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Fig. 1. In this paper, we introduce the theoretical framework of generalized differential path integrals. Our technique enjoys the generality of differentiating
both surface and volumetric light transport with respect to arbitrary scene parameters (such as material optical properties and object geometries). Further, it
offers the flexibility of designing new unbiased Monte Carlo methods capable of efficiently estimating derivatives in virtual scenes with complex geometry
and light transport effects. This example shows a transparent knot inside a homogeneous participating media lit by a spotlight. On the right, we show the
corresponding derivative image with respect to the horizontal location of the light.

Physics-based differentiable rendering—which focuses on estimating deriva-
tives of radiometric detector responses with respect to arbitrary scene
parameters—has a diverse array of applications from solving analysis-by-
synthesis problems to training machine-learning pipelines incorporating
forward-rendering processes. Unfortunately, existing general-purpose differ-
entiable rendering techniques lack either the generality to handle volumetric
light transport or the flexibility to devise Monte Carlo estimators capable of
handling complex geometries and light transport effects.

In this paper, we bridge this gap by showing how generalized path in-
tegrals can be differentiated with respect to arbitrary scene parameters.
Specifically, we establish the mathematical formulation of generalized differ-
ential path integrals that capture both interfacial and volumetric light trans-
port. Our formulation allows the development of advanced differentiable
rendering algorithms capable of efficiently handling challenging geometric
discontinuities and light transport phenomena such as volumetric caustics.

We validate our method by comparing our derivative estimates to those
generated using the finite differences. Further, to demonstrate the effective-
ness of our technique, we compare both differentiable rendering and inverse
rendering performance with state-of-the-art methods.
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1 INTRODUCTION

Physics-based forward rendering—a core research topic in computer
graphics—focuses on numerically estimating radiometric sensor
responses in fully specified virtual scenes. Previous research efforts
have led to mature algorithms capable of efficiently and accurately
simulating light transport in virtual environments with high com-
plexities.

Differentiable rendering, on the other hand, concerns with esti-
mating derivatives of radiometric measurements with respect to
differential changes of a scene. These techniques have a wide range
of applications by facilitating, for instance, the use of gradient-
based optimization for solving inverse-rendering problems, and the
integration of physics-based rendering in machine-learning and
probabilistic-inference pipelines.

Despite great progresses made by recent works, unique theoretical
and practical challenges remain for differentiable rendering. One
of them is lacking support for participating media and translucent
materials, which are ubiquitous in the real world and crucial to many
applications such as computational fabrication, remote sensing, and
biomedical imaging. Most existing general-purpose differentiable
rendering techniques [Li et al. 2018; Loubet et al. 2019; Zhang et al.
2020; Bangaru et al. 2020]—which offer the generality to differentiate
with respect to scene geometry—consider only interfacial reflection
and refraction of light.
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Another challenge is the lack of robust Monte Carlo estimation
techniques. Unlike the forward-rendering case where many sophis-
ticated algorithms such as bidirectional path tracing and Markov-
Chain Monte Carlo (MCMC) methods have been developed (e.g.,
[Veach and Guibas 1997; Pauly et al. 2000; Jakob and Marschner
2012a]), most recent differentiable rendering techniques [Li et al.
2018; Zhang et al. 2019; Loubet et al. 2019; Bangaru et al. 2020]
rely on unidirectional path tracing and have difficulties handling
complex light transport effects such as caustics.

To overcome the first challenge, the differential radiative transfer
framework [Zhang et al. 2019] has been introduced, which offers
the same level of generality as the radiative transfer theory [Chan-
drasekhar 1960] for forward rendering by differentiating the radia-
tive transfer equation (RTE).

To address the second problem, the differential path integral for-
mulation [Zhang et al. 2020] has been derived. Similar to Veach’s
path-integral formulation [1997] for forward rendering, this tech-
nique has enabled the development of differentiable rendering algo-
rithms beyond unidirectional path tracing.

Unfortunately, each methods have their limitations. The differ-
ential radiative transfer method [Zhang et al. 2019] is limited to
unidirectional volumetric path tracing. Further, it requires detecting
object silhouettes at each light-scattering event, which can become
extremely expensive for scenes with complex geometries. The dif-
ferential path integral formulation [Zhang et al. 2020], on the other
hand, neglects volumetric scattering of light.

In this paper, we bridge the gap by introducing the mathematical
formulation of generalized differential path integral that offers the
same level of generality as differential radiative transfer [Zhang et al.
2019] and the same flexibility as differential path integral [Zhang
et al. 2020]. In other words, our techniques allows differentiating vol-
umetric light transport with respect to arbitrary scene parameters.
Meanwhile, it enables the development of Monte Carlo methods that
(i) go beyond unidirectional path tracing, and (ii) avoid expensive
silhouette detections.

Similar to most prior works in physics-based differentiable ren-
dering [Li et al. 2018; Loubet et al. 2019; Zhang et al. 2019, 2020;
Bangaru et al. 2020], we focus on scene geometries depicted using
polygonal meshes and assume the absence of perfectly specular
interfaces.

Concretely, our contributions include:

o Establishing the formulation of generalized differential path inte-
grals (§4) by differentiating generalized path integrals [Pauly et al.
2000].

e Discussing how zero-measure detectors (e.g., pinhole cameras)
and sources (e.g., point lights), which are largely neglected by
previous differentiable rendering techniques, can be handled in
our framework (§4.3).

e Developing new unbiased and consistent Monte Carlo methods
that estimate our generalized differential path integrals in an un-
biased fashion (§5). Our estimators greatly outperform the volu-
metric path tracing method developed by Zhang et al. [2019] for
complex scene geometries and light transport effects.

ACM Trans. Graph., Vol. 40, No. 4, Article 76. Publication date: August 2021.

To validate our theory and algorithms, we compare our derivative
estimates with those produced using finite differences (Figure 10). To
demonstrate the effectiveness of our method, we compare (i) deriva-
tive images generated with our technique and differential radiative
transfer (Figure 10); and (ii) inverse-rendering performance using
gradients estimated with these methods (Figure 11).

2 RELATED WORK

Forward volume rendering. Monte Carlo methods have been the
“gold standard” for accurately simulating photon and neutron trans-
port in complex environments [Spanier and Gelbard 1969]. In com-
puter graphics, volumetric path tracing and its variations (e.g., [Ka-
jiya and Von Herzen 1984; Cerezo et al. 2005]) produce unbiased
and consistent estimates of radiometric measures. Later, based on
the path-integral formulation [Veach 1997] and its generalization to
volumetric light transport [Pauly et al. 2000], bidirectional path trac-
ing [Lafortune and Willems 1996] and Markov-Chain Monte Carlo
(MCMC) methods (e.g., [Pauly et al. 2000; Kelemen et al. 2002; Jakob
and Marschner 2012b]) have been introduced to enable efficient
simulation of challenging effects such as caustics.

For a comprehensive survey on Monte Carlo volume rendering
techniques, we refer to the survey by Novak et al. [2018].

Differentiable surface-only rendering. A main challenge towards
developing general-purpose differentiable rendering engines has
been the differentiation with respect to scene geometry, which
generally requires calculating additional boundary integrals. To
address this problem, Li et al. [2018] introduced a Monte Carlo
edge-sampling method that provides unbiased estimates of these
boundary integrals but requires detection of object silhouettes,
which can be computationally expensive for complex scenes. Later,
reparameterization-based methods [Loubet et al. 2019; Bangaru et al.
2020] have been introduced to avoid computing boundary integrals
altogether. Despite their ability to differentiate with respect to ar-
bitrary scene parameterizations, all these methods are obtained by
differentiating the rendering equation [Kajiya 1986] and rely on
unidirectional path tracing for derivative estimations, which can be
inefficient when handling complex light transport effects.

By differentiating Veach’s path integrals [1997], Zhang et al. [2020]
derived the formulation of differential path integrals, enabling Monte
Carlo differentiable rendering beyond unidirectional path tracing.
Despite its flexibility, this formulation still neglects all volumetric
light transport effects. Our theory subsumes this work by showing
how to differentiate full generalized path integrals.

