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ABSTRACT

Open-ended questions in mathematics are commonly used
by teachers to monitor and assess students’ deeper concep-
tual understanding of content. Student answers to these
types of questions often exhibit a combination of language,
drawn diagrams and tables, and mathematical formulas and
expressions that supply teachers with insight into the pro-
cesses and strategies adopted by students in formulating
their responses. While these student responses help to in-
form teachers on their students’ progress and understand-
ing, the amount of variation in these responses can make it
difficult and time-consuming for teachers to manually read,
assess, and provide feedback to student work. For this rea-
son, there has been a growing body of research in devel-
oping Al-powered tools to support teachers in this task.
This work seeks to build upon this prior research by in-
troducing a model that is designed to help automate the
assessment of student responses to open-ended questions
in mathematics through sentence-level semantic represen-
tations. We find that this model outperforms previously-
published benchmarks across three different metrics. With
this model, we conduct an error analysis to examine char-
acteristics of student responses that may be considered to
further improve the method.

Keywords
Open responses, Automated scoring, Natural Language Pro-
cessing, Sentence-BERT, Mathematics

1. INTRODUCTION

In many K-12 mathematics classrooms, teachers have come
to rely on the use of open-ended questions to assess their
students’ knowledge and understanding of assigned content.
Unlike close-ended problems, where there is a single or finite-
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number of accepted answers (e.g. a multiple-choice ques-
tion), open-ended questions allow students to justify and
express their thinking processes through language; it is com-
mon that students may combine language, images, tables, or
other mathematical expressions, equations, and terminolo-
gies to illustrate their knowledge and understanding of the
material.

While the use of open-ended questions is not found only in
mathematical contexts, aspects of this domain make it par-
ticularly difficult to develop teacher supports for these types
of question. Within computer-based learning platforms, re-
search across fields of study have led to the development of
a multitude of teacher-augmentation tools [1] and method-
ologies that leverage machine learning techniques. Among
these supports, automated methods have been developed
and deployed to help teachers assess student essays and short
answers in several domains [25, 2, 3, 15]. As was highlighted
in [9], the arduous task of manually assessing and providing
feedback to student open-ended work may explain the de-
cline of open-ended questions assigned over the course of a
school year (e.g. Figure 1 which shows the number of open
response questions assigned within the ASSISTments learn-
ing platform, aggregated over the last 10 years). In addition
to this decline, as was also reported in [9], very few student
responses to open-ended questions are ever scored by the
teacher, with even fewer ever receiving feedback. Figure 2
illustrates this, as well as the subsequent plot of these values
from February through October of 2020, during COVID-19
induced remote learning.

There are several notable challenges in developing automated
supports to help teachers assess student open-ended work.
It is also the case that student responses to open-ended
questions differ in the context of mathematical and non-
mathematical domains. One such difference, for example, is
that many non-mathematical domains such as history or lan-
guage arts, student “open-ended” essays and short answers
are often comprised of multiple sentences and paragraphs
[21, 25, 5, 8], whereas in mathematics, responses are gener-
ally shorter (maybe one or two, often incomplete sentences)
[14, 9] that combine language with mathematical symbols,
expressions, or other visuals. Aside from these response-level
characteristics, however, several other student-, problem-,
and even teacher-level factors can make the development of
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Figure 1: The number of open response problems assigned
over the course of a school year with the ASSISTments learn-
ing platform, aggregated from 2010-2020.

these automated supports more challenging; consider, for
example, the variation in how teachers approach the assess-
ment of student answers, using different inherent rubrics and
pedagogical philosophies [15, 17, 22, 23].

While the examination of student answers to open-ended
poses challenges in developing automated assessment sup-
ports for teachers, prior work has shown promise in this con-
text [9]. In that work, the authors explore several machine-
learning and natural language processing (NLP) methods to
predict teacher-provided scores to open-ended problems, of-
fering an evaluation method and benchmark of comparison
for similar methods®

In this paper, we build upon prior research presented in
[9] to develop and evaluate an automated assessment model
of student open responses in mathematics. We introduce a
modeling approach using a sentence-level semantic represen-
tation of the student open responses to the existing models
through Sentence-BERT (SBERT;[20]), using a novel refor-
mulation of the “score prediction” problem. We compare
our method to the previously-developed scoring models from
[9], and subsequently apply an exploratory error analysis to
identify areas of improvement that may be addressed by fu-
ture iterations of these methods. Toward this, we seek to
address the following research questions:

1. How does a model utilizing Sentence-BERT compare
to previously developed approaches in predicting teacher
given assessment scores for student response to open-
ended problems?

