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Abstract

OH megamasers (OHMs) are rare, luminous masers found in gas-rich major galaxy mergers. In untargeted neutral
hydrogen (H I) emission-line surveys, spectroscopic redshifts are necessary to differentiate the λrest= 18 cm
masing lines produced by OHMs from H I 21 cm lines. Next-generation H I surveys will detect an unprecedented
number of galaxies, most of which will not have spectroscopic redshifts. We present predictions for the numbers of
OHMs that will be detected and the potential “contamination” they will impose on H I surveys. We examine the
Looking at the Distant Universe with the MeerKAT Array (LADUMA), a single-pointing deep-field survey
reaching redshift zH I= 1.45, as well as potential future surveys with the Square Kilometre Array (SKA) that would
observe large portions of the sky out to redshift zH I= 1.37. We predict that LADUMA will potentially double the
number of known OHMs, creating an expected contamination of 1.0% of the survey’s H I sample. Future SKA
H I surveys are expected to see up to 7.2% OH contamination. To mitigate this contamination, we present methods
to distinguish H I and OHM host populations without spectroscopic redshifts using near- to mid-IR photometry and
a k-Nearest Neighbors algorithm. Using our methods, nearly 99% of OHMs out to redshift zOH∼ 1.0 can be
correctly identified. At redshifts out to zOH∼ 2.0, 97% of OHMs can be identified. The discovery of these high-
redshift OHMs will be valuable for understanding the connection between extreme star formation and galaxy
evolution.

Unified Astronomy Thesaurus concepts: Galaxy mergers (608); Spiral galaxies (1560); Radio spectroscopy (1359);
Hydroxyl masers (771); Megamasers (1023); Galaxy evolution (594); H I line emission (690); Surveys (1671)

1. Introduction

OH megamasers (OHMs) are luminous 18 cm masers found
in (ultra)luminous infrared galaxies ([U]LIRGs) produced
predominantly by major galaxy mergers. The dominant masing
lines occur at 1667 and 1665 MHz in the ground state of OH.
These masing lines have isotropic luminosities between
101−104Le and line widths ranging from 10 to 1000 km s−1

due to Doppler broadening (Darling 2005). This rare phenom-
enon has only been discovered in roughly 110 galaxies out to
redshift z= 0.264 (Darling & Giovanelli 2002a).

OHMs are associated with high molecular gas density,
n(H2)∼ 104 cm−3, and strong far-IR radiation, making them
markers for some of the most extreme star formation observed
in our local universe (Darling 2007; Lockett & Elitzur 2008).
These galaxies can provide significant information about how
extreme star formation relates to galaxy evolution, particularly
once discovered at higher redshifts. As products of gas-rich
major mergers, OHMs can also provide an independent
measure of the galaxy merger rate at a specific evolutionary
stage. Further, the masing lines present in OHMs can be
utilized as Zeeman magnetometers, providing in situ measure-
ments of magnetic fields in nearby galaxies (Robishaw et al.
2008; McBride et al. 2014). OHMs are useful astronomical
tools for understanding many aspects of galaxy evolution.

However, in untargeted emission-line surveys for neutral
hydrogen (H I), an OH emission line at zOH can “spoof” a 21 cm
H I line at zHI if νH I/(1+ zH I)= νOH/(1+ zOH) (Briggs 1998),
where νH I= 1420.4MHz and νOH=1667.4MHz. For example,
rest-frame H I corresponds to OH at a redshift of zOH= 0.174,
while H I at redshift zH I= 0.1 would correspond to OH at a

redshift of zOH= 0.291. These two lines have similar line widths in
their respective environments: H I in spiral galaxies and OH in
major galaxy mergers. Distinguishing between these lines often
requires knowledge of a galaxy’s spectroscopic redshift to
determine the rest wavelength for an observed emission line
(e.g., Hess et al. 2021). For galaxies that do not have spectroscopic
redshifts, disentangling H I from OH is not straightforward. This
ambiguity particularly becomes a problem for high-redshift
untargeted line surveys, which will not have prior spectroscopic
redshifts for many of their detected galaxies.
Despite the versatility and capacity of OHMs to serve as

tools for studying galaxy evolution, line confusion in
H I surveys can serve as a source of contamination for the
survey’s main goals. Nonetheless, next-generation H I surveys,
such as those with the Square Kilometre Array (SKA) and its
precursors, will be able to detect many new OHMs at redshifts
never before reached. Finding these unique galaxies in the pool
of H I disk detections will enable an exciting new era in OHM
science.
LADUMA (Looking at the Distant Universe with MeerKAT

Array; Blyth et al. 2016) is a survey with the MeerKAT radio
interferometer, a precursor instrument for the SKA, that will be
susceptible to OH/H I confusion. LADUMA will be the
deepest neutral hydrogen survey to date and is expected to
detect H I out to redshifts zHI=1.45. LADUMA’s main science
goals are related to studying the neutral atomic gas content of
galaxies, meaning that OHM detections will contaminate its
H I samples. At low redshift, spectroscopic redshifts are
generally known, so the contamination rate should be small.
At greater distances where fewer spectroscopic redshifts are
currently known and OHM prevalence increases due to the
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elevated merger rate, the contamination rate threatens to be
higher.

This paper presents predictions for the numbers of OH
megamasers that will be detected by LADUMA in Section 2
and by other H I surveys in Section 3. We then present methods
for distinguishing OH from H I in LADUMA and other
untargeted line surveys using near- to mid-IR photometry in
Section 4. We discuss these results and their limitations in
Section 5 and summarize our conclusions in Section 6.

Throughout this work, we assume a flat ΛCDM cosmology
with H0= 70 km s−1 Mpc−1, Ωm= 0.3, and ΩΛ= 0.7.

