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Abstract— We present a method to compute the stochastic
reachability safety probabilities for high-dimensional stochastic
dynamical systems. Qur approach takes advantage of a non-
parametric learning technique known as conditional distribu-
tion embeddings to model the stochastic kernel using a data-
driven approach. By embedding the dynamics and uncertainty
within a reproducing kernel Hilbert space, it becomes possible
to compute the safety probabilities for stochastic reachability
problems as simple matrix operations and inner products. We
employ a convergent approximation technique, random Fourier
features, in order to alleviate the increased computational
requirements for high-dimensional systems. This technique
avoids the curse of dimensionality, and enables the computation
of safety probabilities for high-dimensional systems without
prior knowledge of the structure of the dynamics or uncertainty.
We validate this approach on a double integrator system, and
demonstrate its capabilities on a million-dimensional, nonlinear,
non-Gaussian, repeated planar quadrotor system.

I. INTRODUCTION

Stochastic reachability is an established verification tech-
nique which is used to compute the likelihood that a system
will reach a desired state without violating a predefined set
of safety constraints. The solutions to stochastic reachabil-
ity problems are broadly framed in terms of a dynamic
program [1], which scales poorly with the system dimen-
sionality. Methods using approximate dynamic programming
[2], particle filtering [3, 4], and abstractions [5] have been
posed, but are limited to systems of moderate dimensionality.
Optimization-based solutions have garnered modest compu-
tational tractability via chance constraints [4, 6], sampling
methods [7]-[9], and convex optimization with Fourier trans-
forms [10, 11], but are limited to linear dynamical systems
and Gaussian or log-concave disturbances.

Recent work in reachability for non-stochastic, linear dy-
namical systems has accommodated systems with up to a bil-
lion dimensions [12]-[14], an unprecendented size. However,
comparably scalable solutions for stochastic systems, even
with considerable structure in the dynamics and in the un-
certainty, remain elusive. Techniques based in reinforcement
learning, for example using parameterized representations of
the policy, have been applied to the problem of policy evalua-
tion. In many cases, the scalability of existing reinforcement
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learning techniques that leverage dynamic programming is
limited, due to the well-known curse of dimensionality [15].

We propose a model-free method for stochastic reacha-
bility analysis of high-dimensional systems using a class
of machine learning techniques known as kernel methods.
We take advantage of kernel distribution embeddings [16],
a nonparametric learning technique that uses observations
of the system evolution to construct a model of probability
distributions in a Hilbert space of functions. Broadly, these
techniques enable efficient computation of expectations by
representing integral operators as elements in a reproducing
kernel Hilbert space. We apply these techniques to the area of
stochastic reachability and present a method to compute the
safety probabilities for high-dimensional, nonlinear stochas-
tic systems with arbitrary disturbances. These techniques
scale exponentially with the number of samples, meaning
that they can suffer from high computational complexity
and memory storage requirements. This can be prohibitive
for high-dimensional systems, which may require a large
number of samples in order to effectively capture the system
dynamics. The utility of distribution embeddings for the
terminal-hitting time problem has been demonstrated for
systems of up to 10,000 dimensions [17], but the jump to
a million presents significant computational challenges.

To facilitate stochastic reachability calculations for ex-
tremely high-dimensional systems, we couple distribution
embeddings with a technique known as random Fourier
features (RFF) [18, 19], that uses an empirical Fourier
approximation to deal with high-dimensional systems. RFF
is a well-known speedup technique for kernel methods to
reduce the computational overhead. However, application to
stochastic reachability requires additional considerations to
quantify the quality of the approximation obtained by this
approach. The main contribution of this paper is incorpora-
tion of random Fourier features into a kernel distribution
embeddings approach to compute safety probabilities for
high-dimensional stochastic systems.

The paper is outlined as follows. Section II formulates
the problem. Section III outlines the theory of conditional
distribution embeddings. Section IV applies random Fourier
features to the computation of safety probabilities. In sec-
tion V, we demonstrate our approach on two examples: a
stochastic chain of integrators for validation, and a million-
dimensional, non-Gaussian, repeated planar quadrotor.

