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Fig. 1. In this paper, we introduce the theoretical framework of generalized differential path integrals. Our technique enjoys the generality of differentiating
both surface and volumetric light transport with respect to arbitrary scene parameters (such as material optical properties and object geometries). Further, it
offers the flexibility of designing new unbiased Monte Carlo methods capable of efficiently estimating derivatives in virtual scenes with complex geometry
and light transport effects. This example shows a transparent knot inside a homogeneous participating media lit by a spotlight. On the right, we show the
corresponding derivative image with respect to the horizontal location of the light.

Physics-based differentiable rendering—which focuses on estimating deriva-
tives of radiometric detector responses with respect to arbitrary scene
parameters—has a diverse array of applications from solving analysis-by-
synthesis problems to training machine-learning pipelines incorporating
forward-rendering processes. Unfortunately, existing general-purpose differ-
entiable rendering techniques lack either the generality to handle volumetric
light transport or the flexibility to devise Monte Carlo estimators capable of
handling complex geometries and light transport effects.

In this paper, we bridge this gap by showing how generalized path in-
tegrals can be differentiated with respect to arbitrary scene parameters.
Specifically, we establish the mathematical formulation of generalized differ-
ential path integrals that capture both interfacial and volumetric light trans-
port. Our formulation allows the development of advanced differentiable
rendering algorithms capable of efficiently handling challenging geometric
discontinuities and light transport phenomena such as volumetric caustics.

We validate our method by comparing our derivative estimates to those
generated using the finite differences. Further, to demonstrate the effective-
ness of our technique, we compare both differentiable rendering and inverse
rendering performance with state-of-the-art methods.
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1 INTRODUCTION
Physics-based forward rendering—a core research topic in computer
graphics—focuses on numerically estimating radiometric sensor
responses in fully specified virtual scenes. Previous research efforts
have led to mature algorithms capable of efficiently and accurately
simulating light transport in virtual environments with high com-
plexities.
Differentiable rendering, on the other hand, concerns with esti-

mating derivatives of radiometric measurements with respect to
differential changes of a scene. These techniques have a wide range
of applications by facilitating, for instance, the use of gradient-
based optimization for solving inverse-rendering problems, and the
integration of physics-based rendering in machine-learning and
probabilistic-inference pipelines.

Despite great progressesmade by recentworks, unique theoretical
and practical challenges remain for differentiable rendering. One
of them is lacking support for participating media and translucent
materials, which are ubiquitous in the real world and crucial to many
applications such as computational fabrication, remote sensing, and
biomedical imaging. Most existing general-purpose differentiable
rendering techniques [Li et al. 2018; Loubet et al. 2019; Zhang et al.
2020; Bangaru et al. 2020]—which offer the generality to differentiate
with respect to scene geometry—consider only interfacial reflection
and refraction of light.
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Another challenge is the lack of robust Monte Carlo estimation
techniques. Unlike the forward-rendering case where many sophis-
ticated algorithms such as bidirectional path tracing and Markov-
Chain Monte Carlo (MCMC) methods have been developed (e.g.,
[Veach and Guibas 1997; Pauly et al. 2000; Jakob and Marschner
2012a]), most recent differentiable rendering techniques [Li et al.
2018; Zhang et al. 2019; Loubet et al. 2019; Bangaru et al. 2020]
rely on unidirectional path tracing and have difficulties handling
complex light transport effects such as caustics.

To overcome the first challenge, the differential radiative transfer
framework [Zhang et al. 2019] has been introduced, which offers
the same level of generality as the radiative transfer theory [Chan-
drasekhar 1960] for forward rendering by differentiating the radia-
tive transfer equation (RTE).
To address the second problem, the differential path integral for-

mulation [Zhang et al. 2020] has been derived. Similar to Veach’s
path-integral formulation [1997] for forward rendering, this tech-
nique has enabled the development of differentiable rendering algo-
rithms beyond unidirectional path tracing.
Unfortunately, each methods have their limitations. The differ-

ential radiative transfer method [Zhang et al. 2019] is limited to
unidirectional volumetric path tracing. Further, it requires detecting
object silhouettes at each light-scattering event, which can become
extremely expensive for scenes with complex geometries. The dif-
ferential path integral formulation [Zhang et al. 2020], on the other
hand, neglects volumetric scattering of light.

In this paper, we bridge the gap by introducing the mathematical
formulation of generalized differential path integral that offers the
same level of generality as differential radiative transfer [Zhang et al.
2019] and the same flexibility as differential path integral [Zhang
et al. 2020]. In other words, our techniques allows differentiating vol-
umetric light transport with respect to arbitrary scene parameters.
Meanwhile, it enables the development of Monte Carlo methods that
(i) go beyond unidirectional path tracing, and (ii) avoid expensive
silhouette detections.
Similar to most prior works in physics-based differentiable ren-

dering [Li et al. 2018; Loubet et al. 2019; Zhang et al. 2019, 2020;
Bangaru et al. 2020], we focus on scene geometries depicted using
polygonal meshes and assume the absence of perfectly specular
interfaces.
Concretely, our contributions include:

• Establishing the formulation of generalized differential path inte-
grals (§4) by differentiating generalized path integrals [Pauly et al.
2000].

• Discussing how zero-measure detectors (e.g., pinhole cameras)
and sources (e.g., point lights), which are largely neglected by
previous differentiable rendering techniques, can be handled in
our framework (§4.3).

• Developing new unbiased and consistent Monte Carlo methods
that estimate our generalized differential path integrals in an un-
biased fashion (§5). Our estimators greatly outperform the volu-
metric path tracing method developed by Zhang et al. [2019] for
complex scene geometries and light transport effects.

To validate our theory and algorithms, we compare our derivative
estimates with those produced using finite differences (Figure 10). To
demonstrate the effectiveness of our method, we compare (i) deriva-
tive images generated with our technique and differential radiative
transfer (Figure 10); and (ii) inverse-rendering performance using
gradients estimated with these methods (Figure 11).

2 RELATED WORK
Forward volume rendering. Monte Carlo methods have been the

“gold standard” for accurately simulating photon and neutron trans-
port in complex environments [Spanier and Gelbard 1969]. In com-
puter graphics, volumetric path tracing and its variations (e.g., [Ka-
jiya and Von Herzen 1984; Cerezo et al. 2005]) produce unbiased
and consistent estimates of radiometric measures. Later, based on
the path-integral formulation [Veach 1997] and its generalization to
volumetric light transport [Pauly et al. 2000], bidirectional path trac-
ing [Lafortune and Willems 1996] and Markov-Chain Monte Carlo
(MCMC) methods (e.g., [Pauly et al. 2000; Kelemen et al. 2002; Jakob
and Marschner 2012b]) have been introduced to enable efficient
simulation of challenging effects such as caustics.
For a comprehensive survey on Monte Carlo volume rendering

techniques, we refer to the survey by Nov́ak et al. [2018].

Differentiable surface-only rendering. A main challenge towards
developing general-purpose differentiable rendering engines has
been the differentiation with respect to scene geometry, which
generally requires calculating additional boundary integrals. To
address this problem, Li et al. [2018] introduced a Monte Carlo
edge-sampling method that provides unbiased estimates of these
boundary integrals but requires detection of object silhouettes,
which can be computationally expensive for complex scenes. Later,
reparameterization-based methods [Loubet et al. 2019; Bangaru et al.
2020] have been introduced to avoid computing boundary integrals
altogether. Despite their ability to differentiate with respect to ar-
bitrary scene parameterizations, all these methods are obtained by
differentiating the rendering equation [Kajiya 1986] and rely on
unidirectional path tracing for derivative estimations, which can be
inefficient when handling complex light transport effects.

By differentiating Veach’s path integrals [1997], Zhang et al. [2020]
derived the formulation of differential path integrals, enablingMonte
Carlo differentiable rendering beyond unidirectional path tracing.
Despite its flexibility, this formulation still neglects all volumetric
light transport effects. Our theory subsumes this work by showing
how to differentiate full generalized path integrals.

Differentiable volume rendering. Specialized differentiable volume
rendering has been used to solve analysis-by-synthesis problems in
volumetric scattering [Gkioulekas et al. 2013], prefiltering of high-
resolution volumes [Zhao et al. 2016], and fabrication of translucent
materials [Sumin et al. 2019]. All these methods compute radiance
derivatives with respect to specific material properties like optical
density.
For general-purpose differentiable volume rendering, Che et al.

[2020] developed a system capable of computing derivatives with
respect to optical material and local normal properties. Nimier-
David et al. [2019] introduced the Mitsuba 2 system that enables
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differentiable volume rendering with millions of parameters. Unfor-
tunately, these methods cannot differentiate with respect to scene
geometry.

By differentiating both the rendering equation [Kajiya 1986] and
the radiative transfer equation [Chandrasekhar 1960], the theory
of differential radiative transfer introduced recently by Zhang et al.
[2019] offers the most general differentiable rendering theory to
date. However, this technique still relies on unidirectional path
tracing with Monte Carlo edge sampling [Li et al. 2018] and cannot
efficiently handle complex geometry or light transport effects.
Our technique overcomes these limitations by leveraging more

advanced Monte Carlo estimators while offering the same level of
generality as differential radiative transfer.

3 PRELIMINARIES
We now briefly review the mathematical preliminaries on forward
rendering of participating media using the path-space formula-
tion [Veach 1997; Pauly et al. 2000].

The response 𝐼 ∈ R of a radiometric detector can be expressed as
a path integral of the form:

𝐼 =
∫
𝛀
𝑓 (𝒙̄) d𝜇 (𝒙̄), (1)

where 𝒙̄ = (𝒙0, . . . , 𝒙𝑁 ) denotes a light transport path (with 𝒙0
on a light source and 𝒙𝑁 on the detector); 𝛀 is the path space; 𝑓 is
the measurement contribution function; and 𝜇 is the Lebesgue
measure on 𝛀.

Veach [1997] has shown that, for surface-only light transport (that
considers only interfacial reflection and refraction of light), the path
space1 is given by 𝛀 = ∪∞

𝑁=1M
𝑁+1, whereM is the union of all

object surfaces, and 𝜇 is the area-product measure. This formulation
has been the theoretical foundation of many sophisticated Monte
Carlo rendering methods such as bidirectional path tracing [Veach
and Guibas 1995] and a few Markov-Chain Monte Carlo rendering
methods [Veach 1997; Jakob and Marschner 2012a].
Veach’s formulation has been extended by Pauly et al. [2000] to

handle volumetric light transport based on the radiative transfer
theory [Chandrasekhar 1960]. In what follows, we briefly review
this generalized formulation.