2. OH Megamasers in LADUMA

In this section, we present our predictions for the number of
OHMs that will be detected in LADUMA. A few inputs are
needed to enable these predictions: an OH luminosity function,
the volume of the survey, and the galaxy merger rate. The
following subsections will cover each of these. We then make
use of this information to predict the number of OH
megamasers and the resultant OHM contamination rate in
other H I surveys.

2.1. The OH Luminosity Function

To create a prediction for the number of OHMs that will be
found in the LADUMA survey, we need to integrate the OH
luminosity function (OHLF) over the volume and luminosity
limits of LADUMA. The OHLF presented in Darling &
Giovanelli (2002b) was constructed from OHMs detected by
Arecibo and is valid for < <L L2.2 log 3.8OH( ) and
0.1< zOH< 0.23. An obvious source of uncertainty is the
extrapolation of the OHLF to cover redshifts out to
zOH= 1.876 and luminosities as low as 1Le for the LADUMA
survey.

The OHLF is defined as the number of OHMs with
luminosity (LOH) per unit comoving volume (Mpc3) per
logarithmic interval in LOH and can be parameterized as

F =L b L . 1a
OH OH( ) ( )

The values of a and b presented in Darling & Giovanelli
(2002b) were determined using an error-weighted least-squares
fit. We use a Markov chain Monte Carlo (MCMC) method to
refit the OHLF using the data presented in Darling &
Giovanelli (2002b) to account for the correlations between fit
parameters. We use emcee, a Python package for implementing
MCMC (Foreman-Mackey et al. 2013). The refit OHLF is

F = 
´ - -  - -

L

L L

3.17 0.58

10 Mpc dex . 2
OH

6
OH

0.50 0.13 3 1

( ) ( )
( ) ( )

The samples from the MCMC allow us to create a
representative sample of possible OHLF parameters for
predictions of the number of OH megamasers that will be
observed. This is the OHLF that will be used throughout this
work. We later compare how the difference between the two
OHLFs changes the number of OHMs predicted to be detected.

2.2. Volume of the LADUMA Field

LADUMA will be observing an area encompassing the
Extended Chandra Deep Field South (E-CDFS), covering 0.9
deg2 at z= 0. The field of view of MeerKAT will increase with
redshift due to the array’s larger primary beam at lower

frequencies. The total volume of the field can be calculated
starting with the equation for comoving volume (Equation (28)
from Hogg 1999) shown in Equation (3), where =E z( )
W + + WLz1M

3( ) , DH= c/H0, and DA is the angular
diameter distance:

=
+

WdV D
z D

E z
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1
. 3c H
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To account for the increasing field of view at higher redshifts,
we write dΩ in Equation (3) in terms of the redshift-dependent
field of view of a telescope with primary beam diameter
1.22 c (1+ z)/(ν0D), where D is the diameter of a single dish
(for MeerKAT, D= 13.5 m) and ν0 is the rest frequency of the
line being observed. This diameter yields a redshift-dependent
solid angle:
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Integrating Equation (3) over dΩ and substituting in
Equation (4) yields the differential volume for the LADUMA
field:
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Integrating Equation (5) over the redshift limits of the
LADUMA survey for detecting OH (zOH= 0.174–1.876), we
obtain a total volume of V= 0.045 Gpc3.

2.3. Sensitivity of LADUMA

The luminosity sensitivity for integrating the OHLF changes
with redshift and with MeerKAT band (either the UHF or L
band). The sensitivity is calculated using Equation (6), where
ΔSν is the interferometric sensitivity, SEFD is the system
equivalent flux density as reported by MeerKAT,3 ηcorr is the
correlator efficiency, Nant is the number of antennas, Npol is the
number of polarizations observed, Δν is the bandwidth, and Δt
is the integration time:

h n
D =

- D D
nS

N N N t

SEFD

1
. 6

corr ant ant pol( )
( )

We assume that ηcorr= 1, all Nant= 64 antennas will be
operating, and Npol= 2. The assumed integration times are 333
hr for the L band and 3091 hr for the UHF band, with 3424 hr
for the frequency range where the receivers overlap. We also
assume a velocity width of ΔV= 150 km s−1, the width of
the average OH line at z= 0, converted to hertz using
Δν/(νOH/(1+ z))=ΔV/c. As LADUMA will be applying
Briggs weighting to obtain a well-behaved synthesized beam,
an extra noise penalty of 1.45 is included in sensitivity
calculations. We also include the effects of primary beam
attenuation away from the phase center, assuming two-
dimensional Gaussian beams with half-power points defined
as 0.5× 1.22 λ/D.

3 MeerKAT SEFD values can be accessed via the SARAO MeerKAT
specifications page.
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Using the sensitivity at each redshift, we calculate the 5σ
luminosity limit as p n= D DnL D S4 5Lmin

2 , where DL is the
luminosity distance. Figure 1 shows how the luminosity
sensitivity changes with redshift for LADUMA.

2.4. Dependence on the Major Merger Rate

An important element in the calculation of the number of
OHMs is the galaxy merger rate because OHMs arise in
merging galaxies. This consideration leads us to introduce a
factor of (1+ z)γ in Equation (7), where γ is determined by the
galaxy merger rate (in the sense of merging events per
comoving volume) and will be referred to as the merger rate
evolution coefficient. Previous studies, based on both observa-
tions and simulations, have used different conventions for
defining and parameterizing a “merger rate,” and drawn
different conclusions that depend on type of merger, redshift,
mass, and many other factors (e.g., Lotz et al. 2011; Rodriguez-
Gomez et al. 2015; Mundy et al. 2017; Mantha et al. 2018;
Duncan et al. 2019; O’Leary et al. 2021, and references
therein). The relevant merger rate for OHMs is one corresp-
onding to gas-rich major mergers, whose evolution remains
poorly constrained. Therefore, we select an intermediate
estimate for this merger rate evolution coefficient of γ∼ 2.2
(Rodriguez-Gomez et al. 2015; Mundy et al. 2017), which will
be assumed when not stated otherwise. In Section 2.5, we
present OHM calculations for a conservatively large range of
possible γ values, 0.0� γ� 3.0, which is slightly larger than
the range suggested by recent studies (0.5 γ 2.8; Mundy
et al. 2017; Ferreira et al. 2020).

