G. C. Paden,
John, “Automatic ice thickness estimation in radar im-
agery based on charged particle concept,” IEEE Inter-
national Geoscience and Remote Sensing Symposium,
2017.

[13] J. A. MacGregor, M. A. Fahnestock, G. A. Catania, J. D.
Paden, S. P. Gogineni, S. K. Young, S. C. Rybarski,
A. N. Mabrey, B. M. Wagman, and M. Morlighem, “Ra-
diostratigraphy and age structure of the greenland ice
sheet,” Journal of Geophysical Research: Earth Sur-
face, vol. 120, no. 2, pp. 212–241, 2015.

[14] L. S. Koenig, A. Ivanoff, P. M. Alexander, J. A. MacGre-
gor, X. Fettweis, B. Panzer, R. R. Forster, I. Das, J. R.
McConnell, M. Tedesco et al., “Annual greenland accu-
mulation rates (2009–2012) from airborne snow radar,”
The Cryosphere, vol. 10, no. 4, 2016.

[15] F. Rodriguez-Morales, D. G.-G. Alvestegui, E. J.
Arnold, R. D. Hale, S. Keshmiri, C. J. Leuschen, J. Li,
J. D. Paden, and C. Cardenas, “Radar systems for
ice and snow measurements onboard manned and un-
manned aircraft,” IEEE Latin America Transactions,
vol. 16, no. 9, pp. 2473–2480, 2018.

[16] D. Heaven, “Why deep-learning ais are so easy to fool,”
pp. 163–166, 2019.

[17] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Con-
tour detection and hierarchical image segmentation,”
IEEE transactions on pattern analysis and machine in-
telligence, vol. 33, no. 5, pp. 898–916, 2011.

6937

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 09,2021 at 22:03:12 UTC from IEEE Xplore.  Restrictions apply. 