Path space and measure. Let V ⊂ R3 be a 3D volume that en-
capsulates the virtual scene, M ⊂ V be the union of all object
surfaces in the scene, andV0 := V \M. A light transport path 𝒙̄ =

(𝒙0, 𝒙1, . . . , 𝒙𝑁 ) with (𝑁 + 1) vertices and 𝑁 segments is classified
with its path characteristic 𝑙 , an (𝑁 + 1)-bit integer that encodes
the type of individual vertices. Specifically, the 𝑛-th bit of the binary
representation of 𝑙 , which we denote as 𝑏𝑛 (𝑙), equals one if 𝒙𝑛 is
a surface vertex (i.e., 𝒙𝑛 ∈ M) and zero if it is a volume vertex
(i.e., 𝒙𝑛 ∈ V0). For all 𝑁 ≥ 1 and 0 ≤ 𝑙 < 2𝑁+1, the set of all paths
with 𝑁 segments and characteristic 𝑙 is

𝛀
𝑙
𝑁

:=

{
(𝒙0, . . . , 𝒙𝑁 ) : 𝒙𝑛 ∈

{
M, 𝑏𝑛 (𝑙) = 1
V0 𝑏𝑛 (𝑙) = 0

}
, (2)

1We hyperlink keywords to their definitions.

and the Lebesgue measure 𝜇𝑙
𝑁

on 𝛀
𝑙
𝑁

is defined by

d𝜇𝑙𝑁 (𝒙̄) :=
𝑁∏
𝑛=0

d𝜇𝑙𝑁 ,𝑛 (𝒙𝑛), (3)

where

d𝜇𝑙𝑁 ,𝑛 :=

{
d𝐴, 𝑏𝑛 (𝑙) = 1
d𝑉 , 𝑏𝑛 (𝑙) = 0

(4)

with d𝐴 and d𝑉 being the surface-area and volume measures, re-
spectively. It follows that the path space in Eq. (1) becomes

𝛀 :=
⋃
𝑁 ≥1

⋃2𝑁 +1−1
𝑙=0 𝛀

𝑙
𝑁
, (5)

associated with the measure

𝜇 (𝐷) := ∑
𝑁 ≥1

∑2𝑁 +1−1
𝑙=0 𝜇𝑙

𝑁

(
𝐷 ∩ 𝛀

𝑙
𝑁

)
. (6)

Measurement contribution. For a given light path 𝒙̄ = (𝒙0, . . . , 𝒙𝑁 ),
its measurement contribution is the product of per-vertex and per-
segment contributions:

𝑓 (𝒙̄) :=
[∏𝑁

𝑛=0 𝑓v (𝒙𝑛−1 � 𝒙𝑛 � 𝒙𝑛+1)
] [∏𝑁

𝑛=1𝐺 (𝒙𝑛−1 ↔ 𝒙𝑛)
]
.

(7)
In this equation, the per-vertex contribution equals

𝑓v (𝒙𝑛−1 � 𝒙𝑛 � 𝒙𝑛+1) :=
𝑓s (𝒙𝑛−1 � 𝒙𝑛 � 𝒙𝑛+1), 0 < 𝑛 < 𝑁 and 𝒙𝑛 ∈ M
𝜎s (𝒙𝑛) 𝑓p (𝒙𝑛−1 � 𝒙𝑛 � 𝒙𝑛+1), 0 < 𝑛 < 𝑁 and 𝒙𝑛 ∈ V0
𝐿e (𝒙0 � 𝒙1), 𝑛 = 0
𝑊e (𝒙𝑁−1 � 𝒙𝑁 ), 𝑛 = 𝑁

(8)

where 𝑓s is the bidirectional scattering distribution function
(BSDF); 𝑓p denotes the single-scattering phase function; and 𝜎s is
the scattering coefficient. Further, 𝐿e and𝑊e capture, respectively,
the source emission and detector importance (or response). In
this paper, we focus on surface sources (e.g., area lights) and detec-
tors (e.g., virtual camera sensors), which are used almost exclusively
in computer graphics and vision, yielding 𝒙0 ∈ M and 𝒙𝑁 ∈ M.

In Eq. (7), the per-segment contribution is given by the general-
ized geometric term defined as

𝐺 (𝒙 ↔ 𝒚) := V(𝒙 ↔ 𝒚) 𝜏 (𝒙 ↔ 𝒚)
𝐷𝒙 (𝒚) 𝐷𝒚 (𝒙)
∥𝒙 −𝒚∥2

, (9)

where V is the mutual visibility function and, for any 𝒙,𝒚 ∈ V ,

𝐷𝒙 (𝒚) :=
{��𝒏(𝒙) · −→𝒙𝒚�� , 𝒙 ∈ M
1, 𝒙 ∈ V0

(10)

with 𝒏(𝒙) being the (unit-length) surface normal at 𝒙 , and −→𝒙𝒚 :=
(𝒚−𝒙)/∥𝒚−𝒙 ∥. Further, 𝜏 (𝒙 ↔ 𝒚) indicates the transmittance be-
tween 𝒙 and 𝒚 that equals

𝜏 (𝒙 ↔ 𝒚) = exp
[
−

∫
𝒙𝒚 𝜎t (𝒙

′) dℓ (𝒙 ′)
]
, (11)

where 𝜎t is the extinction coefficient; 𝒙𝒚 denotes the line segment
connecting 𝒙 and 𝒚; and ℓ is the curve-length measure.
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Table 1. List of symbols commonly used in this paper.

Symbol Definition

𝜃 abstract scene parameter
M(𝜃 ) object surfaces
V(𝜃 ) volume encapsulating the scene
V0 (𝜃 ) V(𝜃 ) \ M(𝜃 )
𝑓 measurement contribution
𝛀(𝜃 ) path space
𝜕𝛀(𝜃 ) boundary path space
𝑙 path characteristic

X motion
BM reference surface
BV reference volume
BV0 BV \ BM
𝑓 material measurement contribution
𝛀̂ material path space
𝜕𝛀̂(𝜃 ) material boundary path space

4 GENERALIZED DIFFERENTIAL PATH INTEGRAL
We now derive derivatives of the generalized path integral of Eq. (1)
with respect to arbitrary scene parameters. To this end, we gen-
eralize the formulation of differential path integral introduced by
Zhang et al. [2020] for differentiable rendering of surfaces.

Specifically, we first introduce amaterial-form reparameterization
of Eq. (1) in §4.1. Then, we introduce the generalized differential
path integral in §4.2 and discuss how perspective pinhole cameras
and point lights can be supported using our formulation in §4.3.
Lastly, we discuss the relation between our technique and some
closely related prior works in §4.4. Table 1 summarizes the symbols
commonly used in this paper.

4.1 Material-Form Parameterization
Assume the (optical and/or geometric) properties of a scene to
be controlled by some abstract parameter 𝜃 ∈ R. In general, the
volume V encapsulating the scene and the union of object sur-
facesM ⊂ V can both depend on the parameter 𝜃 . This causes the
corresponding path space 𝛀 given by Eq. (5) to also depend on 𝜃 ,
making the differentiation of Eq. (1) more challenging.
To address this problem, Zhang et al. propose to apply a change

of variable to the ordinary path integral so that the new integral
domain is independent of the scene parameter 𝜃 . They have also
shown how this can be achieved for surface-only light transport
(using Veach’s formulation [1997]). In what follows, we demonstrate
how this idea can be realized for generalized path integrals.

Material path space. Let X be a differentiable mapping, or amo-
tion,2 such that X(·, 𝜃 ) is a smooth bijection that transforms (i) some
reference surface BM to M(𝜃 ) and (ii) some reference vol-
ume BV ⊃ BM to V(𝜃 ) ⊃ M(𝜃 ). We note that both BV and
BM are independent of the scene parameter 𝜃 . Additionally, we call
any 𝒙 ∈ V(𝜃 ) a spatial point and any 𝒑 ∈ BV a material point.
2We follow the terminology used by Zhang et al. [2020] originated in continuum and
fluid mechanics.

Let BV0 := BV \ BM . Following Eq. (2), we define the set of
material light paths 𝒑̄ of length 𝑁 (i.e. with 𝑁 segments) and
characteristic 𝑙 as

𝛀̂

𝑙

𝑁 :=

{
(𝒑0,𝒑1, . . . ,𝒑𝑁 ) : 𝒑𝑛 ∈

{
BM , 𝑏𝑛 (𝑙) = 1
BV0 , 𝑏𝑛 (𝑙) = 0

}
, (12)

associated with the measure 𝜇𝑙
𝑁
defined in Eq. (3) (where the surface

area and volume are with respect to the reference surface BM and
volume BV , respectively). Then, similar to Eq. (5), we define the
material path space 𝛀̂ as

𝛀̂ :=
⋃
𝑁 ≥1

⋃2𝑁 +1−1
𝑙=0 𝛀̂

𝑙

𝑁 , (13)

with an associated measure identical to the one expressed in Eq. (6).

Choices of reference configurations. In practice, we make the refer-
ence configurations coincide with the actual scene geometry with
the parameter 𝜃 fixed at some 𝜃0. Precisely, we set the reference sur-
face BM to the object surfacesM at 𝜃 = 𝜃0—that is, BM =M(𝜃0)—
and the reference volume to BV = V(𝜃0), as illustrated in Figure 2.
Under this setting, the mapping X(·, 𝜃0) : BV ↦→ V(𝜃0) reduces

to the identity map (that is, X(𝒑, 𝜃0) = 𝒑) for all 𝒑), causing the
material path space 𝛀̂ and the ordinary path space 𝛀 to coincide:
𝛀̂ = 𝛀(𝜃0). We note that X(·, 𝜃 ) generally does not equal the identity
map for 𝜃 ≠ 𝜃0.

We will discuss how X can be expressed and stored in §6.1.