Differentiable volume rendering. Specialized differentiable volume
rendering has been used to solve analysis-by-synthesis problems in
volumetric scattering [Gkioulekas et al. 2013], prefiltering of high-
resolution volumes [Zhao et al. 2016], and fabrication of translucent
materials [Sumin et al. 2019]. All these methods compute radiance
derivatives with respect to specific material properties like optical
density.

For general-purpose differentiable volume rendering, Che et al.
[2020] developed a system capable of computing derivatives with
respect to optical material and local normal properties. Nimier-
David et al. [2019] introduced the Mitsuba 2 system that enables



differentiable volume rendering with millions of parameters. Unfor-
tunately, these methods cannot differentiate with respect to scene
geometry.

By differentiating both the rendering equation [Kajiya 1986] and
the radiative transfer equation [Chandrasekhar 1960], the theory
of differential radiative transfer introduced recently by Zhang et al.
[2019] offers the most general differentiable rendering theory to
date. However, this technique still relies on unidirectional path
tracing with Monte Carlo edge sampling [Li et al. 2018] and cannot
efficiently handle complex geometry or light transport effects.

Our technique overcomes these limitations by leveraging more
advanced Monte Carlo estimators while offering the same level of
generality as differential radiative transfer.

3 PRELIMINARIES

We now briefly review the mathematical preliminaries on forward
rendering of participating media using the path-space formula-
tion [Veach 1997; Pauly et al. 2000].

The response I € R of a radiometric detector can be expressed as
a path integral of the form:

I= [o f(®)du(®), 1

where x = (x,...,xN) denotes a light transport path (with xg
on a light source and x on the detector); Q is the path space; f is
the measurement contribution function; and y is the Lebesgue
measure on Q.

Veach [1997] has shown that, for surface-only light transport (that
considers only interfacial reflection and refraction of light), the path
space! is given by Q = UﬁleN+1, where M is the union of all
object surfaces, and p is the area-product measure. This formulation
has been the theoretical foundation of many sophisticated Monte
Carlo rendering methods such as bidirectional path tracing [Veach
and Guibas 1995] and a few Markov-Chain Monte Carlo rendering
methods [Veach 1997; Jakob and Marschner 2012a].

Veach’s formulation has been extended by Pauly et al. [2000] to
handle volumetric light transport based on the radiative transfer
theory [Chandrasekhar 1960]. In what follows, we briefly review
this generalized formulation.

Path space and measure. Let V C R3 be a 3D volume that en-
capsulates the virtual scene, M C <V be the union of all object
surfaces in the scene, and Vp := V \ M. A light transport path x =
(x0, x1, ..., xN) with (N + 1) vertices and N segments is classified
with its path characteristic /, an (N + 1)-bit integer that encodes
the type of individual vertices. Specifically, the n-th bit of the binary
representation of [, which we denote as b, (I), equals one if x, is
a surface vertex (i.e., x, € M) and zero if it is a volume vertex
(i.e., xn € Vp). Forall N > 1and 0 < [ < 2N*1| the set of all paths
with N segments and characteristic [ is

, bu(l) =
Qj\] = {(xo,l..,xN) : xne{ﬁo b El;=(1)}) (2)

'We hyperlink keywords to their definitions.
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and the Lebesgue measure ”5\1 on Qﬁ\, is defined by

N
duy (%) = | | ey (), 3)
n=0
where
dA, bp(l) =1
dih, = " 4
HNon {dV, bu(l) = 0 @)

with dA and dV being the surface-area and volume measures, re-
spectively. It follows that the path space in Eq. (1) becomes

N+1_
Q:= Uy UL, 10N, (5)
associated with the measure
N+1_
u(D) = Ty I8 Ty (Dol ©)
Measurement contribution. For a given light path x = (x,...,xN),

its measurement contribution is the product of per-vertex and per-
segment contributions:

fx) = [n],:]:() folxn-1 = xp — xn+l)] [l_[],:jzl G(xp-1 & xn)] .

7
In this equation, the per-vertex contribution equals ()
fo(xn-1 = xpn = Xp41) =
fs(xp-1 = xpn = xXp+41), 0O<n<Nandx, e M
os(xn) fp(Xn-1 = xn = Xn41), 0<n<Nandx, € Vp ®
Le(xo — x1), n=0
We(XN-1 = XN), n=N

where f; is the bidirectional scattering distribution function
(BSDF); f, denotes the single-scattering phase function; and o5 is
the scattering coefficient. Further, L. and W capture, respectively,
the source emission and detector importance (or response). In
this paper, we focus on surface sources (e.g., area lights) and detec-
tors (e.g., virtual camera sensors), which are used almost exclusively
in computer graphics and vision, yielding xo € M and xy € M.

In Eq. (7), the per-segment contribution is given by the general-
ized geometric term defined as

Dy (y) Dy (x)

TEER

Gxeoy =Vixoyrr(xeoy)

where V is the mutual visibility function and, for any x,y € V,

n(x)-xy|, xeM
Dx(y) = {il( yl eV,

(10)

with n(x) being the (unit-length) surface normal at x, and X7 :=
(y—x)/|ly-x||. Further, 7(x < y) indicates the transmittance be-
tween x and y that equals

7(x & y) = exp [- Jeg ot dex | (11)

where oy is the extinction coefficient; xy denotes the line segment
connecting x and y; and ¢ is the curve-length measure.
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Table 1. List of symbols commonly used in this paper.

Symbol Definition
0 abstract scene parameter
M(6) object surfaces
V(6) volume encapsulating the scene
Vo (6) V() \ M(0)
f measurement contribution
Q(0) path space
2Q(0) boundary path space
l path characteristic
X motion
Bm reference surface
By reference volume
By, By \ Bm
f material measurement contribution
Q material path space
2Q(0) material boundary path space

4 GENERALIZED DIFFERENTIAL PATH INTEGRAL

We now derive derivatives of the generalized path integral of Eq. (1)
with respect to arbitrary scene parameters. To this end, we gen-
eralize the formulation of differential path integral introduced by
Zhang et al. [2020] for differentiable rendering of surfaces.

Specifically, we first introduce a material-form reparameterization
of Eq. (1) in §4.1. Then, we introduce the generalized differential
path integral in §4.2 and discuss how perspective pinhole cameras
and point lights can be supported using our formulation in §4.3.
Lastly, we discuss the relation between our technique and some
closely related prior works in §4.4. Table 1 summarizes the symbols
commonly used in this paper.

4.1 Material-Form Parameterization

Assume the (optical and/or geometric) properties of a scene to
be controlled by some abstract parameter § € R. In general, the
volume V encapsulating the scene and the union of object sur-
faces M C V can both depend on the parameter 6. This causes the
corresponding path space Q given by Eq. (5) to also depend on 0,
making the differentiation of Eq. (1) more challenging.

To address this problem, Zhang et al. propose to apply a change
of variable to the ordinary path integral so that the new integral
domain is independent of the scene parameter 6. They have also
shown how this can be achieved for surface-only light transport
(using Veach’s formulation [1997]). In what follows, we demonstrate
how this idea can be realized for generalized path integrals.

Material path space. Let X be a differentiable mapping, or a mo-
tion,” such that X(-, 0) is a smooth bijection that transforms (i) some
reference surface By to M(6) and (ii) some reference vol-
ume By O By to V() > M(). We note that both By and
By, are independent of the scene parameter 6. Additionally, we call
any x € V(0) a spatial point and any p € By a material point.

2We follow the terminology used by Zhang et al. [2020] originated in continuum and
fluid mechanics.
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Let By, = By \ By. Following Eq. (2), we define the set of
material light paths p of length N (i.e. with N segments) and
characteristic [ as

Brt, bn(1)=1}’ (2)
By, bu(l)=0

N
Qy = {(po,p1,~-~,pN) t pp€ {

associated with the measure pf\] defined in Eq. (3) (where the surface
area and volume are with respect to the reference surface 8y and
volume By, respectively). Then, similar to Eq. (5), we define the
material path space Q as

2N+1

A _1 Al
Q:=Un>1 UL, ', (13)
with an associated measure identical to the one expressed in Eq. (6).

Choices of reference configurations. In practice, we make the refer-
ence configurations coincide with the actual scene geometry with
the parameter 6 fixed at some 0. Precisely, we set the reference sur-
face By to the object surfaces M at 6§ = fp—that is, By = M(6p)—
and the reference volume to By = V(6p), as illustrated in Figure 2.