II. PROBLEM FORMULATION

The following notation is used throughout the paper. For
any nonempty space {2, the indicator 14 : @ — {0,1} of
A C Q is a function defined such that 1 4(w) = 1 if w €
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A, and 14(w) = 0 if w ¢ A. Let (2, F(Q),Pr) define a
probability space, where F(£2) denotes the o-algebra relative
to €, and Pr is the assigned probability measure. Let ()
denote the Borel o-algebra associated with 2. Given ¢ €
N random variables x;, which are measurable functions on
(Q, F(Q),Pr), let * = [x1,...,x,]" be a random vector
defined on the induced probability space (Q™, F(Q™), Prg),
where Pr, is the induced probability measure. A stochastic
process is defined as a sequence of random vectors {x; } &,
N € N. For a real, measurable function = on (€2, 7(2), Pr),
the Lebesgue integral fQ x Pr is denoted by the expectation
operator Eg,p,[x].

A. System Model

We consider a Markov control process H [1], which is
defined as a 3-tuple: H = (X,U,Q), where X C R™ and
U C R™ are Borel spaces representing the state and control
spaces, and @ : B(X) x X x U — [0,1] is a stochastic
kernel, which is a Borel-measurable function that maps a
probability measure Q( - |z, u) to each x € X and u € U in
(X, AB(X)). The system evolves over a finite time horizon
k € [0,N], where the inputs are chosen from a Markov
control policy m = {mg, m1,...} [15], which is a sequence
of universally-measurable maps 7 : X — U.

We consider the case where the stochastic kernel is un-
known, but observations of the system are available. Consider
a sample S = {(z;, u;, ;) }}L, of size M drawn i.i.d. from
@, such that §; ~ Q(-|Z;, ;) and @; = 7(Z;), where 7 is a
fixed Markov control policy. We denote sample vectors with
a bar to differentiate them from time-indexed vectors.

B. First-Hitting Time Problem

Let X,7 € #(X), T C K, denote the safe set and
target set, respectively. We define the first-hitting time safety
probability [1] as the probability that a system H following
a control policy 7 and starting at the initial condition zo will
reach a target set 7 at some time j € [0, N| while remaining
within the safe set K for all time 7 € [0,j — 1].

> ( i 1K\T($i)> 1T($j)] (1)

j=0 \i=

T2, (IC, T) = K7

For a fixed Markov policy 7, we define the value functions

VZ:X —10,1], k € [0, N], via the backward recursion:
Vi(z) =17(x) (2)
Vi(@) = 17(z) + Loy (0)Eyno[Viga (y)] - (2D)

Then, V§(z) = 77 (K,T) for every zo € X. In general,

computing 7 (K, 7T) is difficult due to the expectation in

(2b). We seek a representation of the stochastic kernel which

enables an efficient computation of this expectation.

C. Problem Statement

We consider the following problems:
Problem 1. Without direct knowledge of Q, use a sample

S of observations taken from @ to compute a kernel-based
approximation of (2b) that converges in probability.

Problem 2. Use RFF to compute an approximation of the
kernel that enables efficient computation of (2b) for high-
dimensional systems.

The computational efficiencies afforded by RFF transform
(2b) and thus (1) into simple matrix operations and inner
products, enabling us to handle high-dimensional systems.