Change of variable. The motion X induces a differentiable map-
ping X̄ such that X̄(·, 𝜃 ) transforms the material path space 𝛀̂ to
the ordinary one 𝛀(𝜃 ) for any 𝜃 . Precisely, X̄(·, 𝜃 ) maps a material
path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ) ∈ 𝛀̂ to an ordinary one 𝒙̄ ∈ 𝛀(𝜃 ):

𝒙̄ = X̄(𝒑̄, 𝜃 ) = (𝒙0, . . . , 𝒙𝑁 ), where 𝒙𝑛 = X(𝒑𝑛, 𝜃 ) for all 𝑛. (14)

By applying to Eq. (1) this change of variable from 𝒙̄ to 𝒑̄, we obtain
the material-form generalized path integral:

𝐼 =

∫
𝛀̂

𝑓 (𝒑̄) d𝜇 (𝒑̄), (15)

where 𝑓 is the material measurement contribution function
defined as

𝑓 (𝒑̄) := 𝑓 (𝒙̄)




 d𝜇 (𝒙̄)d𝜇 (𝒑̄)





 = 𝑓 (𝒙̄) ∏
𝑛

𝐽 (𝒑𝑛), (16)

where 𝒙̄ is the ordinary light path corresponding to 𝒑 given by
𝒙̄ = X̄(𝒑̄, 𝜃 ), and

𝐽 (𝒑) :=




 d𝐴(𝒙)d𝐴(𝒑)




 , 𝒑 ∈ BM


 d𝑉 (𝒙)d𝑉 (𝒑)




 . 𝒑 ∈ BV0

(17)

Since 𝒙 = X(𝒑, 𝜃 ), 𝐽 generally depends on the scene parameter 𝜃 .
With the aforementioned choices of reference configurations with
X(·, 𝜃0) reducing to the identity map for some fixed 𝜃0, 𝐽 |𝜃=𝜃0 will
always have unit value (with potentially nonzero derivative). We
will discuss how this term can be computed in practice in §6.2.
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Fig. 2. Material-form parameterization of a block whose horizontal
location is controlled by a parameter 𝜃 . In this example, the reference
surface BM and volume BV are selected as the block at some fixed 𝜃 = 𝜃0
(illustrated in orange). Then, the motion X captures the motion of the block
(hence the name) by mapping each point in the reference volume to the
corresponding one in the “moving” block via X( ·, 𝜃 ) for any 𝜃 . We show the
images V(𝜃 ) , 𝒙0 (𝜃 ) and 𝒙1 (𝜃 ) of the reference volume BV , an interior
point 𝒑0 ∈ BV0 and of a boundary point 𝒑1 ∈ BM , respectively, at 𝜃 = 𝜃1
and 𝜃 = 𝜃2.

(a) (b) (c) (d)

Fig. 3. A boundary segment 𝒙𝐾−1 𝒙𝐾 has property that its interior in-
tersects with another surface in the scene at exactly one point. This causes
the endpoint 𝒙𝐾 to lie on the discontinuity boundary of the visibility func-
tion V(𝒙𝐾−1 ↔ ·) with 𝒙𝐾−1 fixed (and vise versa). With the presence of
participating media, a boundary segment can connect two surface vertices
(a), two volume vertices (d), or one surface and one volume vertices (b, c).

4.2 Generalized Differential Path Integral
With the formulation of material-form generalized path integral
established, differentiable rendering of participating media boils
down to differentiating Eq. (15).

Continuity assumptions. To facilitate the derivation of the deriva-
tive, we make a few assumptions:

A.1 There is no ideal specular surface (e.g., perfect mirror or smooth
glass);

A.2 The source emission 𝐿e, sensor importance𝑊e, BSDFs 𝑓s, and
phase functions 𝑓p are 𝐶0-continuous spatially and direction-
ally;

A.3 The extinction coefficient 𝜎s and scattering coefficient 𝜎t are
continuous in the interior of each medium;

A.4 Discontinuities of the Jacobian determinants 𝐽 of Eq. (17), if
they exist, are independent of the parameter 𝜃 .

We note that Assumption A.2 can be relaxed and will discuss this
aspect in §4.3.

Boundary segment, path, and path space. We define a boundary
light path 𝒙̄ = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) to be a light path containing ex-
actly one boundary segment 𝒙𝐾−1 𝒙𝐾 (for some 0 < 𝐾 ≤ 𝑁 )
such that the interior of this segment intersects the object sur-
facesM(𝜃 ) at exactly one point (see Figure 3). We further denote
the set of all boundary paths (with finite length) as the boundary
path space 𝜕𝛀(𝜃 ).

The measure ¤𝜇 associated with the boundary path space satisfies
that, for any boundary path 𝒙̄ = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) with characteris-
tic 𝑙 and boundary segment 𝒙𝐾−1 𝒙𝐾 :

d ¤𝜇 (𝒙̄) =
(∏
𝑛≠𝐾

d𝜇𝑙𝑁 ,𝑛 (𝒙𝑛)
) {

dℓ (𝒙𝐾 ), 𝑏𝐾 (𝑙) = 1
d𝐴(𝒙𝐾 ), 𝑏𝐾 (𝑙) = 0

(18)

where d𝜇𝑙
𝑁 ,𝑛

is defined in Eq. (4).
Under the material-form parameterization described in §4.1, for

each boundary path 𝒙̄ ∈ 𝜕𝛀(𝜃 ) with boundary segment 𝒙𝐾−1 𝒙𝐾 ,
we call 𝒑̄ = X̄−1 (𝒙̄, 𝜃 ) amaterial boundary path, and the segment
𝒑𝐾−1 𝒑𝐾 on 𝒑̄ a material boundary segment. Additionally, we
define thematerial boundary path space 𝜕𝛀̂(𝜃 ) as the set of all
material boundary paths. We note that, unlike the material path
space 𝜕𝛀 that is independent of the scene parameter 𝜃 , the material
boundary path space 𝜕𝛀̂ does typically depend on 𝜃 . This is because,
with 𝒑𝐾−1 fixed, for 𝒑𝐾−1 𝒑𝐾 to be a material boundary segment,
𝒑𝐾 will need to depend on 𝜃 . We demonstrate this in Figure 4.

Generalized differential path integral. Based on AssumptionsA.1–
A.4, discontinuities of the material measurement contribution 𝑓
would fully emerge from the mutual visibility function V in the geo-
metric terms𝐺 . It follows that differentiating the material-form gen-
eralized path integral of Eq. (15) produces the following (material-
form) generalized differential path integral:

d𝐼
d𝜃

=

interior∫
𝛀̂

d𝑓 (𝒑̄)
d𝜃

d𝜇 (𝒑̄) +

boundary∫
𝜕𝛀̂

Δ𝑓 (𝒑̄) 𝑣 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) , (19)

where the definitions of individual terms will be discussed in the
following. For more details on the derivation of this result, please
see Appendix A.
• In the interior integral, d𝑓/d𝜃 indicates the scene derivative—a
type of material derivative—of the material measurement contri-
bution 𝑓 given by Eq. (16). This derivative is calculated based on
the relation of 𝒙̄ = X̄(𝒑̄, 𝜃 ).

• In the boundary integral, 𝜕𝛀̂ is the material boundary path space,
and the measure ¤𝜇 is defined in Eq. (18).

• For each material boundary path 𝒑̄ with material boundary seg-
ment 𝒑𝐾−1 𝒑𝐾 , the term 𝑣 (𝒑𝐾 ) is a scalar that captures how “fast”
(with respect to 𝜃 ) the discontinuity boundary evolves at𝒑𝐾 along
the normal direction (see Figure 4). Precisely,

𝑣 (𝒑𝐾 ) :=
d𝒑𝐾
d𝜃
· 𝒏(𝒑𝐾 ), (20)

where 𝒑𝐾 = X−1 (𝒙𝐾 , 𝜃 ), and “·” denotes the dot-product operator.
Additionally, when 𝒑𝐾 is a surface vertex, 𝒏(𝒑𝐾 ) is a unit vector
perpendicular to the discontinuity curve within the reference
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(b)(a)

Fig. 4. Evolution of discontinuity boundaries: when the scene geom-
etry varies with the parameter 𝜃 , so will the visibility boundaries. In this
example, 𝜃 controls the width of the surfaceM0. Then, to form a boundary
segment 𝒙𝐾−1 𝒙𝐾 with one endpoint 𝒙𝐾−1 fixed (on a surface or inside a
medium), the other endpoint 𝒙𝐾 can lay (a) on a curve within an object
surface (Mtop in this example); and (b) within a surface determined by 𝒙𝐾−1
and the left edge (in solid black lines) ofM0. The discontinuity curves and
surfaces (illustrated in orange) generally depend on the parameter 𝜃 . After
transforming these curves and surfaces back to the reference configuration
(using the inverse of X( ·, 𝜃 ) that maps 𝒙𝐾 (𝜃 ) to 𝒑𝐾 for all 𝜃 ), 𝑣 (𝒑𝐾 ) in
Eq. (19) captures the change rate (with respect to 𝜃 ) of 𝒑𝐾 along the normal
direction of the discontinuity curve or surface (under reference configura-
tions).

surface containing 𝒑𝐾 . When 𝒑𝐾 is a volume vertex, on the other
hand, 𝒏(𝒑𝐾 ) is a unit vector perpendicular to the corresponding
discontinuity surface in the reference volume. Further, evaluating
d𝒑𝐾/d𝜃 in Eq. (20) requires parameterizing locally the discontinuity
curve or surface near 𝒑𝐾 . We will discuss how this can be done
in practice in §6.3.

• Δ𝑓 (𝒑̄) denotes the difference in material measurement contribu-
tion 𝑓 across the discontinuity boundary. Based on our continuity
assumptions (A.1–A.4), it holds that

Δ𝑓 (𝒑̄) = 𝑓 (𝒑̄) Δ𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 )
𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 )

, (21)

where Δ𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 ) equals −𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 ) if the normal
(of the discontinuity boundary at 𝒙𝐾 ) points toward a region
visible to 𝒙𝐾−1, or 𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 ) if otherwise.