Under this setting, the mapping X(+, 6p) : By — V(6y) reduces
to the identity map (that is, X(p, 6y) = p) for all p), causing the
material path space Q and the ordinary path space Q to coincide:
Q = Q(8). We note that X(-, 0) generally does not equal the identity
map for 6 # 6.

We will discuss how X can be expressed and stored in §6.1.

Change of variable. The motion X induces a differentiable map-
ping X such that X(-, 0) transforms the material path space Q to
the ordinary one Q(0) for any 6. Precisely, X(-, §) maps a material

path p = (p, . ..
x=X(p,0) = (x0,...,xN), where x, =X(p,,0) forall n. (14)

,PN) € Q toan ordinary one x € Q(0):

By applying to Eq. (1) this change of variable from X to p, we obtain
the material-form generalized path integral:

1= /Q F(p) du(p). (15)

where f is the material measurement contribution function
defined as

du(x)
du(p)

where x is the ordinary light path corresponding to p given by
x = X(p,0), and

f(p)=f3) H H =@ [ [7en), (16)

(lEs] pesum
J(p) = H%EZ? pesy 17)

Since x = X(p, 0), J generally depends on the scene parameter 6.
With the aforementioned choices of reference configurations with
X(+, 0) reducing to the identity map for some fixed 6o, J|g=g, Will
always have unit value (with potentially nonzero derivative). We
will discuss how this term can be computed in practice in §6.2.



x1(01) p1 = z1(6o) z1(62)
o (61) Po = w0(90
[ ]
V(91) L By = 90 L
M(61) B = M(6 M(62)

Fig. 2. Material-form parameterization of a block whose horizontal
location is controlled by a parameter 6. In this example, the reference
surface By and volume By are selected as the block at some fixed 6 = 6,
(illustrated in orange). Then, the motion X captures the motion of the block
(hence the name) by mapping each point in the reference volume to the
corresponding one in the “moving” block via X (-, 8) for any 6. We show the
images V(6), x¢(0) and x1(0) of the reference volume By, an interior
point py € By, and of a boundary point p; € By, respectively, at § = 0;
and 0 = 6,.

(a) (b) (o) (d)
LK i 7e LK LK
—_—e—— ° —_———e— [
TK-1 TK-1 TK-1 TK-1

Fig. 3. A boundary segment Xx_; xg has property that its interior in-
tersects with another surface in the scene at exactly one point. This causes
the endpoint xk to lie on the discontinuity boundary of the visibility func-
tion V(xg—1 & ) with xg_; fixed (and vise versa). With the presence of
participating media, a boundary segment can connect two surface vertices
(a), two volume vertices (d), or one surface and one volume vertices (b, c).

4.2 Generalized Differential Path Integral

With the formulation of material-form generalized path integral
established, differentiable rendering of participating media boils
down to differentiating Eq. (15).

Continuity assumptions. To facilitate the derivation of the deriva-
tive, we make a few assumptions:

A.1 There is no ideal specular surface (e.g., perfect mirror or smooth

glass);

A.2 The source emission L., sensor importance W, BSDFs f;, and
phase functions f;, are CP-continuous spatially and direction-
ally;

A.3 The extinction coefficient o and scattering coeflicient ot are
continuous in the interior of each medium;

A.4 Discontinuities of the Jacobian determinants J of Eq. (17), if
they exist, are independent of the parameter 6.

We note that Assumption A.2 can be relaxed and will discuss this
aspect in §4.3.
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Boundary segment, path, and path space. We define a boundary
light path x = (x¢,x1,...,xN) to be a light path containing ex-
actly one boundary segment xg_; xg (for some 0 < K < N)
such that the interior of this segment intersects the object sur-
faces M () at exactly one point (see Figure 3). We further denote
the set of all boundary paths (with finite length) as the boundary
path space 0Q(6).

The measure ;i associated with the boundary path space satisfies
that, for any boundary path x = (xg, x1, ..., xN) with characteris-
tic [ and boundary segment xx_; xg:

(3 dt(xg), br(l)=1
di(x) = didt Xn
(%) (L[( Hn i ( )) {dA(xK)’ b (D) = 0 (18)

where dyg\,,n is defined in Eq. (4).

Under the material-form parameterization described in §4.1, for
each boundary path x € 9Q(6) with boundary segment Xg_1 xx,
we call p = X~!(x, 6) a material boundary path, and the segment
Pk—1 Pk on p a material boundary segment. Additionally, we
define the material boundary path space 2Q(0) as the set of all
material boundary paths. We note that, unlike the material path
space 9Q that is independent of the scene parameter 6, the material
boundary path space aQ does typically depend on 6. This is because,
with pg_; fixed, for pg_; px to be a material boundary segment,
Px will need to depend on 0. We demonstrate this in Figure 4.

Generalized differential path integral. Based on Assumptions A.1-
A .4, discontinuities of the material measurement contribution f
would fully emerge from the mutual visibility function V in the geo-
metric terms G. It follows that differentiating the material-form gen-
eralized path integral of Eq. (15) produces the following (material-
form) generalized differential path integral:

interior boundary
dI df (p) / ”» L
— = d A d 19
G- L5 wm [ siepode 0
where the definitions of individual terms will be discussed in the

following. For more details on the derivation of this result, please
see Appendix A.

o In the interior integral, df, /d6 indicates the scene derivative—a
type of material derivative—of the material measurement contri-
bution f given by Eq. (16). This derivative is calculated based on
the relation of x = X(p, 0).

o In the boundary integral, o< is the material boundary path space,
and the measure /i is defined in Eq. (18).

o For each material boundary path p with material boundary seg-
ment pr_; Px. the termov(pg) is a scalar that captures how “fast”
(with respect to 0) the discontinuity boundary evolves at py along
the normal direction (see Figure 4). Precisely,

d
o(pg) = K - n(pg), (20)

where pg = X" !(xg, 6), and “” denotes the dot-product operator.
Additionally, when py is a surface vertex, n(pg) is a unit vector
perpendicular to the discontinuity curve within the reference
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() T € M(0) zx-1  (b) Tx € Vo(0) Tr-1
Fig. 4. Evolution of discontinuity boundaries: when the scene geom-
etry varies with the parameter 6, so will the visibility boundaries. In this
example, € controls the width of the surface M. Then, to form a boundary
segment Xx_; xg with one endpoint xx_; fixed (on a surface or inside a
medium), the other endpoint xx can lay (a) on a curve within an object
surface (Mop in this example); and (b) within a surface determined by xx 1
and the left edge (in solid black lines) of M. The discontinuity curves and
surfaces (illustrated in orange) generally depend on the parameter 0. After
transforming these curves and surfaces back to the reference configuration
(using the inverse of X(-,0) that maps xx (6) to py for all 8), v(pg) in
Eq. (19) captures the change rate (with respect to 0) of pg- along the normal
direction of the discontinuity curve or surface (under reference configura-
tions).

surface containing pg-. When p- is a volume vertex, on the other
hand, n(pg) is a unit vector perpendicular to the corresponding
discontinuity surface in the reference volume. Further, evaluating
dp/de in Eq. (20) requires parameterizing locally the discontinuity
curve or surface near py. We will discuss how this can be done
in practice in §6.3.

o A f (p) denotes the difference in material measurement contribu-
tion f across the discontinuity boundary. Based on our continuity
assumptions (A.1-A.4), it holds that

AG(xg-1 © xk)

Af(P) = f(P) : (21
fP) =1 o )
where AG(xg_1 < xg) equals —G(xg-1 <> xg) if the normal
(of the discontinuity boundary at xg) points toward a region

visible to xg_1, or G(xg—1 < xg) if otherwise.

4.3 Supporting Pinhole Cameras and Point Lights

In the following, we discuss how perspective pinhole cameras and
point lights—which are commonly used in computer graphics and
vision—can be incorporated in our material path integral framework
established in §4.1 and §4.2.