OHMs present a unique and independent way to measure the
galaxy merger rate. Once we have a secure sample of OHMs,
we will be able to provide an estimated γ for gas-rich major
mergers. As more H I surveys take data, this method will be a
robust way for tracing the cosmic history of major mergers.

2.5. MCMC Calculation of N(OH)

Using the MCMC fit samples for the OHLF discussed in
Section 2.1, we can integrate over volume, luminosity, and
merger rate to get a prediction of the number of OH

megamasers to be detected at the 5σ level in LADUMA as
shown in Equation (7):

ò ò= F + gN L z dV d L1 log . 7
L

L V

0
OH OH

min

max total

( ) ( ) ( )

Figure 2 shows a distribution of possible values for the
number of OHMs using 10,000 samples from the MCMC fit to
the OHLF, assuming that γ= 2.2. The median value is 82.99,
and the associated 16th and 84th percentiles are 66.49 and
103.89. The 16th and 84th percentiles are commonly associated
with −1σ and +1σ limits (for a Gaussian distribution),
respectively, and they will be referred to as such for the
remainder of this paper. The mean of the distribution is 85.32.
The number of OH megamasers we expect to detect with
LADUMA is therefore -

+83 17
21. This total would nearly double

the number of known OHMs.
As discussed in Section 2.4, the exact value of the merger

rate evolution parameter γ is poorly constrained. Figure 3
presents the above calculation for values of γ ranging from 0.0
to 3.0. If γ is assumed to be 0.0 and the merger rate does not
increase with redshift, then it is expected that LADUMA would
detect -

+15 3
5 OHMs.

We can compare the impact of the OHLF presented in this
work to the OHLF in Darling & Giovanelli (2002b) by
calculating the numbers of OHMs implied by the two. Figure 4
shows how the number of OHMs varies for the two OHLFs.
When γ= 2.2, the MCMC approach adopted here implies a
factor of 1.4 fewer detections. In general, the larger
uncertainties from calculations with the OHLF in Darling &
Giovanelli (2002b) are due to the larger uncertainties in that
paper’s OHLF parameters.

3. OH Contamination in Other H I Surveys

In this section, we generalize the above calculations for
H I surveys underway or planned at other radio telescope
arrays, particularly the Australian Square Kilometre Array
Pathfinder (ASKAP), the Very Large Array (VLA), the
APERture Tile In Focus (APERTIF) facility, and Phase I of
the SKA. The VLA and ASKAP have H I surveys underway or
planned. At the VLA, the COSMOS H I Large Extragalactic
Survey (CHILES), a single-pointing survey, is currently
analyzing data (Fernández et al. 2016). WALLABY (Widefield
ASKAP L-band Legacy All-sky blind surveY) is in the process

Figure 1. Isotropic 5σ luminosity sensitivity LOH as a function of redshift and
observed frequency. The vertical black lines show the low- and high-redshift
limits of OH detection for LADUMA. The three different curves come from the
two bands LADUMA will use, the UHF and L bands, and the frequency range
where they overlap.

Figure 2. Kernel density estimation of the predicted number of OHMs to be
found by LADUMA, assuming γ = 2.2, using 10,000 samples from the
MCMC fit to the OHLF parameters. The expected number of OHM detections
is -

+83 17
21.
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of observing pilot fields with ASKAP alongside DINGO (Deep
Investigation of Neutral Gas Origins; Duffy et al. 2012).
DINGO will have two tiers, Deep and Ultra Deep. For our
analysis, we consider only DINGO-Deep. APERTIF is also
currently collecting data on the Westerbork Synthesis Radio
Telescope (WSRT) and will execute multiple surveys at
different depths. We consider the Medium Deep Survey
(MDS) as described in the APERTIF Survey Plan. The SKA
is a future telescope that will come in two phases, with the first
(SKA1) covering ∼10% of the total collecting area of the
second (SKA2; Abdalla et al. 2015). Due to the uncertainties in
the schedule for SKA2, we consider only possible midfre-
quency SKA1 surveys for this analysis.

The calculation of numbers of OHMs for these H I surveys
uses Equation (7) above. For each survey, we calculate Lmin as
a function of redshift using the reported sensitivity and we
calculate the volume using redshift ranges and sky coverage.
All assumptions made about the survey or telescope for these
calculations are presented in Table 1. The sensitivity column
assumes a velocity width of 150 km s−1 as done for the
LADUMA calculations. Concepts for the SKA1 surveys come
from Staveley-Smith & Oosterloo (2014). Each of the three

fiducial surveys (medium wide, medium deep, and deep)
assumes a total observing time of 1000 hr, while the all-sky
commensal survey assumes an observing time of 10,000 hr.
Staveley-Smith & Oosterloo (2014) note that angular resolu-
tions finer than 10″ are only accessible to the SKA for high
column densities—a limitation that especially applies to the
SKA1 Deep survey, whose nominal angular resolution is 2″.
We have not modeled the effects of resolution on the
detectability of OHMs, but we note that at high resolutions,
there could be a bias in favor of detecting (more compact)
OHMs relative to (more extended) H I emitters.4

Figure 3. Number of OHM detections in LADUMA vs. merger rate evolution parameter γ. The fiducial γ = 2.2 is denoted by a red ×.

Figure 4. Comparison of OHM detection rate in LADUMA vs. merger rate
evolution coefficient for the OHLFs presented in this work and in Darling &
Giovanelli (2002b). The dashed and dotted lines show the median values, and
the shaded areas represent ±1σ uncertainties.