4.3 Supporting Pinhole Cameras and Point Lights
In the following, we discuss how perspective pinhole cameras and
point lights—which are commonly used in computer graphics and
vision—can be incorporated in our material path integral framework
established in §4.1 and §4.2.
With the detector being a pinhole camera located at 𝒙cam ∈ V0,

any light transport path must terminate at 𝒙cam to have a nonzero
measurement contribution. For a light path (𝒙0, . . . , 𝒙𝑁 , 𝒙cam), the
detector importance of the pinhole camera equals

𝑊
pinhole
e (𝒙𝑁 � 𝒙cam) :=

P(𝒙𝑁 )
(𝒏cam · −−−−−−−→𝒙cam 𝒙𝑁 )3

, (22)

where 𝒏cam is the camera’s axis of projection, −−−−−−−→𝒙cam 𝒙𝑁 denotes the
unit vector pointing from 𝒙cam toward 𝒙𝑁 , and P(𝒙𝑁 ) indicates the
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(b)

Fig. 5. Perspective pinhole camera: (a) To support this camera model, we
encode the contribution of the segment 𝒙𝑁 𝒙cam illustrated as gray dashed
arrows in the detector importance function via Eq. (23). (b) We also allow
𝒙𝑁 𝒙cam to be a boundary segment to capture the additional discontinuities
introduced by this segment.

pixel reconstruction filter—which we assume to be 𝐶0—evaluated
at the projection of 𝒙𝑁 on the image plane.
To avoid introducing additional Dirac delta functions in our

derivations, we do not treat 𝒙cam as an endpoint of all light paths.
Instead, we encode its contributions in the detector importance: For
any path (𝒙0, . . . , 𝒙𝑁 ) with 𝒙𝑁 being a standard surface or volume
vertex, we set

𝑊e (𝒙𝑁−1 � 𝒙𝑁 ) := 𝑓v (𝒙𝑁−1 � 𝒙𝑁 � 𝒙cam)

𝐺 (𝒙𝑁 ↔ 𝒙cam)𝑊 pinhole
e (𝒙𝑁 � 𝒙cam), (23)

where 𝑓v is defined in Eq. (8), and𝐺 is the geometric term of Eq. (9).
Then, as demonstrated in Figure 5-a, the measurement contribution
of a light path (𝒙0, . . . , 𝒙𝑁 ) with the detector importance of Eq. (23)
equals that of (𝒙0, . . . , 𝒙𝑁 , 𝒙cam) with Eq. (22).

Similarly, with a (uniform) point light located at 𝒙src, we encode
the contributions related to 𝒙src in the source emission 𝐿e by setting

𝐿e (𝒙0 � 𝒙1) := 𝑓v (𝒙src � 𝒙0 � 𝒙1)𝐺 (𝒙src ↔ 𝒙0) I, (24)

where I denotes the intensity of the point light.
We note that our formulations of Eqs. (23) and (24) are mostly the-

oretical: They allow pinhole cameras and point lights to be handled
using the same derivations in §4.1 and §4.2.

Material-form formulation. In general, the position 𝒙cam and ori-
entation 𝒏cam of a pinhole camera can be functions of the scene
parameter 𝜃 and can be parameterized using the material-form for-
mulation as follows. Let 𝒑 (0)cam and 𝒑 (1)cam be two fixed points in the
reference volume BV0 that represent, respectively, the camera’s cen-
ter of projection and a point along the center axis. Then, for all 𝜃 ,
we have

𝒙cam (𝜃 ) := X(𝒑 (0)cam, 𝜃 ), (25)

𝒏cam (𝜃 ) :=
X(𝒑 (1)cam, 𝜃 ) − X(𝒑

(0)
cam, 𝜃 )


X(𝒑 (1)cam, 𝜃 ) − X(𝒑
(0)
cam, 𝜃 )




 . (26)

The position 𝒙src of a point light can be parameterized in a similar
fashion as Eq. (25).

Handling discontinuities. The inclusion of the generalized geo-
metric term𝐺 (𝒙𝑁 ↔ 𝒙cam) in Eq. (23) and𝐺 (𝒙src � 𝒙0) in Eq. (24)
can violate the assumption (A.2) of𝑊e and 𝐿e being continuous.
Fortunately, this can be handled easily by including a new set of
material boundary paths in the boundary term of Eq. (19).
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Specifically, for pinhole cameras, we consider 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 )
such that 𝒑𝑁 is a discontinuity point of 𝐺 (𝒙𝑁 ↔ 𝒙cam). In other
words, we allow 𝒙𝑁 𝒙cam to be a boundary segment (see Figure 5-b).
Similarly, when handling point lights, we track discontinuities of
𝒙0 such that 𝒙src 𝒙0 is effectively a boundary segment.

Other zero-measure detectors and sources. Using the formulations
outlined in Eqs. (23) and (24), other zero-measure detectors (e.g.,
orthographic cameras) and sources (e.g., directional lights) can be
handled in a similar manner. In case of a directional light with
incident direction𝝎src, we can encode its contributions in the source
emission by letting

𝐿e (𝒙0 � 𝒙1) := 𝑓v (𝒙0,𝝎src,
−−−→𝒙0𝒙1) V(𝒙0,𝝎src) I, (27)

where V(𝒙0,𝝎src), which can be discontinuous with respect to 𝒙0,
indicates whether a ray with origin 𝒙0 and direction 𝝎src can reach
infinity without being occluded.

4.4 Relation to Prior Works
Relation to differential radiative transfer. Theoretically, our gen-

eralized differential path integral of Eq. (19) offers the same level
of generality as the differential theory of radiative transfer (DTRT)
[Zhang et al. 2019], since both formulations allow differentiating
volumetric light transport with respect to arbitrary scene parame-
ters.
On the other hand, our mathematical framework enjoys several

significant advantages in practice.
Firstly, thanks to the material-form parameterization (§4.1), our

formulation requires tracking fewer types of discontinuities. For
example, DTRT involves boundary terms emerging from differenti-
ating the line integral in the (integral-form) radiative transfer equa-
tion. Our formulation, on the other hand, only requires handling
discontinuities resulting from the mutual visibility V.
Secondly, being a path-space formulation, our technique allows

the design of sophisticated Monte Carlo estimators (which we will
discuss in §5) that are capable of handling complex light transport
effects efficiently without the need of explicit silhouette detection.

Relation to path-space differentiable rendering. The differential
path integral formulation introduced by Zhang et al. [2020] is limited
to surface-only light transport and essentially a special case of
Eq. (19). Further, Zhang et al. have assumed the absence of zero-
measure sources, while we show how this can be relaxed in §4.3.

5 MONTE CARLO ESTIMATORS
We now derive new unbiased and consistent Monte Carlo estimators
for our generalized differential path integral of Eq. (19). We focus
on the problem of estimating d𝐼

d𝜃 (𝜃0) for some user-specified 𝜃0.
Further, we set the reference configurations (that is, the reference
volume and surface) as the scene geometry at 𝜃 = 𝜃0 (as discussed
in §4.1).

Thanks to the full separation between the interior and boundary
terms in the generalized differential path integral, we estimate these
terms in a separated fashion. In the rest of this section, we discuss
the estimation of the interior integral in §5.1 and that of the boundary
integral in §5.2. We keep discussions in this section high-level and
provide some implementation details in §6.
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Fig. 6. Pixel-level antithetic sampling: As a function of 𝒙⊥
𝑁
, pixel re-

construction filters usually exhibit point symmetry (a), causing its spatial
derivative to be an odd function that can produce high variance when esti-
mating the interior integral (b1). With our pixel-level antithetic sampling,
significant variance reduction can be achieved (b2). In this example, the
derivatives in (b1) and (b2) are computed with respect to the bunny’s vertical
position, and the ordinary image is shown as an inset in (b1).

5.1 Estimating the Interior Integral
With our choice of reference configurations, the material path
space 𝛀̂ coincides with the ordinary one 𝛀(𝜃0). This allows esti-
mating the interior integral in Eq. (19) using path sampling methods
developed for forward rendering.

Specifically, we sample a material path 𝒑̄ with probability density
prob(𝒑̄) using standard techniques (such as volumetric path tracing
or bidirectional path tracing). This path sampling process does not
need to be differentiated since the material path space 𝛀̂ and all
material paths 𝒑̄ ∈ 𝛀̂ are independent of the scene parameter 𝜃 (and
thus have zero derivatives).
With the material path 𝒑̄ constructed, we compute the corre-

sponding oridinary path 𝒙̄ ∈ 𝛀(𝜃0) by setting 𝒙𝑛 = X(𝒑𝑛, 𝜃0) for
each vertex 𝒑𝑛 of 𝒑̄. We note that, although 𝒙𝑛 takes the same value
as 𝒑𝑛 for all𝑛 (as X(·, 𝜃0) reduces to the identity map with our choice
of references), the derivative d𝒙𝑛

d𝜃 (𝜃0)—which can be obtained by
differentiating the motion X—is typically nonzero.

Lastly, we compute the material measurement contribution 𝑓 of

Eq. (16) in a differentiable fashion to obtain d𝑓 (𝒑̄)
d𝜃 (𝜃0). Returning

this derivative divided by the path sampling probability prob(𝒑̄)
completes our Monte Carlo estimation of the interior term in Eq. (19).

Pixel-level antithetic sampling. Antithetic sampling is a classic
variance-reduction framework for Monte Carlo estimation [Ham-
mersley and Mauldon 1956]. When estimating integrals of the form∫
ℎ(𝑥) d𝑥 where ℎ is an approximately odd function, it is desired to

use correlated pairs samples 𝑥 and −𝑥 so that ℎ(𝑥) + ℎ(−𝑥) ≈ 0. Re-
cently, Zhang et al. [2021] have introduced this idea to differentiable
rendering of glossy and near-specular materials.

We apply antithetic sampling at the pixel level. Specifically, when
using perspective pinhole cameras given by Eqs. (22) and (23), the
interior component of the generalized differential path integral in-
volves derivative of the pixel reconstruction filter P satisfying:

dP
d𝜃

=
𝜕P
𝜕𝒙⊥
𝑁

d𝒙⊥
𝑁

d𝜃
, (28)
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xD
1

Fig. 7. We rename the vertices of a boundary path such that 𝒙S
0 𝒙

D
0 is the

boundary segment (illustrated in red). The source and detector subpaths are
shown in yellow and green, respectively. The arrows in this figure illustrate
the physical flow of light (that is from the source to the detector) and do
not indicate how the subpaths are constructed.

where 𝒙⊥
𝑁

denotes the projection of 𝒙𝑁 on the image plane (see
Figure 6-a), and the derivative d𝒙⊥

𝑁/d𝜃 can be calculated based on
d𝒙𝑁/d𝜃 given by our material-form parameterization 𝒙𝑁 = X(𝒑𝑁 , 𝜃 ).