With the detector being a pinhole camera located at xcam € Vo,
any light transport path must terminate at xcam to have a nonzero

measurement contribution. For a light path (x, ..., XN, Xcam), the
detector importance of the pinhole camera equals
i P(x
Vvepmhole (XN = Xcam) = (xy) (22)

(Ncam - Xcam xN)3

where ncam is the camera’s axis of projection, Xcam XN denotes the
unit vector pointing from x¢am toward x, and P (x ) indicates the
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Fig. 5. Perspective pinhole camera: (a) To support this camera model, we
encode the contribution of the segment XN Xcam illustrated as gray dashed
arrows in the detector importance function via Eq. (23). (b) We also allow
XN Xcam to be a boundary segment to capture the additional discontinuities
introduced by this segment.

pixel reconstruction filter—which we assume to be C%—evaluated
at the projection of xx on the image plane.

To avoid introducing additional Dirac delta functions in our
derivations, we do not treat xcam as an endpoint of all light paths.
Instead, we encode its contributions in the detector importance: For
any path (xy, ..., xnN) with x5 being a standard surface or volume
vertex, we set

We(xn-1 = xN) = fy(XxN_1 = XN — Xcam)

Vvepinhole(xN — Xcam), (23)

where f; is defined in Eq. (8), and G is the geometric term of Eq. (9).
Then, as demonstrated in Figure 5-a, the measurement contribution
of a light path (xo, . .., xn) with the detector importance of Eq. (23)
equals that of (xo, ..., xN, Xcam) With Eq. (22).

Similarly, with a (uniform) point light located at x4, we encode
the contributions related to x in the source emission L by setting

G(xN © Xcam)

Le(xo - xl) = fv(xsrc - X0 — xl) G(xsrc d xO) I, (24)

where 7 denotes the intensity of the point light.

We note that our formulations of Egs. (23) and (24) are mostly the-
oretical: They allow pinhole cameras and point lights to be handled
using the same derivations in §4.1 and §4.2.

Material-form formulation. In general, the position x¢am and ori-
entation ncam of a pinhole camera can be functions of the scene
parameter 6 and can be parameterized using the material-form for-
mulation as follows. Let pégfn and p(ﬁ;,)n be two fixed points in the
reference volume B, that represent, respectively, the camera’s cen-
ter of projection and a point along the center axis. Then, for all 6,
we have

Xeam(0) 1= X(pgh, 0), (25)
X(platn 0) = X(Plom:0)
XG0 ~ x(plih 0]

The position xg of a point light can be parameterized in a similar
fashion as Eq. (25).

Neam(0) =

(26)

Handling discontinuities. The inclusion of the generalized geo-
metric term G(xn ¢ Xcam) in Eq. (23) and G(xgc — x0) in Eq. (24)
can violate the assumption (A.2) of W, and L. being continuous.
Fortunately, this can be handled easily by including a new set of
material boundary paths in the boundary term of Eq. (19).



Specifically, for pinhole cameras, we consider p = (p,..., pn7)
such that py; is a discontinuity point of G(xny ¢ Xcam). In other
words, we allow Xx Xcam to be a boundary segment (see Figure 5-b).
Similarly, when handling point lights, we track discontinuities of
x0 such that Xxg x¢ is effectively a boundary segment.

Other zero-measure detectors and sources. Using the formulations
outlined in Egs. (23) and (24), other zero-measure detectors (e.g.,
orthographic cameras) and sources (e.g., directional lights) can be
handled in a similar manner. In case of a directional light with
incident direction wsyc, we can encode its contributions in the source
emission by letting

Le(x0 — x1) = fy(x0, @src, X0x1) V(x0, @src) L, (27)

where V(x¢, @src), which can be discontinuous with respect to xo,
indicates whether a ray with origin x( and direction wg can reach
infinity without being occluded.

4.4 Relation to Prior Works

Relation to differential radiative transfer. Theoretically, our gen-
eralized differential path integral of Eq. (19) offers the same level
of generality as the differential theory of radiative transfer (DTRT)
[Zhang et al. 2019], since both formulations allow differentiating
volumetric light transport with respect to arbitrary scene parame-
ters.

On the other hand, our mathematical framework enjoys several
significant advantages in practice.

Firstly, thanks to the material-form parameterization (§4.1), our
formulation requires tracking fewer types of discontinuities. For
example, DTRT involves boundary terms emerging from differenti-
ating the line integral in the (integral-form) radiative transfer equa-
tion. Our formulation, on the other hand, only requires handling
discontinuities resulting from the mutual visibility V.

Secondly, being a path-space formulation, our technique allows
the design of sophisticated Monte Carlo estimators (which we will
discuss in §5) that are capable of handling complex light transport
effects efficiently without the need of explicit silhouette detection.

Relation to path-space differentiable rendering. The differential
path integral formulation introduced by Zhang et al. [2020] is limited
to surface-only light transport and essentially a special case of
Eq. (19). Further, Zhang et al. have assumed the absence of zero-
measure sources, while we show how this can be relaxed in §4.3.

5 MONTE CARLO ESTIMATORS

We now derive new unbiased and consistent Monte Carlo estimators
for our generalized differential path integral of Eq. (19). We focus
on the problem of estimating g—é(@o) for some user-specified 6.
Further, we set the reference configurations (that is, the reference
volume and surface) as the scene geometry at 6 = 6 (as discussed
in §4.1).

Thanks to the full separation between the interior and boundary
terms in the generalized differential path integral, we estimate these
terms in a separated fashion. In the rest of this section, we discuss
the estimation of the interior integral in §5.1 and that of the boundary
integral in §5.2. We keep discussions in this section high-level and
provide some implementation details in §6.
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3.0

(2) (b1) (b2)

Fig. 6. Pixel-level antithetic sampling: As a function of xy;, pixel re-
construction filters usually exhibit point symmetry (a), causing its spatial
derivative to be an odd function that can produce high variance when esti-
mating the interior integral (b1). With our pixel-level antithetic sampling,
significant variance reduction can be achieved (b2). In this example, the
derivatives in (b1) and (b2) are computed with respect to the bunny’s vertical
position, and the ordinary image is shown as an inset in (b1).

5.1 Estimating the Interior Integral

With our choice of reference configurations, the material path
space Q coincides with the ordinary one Q(6p). This allows esti-
mating the interior integral in Eq. (19) using path sampling methods
developed for forward rendering.

Specifically, we sample a material path p with probability density
prob(p) using standard techniques (such as volumetric path tracing
or bidirectional path tracing). This path sampling process does not
need to be differentiated since the material path space Q and all
material paths p € Q are independent of the scene parameter 6 (and
thus have zero derivatives).

With the material path p constructed, we compute the corre-
sponding oridinary path x € Q(6p) by setting x,, = X(p,,, 6o) for
each vertex p,, of p. We note that, although x, takes the same value

as p,, forall n (as X(-, 0p) reduces to the identity map with our choice

of references), the derivative d(fe" (690)—which can be obtained by

differentiating the motion X—is typically nonzero.

Lastly, we compute the material measurement contribution f of
Eq. (16) in a differentiable fashion to obtain d{iep ) (6o). Returning
this derivative divided by the path sampling probability prob(p)

completes our Monte Carlo estimation of the interior term in Eq. (19).

Pixel-level antithetic sampling. Antithetic sampling is a classic
variance-reduction framework for Monte Carlo estimation [Ham-
mersley and Mauldon 1956]. When estimating integrals of the form
/ h(x) dx where h is an approximately odd function, it is desired to
use correlated pairs samples x and —x so that A(x) + h(—x) ~ 0. Re-
cently, Zhang et al. [2021] have introduced this idea to differentiable
rendering of glossy and near-specular materials.

We apply antithetic sampling at the pixel level. Specifically, when
using perspective pinhole cameras given by Eqs. (22) and (23), the
interior component of the generalized differential path integral in-
volves derivative of the pixel reconstruction filter # satisfying:

de_
% _ E_N, (28)
do 8xJ1\‘] do
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Fig. 7. We rename the vertices of a boundary path such that xg xlo) is the
boundary segment (illustrated in red). The source and detector subpaths are
shown in yellow and green, respectively. The arrows in this figure illustrate
the physical flow of light (that is from the source to the detector) and do

not indicate how the subpaths are constructed.

where xj\'] denotes the projection of xx on the image plane (see

Figure 6-a), and the derivative dxy/dé can be calculated based on
dxn/dg given by our material-form parameterization x5 = X(py, 0).

In practice, the pixel reconstruction filter #, as a function of x=,
usually exhibit point symmetry with respect to the pixel center. This
causes the (vector-valued) spatial derivative 9%/axs, to be an odd
function. To reduce the variance introduced by this derivative, we
generate pairs of samples that are point-symmetric with respect to
the center of the pixel. Figure 6-b demonstrates the effectiveness of
our pixel-level antithetic sampling.