2. What are the characteristics of student answers that
correlate with errors observed in our Sentence-BERT
model?

3. Which of student-, problem-, or teacher-level charac-
teristics most explain the variance of error observed

!The data and evaluation code from [9] was used in this work
with permission from the original authors and in compliance
with IRB.
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Figure 2: The percent of student open-response answers that
were scored and given written feedback by a teacher before
and during remote learning in response to COVID-19.

when the model is applied in real learning environ-
ments?

2. BACKGROUND

There have been several works related to the automated
scoring of open-ended responses in the past. Most of such
works utilize a combination of Natural language Processing
(NLP) and machine learning techniques of ranging complex-
ity to process open-ended responses. Much of the existing
work in this area has been applied in the context of non-
mathematical content. Developments such as C-rater[15] is
a well-cited approach that uses such methodologies to es-
timate the assessed correctness of answers to short answer
questions. This method uses grading rubrics and breaks
down scores into multiple knowledge components to eval-
uate each student response. Other works [2, 3] have im-
plemented clustering techniques to grade short textual an-
swers to questions. More recently, studies have based their
approach around deep learning methods, which have led
to promising improvements over previous benchmarked re-
sults [21, 25]. While most of these works have been on
non-mathematical domains, studies like [14] explore mathe-
matical language processing using clustering techniques and
the bag-of-words approaches for automated assessment of
open-ended response in mathematics. However, this study
only considers the mathematical content, discarding the non
mathematical texts.

Many of these more-recent studies have utilized publicly-
released embedding methods trained on large corpuses of
data, including those of Word2Vec [18] and GloVe [19], to
model the semantic meaning of words. However, word em-
beddings capture limited information about the semantics of
a sentence, where the sequence of words may have large im-



Elena, Lin, and Noah all found the area of Triangle Q to be 14 square units but reasoned
about it differently, as shown in the diagrams. Explain af least one student’s way of thinking
and why his or her answer is correct.
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Figure 3: Example of an open ended question taken from
openupresources.org

pacts on interpreted meaning. To capture the contextual in-
formation within sentences and further increase the general-
ization capabilities of NLP embedding methods, techniques
such as Universal Sentence Encoders [4] and Sentence-BERT
[20] generate a single embedding that is designed to be rep-
resentative of the entire sentence while preserving the se-
mantic and contextual information of the words within such
sentences.

One of the most commonly-used NLP embedding methods
in recent years has been that of Bidirectional Encoder Rep-
resentations from Transformers (BERT, [7]). Building upon
and distinguishing itself from other methods such as GloVe,
the BERT method is designed to incorporate contextual in-
formation into generated embeddings to distinguish words
that may have the same spelling but different meanings de-
pending on usage (e.g. the word “bank” referring either
a financial institution or perhaps a slope of land near a
river); BERT has been shown to outperform many other
approaches in a number of NLP tasks including, as is im-
portant for this work, semantic textual similarity (STS) [7].
Sentence-BERT, or SBERT [20], modifies the pre-trained
BERT network to reduce the computational overhead of
BERT in order to also generate a sentence-level embedding
of a given series of words.

2.1 A Benchmark Comparison

In this work, we are exploring the use of this SBERT method
to build upon the prior benchmark set in Erickson et al.,
2020 ([9]) in assessing student answers to open-ended prob-
lems in mathematics. In that work, the authors discuss the
challenges in developing models to predict teacher assigned

grades for student open responses in mathematics, using a
dataset of authentic student responses within the ASSIST-
ments [11] learning platform. Erickson et al. compares 6
models utilizing machine learning (e.g. random forest and
XGBoost [6]) and more complex deep learning (e.g. LSTMs
[12]) techniques, combined with natural language process-
ing algorithms to assess responses that are combinations of
mathematical expressions and non-mathematical text. For
the feature extraction process from the open response data,
the study uses the Stanford Tokenizer [16] combined with
Global Vectors for Word Representation (GloVe) [19].

3. METHODOLOGY

In this study, we build upon the work of [9] to develop and
evaluate an automated scoring model based on the SBERT
methodology; as will be detailed further, we refer to this
model as the SBERT-Canberra model throughout the re-
mainder of this work. Then, in a secondary analysis, we
utilize real data collected from a pilot study of our model
running within a computer-based tool that provides teach-
ers with suggested scores to explore the limitations of our
approach through an exploratory error analysis. Our data
and approach to these analyses are described in this section.