III. RKHS EMBEDDINGS OF DISTRIBUTIONS

For any set X, let ¢ denote a Hilbert space of real-
valued functions f : X — R, with the inner product (-, -) s, .
A Hilbert space .7 is a reproducing kernel Hilbert space
(RKHY) if there exists a positive definite [20] kernel function
kx : X x X — R that satisfies the following properties [21]:
1) For any z,2" € X, kx(x,-) : 2’ — kx(z,2') is an
element of 7. 2) An element ky(x,2’) of % satisfies
the reproducing property such that Vf € ¢ and z € X,

f(x) = <kX($7')7f>-%”X (3a)
k?((x’x/) = <kX(xv')7kX($/v')>3fx (3b)

We define the positive definite kernels ky : & x X — R
and kyy : U xU — R, and let S and %, denote
the RKHS induced by kx and Ky, respectively. Further,
we define kyyy @ (X X U) x (X xU) — R, via the
tensor product kxyxy ((z,u), (z',u)) = kx(x, 2" ) ky (u, o).
Let %y« be the associated RKHS. We can also view an
element kx(x,-) € S as a feature map ¢ : X — Hx,
such that kx(z,2') = (&(x),d(2)) s . Intuitively, the
feature map can be viewed as a basis function, such that a
function f € % can be represented as a weighted sum
f(z) = (w,d(x)) for some possibly infinite-dimensional
weight vector w. However, constructing ¢ and computing the
inner product explicitly can be computationally expensive or
even impossible, depending on the choice of kernel. Instead,
the inner product can be computed using kx (z,z’) directly.
This is known as the kernel trick [20].

A. Conditional Distribution Embeddings

Because () is unknown, we cannot compute the expec-
tation in (2b) directly. Instead, we embed the expectation
with respect to the stochastic kernel in an RKHS. Using this
representation, we can efficiently compute the expectation
in Hilbert space, even when the structure of the stochastic
kernel is unknown.

For any measurable space X, let & denote the set of
probability distributions on X. For any distribution P € &7,
if the sufficient condition Egp[kx (2, )] < oo is satisfied
[16], there exists an element mp in the RKHS %% called
the kernel distribution embedding,

mit@%%)(

4
P — mp == /ka(yw)P(y)dy @

This representation has several advantages. First, if the
kernel function is universal [16], the mapping is injective,
meaning there is a unique element in the RKHS J#» for
any P,Q € 2, such that ||mp — mg|l,e, = 0 if and only
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if P = Q. A popular kernel which satisfies these properties
is the Gaussian kernel, kx (x,2) = exp(—||z — 2'||3/20?),
o > 0. Second, using the reproducing property (3a), we can
compute the expectation of a function with respect to the
distribution P as an inner product with the embedding.

/ e 5)

Lastly, because P is typically unknown, we can compute
an efficient estimate of mp. As shown in [22], the estimate
for a conditional distribution embedding is the closed-form
solution of a regularized least-squares problem.

m]P’?f

We consider mapping the stochastic kernel () into the
RKHS %% (4) [23]. Its representation in %% is given by

R /X ke (9, )Qy | 2, u)dy )

Because () is unknown, we do not have access to My, ,
directly. Instead, we use a sample S drawn i.i.d. from @ to
compute an estimate 77, ,, € S which can be found by
minimizing the following optimization problem:

M
S Nk (@i, -)
=1

where I' is a vector-valued RKHS [24] and A > 0 is the
regularization parameter. According to [22], the solution to
(7) is unique and has the following form:

Mylew = POV + AMI) "Wk ((z,u),")  (8)

— gzl 5 T AMiyeulld )

The vectors ® and ¥ are known as feature vectors, given by
® = [kx (71, ), - kG, )] ©)
U= [kXxu((flaal)a ')a tey kXxM((jMaﬂM)v )}T (10

Using the estimate 17,|,,,,, W€ can approximate the expec-
tation Eyq[f(y)] for any f € % as an inner product.

(g (o ,us foee = Eynq[f()] (11)

For simplicity, we can write this as
(g o [l = FT B2, u) (12)

where £ = [f(51),.-.,f(Gu)]" and B(x,u) € RM is
a vector of coefficients that depends on the value of the
conditioning variables (z,u) € X x U.

Bz, u) = (BO T + AMI) "Wk ((z,u),)

This means we can approximate the expectation of the value
functions By [V}, (y)] in (2b) as an inner product with
the conditional distribution embedding estimate.