In practice, the pixel reconstruction filter P, as a function of 𝒙⊥
𝑁
,

usually exhibit point symmetry with respect to the pixel center. This
causes the (vector-valued) spatial derivative 𝜕P/𝜕𝒙⊥

𝑁
to be an odd

function. To reduce the variance introduced by this derivative, we
generate pairs of samples that are point-symmetric with respect to
the center of the pixel. Figure 6-b demonstrates the effectiveness of
our pixel-level antithetic sampling.

5.2 Estimating the Boundary Integral
To estimate the boundary integral, Zhang et al. [2020] introduced a
multi-directional sampling technique that starts with drawing the
material boundary segment 𝒑𝐾−1 𝒑𝐾 (such that 𝒑𝐾 is a jump dis-
continuity point of V(𝒑𝐾−1 ↔ 𝒑𝐾 ) when 𝒑𝐾 is fixed). This avoids
explicit silhouette detections that can be expensive for complex
scenes. Their technique, unfortunately, is derived for the surface-
only case. In what follows, we generalize this technique to also
support participating media.

Multi-directional boundary integral. To facilitate the development
of our Monte Carlo estimator of the boundary integral, we first
rewrite this integral in a multi-directional form. The derivations
of Eq. (29)–(35) are mostly identical to those from the work by
Zhang et al. [2020], and we show them nonetheless for completeness.

We start with renaming the vertices of a material boundary path
𝒑̄ ∈ 𝜕𝛀̂:

𝒑̄ = (𝒑S
𝑠 ,𝒑

S
𝑠−1, . . . ,𝒑

S
0,𝒑

D
0 ,𝒑

D
1 , . . . ,𝒑

D
𝑡 ), (29)

such that 𝒑S
𝑠 and 𝒑D

𝑡 are located, respectively, on the source and the
detector;3 and 𝒑S

0 𝒑
D
0 is the material boundary segment. Similarly,

we rename vertices of the corresponding boundary path as 𝒙̄ =

(𝒙S𝑠 , 𝒙S𝑠−1, . . . , 𝒙
S
0, 𝒙

D
0 , 𝒙

D
1 , . . . , 𝒙

D
𝑡 ), as illustrated in Figure 7. Similar

to the estimation of the interior integral (discussed in §5.1), under
our choice of reference configurations, a material boundary path
and its ordinary counterpart coincide.
This allows us to factorize the integrand of the boundary com-

ponent of Eq. (19) into contributions of the segment 𝒑S
0 𝒑

D
0 , the

3When the detector is a pinhole camera, as discussed in §4.3, 𝒑D
𝑡 is further connected

to the camera’s center of projection 𝒑 (0)cam (instead of being on the sensor).

source subpath 𝒑̄ S = (𝒑S
𝑠 , . . . ,𝒑

S
0), and the detector subpath 𝒑̄ D :=

(𝒑D
0 , . . . ,𝒑

D
𝑡 ), respectively:

Δ𝑓 (𝒑̄) 𝑣 (𝒑𝐾 ) = 𝑓 B (𝒑S
0,𝒑

D
0 )︸        ︷︷        ︸

boundary seg.

𝑓 S (𝒑̄ S;𝒑D
0 )︸        ︷︷        ︸

src. subpath

𝑓 D (𝒑̄ D;𝒑S
0)︸         ︷︷         ︸

det. subpath

, (30)

where

𝑓 B (𝒑S
0,𝒑

D
0 ) := Δ𝐺 (𝒙S0 ↔ 𝒙D0 ) 𝑣 (𝒑

D
0 ), (31)

𝑓 S (𝒑̄ S;𝒑D
0 ) := 𝑓v (𝒑

S
1 � 𝒑S

0 � 𝒑D
0 )∏𝑠

𝑛=1 𝑓v (𝒙S𝑛+1 � 𝒙S𝑛 � 𝒙S
𝑛−1)𝐺 (𝒙

S
𝑛 ↔ 𝒙S

𝑛−1), (32)

𝑓 D (𝒑̄ D;𝒑S
0) := 𝑓v (𝒑

S
0 � 𝒑D

0 � 𝒑D
1 )∏𝑡

𝑛=1 𝑓v (𝒙D𝑛−1 � 𝒙D𝑛 � 𝒙D
𝑛+1)𝐺 (𝒙

D
𝑛−1 ↔ 𝒙D𝑛 ) . (33)

In Eqs. (32) and (33), 𝐺 is the geometric term, and 𝑓v captures both
per-vertex contribution 𝑓v of Eq. (8) and the Jacobian determinant 𝐽
of Eq. (17). That is, for any 𝒑1,𝒑2,𝒑3 ∈ BV and 𝒙𝑛 = X(𝒑𝑛, 𝜃 ) for
𝑛 = 1, 2, 3:

𝑓v (𝒑1 � 𝒑2 � 𝒑3) := 𝑓v (𝒙1 � 𝒙2 � 𝒙3) 𝐽 (𝒑2) . (34)

With its integrand expressed using Eq. (35), we can rewrite the
boundary integral in its multi-directional form as:4∬

𝑓 B (𝒑S
0,𝒑

D
0 )

[∫
𝑓 S (𝒑̄ S;𝒑D

0 ) d𝒑̄
S
0

]
[∫

𝑓 D (𝒑̄ D;𝒑S
0) d𝒑̄

D
0

]
d𝒑D

0 d𝒑S
0, (35)

where the outer integral is over the material boundary segment
𝒑S
0 𝒑

D
0 . Additionally, 𝒑̄

S
0 and 𝒑̄ D

0 denote the source and detector sub-
paths with endpoints 𝒑S

0 and 𝒑
D
0 of the boundary segment excluded,

respectively. That is, 𝒑̄ S
0 := (𝒑S

𝑠 , . . . ,𝒑
S
1) and 𝒑̄

D
0 := (𝒑D

1 , . . . ,𝒑
D
𝑡 ).

In the case of surface-only rendering, both 𝒑S
0 and 𝒑D

0 would
always be surface vertices (Figure 3-a). With the presence of partici-
pating media, on the other hand, they both can be either a surface or
a volume vertex, leading to three extra combinations (Figure 3-bcd).

Change of variable. To facilitate efficient sampling of the ma-
terial boundary segment 𝒑S

0 𝒑
D
0 , we apply a series of changes of

variables to Eq. (35) as follows. First, we use the predetermined
differentiable mapping X(·, 𝜃 ) to make the outer integral to be over
the corresponding boundary segment 𝒙S0 𝒙

D
0 . In principle, this re-

quires computing the Jacobian determinant ∥ (d𝒑S
0 d𝒑

D
0 )/(d𝒙S

0 d𝒙
D
0 )∥

based on the mapping X(·, 𝜃 ). In practice, because of our choice of
reference configurations, the Jacobian determinant reduces to one
(i.e., ∥ (d𝒑S

0 d𝒑
D
0 )/(d𝒙S

0 d𝒙
D
0 )∥ ≡ 1).

Then, let 𝒙B be the intersection point between 𝒙S0 𝒙
D
0 and the

union of all object surfaces and 𝝎B be the direction of this bound-
ary segment (i.e., a unit vector pointing from 𝒙S0 to 𝒙

D
0 ). We apply

another change of variable to make the outer integral to be on 𝒙B

and 𝝎B. We note that the point 𝒙B is not a vertex of the resulting
boundary path—we use it only for sampling purposes.

4We omit the integral domains and measures in Eq. (35) for notational simplicity.
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Fig. 8. Illustrations for deriving the change-of-variable Jacobian determi-
nants expressed in Eqs. (40)–(43).

In what follows, we derive the Jacobian determinants correspond-
ing to this change of variable. We base our derivations on the as-
sumption that all surfaces in the scene are represented using polyg-
onal meshes. In this case, 𝒙B will always belong to an edge of some
polygonal face.

To facilitate the derivation of the Jacobian determinants, we first
relate d𝒙S0 to d𝜎 (𝝎B) and d𝒙D0 to dℓ (𝒙B) as follows.

• When 𝒙S0 is a surface vertex, as illustrated in Figure 8-a1, we have

d𝐴(𝒙S0) | cos𝜙
S |

(𝑟S)2
= d𝜎 (𝝎B), (36)

where 𝑟S := ∥𝒙B − 𝒙S0 ∥ is the distance between 𝒙B and 𝒙S0; 𝜙
S is

the angle between the segment 𝒙S0 𝒙
B and the surface normal at

𝒙S0 ; and 𝜎 is the solid-angle measure.

• When 𝒙S0 is a volume vertex, as shown in Figure 8-a2, we have

d𝑉 (𝒙S0)
(𝑟S)2

= d𝜎 (𝝎B) d𝑟S . (37)

• When 𝒙D0 is a surface vertex, for 𝒙S0 𝒙
D
0 to be a boundary segment

with 𝒙S0 fixed, 𝒙
D
0 belongs to a curve (see Figure 8-b1). In this case,

we have
dℓ (𝒙D0 ) sin𝜙

D

𝑟D
=

dℓ (𝒙B) sin𝜙B

𝑟S
, (38)

where 𝑟D := ∥𝒙D0 − 𝒙
S
0 ∥ is the distance between 𝒙D0 and 𝒙S0 , and

𝜙D is the angle between 𝝎B and the curve’s tangent at 𝒙D0 .