Table 1
H I Survey Parameters for N(OH) Calculation

Survey Redshift Range Sky Area 5σ Sensitivity
(zH I) (deg2) (Jy)

LADUMA 0.0–1.45 0.90a 48b

CHILES 0.0–0.45 0.32a 350
WALLABY 0.0–0.26 27,500 5,000
DINGO-Deep 0.0–0.26 150 156
APERTIF MDS 0.0–0.26 450 1250
SKA1 Medium wide 0.0–0.29 400 247b

SKA1 Medium deep 0.0–0.50 20 52b

SKA1 Deep 0.35–1.37 1a 13b

SKA1 All-sky 0.0–0.50 20,000 525b

Notes.
a Single-pointing survey comoving volume calculations include an expanding
field of view at higher redshifts and lower observing frequencies.
b LADUMA and SKA1 have published frequency-dependent sensitivities,
which we employ for calculations in this paper. The values presented here are
the mean sensitivities across the entire range of the observed frequencies.
References. CHILES (Fernández et al. 2013), WALLABY & DINGO-Deep
(Duffy et al. 2012), APERTIF (Apertif Survey Plan), SKA1 (Braun et al. 2019;
Staveley-Smith & Oosterloo 2014).

4 This paper’s predictions ignore the effects of radio frequency interference
(RFI), which can vary for different sites and different array configurations.
Here, too, it may in practice be systematically easier to recover more compact
OHMs than more extended H I emitters in frequency ranges where RFI
precludes the use of short-baseline data.
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For surveys featuring single pointings, we have calculated
comoving volumes assuming that sky area increases
µ + z1 H I

2( ) due to the increasing size of the primary beam
at lower frequencies. This calculation applies to CHILES,
LADUMA, and a hypothetical SKA1 Deep survey and is noted
in Table 1. For surveys covering larger sky areas through the
use of multiple pointings across contiguous patches, sky area
will be higher at zH I> 0 than at zH I= 0, but the change will be
less dramatic because only the pointings that lie at the edges of
the contiguous patches will contribute. Because this effect will
be small in a fractional sense (smaller for larger sky areas) and
will depend on the detailed distribution of patch sizes, we
do not correct for it. We also choose to omit primary beam
attenuation when predicting OHM contamination of other
H I surveys, because we cite values for the numbers of
H I detections that do not include this consideration
(Staveley-Smith & Oosterloo 2014).

Table 2 presents the number of OHMs predicted to be
detected in each survey for merger rate evolution coefficient
γ= 2.2. Table 2 also presents the number of H I sources each
survey expects to detect. The contamination column is the ratio
of OHM detections to H I detections, which can be related to the
fraction of an “H I sample” that will actually be OHMs mistaken
for H I sources if spectroscopic redshifts are unavailable.

One noteworthy aspect from Table 2 is the much higher rate
of contamination for LADUMA and the SKA1 Deep survey
compared to the other surveys. These are distinctly different
from the other H I surveys due to the fact that they extend to
significantly higher redshift. We therefore infer that
H I detections dominate at low redshifts (i.e., zH I 1) for all
surveys. However, the OH detection density surpasses the
H I detection density at redshifts above zH I∼ 1—an effect that
is pronounced for single-pointing surveys that have much
larger relative fields of view at high versus low redshifts.

An earlier conclusion in the same vein was reached by
Briggs (1998), who predicts that OHM contamination in
H I surveys will increase with redshift. We explore how that
contamination depends on redshift using both LADUMA and
an expanded version of the SKA1 Deep survey for comparison.
The SKA1 Deep survey presented in Staveley-Smith &
Oosterloo (2014) only covers a frequency range of 600–1050
MHz that corresponds to only a portion of the full SKA1
midband (Braun et al. 2019). For the purpose of exploring OH
contamination versus redshift, we assume a deep survey that
exploits the full range of the midband and therefore covers a
frequency range of 600–1420 MHz. Equation (7) is used to

estimate how the number of OHMs varies with redshift. To
estimate the number of H I detections per redshift interval, we
use the following equation from Obreschkow et al. (2009):

= -dN dz
z e

1 deg
10 , 8c c c z

2
1 2 3 ( )

where the ci are parameters specific to each H I survey.
LADUMA’s values are interpolated from Obreschkow et al.
(2009) for each redshift using sensitivities calculated from
Equation (6) as the limiting integrated flux and assuming
line widths of 100 km s−1, allowing us to determine the
H I detection rate versus redshift. We follow a similar method
for the SKA1 Deep survey using sensitivity values presented in
Braun et al. (2019). We calculate how the number density for
OH and H I varies with redshift, assuming redshift bins of
dz= 0.01. Obreschkow et al. (2009) note that dN/dz will
be �1% underestimated for z� zc where zc depends on
the limiting flux. For both LADUMA and SKA1 Deep, on
average, zc∼ 0.1. Therefore, the numbers of H I detections are
slightly underestimated for zH I� 0.1.
Figure 5 shows how the detection rate of OH and H I varies

with redshift. H I detections dominate at low redshift for both

Table 2
Predicted 5σ OHM and H I Detections for Untargeted H I Surveys

Survey N(OH) N(H I ) N(OH)/N(H I )

LADUMA ´-
+8.3 101.7
2.1 1 8 × 103 -

+1.03 %0.20
0.26

CHILES ´-
+ -5.5 100.9
1.1 1 3 × 102 -

+0.18 %0.03
0.04

WALLABY ´-
+8.9 101.8
2.5 2 6 × 105 -

+0.15 %0.03
0.04

DINGO-Deep ´-
+7.5 101.7
2.3 1 5 × 104 -

+0.15 %0.03
0.04

APERTIF MDS ´-
+2.6 100.5
0.6 2 3 × 105 -

+0.09 %0.01
0.02

SKA1 Medium wide ´-
+2.5 100.6
0.7 2 3.4 × 104 -

+0.73 %0.17
0.21

SKA1 Medium deep ´-
+7.7 102.3
3.2 1 2.5 × 104 -

+0.31 %0.09
0.13

SKA1 Deep ´-
+1.9 100.5
0.6 2 2.6 × 103 -

+7.20 %1.81
2.32

SKA1 All-sky ´-
+4.1 100.8
1.0 3 5.5 × 105 -

+0.75 %0.14
0.18

Note. N(OH) values assume merger rate evolution coefficient γ = 2.2.