13)

Computing the estimate typically requires us to compute
and store a matrix G = UUT € RM*XM which is at least
O(M?). For large sample sizes, the storage and computation
of G may be prohibitive. In order to overcome this computa-
tional challenge, we compute an approximation of the kernel
itself and thus obtain a low-dimensional approximation of G
using a technique known as random Fourier features [18].

B. Random Fourier Features

As shown in [18], we can reduce the computational com-
plexity of computing (12) by exploiting Bochner’s theorem
[25]. This allows us to approximate the inner product in (12)
by approximating the Fourier transform of the kernel.

Bochner’s Theorem. [25] A translation-invariant kernel
kx(z,2') = p(x — ') on X is positive definite if and only
if o(x — ') is the Fourier transform of a non-negative Borel
measure A.

or—2a') = /X exp(jw’ (z — 2" ))A(w)dw  (14)

:/ cos(w' (z — 2'))A(w)dw
x

where (15) follows from the real-valued property of .

15)

Following [18], we construct an estimate of (15) using a
sample Q = {w;}2 , of size D, such that @; is drawn i.i.d.
from the Borel measure A according to w; ~ A(-).

ka Z cos(w

We define a random feature map z : X — RP such that

(x —2a)) (16)

1 2
ka(,a') & 5 D 20 (2)2,(2) = (2(2),2(")) (A7)
i=1

zo(2) = V2cos(w z+b)  (18)

where b is drawn uniformly from [0,27]. Let ky ~ kx
denote the kernel approximation. Using random feature maps
to approximate kx and k;;, we define the feature vector Z,

Z = [2(21) @ 2(@1), ..., 2(Zpnr) @ 2(tinr)] " (19)

where ® denotes the algebraic tensor product. Using (19),
we can approximate (12) as

(P lwus [ oee = F (2, u) (20)

where v(z,u) € RM is a vector of coefficients computed
using the random feature vector Z in (19) (cf. [26]).

(ZZT + AMI)" Z(2(z) @ z(u))

This means we can approximate the expectation of the
value function Ey~q[V7,(y)] in (2b) as an inner product
of random feature maps. Note that the matrix H = ZZ" €
RP*D has lower dimensionality than G if D < M, making
it more computationally efficient to compute and store. As
remarked in [18], evaluating a function using the kernel trick
requires O(Md) operations, where d is the dimensionality
of the data, whereas RFF only requires O(D +d) operations.

y(x,u) = 21

IV. APPROXIMATE STOCHASTIC REACHABILITY

With the conditional distribution embedding m,; ., the
value function in (2b) can be written as

Vi(x) = 17(2) + Lo\ 7 (@) (Myjaus Vi) oz (22)
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With the estimate 1, ,, and using the RFF approximation
in (20), we obtain the approximation

Vg(l‘) ~ 17'(%‘) + 1;(\7—(.%) <my\x,ua V2+1>3fx (23)

We define the approximate value functions V7§ : X — [0, 1],
k € [0, N — 1] via the backward recursion

Vi = 17(2) + Loy (@) (s Vi) sex 24

where V7 (z) ~ VT. Let V3 = V7. Following [17], we can
approximate the safety probability in (1) by approximating
VT 41 and recursively substituting it into (24). This proce-
dure is outlined in Algorithm 1. Using this, we obtain the
approximation 77 (KC,T) =~ V§(x).

A. Convergence

We now seek to characterize the quality of the approxima-
tion and analyze the conditions for its convergence. First, we
analyze the convergence of the estimate 17|, ,,- As shown in
[27], the estimate 7y, ,, converges in probability to my|; .
at a rate of Op,(M ~1/4) if the regularization parameter \ is
decreased at a rate of O(M~'/2) (cf. [22]).

Theorem 1. [27, Theorem 6] Assume kx is in the range of
Eglkx(x, ) @kx(x,-)], then |, ., converges to my, ., in
the RKHS norm at a rate of O,((MX)~'/2 4+ \1/2),

This means we have theoretical guarantees of convergence
of the embedding |17y 2,4 — My|z,ull e — 0 as M — oo.
Thus, for any function f € %, using Cauchy-Schwarz,

|<my\z,ua f>ﬁi”x - <my|:1:,u7 f>ifx|

Since ||My|q,u —"y|z,u |l converges in probability accord-
ing to Theorem 1, the approximation of f computed using
the estimate 171, ,, also converges in probability.