• When 𝒙D0 is a volume vertex, it resides on a surface determined
by the point 𝒙B and direction 𝝎B (see Figure 8-b2). It follows that

d𝐴(𝒙D0 )
𝑟D

=
dℓ (𝒙B) sin𝜙B

𝑟S
d𝑟D . (39)

Based on the relations given by Eqs. (36)–(39), we derive the
Jacobian determinants for changes of variables from 𝒙S0 and 𝒙

D
0 to

𝒙B and 𝝎B (as well as 𝑟S, 𝑟D when needed). Specifically:
• When both 𝒙S0 and 𝒙

D
0 are surface vertices, according to Eqs. (36)

and (38), we have




 d𝐴(𝒙S0) dℓ (𝒙D0 )dℓ (𝒙B) d𝜎 (𝝎B)






 = 𝑟S 𝑟D sin𝜙B

sin𝜙D | cos𝜙S |
. (40)

• With 𝒙S0 being a surface vertex and 𝒙
D
0 a volume vertex, multiply-

ing Eqs. (36) and (39) yields




 d𝐴(𝒙S0) d𝐴(𝒙
D
0 )

dℓ (𝒙B) d𝜎 (𝝎B) d𝑟D






 = 𝑟S 𝑟D sin𝜙B

| cos𝜙S |
. (41)

• With 𝒙S0 being a volume vertex and 𝒙D0 a surface vertex, multiply-
ing Eqs. (37) and (38) gives




 d𝑉 (𝒙S0) dℓ (𝒙

D
0 )

dℓ (𝒙B) d𝜎 (𝝎B) d𝑟S






 = 𝑟S 𝑟D sin𝜙B

sin𝜙D
. (42)

• Lastly, when both 𝒙S0 and 𝒙D0 are volume vertices, according to
Eqs. (37) and (39), we have




 d𝑉 (𝒙S0) d𝐴(𝒙

D
0 )

dℓ (𝒙B) d𝜎 (𝝎B) d𝑟S d𝑟D






 = 𝑟S 𝑟D sin𝜙B . (43)

We note that, among the four cases discussed above, Zhang et al. [2020]
only derived the first one—namely Eq. (40)—as Eq. (48) of their paper.

Using these relations, we can rewrite the multi-directional bound-
ary integral of Eq. (35). When 𝒙S0 and 𝒙

D
0 are both volume vertices,

for instance, we have5∫
E

∫
S2

∫ ∞

0

∫ ∞

𝑟 S

[
𝑓 B (𝒑S

0,𝒑
D
0 ) 𝑟

S 𝑟D sin𝜙B
]

[∫
𝛀̂

𝑓 S d𝜇
] [∫

𝛀̂

𝑓 D d𝜇
]
d𝑟D d𝑟S d𝜎 (𝝎B) dℓ (𝒙B), (44)

where E denotes the union of all face edges.
Boundary integrals of the other three cases (when at least one of

𝒙S0 and 𝒙
D
0 is a surface vertex) can be expressed in a similar fashion.

Sampling boundary segments. Based on the reparameterized bound-
ary integrals like Eq. (44), we develop a generalizedmulti-directional
sampling algorithm (Algorithm 1) to estimate the boundary compo-
nent of the generalized differential path integral.
Our algorithm starts with sampling an interior point 𝒙B and

direction 𝝎B of the boundary segment from some predetermined
probability density P (Line 3).
Then, we obtain the two endpoints 𝒙S0 and 𝒙D0 of the bound-

ary segment as well as the corresponding probabilities probS and
probD using the sampleInteraction(𝒙,𝝎) function (Lines 4, 5).
For any given 𝒙 and 𝝎, this function returns a randomly sam-
pled volume or surface vertex along the ray (𝒙,𝝎), accompanied

5Strictly, the integral of 𝝎B in Eq. (44) should be over a subset of S2 so that the
resulting boundary segment does not penetrate any surface. Please refer to the work
by Zhang et al. [2020] for more details.
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ALGORITHM1:Monte Carlo estimator of the boundary integral (35)

1 EstimateBoundaryIntegral()

2 begin
/* Sample boundary segment */

3 Draw (𝒙B,𝝎B) ∼ P;
4 (𝒙S

0, prob
S) ← sampleInteraction(𝒙B,−𝝎B) ;

5 (𝒙D
0 , prob

D) ← sampleInteraction(𝒙B,𝝎B) ;
/* Compute Jacobian determinant */

6 𝑟 S ← ∥𝒙B − 𝒙S
0 ∥; 𝑟D ← ∥𝒙D − 𝒙S

0 ∥;
7 𝐽 B ← 𝑟 S 𝑟D sin𝜙B;
8 if 𝒙S

0 is a surface vertex then
9 𝐽 B ← 𝐽 B/ | cos𝜙S |;

10 end
11 if 𝒙D

0 is a surface vertex then
12 𝐽 B ← 𝐽 B/sin𝜙D;
13 end

/* Evaluate boundary segment */

14 𝒑S0 ← 𝒙S
0 ; 𝒑D0 ← 𝒙D

0 ;

15 𝑇 B ←
𝑓 B (𝒑S0, 𝒑

D
0 ) 𝐽 B

P(𝒙B,𝝎B) probS probD
;

/* Sample and evaluate source & detector subpaths */

16 𝑇 S ← EstimateSourcePath(𝒑S0 ; 𝒑
D
0 ) ;

17 𝑇D ← EstimateDetectorPath(𝒑D0 ; 𝒑S0) ;
18 return𝑇 B𝑇 S𝑇D;
19 end

with the corresponding probability. Specifically, we follow the stan-
dard procedure in volumetric path tracing by first drawing a free-
flight distance 𝑡 ≥ 0 from an exponential distribution with the pdf
𝑝 (𝑡) = 𝜎t (𝒙 + 𝑡𝝎) exp(−

∫ 𝑡
0 𝜎t (𝒙 + 𝑠𝝎) d𝑠) with 𝜎t being the ex-

tinction coefficient. For heterogeneous media, this can be achieved
using techniques like delta tracking [Woodcock et al. 1965]. If the
line segment connecting 𝒙 and (𝒙 + 𝑡 𝝎) does not intersect any
object surface, the function returns a volume vertex of (𝒙 + 𝑡 𝝎).
Otherwise, let (𝒙+𝑡0 𝝎) be the first intersection along the ray (𝒙,𝝎),
sampleInteraction returns this point as a surface vertex.

Sampling subpaths. With the boundary segment 𝒙S0 𝒙
D
0 drawn,

we compute based on Eqs. (40)–(43) the corresponding Jacobian
determinant 𝐽B (Lines 6–12). This allows the contribution 𝑇B of the
boundary segment 𝒙S0 𝒙

D
0 to be computed (Line 15).

Lastly, we estimate the contributions of the source and detector
subpaths 𝒑̄ S and 𝒑̄ D, respectively, using standard techniques such as
volumetric path tracing (Lines 16 and 17), completing our estimation
of the boundary integral.

6 IMPLEMENTATION DETAILS
Wenow discuss some important aspects for implementing theMonte
Carlo estimators presented in §5.

6.1 Representing the Motion
A key ingredient of our material-form parameterization presented
in §4.1 is the motion X that, for each 𝜃 , gives a differentiable bijection

-0.5

0.5

(a) Ordinary (b) Derivative (c) dX(·,𝜃 )/d𝜃

Fig. 9. Representing the motion: This example consists of a bunny in-
side a Cornell box filled with a homogeneous medium (a). To estimate the
derivative with respect to the position of the bunny along the 𝑥-axis (b), we
set the derivative dX(𝒑,𝜃 )/d𝜃 of the motion to [1, 0, 0] for all 𝒑 on the surface
of the bunny, and to zero for 𝒑 on the box. To smoothly interpolate these
derivatives in the interior of the medium, we tetrahedralize its volume (with
boundaries given by the bunny and the box) and apply trilinear interpolation
in each tetrahedron. We visualize a 2D slice of the resulting dX(·,𝜃 )/d𝜃 in
(c), where the intensity of each pixel indicates the value of the derivative’s
𝑥-component.

X(·, 𝜃 ) that maps the reference surface BM and volume BV to the
object surfacesM(𝜃 ) and volumeV(𝜃 ), respectively.

As aforementioned, we focus on the problem of estimating d𝐼/d𝜃
at some user-specified 𝜃 = 𝜃0 based on the generalized differential
path integral of Eq. (19). When using the reference configurations
discussed in §4.1, X(·, 𝜃0) reduces to the identity map and does not
have to be explicitly stored. Thus, it suffices to specify the derivative
[dX(𝒑,𝜃 )/d𝜃]𝜃=𝜃0 for each 𝒑 ∈ BV as a vector field.

Affine deformation. If the deformation of an object is affine, the
corresponding motion can be expressed as X(𝒑, 𝜃 ) = 𝑹 (𝜃 )𝒑 + 𝒕 (𝜃 ),
where 𝑹 (𝜃 ) is an invertible matrix and 𝒕 (𝜃 ) is a vector. Assuming
that ¤𝑹 := d𝑹/d𝜃 and ¤𝒕 := d𝒕/d𝜃 can be calculated analytically, we have
[dX(𝒑,𝜃 )/d𝜃]𝜃=𝜃0 = ¤𝑹 (𝜃0)𝒑 + ¤𝒕 (𝜃0), which can be computed easily
on the fly.

Non-affine deformation. To express general non-affine deforma-
tions, we use a tetrahedral mesh with the derivative values defined
at each vertex. For the 𝑖-th vertex of the tetrahedral mesh, we store
its position 𝒑𝑖 and the derivative ¤𝒙𝑖 := [dX(𝒑𝑖 ,𝜃 )/d𝜃]𝜃=𝜃0 . In prac-
tice, this can be implemented by representing vertex positions as
automatic-differentiation-enabled vectors 𝒙𝑖 . In this way, it holds
that 𝒑𝑖 = detach(𝒙𝑖 ), and ¤𝒙𝑖 can be obtained via automatic differ-
entiation.

In the interior of each tetrahedron, we perform a trilinear interpo-
lation to obtain the derivative. Although higher-order interpolations
is possible, we find using a linear one to suffice for our purpose.

In practice, non-affine deformations such as stretching of amedium
(as a continuum) are typically pre-specified using tetrahedral meshes.
In this case, we reuse these meshes to represent our motion X.

When no tetrahedral mesh is provided as input, we tetrahedralize
the input polygonal mesh using the TetGen library [Si 2015] so that
the constructed tetrahedral mesh shares the same set of vertices
as the input boundary mesh (see Figure 9 for an example). In our
experiments, the computational overhead of this step is negligible.
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Fig. 10. Differentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite differences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the differentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

Alternatively, one can interpolate derivatives [dX(𝒑,𝜃 )/d𝜃]𝜃=𝜃0
specified on a medium’s boundary to its interior using techniques
like mean value coordinates [Thiery et al. 2018].

6.2 Computing Jacobian Determinants
Another important term to our material-form parameterization is
the Jacobian determinant expressed in Eq. (17).