3.1 Dataset

In this work, we utilize two datasets® of student answers to
open-ended questions paired with teacher-provided assess-
ment scores. An example of one of these open-ended math-
ematics questions is shown in Figure 3. In this example,
students are not asked to find the area of the triangles, but
rather explain in their own words what one of the figures is
illustrating an approach to solving the problem.

For the development of our SBERT-Canberra model, we use
the dataset (and evaluation code) from the Erickson et al.
study [9]. This dataset is comprised of student answers to
open response questions within the ASSISTments[11] online
learning platform; the dataset consists of 150,477 total stu-
dent responses from 27,199 unique students to 2,076 unique
problems graded by 970 unique teachers. As was performed
in [9], we omit any case where a student response contained
no characters (e.g. an empty response or one containing only
whitespace characters), or contained nothing but an image
(cases where there was an image accompanied by other text
or non-whitespace characters is not omitted). The removal
of such empty responses resulted in the dataset dropping to
141,612 graded student responses, 25,069 unique students,
2,042 unique problems, and 891 unique teachers. Within this
data, each response is accompanied by a teacher-provided as-
sessment score that follows an integer ordinal 5-point scale
from 0-4; a “4” here is synonymous with a student receiving
a 100% for the response.

Table 1 lists several student answers contained within the
dataset, chosen from across multiple problems for illustra-
tive purposes. As was noted in the introduction, these re-
sponses highlight some of the challenges of this modeling

2The data and code used in this work cannot be publicly
posted due to the potential existence of personally identi-
fiable information contained within student open response
answers. In support of open science, this may be sharable
through an IRB approval process. Inqueries should be di-
rected to the trailing author of this work.



Table 1: Sample student responses (selected from across multiple problems for illustrative purposes) and the teacher provided
scores on a scale of 0 to 4 to the open ended questions in mathematics.

Sample Responses Score
y=4x-2 4
I counted 4
I multiply -3 and 2x 2
diagram is on paper 3
Yes Because Y=mx+b 0
I got 2/9 by dividing by 4 3
I was not in class for this so I don’t know. 1
I went multiplication first then division then multiplication 3
I got this by doing 45/75. I knew that 75 + 75 = 150 4

and 150 goes into 450 3 times and 3 x 2 = 6. So the answer is 6.

You would need an example and then you would need to draw a line
and find out far away your shape is from the line and mark it and then do that 4
on the rest of your lines on the shape

The distributive property means that a number outside a set of parentheses
can be multiplied by each of the numbers within the parentheses and the answer
will be the same. It works because it would be the same as multiplying each number
by the number outside the parentheses and then adding them together.

task. First, the length of responses varies greatly between
students as well as across problems. In addition to this, the
interleaving of mathematics and linguistic text likely makes
it difficult for pre-trained embedding models to interpret.
Similarly, the variation in mathematical representation (i.e.
the use of the term “dividing” rather than the “/” operator),
may lead to confusion in a machine learning model trained
over such data. As the mathematical variables are also rep-
resented by recognized english characters (e.g. “y”), it may
be difficult to derive semantic meaning for such tokens. It is
for this reason that we hypothesize that a contextual-based
embedding approach, such as BERT and SBERT, may be
superior to traditional embedding methods that do not ac-
count for context within the sentence. Finally, the noise in
ground truth labels become evident from the table. The stu-
dent who answered “I counted” but still received full credit,
for example, exemplifies that some teachers may score stu-
dents based on completion or other factors unrelated to their
demonstration of understanding or mastery. This is not to
say that any one scoring method is more correct or valid
than another, but rather that there is likely large variation
in these labels, making it difficult for machine learning mod-
els to effectively learn associations between student answers
and these scores in some cases.

The second dataset used in this work is comprised of stu-
dent responses collected during the pilot testing of a teacher-
augmentation tool designed to aid in the assessment of stu-
dent open response answers within ASSISTments [11]. This
tool, called QUICK-Comments, used our developed model
to predict the scores of student answers to open response
questions in mathematics. Models were trained over the
same open educational resource (OER) curricula from which
the problems used in the first dataset were collected and
produce estimates using the same grading scale as the first
study. During the pilot study, 12 middle school mathematics
teachers were given access to the tool and compensated for
their time to assign, assess, and provide feedback to student

open ended work during the Spring and Fall of 2020. This
dataset consists of 30,371 graded student open responses to
915 unique open response problems solved by 1,628 unique
students.