Next, we consider the convergence of the RFF approxi-
mation in (20). Convergence rates and finite-sample bounds
for RFF in a generalized setting have been explored in
[19, 26, 28]. We utilize the results in [28], which presents
bounds for RFF in the context of least-squares problems with
Tikhonov regularization. According to [28, Theorem 1], the
approximation computed via RFF in (20) has an error of
O,(M~1/2) if we choose D according to O(M'/2log M)

Algorithm 1 Backward Recursion via RFF
Input: sample S, evaluation point x, policy m, horizon N,
sample Q = {@;}2 | such that &; ~ A(-)
Output: value function estimate V§(z) ~ rZ (K, T)
1. Vi (z) « 17(x)
2: for k< N —1to 0 do
3 Compute ~y(z, 7, (x)) from (21) using S and
4 Ve[V @), Vi ()]
5
6
7

Vi) < 1r(x) + Loy (2) Y Ty (e, m(x)
: end for
: Return V7 (z)

and decrease \ at a rate of O(M~1/2).

We can use this result to show that by properly choosing
D, the approximate value functions converge in probability
at the rate in Theorem 1. Following [28] and under the as-
sumptions of Theorem 1, we present the following theorem.

Theorem 2. The approximate value functions VT (x) con-
verge in probability to V7 (z) at a rate of OP(M’l/“) if D
is chosen according to O(M'/?log M) and X is decreased
at a rate of O(M~1/?).

The proof follows by combining the convergence rates from
[28, Theorem 1] and Theorem 1 to obtain the result. Thus, if
|V7(x) — V7 (z)| has a probabilistic error bound of € > 0 at
every time k < N, the approximation rJ (K,7T) ~ V§(x)
computed using Algorithm 1 converges in probability with
an error of Ne [17].

V. NUMERICAL RESULTS

We implemented Algorithm 1 on a stochastic chain of
integrators for the purposes of validation, and on a million-
dimensional repeated planar quadrotor example in order to
demonstrate the method for high-dimensional systems. We
generate observations via simulation, and then presume no
knowledge of the dynamics or the structure of the uncer-
tainty for the purposes of computing the safety probability
77, (IC, T) in (1) using Algorithm 1. For all problems, we
used a Gaussian kernel exp(—||z —2’||3/20%) with o = 0.1,
and chose A = 1 as the default regularization parameter. The
Borel measure A that corresponds to the Fourier transform
of the Gaussian kernel is a Gaussian distribution of the form
A(w) = o~ exp(—o?|w]3/2).

All computations were done in Matlab on a 3.8GHz Intel
Xeon CPU with 32 GB RAM. Computation times were ob-
tained using Matlab’s Performance Testing Framework. Code
to generate all figures is available at https://github.com/unm-
hscl/ajthor-ACC2021.

A. Stochastic Chain of Integrators

We consider a 2-D stochastic chain of integrators [11],
in which the input appears at the 2°¢ derivative and each
element of the state vector is the discretized integral of the
element that follows it. The dynamics with sampling time T’
are given by:

1 T g
Tpt1 = [0 1] T + {%’L} ug + wg

where wy, is an i.i.d. disturbance defined on the probability
space (W, B(W),Pr,,). We consider three distributions
for the disturbance: 1) A Gaussian distribution wy ~
N(0,%), where X = 0.011; 2) A beta distribution wy, ~
0.1Beta(«, 8), with PDF f(z|a, () = Flﬂ((of';;f?ﬁ))x"‘_l(l -
x)#~1 where I is the Gamma function and shape parameters
a =2, f = 0.5; and 3) An exponential distribution wy, ~
0.01Exp(«), with & = 3 and PDF f(z|a) = aexp(—ax).
For the purpose of validation against a known model, the
control policy was chosen to be w(z) = 0 The target set and
safe set are defined as 7 = [—0.5,0.5]% and K = [—1,1]%