Figure 5. Projected numbers of OHMs and H I sources and the OHM fraction
(NOH/NH I) vs. redshift zH I for LADUMA (above) and SKA1 Deep (below).
The left axis shows the number of objects (plotted in black); the dashed curve
indicates how the number of OH detections changes with redshift, and the solid
curve indicates the same for H I detections. The right axis shows the ratio of
OHM detections to H I detections (plotted in red). The vertical dotted lines
indicate the redshifts where the numbers of OH and H I detections are equal.
The discontinuities in the LADUMA curves originate from the overlap between
the L and UHF bands. All calculations assume galaxy merger rate evolution
parameter γ = 2.2.
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surveys. At higher redshifts, the OH detection rate and OH
fraction grow significantly. This comparison also demonstrates
how the OHM contamination rate depends on survey
parameters, as discussed in Section 3. For LADUMA, OHMs
will not outnumber the H I source at any redshift probed by the
survey (i.e., for any zH I� 1.45); in comparison, SKA1 Deep’s
sensitivity as a function of frequency will yield a number of
OH detections surpassing that of H I detections for zH I� 1.25.

Briggs (1998) first presented this issue of OH contamination
in untargeted H I surveys. Results from that paper demonstrated
that by redshift zH I∼ 1.0, OH detections would significantly
outnumber H I detections for a much shallower survey
(5σ= 5 mJy) than LADUMA or SKA1 Deep. The predicted
transition from a H I -dominated to an OH-dominated sample is
qualitatively consistent with our findings, although the precise
redshift at which this happens depends on survey parameters.
In general, the deeper a survey observes over a given frequency
range, the more H I emitters it will detect relative to OHMs.
LADUMA and SKA1 Deep are both deeper than the
hypothetical Briggs (1998) survey, allowing them to detect
more H I sources at higher redshifts and thus to push out the
projected redshift at which OH detections outnumber
H I detections. The fact that this transition occurs at a lower
redshift (zH I= 1.25) for SKA1 than for LADUMA owes to the
fact that LADUMA’s sensitivity improves at higher redshifts
(due to its distribution of observing time), in contrast to the
SKA1 Deep sensitivity.

4. Identifying OH Megamasers in Untargeted H I Surveys

Distinguishing an OH from an H I line is currently only done
using the optical spectroscopic redshift of an object to
determine an observed line’s rest wavelength. Next-generation
H I surveys will observe orders of magnitude more objects than
previous surveys, as shown in Table 3, most of which will not
have spectroscopic redshifts available. For that reason, we
explore machine learning as a way to distinguish OH from
H I emission lines using ancillary data.

4.1. Creating OH and H I Models for Distinguishing
Populations

4.1.1. Fitting OHM Host Galaxy SEDs

The limited number of OHMs creates serious limitations in
understanding the OH population and how it differs from
H I hosts. We therefore fit the spectral energy distributions
(SEDs) of 111 OHMs using Multi-wavelength Analysis of
Galaxy Physical Properties (MAGPHYS; Da Cunha et al.
2008), a software package that fits galaxy SEDs using physical

parameters of galaxies at the same redshifts and in the same
photometric bands.
MAGPHYS fits SEDs from far-UV to far-IR, so we use

photometry from that range for fitting OHM host SEDs. In
total, we use photometry from eight sources: the Galaxy
Evolution Explorer (Martin et al. 2005), the Sloan Digital Sky
Survey (SDSS; Stoughton et al. 2002), the Two Micron All-
Sky Survey (2MASS; Skrutskie et al. 2006), the Wide-field
Infrared Survey Explorer (WISE; Wright et al. 2010), the
Infrared Array Camera (IRAC) and Multiband Infrared
Photometer for Spitzer (MIPS, both on Spitzer; Werner 2005),
the Infrared Space Observatory (Kessler & Habing 1996), and
the Infrared Astronomical Satellite (Beichman et al. 1988). In
total, from these sources, we use up to 33 bands to fit OHM
SEDs. We omit WISE band 1 (3.4 μm) if Spitzer IRAC band 1
(3.6 μm) exists for a given galaxy because the introduction of
both causes poor fits and IRAC tends to have smaller
uncertainties than WISE. The same is done for WISE and
IRAC band 2 (4.6 and 4.5 μm, respectively).
In Figure 6, we present examples of these SED fits. For

comparison, we use the Atlas of Galaxy SEDs (Brown et al.
2014), which includes a total of seven OHM host galaxy SEDs.
The fits we present are imperfect matches to the complete
Brown et al. (2014) SEDs, and we emphasize that our SED fits
were done with the limited scope of reproducing observations
of OHMs in our particular wavelength regime of interest, UV
to mid-IR. Our fits are limited in wavelength outside this range,
particularly in the far-IR. Although far-IR photometry would
provide very useful information, data are sparse and unavail-
able for our objects of interest, so we have chosen to omit far-
IR photometry.

4.1.2. Emulating OHM Host Photometry

We use our SED fits to model OHM host galaxy
observations for various missions and surveys as a function
of redshift. We use PYPHOT,5 a package for calculating an
object’s photometry from its SED. It calculates the photometry
using a given filter’s transmission curve, T(λ), by calculating
the photon number flux:

ò l l l=
l

lN
hc

f T d
1

, 9tot ( ) ( )

where fλ is the flux density as shown above in Figure 6.
The greatest benefit of having SED fits is the ability to

redshift them and mimic observations at higher redshifts. This
scaling is done by adjusting the rest wavelength and the flux
density by the inverse square of the luminosity distance and a
redshift factor (µ +- -D z1L

2 1( ) ) and then re“observing” the
OHM host. This method is used to create synthetic observa-
tions out to the desired redshifts.