5.2 Estimating the Boundary Integral

To estimate the boundary integral, Zhang et al. [2020] introduced a
multi-directional sampling technique that starts with drawing the
material boundary segment pz_; px (such that py is a jump dis-
continuity point of V(pg_; < pg) when p is fixed). This avoids
explicit silhouette detections that can be expensive for complex
scenes. Their technique, unfortunately, is derived for the surface-
only case. In what follows, we generalize this technique to also
support participating media.

Multi-directional boundary integral. To facilitate the development
of our Monte Carlo estimator of the boundary integral, we first
rewrite this integral in a multi-directional form. The derivations
of Eq. (29)—(35) are mostly identical to those from the work by
Zhang et al. [2020], and we show them nonetheless for completeness.

We start with renaming the vertices of a material boundary path
pPE aQ:

P=(PY Pt P PO PYo- - 2D, (29)

such that p§ and p? are located, respectively, on the source and the

detector;? and pg plo) is the material boundary segment. Similarly,

we rename vertices of the corresponding boundary path as x =
(x?, xi_l, el xg, xOD, xll), .. .,x]t)), as illustrated in Figure 7. Similar
to the estimation of the interior integral (discussed in §5.1), under
our choice of reference configurations, a material boundary path
and its ordinary counterpart coincide.

This allows us to factorize the integrand of the boundary com-

ponent of Eq. (19) into contributions of the segment pg pOD, the

3When the detector is a pinhole camera, as discussed in §4.3, p? is further connected

to the camera’s center of projection pigr)n (instead of being on the sensor).
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source subpath pS = (pg, . ,pg), and the detector subpath pP =

(pOD, . plt)), respectively:

A () o(pi) = 295, 20) f2 (0% 90) FP(B7:p0).  (30)
— — Y——
boundary seg. src. subpath  det. subpath

where

B(p5 pD) = AG(x§ & xD) o(pD), (31)
S35 pD) = f(p} — p5 — D)

M5, A, = x5 = x5 )Gxy & x5 ), (32)
PGB0 = f(ps - pd — pD)

M AR, = xR = xP ) 6D | o D). (33)

In Egs. (32) and (33), G is the geometric term, and f:, captures both
per-vertex contribution f; of Eq. (8) and the Jacobian determinant J
of Eq. (17). That is, for any py, p,, p3 € By and x,, = X(p,,, ) for
n=1,23:

folpr = py = p3) = fulx1 = x2 = x3) J(py).  (34)

With its integrand expressed using Eq. (35), we can rewrite the
boundary integral in its multi-directional form as:*

[ £t | [ 765 b e
[ PP ap

where the outer integral is over the material boundary segment

dpb dpy,  (35)

pg pOD. Additionally, pos and p(}) denote the source and detector sub-
paths with endpoints p(s) and pg) of the boundary segment excluded,
.,p?) and p(}) = (pllj,...,plt)).
In the case of surface-only rendering, both p(s) and pOD would
always be surface vertices (Figure 3-a). With the presence of partici-
pating media, on the other hand, they both can be either a surface or
a volume vertex, leading to three extra combinations (Figure 3-bcd).

respectively. That is, jJOS = ( p?, .

Change of variable. To facilitate efficient sampling of the ma-

terial boundary segment pg pOD, we apply a series of changes of
variables to Eq. (35) as follows. First, we use the predetermined
differentiable mapping X(-, §) to make the outer integral to be over

the corresponding boundary segment xg x%)). In principle, this re-
quires computing the Jacobian determinant ||(dp; dpp)/(dxS dxD)||
based on the mapping X(-, #). In practice, because of our choice of
reference configurations, the Jacobian determinant reduces to one
(ie., [|(dpg dpp)/(dxS dxD) || = 1).

Then, let xP be the intersection point between xg xlo) and the

union of all object surfaces and w® be the direction of this bound-
ary segment (i.e., a unit vector pointing from xg’ to xOD). We apply
another change of variable to make the outer integral to be on xB
and w®. We note that the point xB is not a vertex of the resulting

boundary path—we use it only for sampling purposes.

4We omit the integral domains and measures in Eq. (35) for notational simplicity.
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Fig. 8. lllustrations for deriving the change-of-variable Jacobian determi-
nants expressed in Egs. (40)—(43).

In what follows, we derive the Jacobian determinants correspond-
ing to this change of variable. We base our derivations on the as-
sumption that all surfaces in the scene are represented using polyg-
onal meshes. In this case, x® will always belong to an edge of some
polygonal face.

To facilitate the derivation of the Jacobian determinants, we first
relate dxg to do(wP) and dx(])) to de(xPB) as follows.

o When xg is a surface vertex, as illustrated in Figure 8-al, we have

dA(x3) | cos ¢°]

=y = do(w®), (36)

where 15 := ||xB - x(s)|| is the distance between x® and x(s); ¢S is

the angle between the segment xg xB and the surface normal at
xg; and o is the solid-angle measure.

e When x(s) is a volume vertex, as shown in Figure 8-a2, we have

dv(x3)

W = dO'((L)B) drs. (37)

e When x]OD is a surface vertex, for xg xlo) to be a boundary segment
with xg fixed, xOD belongs to a curve (see Figure 8-b1). In this case,
we have
de(xg) sing®  de(xP) singP
rD - rS ’

(38)
where P := ||xg - xg|| is the distance between xg and xg, and
#P is the angle between P and the curve’s tangent at xOD.

o When xloD is a volume vertex, it resides on a surface determined
by the point x® and direction w® (see Figure 8-b2). It follows that

dA(xp)  de(xB) sing® | o
= S dr-.

> . (39)
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Based on the relations given by Egs. (36)—-(39), we derive the
Jacobian determinants for changes of variables from xg and xg) to

xB and w® (as well as 5, rP when needed). Specifically:

e When both xg and xOD are surface vertices, according to Egs. (36)
and (38), we have

dA(x) de(xD)

_ .S D Sil’ld)B
de(xB) do(wB) ||~ (40)

sin ¢D | cos ¢S]

D
0

o With xg being a surface vertex and x; a volume vertex, multiply-

ing Egs. (36) and (39) yields
dA(xg) dA(xp)
d¢(xB) do(wB) drP

i 4B
sin
=r5/P —¢ . (41)
| cos ¢3]

o With x5 being a volume vertex and xlo) a surface vertex, multiply-
ing Eqgs. (37) and (38) gives
dv(x3) de(xD)

d¢(xB) do(wB) drs

o 4B
sin

=3P 2 9 . (42)
sin ¢P

e Lastly, when both xg and x%)) are volume vertices, according to

Egs. (37) and (39), we have

dv(x3) dA(xD)
d¢(xB) do(wB) drS drP

=r5rP sin ¢B. (43)

We note that, among the four cases discussed above, Zhang et al. [2020]
only derived the first one—namely Eq. (40)—as Eq. (48) of their paper.

Using these relations, we can rewrite the multi-directional bound-
ary integral of Eq. (35). When xg and x]OD are both volume vertices,
for instance, we have®

/8 /S i /0 ) / :o [fB<pS,p]3) rS P sin¢B]
s

where & denotes the union of all face edges.
Boundary integrals of the other three cases (when at least one of
xg’ and x(l)) is a surface vertex) can be expressed in a similar fashion.

drP drS do(w®) de(xP),  (44)

Sampling boundary segments. Based on the reparameterized bound-
ary integrals like Eq. (44), we develop a generalized multi-directional
sampling algorithm (Algorithm 1) to estimate the boundary compo-
nent of the generalized differential path integral.

Our algorithm starts with sampling an interior point x® and
direction w® of the boundary segment from some predetermined
probability density P (Line 3).