3.2 SBERT-Canberra Model

The model developed for this work follows a 2-stage process
to generate estimates of teacher-assigned scores for a set of
given student answers. In approaching this model, we pro-
pose a reframing of the initial problem. In [9], the problem
was posed as a traditional supervised learning problem; in
other words, given a set of student answers A, train a model
() such that Y = f(A). Instead, we propose a more unsu-
pervised approach as depicted in Figure 4. If we have a set
of historic answers Ag...,—1, and want to predict the score
of a new answer A,, a logical choice of score may be that
corresponding with the historic answer that is most similar
to the new answer A,. In this way, the problem is posed as a
similarity ranking problem rather than a supervised learning
problem.

There are several potential advantages to this approach.
First, when utilizing a pre-trained model of SBERT, de-
scribed in Section 2, no actual model training is necessary (so
long as a reasonable distance metric is identified). Second,
as SBERT is optimized for contextual similarity tasks, the
problem is better suited to utilize the embedding method’s
strengths. Finally, in a practical sense, as no model train-
ing is necessary (beyond utilizing the pre-trained embedding
model), such a model can be more easily applied at scale,
requiring just a pool of historic answers to compare against.
We hypothesize that this method may also require fewer ex-
ample answers than traditional machine learning methods
as well, but this claim is not deeply explored in this current
work.

In applying this method, the set of historic answers Ag...n—1
are fed through the pre-trained SBERT model to produce



Table 2: Features for the Linear Model of Error analysis of SBERT-Canberra model

Title Description Mean

Answer Length Length of the answer 10.39
Average character per word the average number of characters per words 3.54
Numbers count total number of digits 3.54
Operators count total mathematical symbols in the response 1.47
Equation percent percentage of mathematical equations in answer | 0.27
Presence of Images Indicator of presence of images in the answer 0.15

Ag : Most similar answer

T

min(Canberra_distances)

T

Canberra_distance(Ap 1, 5, .. n-1, An)

/\

Ao, A-I, AE’ ey An-1 An
SBERT SBERT

) 1

List of Historic Answer to predict
answers score

Figure 4: The design of the SBERT-Canberra method, that
suggests scores based on similarity between the answers.

a 768-valued feature vector for each answer; these vectors
are then stored for later access.. Given a new answer, A,,
a feature vector is similarly produced. In stage two of our
method, all pairwise comparisons are then made between
Ay and Ag.. -1, calculating Canberra distance [13] for each
pair. Canberra distance, as opposed to other common dis-
tance metrics such as Euclidean or Cosine similarity, is a
distance metric calculated over ranked lists. With this met-
ric calculated for all pairs, the Ag...,—1 historic answers are
then min-sorted to identify the most similar historic answer,
As, to our new answer A,. The score associated with As is
then used as the prediction for the given answer A,,. The
design to this approach is outlined in Figure 4.

As an additional component of this model, a “fallback” con-
dition is implemented to be able to produce scoring esti-
mates for problems where there are no historic answers on
which to compare. In this case, we train a single multi-
nomial regression model over all known answers, utilizing 1)
the number of words in the answer and 2) the average length
of each word in the answer; this model produces a probabil-

ity distribution over 5 categorical labels (observing the 0-4
grading scale as a multinomial regression formulation). This
one model is trained over all known answers and used then
only in the case that no historic answers are available for
the SBERT-Canberra model. This component is viewed as
being part of our SBERT-Canberra approach.

3.3 Evaluation of SBERT

To evaluate our SBERT-Canberra scoring method, we utilize
the same data and code presented in [9]. In that paper, the
authors present the usage of a 2-parameter rasch model [24]
(equivalent to a traditional item response theory, or IRT,
model). The purpose of this model is to learn a separate
parameter for each student and problem presented, repre-
senting student ability and problem difficulty, respectively.
The intuition behind the use of this model is to evaluate
an NLP automated scoring model based solely on its abil-
ity to interpret the words in each student answer. As the
score of each answer is likely correlated with student ability
(or knowledge) and problem difficulty (e.g. easy problems
are likely to exhibit higher scores), such a model provides a
reasonable minimum baseline of comparison. By adding a
model’s scoring estimates as covariates to the rasch model
and then comparing the performance of such a model to the
rasch model without covariates, we are able to observe the
true value-added performance of the NLP scoring model.