4.1.3. Emulating H I Host Galaxy Photometry

For consistency, H I host galaxy photometry is created
similarly. However, instead of fitting SEDs, we use 57 SEDs6

Table 3
Machine-learning Results for Distinguishing H I Emission Lines from OH

Megamasers

Mission Features OH Recall OH Precision

WISE W1, W1−W2, ν 0.985 0.974
WISE W1−W2, W2−W3, ν 0.987 0.985
IRAC [3.6], [3.6]−[4.5], ν 0.979 0.972
IRAC [3.6]−[4.5], [5.8]−[8.0], ν 0.982 0.976

Note. The features column indicates what data were used to distinguish
H I from OHM host galaxies. Each row includes the observed frequency (ν) of
the line in question (OH or H I ) to assist in separation of sources.

5 PYPHOT’s documentation can be accessed at https://mfouesneau.github.
io/docs/pyphot/.
6 This number was originally 58 SEDs; however, after some examination,
NGC 7674 seems to behave much more like an OHM in the near- to mid-IR
just like a spiral galaxy, despite looking like a classic spiral morphologically.
We attempted to do follow-up observations to determine if it potentially
possessed both emission lines; however the OH line cannot be observed due to
RFI. We therefore removed this galaxy from our H I SED sample.
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published in the Atlas of Galaxy SEDs (Brown et al. 2014) that
have previous H I detections, a population of mainly spiral
galaxies. Because these sources are not drawn from a strictly
H I-selected sample, they may not behave identically to
samples from untargeted H I surveys, although we expect
differences to be modest. These SEDs are also redshifted,
and photometry is “measured” using PYPHOT.

4.2. Machine Learning to Distinguish OH from H I

To aid in determining if an emission line is an H I or OH
detection, we use machine-learning algorithms to determine the
likelihood of the line’s classification. We employ a k-Nearest
Neighbors (k-NN) algorithm that classifies objects based on a
plurality vote of their neighbors’ classes, where neighbors are
determined within some parameter space (Goldberger et al.
2005). k-NN classification is a nonparametric method and a
lazy learning algorithm. Lazy learning means that the algorithm
itself does not make assumptions or generalizations based on
the training data but instead uses those data to make direct
decisions about the testing data. Algorithm “optimization” is
purely done by our choices of the nearest-neighbor algorithm
parameters used. The cost of using a lazy learning algorithm is
the computation time in the testing phase. However, we are not
testing on data sets large enough for slow speed to be
problematic. This context makes the k-NN classification a
robust and transparent method for our purposes.

The final classification parameters are WISE magnitudes and
colors as well as the observed line frequency. Suess et al.
(2016) demonstrate that WISE photometry can separate OHM
and H I populations at low redshift. We also choose WISE
because of its all-sky coverage, allowing it to be applicable to
many different H I surveys. Section 4.2.1 discusses the use of
WISE magnitudes and colors to distinguish H I and OH
populations, as well as the limitations of using WISE and its
similarities to IRAC. Section 4.2.2 presents similar exercises
using IRAC data, which have significant coverage over the
LADUMA field but are otherwise less broadly applicable for
other H I surveys.

4.2.1. OH and H I Classification Using WISE

The analysis in Suess et al. (2016) is done with low-redshift
(z< 0.1) objects and uses WISE bands W1, W2, W3, and W4
(3.4, 4.6, 12, 22 μm). W3 and W4 are very insensitive
compared to W1 and W2; thus, this method is limited by both
object brightness and redshift. We focus on using machine

learning to sort using only W1 and W2 magnitudes, W1 − W2
color, and the observed line frequency.
One of the cuts from Suess et al. (2016) is done in the color–

magnitude space of W1 versus W1 − W2 (or [3.4] versus [3.4]
− [4.6]). We use this same parameter space for the k-NN
algorithm. Examples of redshift evolution in this space are
shown in Figure 7 for an OHM host and an H I source. These
data are “measured” from their SEDs and show how OH
−H I separability varies with redshift.
We use the 57 H I and 111 OHM host SEDs to test and train

the k-NN algorithm. Each SED is redshifted to the maximum
redshift detectable by LADUMA (zH I= 1.45 and zOH=
1.876), with WISE photometry being “measured” roughly
every dz= 0.01. We then remove any data too faint to have a
5σ WISE detection.
k-NN algorithms require feature scaling or parameter

normalization, because the algorithm is inherently built on
the distances between a data point and its neighbors. Therefore,
we normalize each parameter from 0 to 1. k-NN classification
algorithms are dependent on a few parameters that can be
optimized for a given case. Parameters that were varied and
tested for our purposes include the number of neighbors that is
included in the plurality vote on an object’s classification (k),
whether neighbors are weighted by their distances, and how

Figure 6. Examples of SED fits with MAGPHYS (black line). The published SED comes from Brown et al. (2014) and is shown as a thick gray line. Red dots denote
the photometry used in a given fit.

Figure 7. Predicted WISE magnitude vs. color for an OHM host galaxy (stars)
and an H I galaxy (circles). H I redshift is denoted by color with redshift
increasing with lightness. The corresponding OH points lie at the same
observed frequency but are at a higher actual redshift. The gray dashed line
represents the detection limit of WISE (the region above the line is
undetectable by WISE band W1).
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distance between objects is calculated (p). The distance
between points is defined by the Minkowski distance of
order p:

å= -
=

D X Y x y, , 10
i

n

i i
p

p

1

1

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

where X and Y are two points in an n-dimensional parameter
space. Euclidean distance is recovered for p= 2.