Under our choice of references, when 𝒑 is a surface vertex located
on a triangle (that is a face of some tetrahedron) with vertices 𝒑A,
𝒑B and 𝒑C, the Jacobian determinant ∥d𝐴(𝒙)/d𝐴(𝒑)∥ captures the
change rate of this triangle’s area with respect to 𝜃 and is constant
in the interior of the triangle. Specifically, we have



 d𝐴(𝒙)d𝐴(𝒑)





 = ∥(𝒙A − 𝒙C) × (𝒙B − 𝒙C)∥

(𝒑A − 𝒑C) × (𝒑B − 𝒑C)


 , (45)

where “×” denotes the cross product of two vectors.
When 𝒑 is a volume vertex inside a tetrahedron with vertices 𝒑A,

𝒑B, 𝒑C and 𝒑D, the Jacobian determinant ∥d𝑉 (𝒙)/d𝑉 (𝒑)∥ indicates
the change rate of this tetrahedron’s volume:



 d𝑉 (𝒙)d𝑉 (𝒑)





 = | (𝒙A − 𝒙D) · ((𝒙B − 𝒙D) × (𝒙C − 𝒙D)) |��(𝒑A − 𝒑D) · ((𝒑B − 𝒑D) × (𝒑C − 𝒑D))
�� . (46)

In practice, as described in §6.1, by expressing vertex positions as
automatic-differentiation-enabled vectors, the derivatives of Eqs. (45)
and (46) can be obtained easily.

Continuity property. Given Eqs. (45) and (46), it holds that the
Jacobian determinant 𝐽 defined in Eq. (17) is piecewise constant

with discontinuity boundaries being the faces of the tetrahedra.
Since the tetrahedron mesh is defined in the reference volume and
independent of the scene parameter 𝜃 , so are the discontinuity
boundaries of 𝐽 , satisfying our continuity assumption of A.4.

6.3 Computing Change Rates of Discontinuity Boundaries
A key term in the boundary component of our generalized differen-
tial path integral of Eq. (19) is 𝑣 (𝒑𝐾 ) that captures the change rates
of discontinuities boundaries with respect to the scene parameter 𝜃 .

In practice, evaluating this term using Eq. (20) largely amounts to
computing d𝒑𝐾/d𝜃 that, in turn, requires parameterizing the corre-
sponding discontinuity curve or surface near 𝒑𝐾 . Under our multi-
directional formulation described in §5.2, 𝒑𝐾 is renamed as 𝒑D

0 . In
what follows, we discuss the computation of 𝑣 (𝒑D

0 ) at some 𝜃 = 𝜃0
with the motion X represented as discussed in §6.1.

To obtain 𝒑D
0 , we first compute 𝒙D0 ∈ V(𝜃0) in a differentiable

fashion and then transform it back to the reference configuration.
Without loss of generality, assume that

𝒙B = 𝜉1 𝒙P + (1 − 𝜉1) 𝒙Q, 𝝎B =
𝒙B − 𝒙S0

𝒙B − 𝒙S0

 , (47)

where 𝒙P, 𝒙Q ∈ M(𝜃0) are the positions of two mesh vertices (such
that the face edge 𝒙P 𝒙Q contains 𝒙B), and 𝜉1 ∈ [0, 1] is some real
number independent of 𝜃 . In Eq. (47), 𝒙P, 𝒙Q, and 𝒙S0 can all be ex-
pressed as automatic-differentiation-enabled vectors (as discussed
in §6.1). In what follows, we discuss how 𝒙D0 and 𝒑D

0 —which depend
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Fig. 11. Inverse-rendering comparisons using gradients estimated with our technique and DTRT [Zhang et al. 2019]. For each example, we use identical
optimization algorithms (i.e., Adam [Kingma and Ba 2014]), objective functions (i.e., image RMSE), learning rates, and initial configurations. We also adjust the
sample count so that both methods take approximately equal time per iteration. The parameter RMSE is used only for evaluation (and not for optimization).
Images in columns (a, c, d) contain Monte Carlo noise as we use noisy (but unbiased) estimates for the inverse-rendering optimizations.

on the scene parameter 𝜃 in general—can be computed in a differ-
entiable fashion given 𝒙B and 𝝎B. After obtaining the derivative
[d𝒑D

0/d𝜃]𝜃=𝜃0 , we can compute the change rate 𝑣 (𝒑D
0 ) using Eq. (20).

Surface case. When 𝒙D0 is a surface vertex, as illustrated in Fig-
ure 8-b1, 𝒙D0 and its derivative [d𝒙D

0/d𝜃]𝜃=𝜃0 can be computed using
differentiable ray tracing:

𝒙D0 = rayTrace(𝒙B,𝝎B). (48)

Then, we obtain 𝒑D
0 by transforming 𝒙D0 back to the reference sur-

face. Assume that

𝒙D0 = (1 − 𝑢1 − 𝑢2) 𝒙A + 𝑢1 𝒙B + 𝑢2 𝒙C, (49)

where: 𝒙A, 𝒙B, 𝒙C ∈ M(𝜃0) are vertices of the mesh face containing
𝒙D0 ; (𝑢1, 𝑢2) are barycentric coordinates of 𝒙

D
0 within the triangular

face. Further, 𝒙A, 𝒙B, 𝒙C, 𝑢1, and 𝑢2 are determined by the dif-
ferentiable ray tracing process and can all depend on the scene
parameter 𝜃 . Given Eq. (49), it follows that

𝒑D
0 = (1 − 𝑢1 − 𝑢2) 𝒑A + 𝑢1 𝒑B + 𝑢2 𝒑C, (50)

where 𝒑∗ = X−1 (𝒙∗, 𝜃0) = detach(𝒙∗) for each ∗ ∈ {A, B,C}.
We note that, given Eqs. (47)–(50), we essentially parameterize

the discontinuity curve near 𝒑D
0 using 𝜉1.

Volume case. When 𝒙D0 is a volume vertex, as illustrated in Fig-
ure 8-b2, it must lie on the discontinuity plane determined by 𝒙S0
and the face edge 𝒙P 𝒙Q containing 𝒙B. Assume that

𝒙D0 = 𝒙S0 + 𝜉2 (𝒙
B − 𝒙S0), (51)

Table 2. Performance statistics for the inverse-rendering results in Fig-
ures 11 and 12. The “time” numbers indicate average computation time
per iteration for both our technique and DTRT [Zhang et al. 2019] (when
applicable). The experiments are conducted on a workstation equipped with
8-core intel i7-7820X CPU.

Scene Branches Bust Bumpy sph. Spheres Bunny Pool
(Fig. 11) (Fig. 11) (Fig. 11) (Fig. 12) (Fig. 12) (Fig. 12)

# param. 1 1 2 2 17 100
# iter. 100 120 125 150 125 300
time 39s 3m 24s 23s 3m 15s 9m 35s 5m 52s

for some 𝜉2 ≥ 1. Then, the discontinuity plane containing 𝒙D0 is
effectively parameterized with 𝜉1 and 𝜉2 via Eqs. (47) and (51).
When the motion X is affine, as discussed in §6.1, we have

𝒑D
0 = 𝑹−1

(
𝒙D0 − 𝒕

)
. (52)

When a tetrahedral mesh is used to express X, assume that 𝒙D0 is
located inside a tetrahedron with vertices 𝒙A, 𝒙B, 𝒙C, 𝒙D ∈ V(𝜃0)
and has barycentric coordinates (𝑢1, 𝑢2, 𝑢3). Similar to the surface
case, 𝒙A, 𝒙B, 𝒙C, 𝒙D, 𝑢1, 𝑢2, and 𝑢3 all depend on 𝜃 in general. Then,
it holds that

𝒑D
0 = (1 − 𝑢1 − 𝑢2 − 𝑢3) 𝒑A + 𝑢1 𝒑B + 𝑢2 𝒑C + 𝑢3 𝒑D, (53)

where 𝒑∗ = detach(𝒙∗) for all ∗ ∈ {A, B,C,D}.
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Fig. 12. Inverse-rendering results using gradients estimated with our technique. Images in columns (a–c) contain Monte Carlo noise since we use noisy
(but unbiased) estimates for the optimizations. Please refer to the supplement for animated versions of these results.

7 RESULTS
We implement our techniques presented in §4–§6 in C++ on the
CPU. Specifically, we develop a Monte Carlo estimator that samples
material light paths 𝒑̄ using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport effects such as caustics.
In the rest of this section, we validate our implementations and

demonstrate their effectivenesses in §7.1 and show more inverse-
rendering examples in §7.2. Please refer to the supplemental material
for more animated versions of the inverse-rendering results.

7.1 Validation and Evaluation
We use the following virtual scenes to evaluate the correctness and
effectiveness of our Monte Carlo estimators:
• The branches scene is modeled after that with the same name
from Zhang et al.’s work [2020]. This scene contains a tree-like
object with fine structures (that is outside the field of view) casting
a shadow on the ground. This object is further embedded within
an optically thin heterogeneous medium.

• The bust scene contains a translucent bust with complex ge-
ometry and spatially varying scattering properties. The bust is
optically thick and, thus, exhibits strong multiple scattering.

• The bumpy sphere scene consists of a spheremade of rough glass
inside a box filled with a homogeneous participating medium. The
sphere is lit by a point light from above, yielding strong volumetric
shadow and caustic effects.

We use perspective pinhole cameras for all these scenes.

Differentiable rendering comparisons. In Figure 10, we show deriv-
ative images of these scenes generated using finite differences, our

technique, and the differential theory of radiative transfer (DTRT)
[Zhang et al. 2019].
For the branches scene, we compute derivatives with respect to

the rotation angle of the object around the vertical axis. Deriva-
tive image generated using our unidirectional estimator closely
matches the reference obtained using finite differences. Because of
the complex visibility, DTRT—which relies on explicit detection of
object silhouettes—produces highly noisy derivative estimates. Our
method, on the other hand, does not require silhouette detection
and can generate much cleaner results in equal time.
For the bust scene, we differentiate the ordinary image with re-

spect to the rotation angle of the translucent bust. Our results, which
match the finite-differences reference, are generated using our uni-
directional estimator. Due to the presence of complex geometry
and high-order scatterings, DTRT produces extremely noisy results.
In equal time, our technique is capable of generating derivative
estimates with significantly lower noise.