Then, we obtain the two endpoints xg and xOD of the bound-
ary segment as well as the corresponding probabilities prob® and
probD using the sampleInteraction(x, @) function (Lines 4, 5).
For any given x and w, this function returns a randomly sam-
pled volume or surface vertex along the ray (x, w), accompanied

3Strictly, the integral of w® in Eq. (44) should be over a subset of S? so that the
resulting boundary segment does not penetrate any surface. Please refer to the work
by Zhang et al. [2020] for more details.
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ALGORITHM 1: Monte Carlo estimator of the boundary integral (35)

1 EstimateBoundaryIntegral()

2 begin

/* Sample boundary segment */
3 Draw (xB, wB) ~ P;
4 (xg,probs) « sampleInteraction(x®, —w®);
5 (xlo),probD) «— sampleInteraction(xB, wP);

/* Compute Jacobian determinant */
o | el ol e P - gl
7 JB 1S P sin ¢B;
8 if xg is a surface vertex then
9 | J® T8/ cosp’;
10 end
1 if xD is a surface vertex then
12 ‘ B «—]B/sin(j)D;
13 end

/% Evaluate boundary segment */
14 py e x3; pd e xD;
A 25, p0) J° ;

P(xB, wB) prob® prob”

/* Sample and evaluate source & detector subpaths */
16 TS EstimateSourcePath(pg; plo));
17 TP « EstimateDetectorPath(p; pg);
18 return T8 TS TD;
19 end

with the corresponding probability. Specifically, we follow the stan-
dard procedure in volumetric path tracing by first drawing a free-
flight distance ¢ > 0 from an exponential distribution with the pdf
p(t) = ot(x + tw) exp(—/ot ot(x + sw) ds) with oy being the ex-
tinction coefficient. For heterogeneous media, this can be achieved
using techniques like delta tracking [Woodcock et al. 1965]. If the
line segment connecting x and (x + ¢t @) does not intersect any
object surface, the function returns a volume vertex of (x + t w).
Otherwise, let (x+1p w) be the first intersection along the ray (x, ®),
sampleInteraction returns this point as a surface vertex.

Sampling subpaths. With the boundary segment xg x]OD drawn,

we compute based on Egs. (40)—(43) the corresponding Jacobian
determinant J® (Lines 6-12). This allows the contribution TP of the

boundary segment xg xJOD to be computed (Line 15).

Lastly, we estimate the contributions of the source and detector
subpaths pS and pP, respectively, using standard techniques such as
volumetric path tracing (Lines 16 and 17), completing our estimation
of the boundary integral.

6 IMPLEMENTATION DETAILS

We now discuss some important aspects for implementing the Monte
Carlo estimators presented in §5.

6.1 Representing the Motion

A key ingredient of our material-form parameterization presented
in §4.1 is the motion X that, for each 0, gives a differentiable bijection
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Fig. 9. Representing the motion: This example consists of a bunny in-
side a Cornell box filled with a homogeneous medium (a). To estimate the
derivative with respect to the position of the bunny along the x-axis (b), we
set the derivative dX(p.6)/dg of the motion to [1,0,0] for all p on the surface
of the bunny, and to zero for p on the box. To smoothly interpolate these
derivatives in the interior of the medium, we tetrahedralize its volume (with
boundaries given by the bunny and the box) and apply trilinear interpolation
in each tetrahedron. We visualize a 2D slice of the resulting dX(-.6)/d6 in
(c), where the intensity of each pixel indicates the value of the derivative’s
x-component.

X(:, 0) that maps the reference surface 8y and volume By to the
object surfaces M(0) and volume V (0), respectively.

As aforementioned, we focus on the problem of estimating dI/do
at some user-specified 0 = 0y based on the generalized differential
path integral of Eq. (19). When using the reference configurations
discussed in §4.1, X(-, p) reduces to the identity map and does not
have to be explicitly stored. Thus, it suffices to specify the derivative
[dX(p.0)/d6] g=g, for each p € By as a vector field.

Affine deformation. If the deformation of an object is affine, the
corresponding motion can be expressed as X(p, 0) = R(6)p + t(6),
where R(0) is an invertible matrix and #(6) is a vector. Assuming
that R := dR/d¢ and # := dt/d0 can be calculated analytically, we have
[dX(p.6)/d6] g—g, = R(6p)p + #(6o), which can be computed easily
on the fly.

Non-affine deformation. To express general non-affine deforma-
tions, we use a tetrahedral mesh with the derivative values defined
at each vertex. For the i-th vertex of the tetrahedral mesh, we store
its position p; and the derivative x; := [dX(p;:0)/d6]gg,. In prac-
tice, this can be implemented by representing vertex positions as
automatic-differentiation-enabled vectors x;. In this way, it holds
that p; = detach(x;), and x; can be obtained via automatic differ-
entiation.

In the interior of each tetrahedron, we perform a trilinear interpo-
lation to obtain the derivative. Although higher-order interpolations
is possible, we find using a linear one to suffice for our purpose.

In practice, non-affine deformations such as stretching of a medium
(as a continuum) are typically pre-specified using tetrahedral meshes.
In this case, we reuse these meshes to represent our motion X.

When no tetrahedral mesh is provided as input, we tetrahedralize
the input polygonal mesh using the TetGen library [Si 2015] so that
the constructed tetrahedral mesh shares the same set of vertices
as the input boundary mesh (see Figure 9 for an example). In our
experiments, the computational overhead of this step is negligible.
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Fig. 10. Differentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite differences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the differentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

Alternatively, one can interpolate derivatives [dX(p.6)/d6]g-g,
specified on a medium’s boundary to its interior using techniques
like mean value coordinates [Thiery et al. 2018].

6.2 Computing Jacobian Determinants

Another important term to our material-form parameterization is
the Jacobian determinant expressed in Eq. (17).

Under our choice of references, when p is a surface vertex located
on a triangle (that is a face of some tetrahedron) with vertices p,,
pp and pc, the Jacobian determinant ||dA(x)/dA(p)|| captures the
change rate of this triangle’s area with respect to 6 and is constant
in the interior of the triangle. Specifically, we have

dA(x) || _ |I(xa —xc) X (xB — x0)|
= , (45)
AP [(pa-po) (s - po)l
where “x” denotes the cross product of two vectors.
When p is a volume vertex inside a tetrahedron with vertices p,,
Pg> pc and pp, the Jacobian determinant ||dV(x)/dV (p)|| indicates
the change rate of this tetrahedron’s volume:

” dV(x) || _ I(>a =xp) - ((xp = xp) X (xc = xp))|
dV(p)ll  |(pa - pp) - ((ps = Pp) X (Pc = Pp))]
In practice, as described in §6.1, by expressing vertex positions as

automatic-differentiation-enabled vectors, the derivatives of Eqs. (45)
and (46) can be obtained easily.

(46)

Continuity property. Given Eqgs. (45) and (46), it holds that the
Jacobian determinant J defined in Eq. (17) is piecewise constant

with discontinuity boundaries being the faces of the tetrahedra.
Since the tetrahedron mesh is defined in the reference volume and
independent of the scene parameter 0, so are the discontinuity
boundaries of J, satisfying our continuity assumption of A.4.

6.3 Computing Change Rates of Discontinuity Boundaries

A key term in the boundary component of our generalized differen-
tial path integral of Eq. (19) is v(pg) that captures the change rates
of discontinuities boundaries with respect to the scene parameter 6.

In practice, evaluating this term using Eq. (20) largely amounts to
computing dpk/de that, in turn, requires parameterizing the corre-
sponding discontinuity curve or surface near pg. Under our multi-
directional formulation described in §5.2, py is renamed as P]o)' In
what follows, we discuss the computation of v( p%))) at some 6 = 0y
with the motion X represented as discussed in §6.1.

To obtain p})), we first compute xoD € V(6p) in a differentiable
fashion and then transform it back to the reference configuration.
Without loss of generality, assume that

B B _ XX
X =§1XP+(1—§1)XQ, @ =M, (47)

where xp, xg € M(6p) are the positions of two mesh vertices (such
that the face edge xp xg contains xB), and & € [0, 1] is some real
number independent of 6. In Eq. (47), xp, xq, and xg can all be ex-
pressed as automatic-differentiation-enabled vectors (as discussed

in §6.1). In what follows, we discuss how x(l]) and p(l])—which depend
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Fig. 11. Inverse-rendering comparisons using gradients estimated with our technique and DTRT [Zhang et al. 2019]. For each example, we use identical
optimization algorithms (i.e., Adam [Kingma and Ba 2014]), objective functions (i.e., image RMSE), learning rates, and initial configurations. We also adjust the
sample count so that both methods take approximately equal time per iteration. The parameter RMSE is used only for evaluation (and not for optimization).
Images in columns (a, ¢, d) contain Monte Carlo noise as we use noisy (but unbiased) estimates for the inverse-rendering optimizations.

on the scene parameter 6 in general—can be computed in a differ-
entiable fashion given xB and w®. After obtaining the derivative
[dpp/d6] g—g,, We can compute the change rate o( pg) using Eq. (20).