Following the same procedure as conducted in [9], we are
able to directly compare our Sentence-BERT method to
those presented in that prior work. The models are trained
and evaluated using a 10-fold student-level cross validation,
and model performance is compared based on 3 performance
metrics. First, treating the label as multinomial, rather
than ordinal, AUC is caluclated using the method described
in [10]. Second, the root mean squared error (RMSE), is
calucalted over the ordinal prediction and label. Finally, a
multi-class kappa is calculated, again using the multinomial
label representation. The multinomial representations were
argued to be appropriate due to the likely non-linear distri-
bution of scores, while then RMSE provides insight into a
more linear assumption of the data. Arguably an additional
rank-based metric such as Spearman’s Rho would also be a
suitable metric of comparison, but is not included for more
direct comparisons to the previous work.

3.4 Approach to Error Analysis of the SBERT-

Canberra Method

In evaluating the SBERT-Canberra method, it is impor-
tant to explore limitations of the approach in order to iden-
tify where the model does well and where it may yet im-
prove through future iteration. As such, we also conduct
an exploratory error analysis of the method using the data



Table 3: Rasch Model Performance compared to the models developed in Erickson et al.[9]

Model

AUC RMSE Kappa

Current Paper

Rasch* + SBERT-Canberra

Erickson et al. 2020
Baseline Rasch

Rasch + Number of Words
Rasch* 4+ Random Forest

Rasch* + XGBoost
Rasch* + LSTM

0.856  0.577 0.476

0.827  0.709 0.370
0.829  0.696 0.382
0.850  0.615 0.430
0.832  0.679 0.390
0.841  0.637 0.415

*These rasch models also included the number of words.

collected from the QUICK-Comments pilot study. Toward
this, we observe two regression models that observe absolute
model error as a dependent variable. By exploring charac-
teristics of student answers in the context of this model-
ing error, we can observe which aspects correlate most with
higher prediction error. Similarly, we apply then a multi-
level model to observe which of student-, problem-, and
teacher-level identifiers most explains any observed model-
ing error.

3.4.1 Uni-level Linear Model

The uni-level linear model is based on student answer level
characteristics. The student answer level characteristics are
comprised of a set of six answer-level features extracted from
the student open response data. These features are listed in
Table 2. In calculating these features, the answer is first to-
kenized using the Stanford NLP tokenizer[16], dividing each
textual answer into smaller tokens. For example, if the re-
sponse to a particular problem is “I got 2/9 by dividing by
47 a simple tokenizer splits this response text by spaces
which would give the list of tokens as: (“I”, “got”, “2/9”,
“by”, “dividing”, “by”, “4”). Then from the tokenized data,
we separate the tokens consisting of either digits or math-
ematical symbols. The number of such tokens is divided
by the total number of tokens to calculate the equation per-
centage®. The average equation percentage calculated by the
procedure mentioned above is 27% across the entire dataset.
For calculating the length of the answer text, we count the
total words in the text simply by splitting them by space.
The average length of answers across the dataset is 10.39.
Similarly, within each response, the number of numeric dig-
its (i.e. Numbers count) and number of operator characters
(i.e. Operators count) are counted independent of the to-
kens.

ASSISTments[11] allows students to upload images as part
of the response to open-ended questions; this is most com-
monly a picture taken of work done on paper. The response
text in such cases includes the URL of the uploaded image to
the system. About 15% of the total responses in the dataset
contains images. Some of such responses are entirely images,
whereas in others, some text is provided as context. Since
these scoring models are not yet designed to support im-
ages, we hypothesize that the images’ presence contributes

3We acknowledge that this feature is a misnomer as it in-
cludes numeric terms, operators, and expressions as well as
equations, but chose this feature name for sake of brevity.

significantly to the modeling error.

A simple linear regression model is fit to the pilot study
student answers, observing absolute model error as the de-
pendent variable. This value is calculated by simply sub-
tracting the predicted score from the teacher-provided label
(as a linear label), and taking the absolute value. In this
case, a value of 0 would indicate a correct estimate, while
higher values (up to 4) represent greater prediction error;
we do not differentiate between under- and over-predicting
in this analysis.