For the bumpy sphere scene, we estimate derivatives with respect
to the horizontal translation of the light source. Due to the complex-
ity of light transport effects in this example, the finite-differences
result contains some Monte Carlo noise even after being rendered
for many hours. Our results obtained using our bidirectional algo-
rithm accurately captures the gradients around specular highlights
on the sphere as well as shadow and caustic boundaries in the vol-
ume and on the ground. DTRT does not work for this example due
to the lack of support for point light sources.

Inverse rendering comparisons. We further demonstrate in Fig-
ure 11 the usefulness of our low-variance derivative estimates by
comparing inverse-rendering performance of our method and DTRT.
For all examples, we minimize the image RMSE as the choice of
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loss function is orthogonal to our technique. We use the Adam al-
gorithm [Kingma and Ba 2014] with identical settings including
initial configurations and learning rates for both methods. We also
adjust sample counts so that each optimization iteration takes ap-
proximately equal time. Additionally, For the bumpy sphere scene,
we replace the point light with a small area light since DTRT only
supports the latter. Please see Table 2 for performance statistics and
the supplement for animated versions of these results.
For the branches scene, gradient-based optimizations driven by

both methods converge correctly. Our method offers faster con-
vergences thanks to its cleaner derivative estimates. For the bust
and bumpy sphere scenes, optimizations using gradients estimated
by DTRT fail to converge due to very high variance in the esti-
mated gradients. Our method, on the other hand, allows smooth
convergence to the correct results.

7.2 Inverse-Rendering Results
We show additional inverse-rendering results using derivatives esti-
mated with our method in Figure 12:

• The spheres scene contains three glass spheres within a homo-
geneous medium lit by a small area light, yielding complex volu-
metric caustics. We search for the position of the larger sphere
(expressed using 2 variables) to match the target caustics pattern.

• The bunny scene contains a homogeneous translucent bunny
that exhibits rough refraction on the surface and multiple scat-
tering in the interior. Further, we use a control cage with 16
vertices to deform the bunny in a non-rigid fashion (with the
vertex weights computed using mean value coordinates [Thiery
et al. 2018]). We jointly optimize: (i) the positions of five vertices
on the control cage (expressed using 15 variables); (ii) the bunny’s
surface roughness and the medium’s optical density.

• The pool scene consists of a curved refractive interface producing
caustics in the medium and the surface below. We optimize the
shape of the refractive interface (parameterized with 100 vari-
ables).

For all three examples, using gradient estimates generated with
our technique, inverse-rendering optimizations successfully recover
the target parameters. Please refer to the supplemental materials
to see animated version of these results demonstrating the full
optimization processes.

8 DISCUSSION AND CONCLUSION
Limitations and future work. Our technique works mainly in the

(generalized) path space. Due to the success of primary-sample-
space (PSS) methods in forward rendering, adopting our technique
to work in that space—potentially by using different choices of ref-
erence surfaces and volumes—can be an interesting future topic.
Also, extending our technique to handle implicit scene geometries
(such as interfaces defined using signed distance functions) will
enable inverse-rendering optimizations robust to changes of topol-
ogy. Lastly, implementing our estimators on the GPU with state-of-
the-art computational differentiation techniques will allow solving
challenging inverse-rendering problems with large numbers (i.e.,

millions) of unknowns, benefiting a large array of real-world appli-
cations.

Conclusion. In this paper, we introduced the mathematical formu-
lation of generalized differential integrals that offers the generality
of differentiating both interfacial and volumetric light transport
with respect to arbitrary scene parameters include global object ge-
ometries. Utilizing this formulation, we developed new Monte Carlo
estimators that handle the interior and boundary components of
generalized differential integrals separately. Our estimators are un-
biased, consistent, and capable of efficiently handling complex scene
geometries and light transport effects such as multiple scattering
and volumetric caustics. We demonstrated the effectiveness of our
technique via a few differentiable-rendering and inverse-rendering
examples.
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A DERIVING THE GENERALIZED DIFFERENTIAL PATH
INTEGRAL

To derive derivatives of Eq. (15), we first rewrite this equation as

𝐼 =
∑︁
𝑁 ≥1

2𝑁 +1−1∑︁
𝑙=0

∫
𝛀̂

𝑙

𝑁

𝑓 (𝒑̄) d𝜇𝑙𝑁 (𝒑̄)︸                 ︷︷                 ︸
=: 𝐼 𝑙

𝑁

, (54)

where 𝛀̂

𝑙

𝑁 follows the definition in Eq. (12). Then, deriving d𝐼/d𝜃
amounts to differentiating 𝐼 𝑙

𝑁
for any fixed 𝑁 > 0 and path charac-

teristic 0 ≤ 𝑙 < 2𝑁+1. To this end, we facilitate the proof introduced
by Zhang et al. [2020] for the surface-only case as follows.
First, we rewrite 𝐼 𝑙

𝑁
in a recursive fashion by defining

ℎ𝑁 (𝒑𝑁 ;𝒑𝑁−1) := 𝐽 (𝒑𝑁 )𝑊e (𝒙𝑁−1 � 𝒙𝑁 ), (55)

and, for 0 ≤ 𝑛 < 𝑁 ,

ℎ𝑛 (𝒑𝑛 ;𝒑𝑛−1) :=∫
B𝑛+1

ℎ𝑛+1 (𝒑𝑛+1;𝒑𝑛) 𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛) d𝜇𝑙𝑁 ,𝑛+1 (𝒑𝑛+1), (56)

where d𝜇𝑙
𝑁 ,𝑛+1 is defined in Eq. (4) and

𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛) :=
𝐽 (𝒑𝑛) 𝑓v (𝒙𝑛−1 � 𝒙𝑛 � 𝒙𝑛+1)𝐺 (𝒙𝑛 ↔ 𝒙𝑛+1). (57)

In Eqs. (55) and (57), the function 𝐽 follows the definition in Eq. (17);
in Eq. (56), the domain of integration B𝑛+1 depends on 𝑏𝑛+1 (𝑙), the
(𝑛 + 1)-th bit of the given path characteristic 𝑙 :

B𝑛+1 =
{
BM , 𝑏𝑛+1 (𝑙) = 1
BV0 . 𝑏𝑛+1 (𝑙) = 0

(58)

Given the definitions of Eqs. (55)–(58), it is easy to verify that

𝐼 𝑙𝑁 =

∫
B0
ℎ0 (𝒑0) d𝜇𝑙𝑁 ,0 (𝒑0) . (59)

Then, deriving d𝐼 𝑙
𝑁/d𝜃 amounts to differentiating Eq. (56). Under

Assumptions A.1–A.4, discontinuities of the integrand of Eq. (56)
emerge solely from the mutual visibility function that is a factor
of the 𝑔 term. It follows that applying Reynolds transport theo-
rem [Reynolds 1903] yields:
dℎ𝑛
d𝜃

=

∫
B𝑛+1

d
d𝜃
(ℎ𝑛+1 𝑔) d𝜇𝑙𝑁 ,𝑛+1 +

∫
𝜕B𝑛+1

ℎ𝑛+1 Δ𝑔𝑉𝑛+1 d ¤𝜇𝑙𝑁 ,𝑛+1 .

(60)
In this equation:
• 𝜕B𝑛+1 ⊂ B𝑛+1 denotes the discontinuity points of 𝑔 with respect
to 𝒑𝑛+1 when 𝒑𝑛−1 and 𝒑𝑛 are fixed. Specifically, if 𝑏𝑛+1 (𝑙) = 1,
the integral in Eq. (56) is over all object surfaces BM , and 𝜕B𝑛+1
is a set of curves. If 𝑏𝑛+1 (𝑙) = 0, we have a volumetric integral in
Eq. (56), and 𝜕B𝑛+1 involves a collection of surfaces.

• 𝑉𝑛+1 is the scalar normal velocity of a discontiuity point 𝒑𝑛+1 ∈
𝜕B𝑛+1.

• Δ𝑔 indicates the difference in 𝑔 across the discontinuity bound-
aries.

• The measure ¤𝜇𝑙
𝑁 ,𝑛+1 is defined as

d ¤𝜇𝑙𝑁 ,𝑛+1 :=
{
dℓ, 𝑏𝑛+1 (𝑙) = 1
d𝐴, 𝑏𝑛+1 (𝑙) = 0

(61)

where ℓ and 𝐴 are, respectively, curve-length and surface-area
measures.
With Eqs. (56) and (60), we can now differentiate 𝐼 𝑙

𝑁
defined in

Eq. (59) by repeatedly expanding ℎ𝑛 and dℎ𝑛/d𝜃 for 𝑛 = 0, 1, ..., 𝑁 − 1,
resulting in:

d𝐼 𝑙
𝑁

d𝜃
=

interior∫
𝛀̂

𝑙

𝑁

d𝑓 (𝒑̄)
d𝜃

d𝜇𝑙𝑁 (𝒑̄) +

boundary

𝑁∑︁
𝐾=0

[∫
𝜕𝛀̂

𝑙

𝑁 ,𝐾

Δ𝑓𝐾 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇𝑙𝑁 ,𝐾 (𝒑̄)
]
,

(62)

where

𝜕𝛀̂
𝑙

𝑁 ,𝐾 :=

(
𝐾−1∏
𝑛=0
B𝑛

)
× 𝜕B𝑘 ×

(
𝑁∏

𝑛=𝑘+1
B𝑛

)
, (63)

d ¤𝜇𝑙𝑁 ,𝐾 (𝒑̄) := d ¤𝜇𝑙𝑁 ,𝐾 (𝒑𝐾 )
∏

0≤𝑛≤𝑁
𝑛≠𝐾

d𝜇𝑙𝑁 ,𝑛 (𝒑𝑛), (64)

Δ𝑓𝐾 (𝒑̄) := 𝑓 (𝒑̄)
Δ𝑔(𝒙𝐾+1; 𝒙𝐾−1, 𝒙𝐾 )
𝑔(𝒙𝐾+1; 𝒙𝐾−1, 𝒙𝐾 )

. (65)

Lastly, we can sum up Eq. (62) for all 𝑁 ≥ 1 and 0 ≤ 𝑙 ≤ 2𝑁+1 − 1
to obtain our generalized differential path integral of Eq. (19).
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