(26)
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Fig. 1.
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(a) Dynamic-programming-based solution for a double integrator system with a Gaussian disturbance over the horizon N = 5. (b) First-hitting time

safety probabilities for a double integrator system computed without RFF. (c) Absolute error between (a) and (b). (d) First-hitting time safety probabilities
for a double integrator using Algorithm 1, where D = 15,000. (e) Absolute error between (a) and (d).

For the 2-D chain of integrators with a Gaussian distur-
bance, in order to compare against a known “truth” model,
we computed the safety probabilities using a dynamic pro-
gramming solution implemented in [29] with a time horizon
of N = 5 (Fig. 1(a)). Following [17], we then computed
the safety probabilities using g in (13) (without RFF) using
a sample S of size M = 2,500 (Fig. 1(b)) in order to
compare against the quality of the approximation obtained
using RFF. The absolute error between the approximation
and the dynamic programming solution is shown in Fig.
1(c), and the maximum absolute error was 0.0748. We then
generated D = 15,000 frequency samples from A(w) and
computed the safety probabilities using v in (21) (with RFF)
for the same sample S according to Algorithm 1 (Fig. 1(d)).
The absolute error between the approximation computed
using RFF and the dynamic programming solution is shown
in Fig. 1(e), and the maximum absolute error was 0.0907.
From Theorem 2, the approximation error increases as the
time horizon increases. Thus, to demonstrate the increase in
error over longer time horizons, we recomputed the safety
probabilities over a time horizon of N = 50. The absolute
error of the approximation vs. dynamic programming over a
longer time horizon N = 50 is 0.0836, while the absolute
error using RFF is 0.2223.

We then computed the safety probabilities for the same
system with a beta distribution disturbance and an exponen-
tial distribution disturbance for a time horizon of N = 50.
The results are shown in Fig. 2. Because Algorithm 1 is
agnostic to the complexities of the disturbance, handling
arbitrary disturbances is straightforward.

As expected, Algorithm 1 produced a higher error estimate
of the safety probabilities due to the kernel approximation.
The quality of the approximation is dependent on M and
D, and in some cases, the number of frequency samples D
required to approximate the kernel can mean Algorithm 1
does not provide better computational efficiency. However,
when D < M, or when the system is high-dimensional,
RFF can significantly reduce the computational burden.
By choosing a lower value of D, we exchange numerical
accuracy for lower computation times of the algorithm.

1
‘ ! HOS
0
0 1-1 0 1

Iy Iy

Fig. 2. First-hitting time safety probabilities for a double integrator system
with a beta distribution disturbance (left) and an exponential distribution
disturbance (right) over the horizon N = 50.

B. Planar Quadrotor

We implemented Algorithm 1 on a planar quadrotor
system, as well as a million-dimensional repeated planar
quadrotor system, comprised of 170,000 dynamically de-
coupled six-dimensional planar quadrotors. This problem
can be interpreted as a simplification of formation control
for a large swarm of quadrotors, where we compute the
safety probabilities for the entire swarm as the quadrotors are
controlled to reach a particular configuration. The nonlinear
dynamics of a single quadrotor are given by

mi = —(uy + usg) sin(f)
my = (u1 + ug) cos(d) —myg
70 = r(uy — ug)

27)

where z is the lateral position, y is the vertical position,
is the pitch, and we have the constants inertia Z = 2, length
r = 2, mass m = 5, and g = 9.8 is the gravitational constant.