3.4.2  Multi-level Linear Model

The uni-level linear model observes features that describe
characteristics of the student responses, but as described
in Section 3.1, modeling error may not be confined to just
characteristics of the responses themselves. It is very likely
that modeling error can be attributable to other external
factors at the student-, problem-, and teacher-levels.

To explore this possibility, we apply a multi-level linear
model observing the student answer characteristics as fixed
effects, and student, problem, and teacher identifiers as three
separate level-2 random effect variables. As it is the case
that the same student may write multiple answers within our
data, this structure is similar to that of a repeated-measure
analysis.

abs(model error) =Answer Covariates
+ (1|student identifier)
+ (1|problem identifier)
+ (1|teacher identifier)

(1)

Again observing absolute prediction error as the dependent
variable, this analysis will be able to answer 1) whether the
majority of explainable variance exists at the student-answer
level or at a higher level, and 2) which of student-, problem-
, and teacher-level identifiers most explains variance in our
modeling error (e.g. which of these identifiers is most corre-
lated with the error). The equation, expressed as its R code
formulation, is reported as Equation 1.



Table 4: The resulting model coefficients for the uni-level linear regression model and random and fixed effects of the multi-level
linear model of absolute error.

Uni-level Linear

Multi-level Linear

Variance  Std. Dev. Variance  Std. Dev.
Random Effects
Student — — 0.034 0.185
Problem — — 0.313 0.559
Teacher — — 0.048 0.851
B Std. Error B Std. Error
Fized Effects
Intercept  0.581*** 0.017 0.772%%* 0.070
Answer Length -0.008%** 0.001 -0.009%** 0.001
Avg. Word Length -0.014*** 0.003 -0.013** 0.003
Numbers Count  <0.001 <0.001 <0.001 <0.001
Operators Count  -0.006*** 0.001 0.002 0.001
Equation Percent  0.443*** 0.018 0.080*** 0.022
Presence of Images ~ 2.248%** 0.021 1.858*** 0.028

*p <0.05 **p<0.01 **¥p<0.001

4. RESULTS

4.1 SBERT Model

The results of the SBERT model is compared directly to the
results from Erickson et al.[9] as shown in Table 3. As can
be seen in that table, the SBERT-Canberra method outper-
formed the baseline as well as all previous models across all
three metrics. While the difference in AUC values between
our method and the previous best approach is notably small,
the difference in both RMSE and Kappa appears to be com-
paratively larger. To interpret these two metrics, these re-
sults suggest that we should expect teachers to agree with
our method’s estimates 47% of the time accounting for ran-
dom chance, and is likely to be wrong by just over half a
grade-point on average. This also does suggest, however,
that there is still plenty of room for improvement of these
models.

What is also worth noting from the results of Erickson et
al. [9], is the high performance of the baseline rasch model.
This emphasizes the difficulty of this NLP modeling task
in that the baseline model is using nothing other than the
student and problem identifiers; it is able to seemingly pre-
dict teacher-provided scores with an AUC above 0.8 without
using any part of the student response; there is only a 0.03
AUC difference between that baseline model and our current
proposed method. This suggests that these external factors
may be explaining a large portion of the student scores, and
may subsequently explain a large portion of our prediction
€rTor.

4.2 Error Analysis of SBERT

In exploring this further, the results of the error analysis of
the SBERT-Canberra method are presented in Table 4. It
is found that the uni-level linear model explains 38.6% of
the variance of the outcome as given by r-squared. Out of
the six student answer-level features, nearly all were found
to be statistically reliable predictors of model error; in veri-
fying these results, it was found that all included covariates
exhibited inter-correlations less than 0.3 (suggesting a mod-

erately low impact of multicollinearity potentially skewing
the interpretation of these results). In close examination of
the coefficients of these features, however, despite being sta-
tistically reliable, many are found to be close to 0, suggesting
a very little meaningful correlation with the modeling error.
This is not the case, however, for two of these variables,
Equation Percent and Presence of Images, we see a more
meaningful coefficient. This suggests, due to the direction
of this value, that the presence of mathematical elements as
well as the presence of images (unsurprisingly) both corre-
late with higher prediction error. It further follows, then,
that further improvements to the SBERT-Canberra method
should explore methods of better representing and account-
ing for these mathematical terms in student responses; sim-
ilarly, though likely much more difficult, incorporating an
aspect of image recognition could be another area worth ex-
ploring.