All algorithm optimization for this work is done by
maximizing OH recall. In machine-learning classification,
two metrics that are often considered when optimizing are
precision and recall, both of which scale from 0 to 1 (1 being
the best score). Precision is the fraction of positive identifica-
tions that are correct. By optimizing precision, the number of
false positives (or Type I errors) is minimized. Recall,
conversely, is the fraction of positives that were correctly
identified. When recall is optimized, the number of false
negatives (or Type II errors) is minimized (Sammut &
Webb 2011). These terms correspond to the familiar astro-
nomical concepts of sample purity and completeness. In our
case, a positive identification is the classification of a galaxy as
an OHM host. We choose to optimize OH recall due to the
rarity of OHMs and the desire to not miss any potential
candidates. Although this approach increases the number of
false positives, this algorithm does add information, and any
positive identification it makes can motivate follow-up
observations for confirmation.

The algorithm parameter exploration is shown in Figure 8.
The x-axis shows a wide range of choices for the number of
neighbors used, the lines plotted show a few choices for
Minkowski distance, and the two panels show the difference
between weighting and not weighting neighbors by distance.
Each unique combination of parameters is tested using a
fivefold cross-validation test. This process involves randomly
sorting our data into two sets: training and testing data. The
training data build the algorithm and the testing data determine
how successful the algorithm is. This split was done five times,
randomly splitting data each time, for each combination of
parameters, and the final OH recall was determined by
averaging the five individual OH recall values. In total, 2000
k-NN algorithms were tested.

The results of these parameter tests give the highest OH
recall for large numbers of neighbors (k> 103). Although an
OH recall of 1 would be ideal, this result comes at the cost of
very low precision and defeats the purpose of the k-NN method
by classifying based on the value of an algorithmic parameter
instead of position relative to neighbors. Large numbers of
neighbors also make for very computationally expensive
algorithms. One common approach is to select =k N , where
N is the number of data points, but for our data (k≈ 140), this
choice of k is near the lowest value of OH recall. Another
common approach is to select k= 1 or another low number. For
small data sets, always assuming the nearest object has the
same classification can introduce noise. However, with a
sufficiently large data set, this trend is less problematic.
Figure 8 indicates that a small k achieves a recall of over 0.98
for distance-weighted learning. We stress that there exists no
optimal k for all purposes, as each k-NN optimization varies
based on the properties of the data (Altman 1992).
We choose our number of neighbors to be k= 3, based on

the above considerations. Increasing a small amount above
k= 1 also reduces noise while maximizing OH recall. For
weighting and Minkowski metric, we choose to weight votes
by distance and use standard Euclidean distance (p= 2).
The final trained and tested k-NN algorithm results are

shown in the top panel of Figure 9. The blue and red points
show correctly identified OH and H I host galaxies, respec-
tively, and the black stars are misidentified objects. The
incorrect identifications concentrate where OH and H I sources
overlap the most at the same observed frequency, and indicate
where there will be the most confusion. The final OH recall is
0.985 and the OH precision is 0.974. In other words, for
redshifts less than z∼ 1.0, we expect to identify 98.5% of OH
lines in H I surveys, thereby mitigating the impact of
contamination.
We repeat this process for another Suess et al. (2016)

parameter space, W1 − W2 versus W2 − W3, as well as the
observed line frequency. This alternative approach significantly
limits the number of available detections because of the
inclusion of the comparatively less sensitive W3 band. This
approach, however, leads to a higher OH precision, because
mid-IR data are relevant for distinguishing between these
populations. The results of this test are shown in the bottom

Figure 8. Parameter exploration for our k-Nearest Neighbors (k-NN) classification algorithm. We vary the number of neighbors considered in voting (x-axis), whether
distance is weighted (left and right plots), and how distance is determined using the Minkowski metric (the lines plotted). Each test is done using fivefold cross-
validation.
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panel of Figure 9. Precision and recall from this test are
compared to those for other tests in Table 3.

4.2.2. OH and H I Classification Using IRAC

As discussed previously, WISE is insensitive to galaxies at
redshifts above z∼ 1.0. Although having significantly less sky
coverage than WISE, Spitzerʼs IRAC bands 1 and 2 are very
similar to WISE bands 1 and 2 but are much more sensitive and
can detect OHM and H I host galaxies over the full redshift
ranges probed by both LADUMA and SKA1. We therefore
perform an exercise similar to that in Section 4.2.1 using IRAC

data. Throughout this paper, IRAC bands are referred to by
their wavelengths in microns (e.g., IRAC [3.6] denotes the
3.6 μm band magnitude).
We use a parameter space analogous to the first test for the

IRAC k-NN algorithm ([3.6] versus [3.6] − [4.5]). (As a
reminder, WISE uses Vega-based magnitudes, whereas IRAC
uses AB magnitudes.) Because IRAC is sensitive to the entire
redshift range of our H I and OHM hosts, we do not perform
any detection cuts. Results from this exercise are presented in
Table 3 and visualized in Figure 10. Comparing to the
analogous WISE space, this test has the same OH precision, but
OH recall suffers slightly. However, achieving an OH recall of

Figure 9. Final results from training and testing our k-NN algorithm using
WISE W1 vs. W1 − W2 (above) and W1 − W2 vs. W2 − W3 (below). Blue
points indicate OH host testing points that were correctly identified, and red
points indicate the same for H I sources. Black stars show the misidentified
objects, either OH misidentified as H I or vice versa (3.6% of objects in top
panel, 1.9% of objects in bottom panel). Note that the OH and H I markers are
partially transparent to show overlapping.

Figure 10. Final results from training and testing our k-NN algorithm using
Spitzer IRAC [3.6] vs. [3.6] − [4.5] (above) and [3.6] − [4.5] vs. [5.8] − [8.0]
(below). Blue points indicate OH host testing points that were correctly
identified, and red points indicate the same for H I sources. Black stars show
misidentified objects (3.4% of objects in top panel, 2.9% of objects in bottom
panel). Note that the OH and H I markers are partially transparent to show
overlapping.
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0.979 is still a powerful tool when it comes to sorting OHM
hosts from H I hosts, and the ability to probe to higher redshifts
has strong appeal.