Surface case. When x(])D is a surface vertex, as illustrated in Fig-

ure 8-b1, xlo) and its derivative [dx/d6] g=g, can be computed using
differentiable ray tracing:
x%)) = rayTrace(xB, ®). (48)

Then, we obtain pg) by transforming xg) back to the reference sur-
face. Assume that

x(l])z (1 —ug —up) xp +uy xg + Uz xC, (49)

where: xa, xg, xc € M(8p) are vertices of the mesh face containing
xOD; (u1, up) are barycentric coordinates of x(l]) within the triangular
face. Further, xa, xp, xc, u1, and uy are determined by the dif-
ferentiable ray tracing process and can all depend on the scene

parameter 6. Given Eq. (49), it follows that
Py = (1—u1 —uz) pp +u1 py +uz . (50)

where p, = X! (x4, 0p) = detach(x,) for each * € {A,B,C}.
We note that, given Eqgs. (47)-(50), we essentially parameterize
the discontinuity curve near p10) using &1.

Volume case. When xOD is a volume vertex, as illustrated in Fig-

ure 8-b2, it must lie on the discontinuity plane determined by xg
and the face edge xp xg containing xB. Assume that
xD = x5+ & (xB —x), (51)
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Table 2. Performance statistics for the inverse-rendering results in Fig-
ures 11 and 12. The “time” numbers indicate average computation time
per iteration for both our technique and DTRT [Zhang et al. 2019] (when
applicable). The experiments are conducted on a workstation equipped with
8-core intel i7-7820X CPU.

Scene Branches Bust Bumpy sph. Spheres Bunny Pool
(Fig. 11) (Fig. 11)  (Fig. 11)  (Fig. 12) (Fig. 12) (Fig. 12)

# param. 1 1 2 2 17 100

# iter. 100 120 125 150 125 300
time 39s 3m 24s 23s 3m 15s 9m 35s 5m 52s

. A .. D -
for some & > 1. Then, the discontinuity plane containing x; is

effectively parameterized with & and & via Egs. (47) and (51).
When the motion X is affine, as discussed in §6.1, we have

Py =R" (xOD - t) . (52)

When a tetrahedral mesh is used to express X, assume that x]03 is
located inside a tetrahedron with vertices x4, x5, xc, xp € V(6o)
and has barycentric coordinates (uy, ug, u3). Similar to the surface
case, XA, XB, XC, XD, U1, Uz, and u3 all depend on 6 in general. Then,
it holds that

pOD:(1—u1—uz—u3)pA+u1pB+uzpC+u3pD, (53)

where p, = detach(x) for all x € {A,B,C,D}.
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(e) RMSE
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Fig. 12. Inverse-rendering results using gradients estimated with our technique. Images in columns (a—c) contain Monte Carlo noise since we use noisy
(but unbiased) estimates for the optimizations. Please refer to the supplement for animated versions of these results.

7 RESULTS

We implement our techniques presented in §4-§6 in C++ on the
CPU. Specifically, we develop a Monte Carlo estimator that samples
material light paths p using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport effects such as caustics.

In the rest of this section, we validate our implementations and
demonstrate their effectivenesses in §7.1 and show more inverse-
rendering examples in §7.2. Please refer to the supplemental material
for more animated versions of the inverse-rendering results.

7.1 Validation and Evaluation

We use the following virtual scenes to evaluate the correctness and
effectiveness of our Monte Carlo estimators:

e The branches scene is modeled after that with the same name
from Zhang et al’s work [2020]. This scene contains a tree-like
object with fine structures (that is outside the field of view) casting
a shadow on the ground. This object is further embedded within
an optically thin heterogeneous medium.

e The bust scene contains a translucent bust with complex ge-
ometry and spatially varying scattering properties. The bust is
optically thick and, thus, exhibits strong multiple scattering.

o The bumpy sphere scene consists of a sphere made of rough glass
inside a box filled with a homogeneous participating medium. The
sphere is lit by a point light from above, yielding strong volumetric
shadow and caustic effects.

We use perspective pinhole cameras for all these scenes.

Differentiable rendering comparisons. In Figure 10, we show deriv-
ative images of these scenes generated using finite differences, our

technique, and the differential theory of radiative transfer (DTRT)
[Zhang et al. 2019].

For the branches scene, we compute derivatives with respect to
the rotation angle of the object around the vertical axis. Deriva-
tive image generated using our unidirectional estimator closely
matches the reference obtained using finite differences. Because of
the complex visibility, DTRT—which relies on explicit detection of
object silhouettes—produces highly noisy derivative estimates. Our
method, on the other hand, does not require silhouette detection
and can generate much cleaner results in equal time.

For the bust scene, we differentiate the ordinary image with re-
spect to the rotation angle of the translucent bust. Our results, which
match the finite-differences reference, are generated using our uni-
directional estimator. Due to the presence of complex geometry
and high-order scatterings, DTRT produces extremely noisy results.
In equal time, our technique is capable of generating derivative
estimates with significantly lower noise.

For the bumpy sphere scene, we estimate derivatives with respect
to the horizontal translation of the light source. Due to the complex-
ity of light transport effects in this example, the finite-differences
result contains some Monte Carlo noise even after being rendered
for many hours. Our results obtained using our bidirectional algo-
rithm accurately captures the gradients around specular highlights
on the sphere as well as shadow and caustic boundaries in the vol-
ume and on the ground. DTRT does not work for this example due
to the lack of support for point light sources.

Inverse rendering comparisons. We further demonstrate in Fig-
ure 11 the usefulness of our low-variance derivative estimates by
comparing inverse-rendering performance of our method and DTRT.
For all examples, we minimize the image RMSE as the choice of
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loss function is orthogonal to our technique. We use the Adam al-
gorithm [Kingma and Ba 2014] with identical settings including
initial configurations and learning rates for both methods. We also
adjust sample counts so that each optimization iteration takes ap-
proximately equal time. Additionally, For the bumpy sphere scene,
we replace the point light with a small area light since DTRT only
supports the latter. Please see Table 2 for performance statistics and
the supplement for animated versions of these results.

For the branches scene, gradient-based optimizations driven by
both methods converge correctly. Our method offers faster con-
vergences thanks to its cleaner derivative estimates. For the bust
and bumpy sphere scenes, optimizations using gradients estimated
by DTRT fail to converge due to very high variance in the esti-
mated gradients. Our method, on the other hand, allows smooth
convergence to the correct results.

7.2 Inverse-Rendering Results

We show additional inverse-rendering results using derivatives esti-
mated with our method in Figure 12:

o The spheres scene contains three glass spheres within a homo-
geneous medium lit by a small area light, yielding complex volu-
metric caustics. We search for the position of the larger sphere
(expressed using 2 variables) to match the target caustics pattern.

e The bunny scene contains a homogeneous translucent bunny
that exhibits rough refraction on the surface and multiple scat-
tering in the interior. Further, we use a control cage with 16
vertices to deform the bunny in a non-rigid fashion (with the
vertex weights computed using mean value coordinates [Thiery
et al. 2018]). We jointly optimize: (i) the positions of five vertices
on the control cage (expressed using 15 variables); (ii) the bunny’s
surface roughness and the medium’s optical density.

o The pool scene consists of a curved refractive interface producing
caustics in the medium and the surface below. We optimize the
shape of the refractive interface (parameterized with 100 vari-
ables).

For all three examples, using gradient estimates generated with
our technique, inverse-rendering optimizations successfully recover
the target parameters. Please refer to the supplemental materials
to see animated version of these results demonstrating the full
optimization processes.