In regard to the multi-level linear model, accounting for
student, problem, and teacher identifiers each as random
effects, we see that the inclusion of these level-2 factors ex-
plains some of the impact of the fixed effects (also in Ta-
ble 4). Here it is found that all but two of the fixed effects
are statistically reliable. It is also found that the magnitude
of the coefficients for the Equation Percent and Presence of
Images is also reduced. This suggests that, perhaps, the
student and/or problem identifiers partially explain these
correlations (some problems may be more likely to have re-
sponses with images or mathematical terms in them, or some
students may be more inclined to use images or such terms
more than others). What is worth noting, however, is that
it was found that the level-2 variables account for 55.5% of
the variance of the outcome. This suggests that a majority
of the modeling error can be explained by these factors that
are external to the student answers.

Looking at the variance of the random effects, it can be seen
that the problem level identifiers contribute most in terms
of explaining the variance of the outcome. It is certainly the



case that the SBERT-Canberra method is accounting for
each individual problem in producing its estimates (e.g. it
only observes historic answers within each unique problem),
but it would seem that there are other problem-level factors
that are not being accounted for within this approach.

S. LIMITATIONS AND FUTURE WORK

In regard to our approach as well as in light of our findings,
there are several limitations and opportunities for future
directions. While the SBERT-Canberra approach, utiliz-
ing sentence-level embeddings, outperforms the previously-
developed models in predicting scores for open responses,
the difference in AUC is rather small; the fact that the
method produces a classification (as opposed to a probabil-
ity as is often the case with such models) likely impacts its
AUC performance. The manner in which the method makes
its prediction can be considered a greedy approach in that
only the closest historic answer is used to predict the score.
Instead, a weighted vote approach using all historic scores
(or a subset of similar scores above an identified threshold)
may improve the model by allowing for some degree of un-
certainty. Similarly, the use of the word count model as
a fallback may further be improved; while it was the case
that there were very few instances of problems not having
enough data within the cross validation, improving this fall-
back method may help to improve the model when applied
in practical settings where the “cold start” problem is more
prevalent; as the method currently relies heavily on having
a sufficiently-sized pool of human-scored historic answers,
future research can focus on utilizing unlabeled student an-
swers or exploring other unsupervised methods that may
additionally support these methods in cases where labeled
data is scarce.

While the SBERT-Canberra model performed arguably well,
the error analysis revealed several areas where this approach,
as well as others, may focus in future works. Most no-
tably, as highlighted, the use of mathematical expressions
and terms were found to be correlated with higher error;
improving the representation of such elements can certainly
be addressed in future work. A limitation of this, however, is
that both models left variance unexplained in the outcome.
We chose to look at these factors based on hypotheses and
anecdotal observations, but there may be other large factors
that can explain more of the error that we are seeing. Sub-
sequent works could conduct more thorough surveys of both
answer-level and higher-level factors. Future works can also
explore additional model structures and language features
that may lead to improvements to performance. The anal-
yses presented in this work, however, can act as a baseline
to further evaluate if future iterations of our approach truly
improve upon these identified areas.

It is also the case that this work focuses only on models that
predict numeric assessment scores, while we strongly believe
that it will be equally, if not more important to additionally
develop methods to suggest or generate directed feedback
for for these student answers; teachers use textual feedback
messages to offer constructive guidance to students, but it
is often a very time-consuming task to write these messages
for each students’ answer. We believe that the SBERT-
Canberra approach can be extended to support this task
as well, where such a model may be able to recommend

feedback to new student answers that has been previously
given to an identified similar historic answer. Future work is
intended to explore these methods further for such feedback-
suggestion tasks.

6. CONCLUSION

In this paper, we have presented a novel approach in address-
ing and formulation of the problem of automating the assess-
ment of student open-ended work. We have illustrated that
our SBERT-Canberra method outperformed a previously-
established benchmark, but still exhibits areas where it may
be able to improve. Through the conducted error analy-
sis, we have identified areas where more advanced meth-
ods of image processing and natural language processing (or
math language processing), may lead to further improve-
ments. With all of this, however, it was also identified that
problem-level features appear to be most impactful in ex-
plaining the variance of modeling error; this is particularly
surprising as variations in teacher grading were previously
hypothesized to be a larger factor in this context.

With the findings from the study, our goal next is to use
them to overcome the limitations mentioned above and guide
our focus on improving the methods for assessment of open-
ended questions in mathematics. It is the goal of this work
to act as a step toward building better teacher supports for
these types of open-ended problems, as well as provide others
with guidance toward the same or similar goals.
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