For a single quadrotor, the state space is X C R®, with
state vector given by z = [x,:t,y7y,9,9]T, and the input
space is U C R2, with input vector u = [uy,us] . The input
is chosen to be a reference tracking controller, computed
using a linearization of the system dynamics about a hover
point. We discretize the nonlinear dynamics in time using
an Euler approximation with sampling time 7" = 0.25, and
add an affine disturbance w. The disturbance is a Markov
process with elements wj, defined on the probability space
(W, B(W),Pry,). We consider two distributions for the
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0

Fig. 3. First-hitting time safety probabilities for a planar quadrotor system
with a Gaussian disturbance (left) and with a beta distribution disturbance
(right) over the horizon N = 5.

TABLE I
COMPUTATION TIME

System  Dim. [n] Without RFF With RFF Dyn. Prog.
Integrator 2 230 s 22.94 s 65.78 s
Quadrotor 6 0.62 s 1524 s -
Quadrotor 1,020,000 1.23 h 44.59 s -

disturbance: 1) A Gaussian distribution wj, ~ N (0, ), with
variance ¥ = diag(1x1073,1x1075,1x1073,1x 1075, 1 x
1072,1x 107°); and 2) A beta distribution wy, ~ Beta(c, 3)
with shape parameters o = 2, § = 0.5. The beta disturbance
has a non-zero mean, and can be interpreted as wind, such
that the dynamics are biased in a particular direction. For
a single planar quadrotor, the safe set and target set are
defined as K = {z € R® : || < 1,0 < z3 < 0.8}, and
T ={z € R® : |z| < 1,23 > 0.8}. For the repeated
quadrotor system, we define the safe sets and target sets as
a series of parallel tubes, such that no quadrotor may enter
into the safe set of an adjacent quadrotor. This means the
quadrotors must all reach an altitude of 0.8 while remaining
within their respective tube.

We first computed the safety probabilities for a single
quadrotor in order to demonstrate the capabilities of Al-
gorithm 1 to handle nonlinear dynamics. We generated a
sample S consisting of M = 1,000 observations of the
single quadrotor system with a Gaussian disturbance and
took D = 15,000 frequency samples from A(w). We then
computed the safety probabilities using Algorithm 1 over
a time horizon of NV = 5 and then repeated this procedure
using the beta distribution disturbance. The results are shown
in Fig. 3. As expected, the algorithm was able to compute
the safety probabilities due to the fact that Algorithm 1 does
not exploit any knowledge of the underlying dynamics.

For the repeated quadrotor system, we first computed the
safety probabilities without RFF in order to demonstrate the
reduced computational complexity of Algorithm 1 for high-
dimensional systems. We generated a sample S of M =
1,000 observations drawn i.i.d. from the stochastic kernel
of the repeated quadrotor system with a beta distribution
disturbance, and computed the safety probabilities (without
RFF) over a time horizon of N = 1 from a single initial

condition, to demonstrate feasibility of the approach. We re-
peated this procedure 7 times and averaged the computation
time over all trials to obtain an average computation time of
1.23 hours. One advantage of using the Matlab performance
testing framework is that it provides a 95% confidence of
the computation time of the algorithm by running the code
multiple times to obtain a mean computation time with a 5%
margin of error. This means that the computation times we
obtain are accurate to within a small margin of error, and a
good indication of the relative performance of the algorithms.
We then compared this performance against Algorithm 1
(with RFF) using the same procedure. We generated D =
15,000 frequency samples from A(w) and computed the
safety probabilities using Algorithm 1 over the same time
horizon and the same initial condition. Using the same
averaging approach, we obtained an average computation
time of 44.59 seconds. We obtained comparable results
for the Gaussian disturbance case. As shown in Table I,
computation time is reduced by two orders of magnitude
for the high-dimensional repeated quadrotor system.

VI. CONCLUSIONS & FUTURE WORK

We presented an algorithm based on random Fourier
features to compute the stochastic reachability first-hitting
time safety probabilities for high-dimensional Markov con-
trol processes. This approach is applicable to arbitrary
disturbances and is model-free, meaning it does not rely
upon a known stochastic kernel. We demonstrated it on a
million-dimensional system to showcase the efficiencies of
the computation. We plan to extend this to safe controller
synthesis using kernel distribution embeddings.
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