We also consider IRAC [3.6] − [4.5] versus [5.8] − [8.0].
Stern et al. (2005) suggest that cuts in this space can separate
active galaxies from normal galaxies. We perform algorithm
optimizations similar to those mentioned previously before
training and testing. We present the final results in Table 3 and
Figure 10. Despite having information from the [8.0] band, this
test performs slightly worse than the previous tests in both OH
recall and precision, indicating that the overlap between OHM
and H I hosts is greater in this parameter space than in the
previous alternatives.

Being able to probe the full redshift range of LADUMA is
beneficial but inevitably introduces more contamination, as
indicated by the slightly reduced OH recall. However, it is
worth noting that despite being lower, these recall values still
exceed 95%. These IRAC and WISE tests create a new
framework for the process of separating OH and H I host
populations.

5. Discussion

The methods presented in this paper will be crucial to
mitigating OHM contamination of H I emission-line surveys.
WISE provides the all-sky coverage needed for upcoming
surveys that will be covering large portions of the sky, while
IRAC has the deep-field coverage needed for surveys such as
LADUMA, which will be the deepest H I emission-line survey
to date.

One of the biggest shortcomings of these methods and
calculations is that they are based on known OHMs, which
currently extend to a highest redshift of zOH= 0.264 (Darling
& Giovanelli 2002a). This limitation has forced us to make
some extrapolations to obtain predictions for higher-redshift
surveys. This approach is unavoidable until we have higher-
redshift data on both H I and OH populations. As more surveys
are conducted, we will be able to update the OHLF and OH
SED evolution as well as provide tighter constraints on these
calculations and predictions.

As discussed in Section 1, H I and OH sources can be
separated by spectroscopic redshift. It is therefore worth
recognizing that some objects will be readily identifiable and
that these objects will be crucial for helping classify those
without redshifts. For LADUMA, the current largest source of

spectroscopic redshifts is the PRIsm MUlti-Object Survey
(PRIMUS), with over 32,000 redshifts in the field and in the
relevant redshift range (Coil et al. 2011). PRIMUS only detects
galaxies out to z∼ 1.2, meaning that some of the most
potentially contaminated (i.e., highest) redshift ranges will have
few spectroscopic redshifts available. Another source of
spectroscopic redshifts soon to come online is the Wide-Area
VISTA Extragalactic Survey (WAVES), which will have two
campaigns, WAVES-Wide (large-sky, low-redshift) and
WAVES-Deep (small-area, high-redshift) (Driver et al. 2019).
WAVES-Deep will have several small patches, including one
on the LADUMA field. Slated to target 45,000 objects,
WAVES-Deep will also be crucial in identifying objects;
however, the current estimates only show detections out to
redshift z∼ 0.8. For future all-sky untargeted H I surveys such
as those on ASKAP or the SKA, WAVES-Wide aims to
provide 880,000 spectroscopic redshifts out to redshift z∼ 0.2.
Although we may have many redshifts for identifying objects
as OH or H I sources, these redshifts are extremely limited
where potential OH contamination is the greatest threat.
WISE and IRAC photometry were not the only data tested in

Section 4 for the ability to separate OHM and H I hosts. We
also tested other photometry for separability, focusing on data
that have significant coverage in the LADUMA field. These
include SDSS ugr, Johnson UBV , and HST ACS, WFC3, and
NICMOS bands. Figure 11 shows how each of these bands
correlates with OH/H I classification. For each band, a Pearson
correlation test was done for three redshift ranges. Bands are
grouped on the x-axis and then sorted by increasing
wavelength. Figure 11 demonstrates the sorting value of bands
in the near- to mid-IR. This distinction is due to the extreme
star formation in OHM host galaxies, which is detected in the
IR. Optical bands are poorer candidates for separation, because
they are less sensitive to high star formation rates in dusty, gas-
rich systems.

6. Conclusions

We present predictions for the numbers of OH megamasers
that will be detected in future untargeted H I surveys and
explore how those numbers impact H I source confusion over a
range of redshifts up to zH I= 1.5. To assist in untangling these
populations, we also present methods for estimating the
likelihood that a line has been identified as H I or OH. Below,

Figure 11. Correlation of band photometry with OH/H I classification using a Pearson correlation test. Bands on the x-axis are grouped by mission or type and then
ordered by increasing wavelength. Each correlation is tested in three redshift ranges.
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we summarize our predictions and discuss the implications of
this work for future H I surveys:

1. LADUMA will likely triple the number of known OHMs:
we predict -

+83 17
21 new detections. Larger surveys with

telescopes such as the SKA1 will detect thousands
more OHMs.

2. The contamination these OHM detections will impose on
H I line surveys is highly dependent on redshift (and,
secondarily, depth). In a line-flux-limited survey, OHMs
are more abundant at higher redshift, while H I sources
become sparser. For these high-redshift surveys, OH
detections will outnumber H I detections near redshift
zH I∼ 1.0.

3. Near- and mid-IR observations can assist in separating
H I from OHM emission lines, which we demonstrate
using a k-NN machine-learning algorithm. We will be
able to identify nearly 99% of OH lines for redshifts less
than z∼ 1.0% and 96% of lines at higher redshifts.

Although OHM host galaxies represent a potential contam-
ination for untargeted H I line surveys, these rare and interest-
ing objects can be important scientific tools. As discussed in
Section 2.4, OHM density can also provide an independent
measurement on the major merger rate evolution parameter, γ,
because OHMs serve as tracers of major galaxy mergers. These
galaxies are signposts of the most extreme star formation in our
universe, signaling where the most massive starbursts are
happening (Briggs 1998), and can even offer a way to measure
in situ magnetic fields using Zeeman splitting (Robishaw et al.
2008; McBride et al. 2014). The methods presented in this
paper and follow-up observations will begin uncovering these
galaxies and allowing us to characterize them at higher
redshifts and potentially create better methods for mitigating
contamination in H I surveys.
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