8 DISCUSSION AND CONCLUSION

Limitations and future work. Our technique works mainly in the
(generalized) path space. Due to the success of primary-sample-
space (PSS) methods in forward rendering, adopting our technique
to work in that space—potentially by using different choices of ref-
erence surfaces and volumes—can be an interesting future topic.
Also, extending our technique to handle implicit scene geometries
(such as interfaces defined using signed distance functions) will
enable inverse-rendering optimizations robust to changes of topol-
ogy. Lastly, implementing our estimators on the GPU with state-of-
the-art computational differentiation techniques will allow solving
challenging inverse-rendering problems with large numbers (i.e.,
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millions) of unknowns, benefiting a large array of real-world appli-
cations.

Conclusion. In this paper, we introduced the mathematical formu-
lation of generalized differential integrals that offers the generality
of differentiating both interfacial and volumetric light transport
with respect to arbitrary scene parameters include global object ge-
ometries. Utilizing this formulation, we developed new Monte Carlo
estimators that handle the interior and boundary components of
generalized differential integrals separately. Our estimators are un-
biased, consistent, and capable of efficiently handling complex scene
geometries and light transport effects such as multiple scattering
and volumetric caustics. We demonstrated the effectiveness of our
technique via a few differentiable-rendering and inverse-rendering
examples.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive comments
and suggestions. This work was partially supported by NSF grant
1900927.

REFERENCES

Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area sampling for
differentiable rendering. ACM Trans. Graph. 39, 6 (2020), 245:1-245:18.

Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J Seron, and Francois X Sillion.
2005. A survey on participating media rendering techniques. The Visual Computer
21, 5 (2005), 303-328.

Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Courier Corporation.

Chenggian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020.
Towards Learning-based Inverse Subsurface Scattering. In 2020 IEEE International
Conference on Computational Photography (ICCP). IEEE, 1-12.

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6 (2013),
162:1-162:13.

John Michael Hammersley and JG Mauldon. 1956. General principles of antithetic
variates. In Mathematical proceedings of the Cambridge philosophical society, Vol. 52.
Cambridge University Press, 476-481.

Wenzel Jakob and Steve Marschner. 2012a. Manifold Exploration: A Markov Chain
Monte Carlo technique for rendering scenes with difficult specular transport. ACM
Trans. Graph. 31, 4 (2012), 58:1-58:13 pages.

Wenzel Jakob and Steve Marschner. 2012b. Manifold exploration: A Markov chain
Monte Carlo technique for rendering scenes with difficult specular transport. ACM
Trans. Graph. 31, 4 (2012), 58:1-58:13.

James T. Kajiya. 1986. The Rendering Equation. In SSIGGRAPH ’86. 143-150.

James T. Kajiya and Brian P Von Herzen. 1984. Ray tracing volume densities. SGGRAPH
Comput. Graph. 18, 3 (1984), 165-174.

Csaba Kelemen, Laszl6 Szirmay-Kalos, Gy6rgy Antal, and Ferenc Csonka. 2002. A
simple and robust mutation strategy for the metropolis light transport algorithm. In
Computer Graphics Forum, Vol. 21. Wiley Online Library, 531-540.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Eric P Lafortune and Yves D Willems. 1996. Rendering participating media with
bidirectional path tracing. In Rendering techniques’ 96. Springer, 91-100.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
222:1-222:11.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for differentiable rendering. ACM Trans. Graph. 38, 6
(2019), 228:1-228:14.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba
2: A retargetable forward and inverse renderer. ACM Trans. Graph. 38, 6 (2019),
203:1-203:17.

Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo
methods for volumetric light transport simulation. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 551-576.

Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for
participating media. In Rendering Techniques 2000. Springer, 11-22.

Osborne Reynolds. 1903. Papers on mechanical and physical subjects: the sub-mechanics
of the universe. Vol. 3. The University Press.



Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1-36.

Jerome Spanier and Ely M Gelbard. 1969. Monte Carlo principles and neutron transport
problems. The Addison-Wesley Publishing Company.

Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr
Didyk, Bernd Bickel, Jaroslav K¥ivanek, Karol Myszkowski, and Tim Weyrich. 2019.
Geometry-aware scattering compensation for 3D printing. ACM Trans. Graph. 38, 4
(2019), 111:1-111:14.

Jean-Marc Thiery, Pooran Memari, and Tamy Boubekeur. 2018. Mean value coordinates
for quad cages in 3D. ACM Trans. Graph. 37, 6 (2018), 229:1-229:14.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques. Springer, 145-167.

Eric Veach and Leonidas J. Guibas. 1997. Metropolis light transport. In Proceedings of the
24th Annual Conference on Computer Graphics and Interactive Techniques (SSGGRAPH
’97). ACM Press/Addison-Wesley Publishing Co., 65-76.

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor
Problems, Vol. 557.

Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021. Antithetic
sampling for Monte Carlo differentiable rendering. ACM Trans. Graph. 40, 4 (2021),
77:1-77:12.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020), 143:1-143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
38, 6 (2019), 227:1-227:16.

Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling
scattering parameters for rendering anisotropic media. ACM Trans. Graph. 35, 6
(2016), 166:1-166:11.

A DERIVING THE GENERALIZED DIFFERENTIAL PATH
INTEGRAL

To derive derivatives of Eq. (15), we first rewrite this equation as

oN+1_1
1= > |, f(®)duy(d), (54)
N1 1= Y9N
R
::I}lv

where Qé\] follows the definition in Eq. (12). Then, deriving dI/d¢
amounts to differentiating IIIV for any fixed N > 0 and path charac-
teristic 0 < I < 2N*1 To this end, we facilitate the proof introduced
by Zhang et al. [2020] for the surface-only case as follows.
First, we rewrite I [l\] in a recursive fashion by defining
hn(PNn; Pn-1) =T (PN) We(xN-1 = XN), (55)
and, for0 <n <N,

hn(Pn;Pn_1) =
/ hn1(Ppai1s pn)g(xnu;xnfl,xn)dyf\,,nﬂ(p,m), (56)
n+1
where dyg\] e is defined in Eq. (4) and

9(Xn+1; Xn-1,%n) =
](Pn)ﬁ/(xn—l - Xn — xn+1) G(xp & xn+1)~ (57)
In Egs. (55) and (57), the function J follows the definition in Eq. (17);

in Eq. (56), the domain of integration 8,41 depends on b,41(l), the
(n + 1)-th bit of the given path characteristic I:

BM: bny1 (l) =1
B’VO- bps1(l) =0

Bn+1 = (58)
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Given the definitions of Egs. (55)—(58), it is easy to verify that
I, = /B ho(po) dith o (Po). (59)
0

Then, deriving dIy/d¢ amounts to differentiating Eq. (56). Under
Assumptions A.1-A.4, discontinuities of the integrand of Eq. (56)
emerge solely from the mutual visibility function that is a factor
of the g term. It follows that applying Reynolds transport theo-
rem [Reynolds 1903] yields:
% = /3 d%(hnn 9) Ayt + /a e 89 Vi iy
(60)
In this equation:
® 90Bp+1 C Bpiq denotes the discontinuity points of g with respect
to p,,; when p,_; and p,, are fixed. Specifically, if bp11 (1) = 1,
the integral in Eq. (56) is over all object surfaces By, and 0Bn+1
is a set of curves. If b,41(I) = 0, we have a volumetric integral in
Eq. (56), and 98,41 involves a collection of surfaces.

® Vpi1 is the scalar normal velocity of a discontiuity point p,,,; €
aBn+1~

Ag indicates the difference in g across the discontinuity bound-
aries.

e The measure ﬂf\] e is defined as

By =14 (61)
’ dA, bpyi(l) =0
where ¢ and A are, respectively, curve-length and surface-area
measures.
With Egs. (56) and (60), we can now differentiate IIIV defined in
Eq. (59) by repeatedly expanding h, and dhn/d6 forn =0,1,...,N -1,
resulting in:

interior

drt df('
N P .-
_N TP 4
do / I 40 pn(P) |+
boundary (62)
N A
YL Ak @ Ve iy D)
k=0 |7 99Nk
where
Al K-1 N
aQN,K = an X&ka 1—[ Bul, (63)
n=0 n=k+1
dfug\]K(P) = dpi[’K(PK) l_[ d,ug\]’n(pn), (64)
OSniN
n#

A r - Ag(xXKe1; XK-1, XK)
A = .
fk(P) = f(p) 9Kt XK1 %K)

Lastly, we can sum up Eq. (62) forall N > 1and 0 < [ < 2N+1 -1
to obtain our generalized differential path integral of Eq. (19).

(65)
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