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18  Capsule Summary

19  Understanding how science is co-produced is a science unto itself. Using the case of

20  Project Hyperion, we illustrate how co-production works (or does not work) in practice.
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Abstract

Developing decision-relevant science for adaptation requires the identification of
climatic parameters that are both actionable for practitioners as well as tractable for
modelers. In many sectors, these decision-relevant climatic metrics and the approaches
that enable their identification remain largely unknown. “Co-production” of science with
scientists and decision-makers is one potential way to identify these metrics, but there
is little research describing specific and successful co-production approaches. This
paper examines the negotiations and outcomes from Project Hyperion, wherein
scientists and water managers jointly developed decision-relevant climatic metrics for
adaptive water management. We identify successful co-production strategies by
analyzing the project’s numerous back-and-forth engagements and tracing the evolution
of the science during these engagements. We found that effective mediation between
scientists and managers needed dedicated “boundary spanners” with significant
modeling expertise. Translating practitioners' information needs into tractable climatic
metrics required direct and indirect methods of eliciting knowledge. We identified four
indirect methods that were particularly salient for extracting tacitly-held knowledge
and enabling shared learning: developing a hierarchical framework linking management
issues with metrics; starting discussions from the planning challenges; collaboratively
exploring the planning relevance of new scientific capabilities; and using analogies of
other ‘good’ metrics. The decision-relevant metrics we developed provide insights into
advancing adaptation-relevant climate science in the water sector. The co-production
strategies we identified can be used to design and implement productive scientist-
decision-maker interactions. Overall, the approaches and metrics we developed can

help climate science to expand in new and more use-inspired directions.
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Introduction

Adaptation practitioners across many sectors, including resource management, land-
use planning, and public health, urgently need decision-relevant science to plan for and
manage the impacts of climate change (ACCNRS 2015; Moss et al. 2013; Lemos and
Morehouse 2005; Kirchhoff et al. 2013a; Kerr 2011). There have been several efforts
towards developing actionable (or decision-relevant) science broadly, and more
specifically towards providing scientific details of the climate impacts that planners
need to account for (Mach et al. 2019; Bremer and Meisch 2017; Beier et al. 2017).
Resource managers, however, still report that climate information that can help to
develop adaptation decisions, is not readily available to them (Moss et al. 2019; Barsugli
et al. 2013; USGAO 2015; Vogel et al. 2016). This is partly on account of unresolved
mismatches between scientists’ and decision-makers’ perceptions of what constitutes
‘actionable’ climate information (Lemos et al. 2012; McNie 2007). One important
example of this mismatch is that current climate modelling and model evaluation efforts
typically focus on broad climatological metrics, such as averages or extremes in
temperature and precipitation. However, in order to be actionable, resource managers
need information on management-specific metrics, such as the start date of the rainy
season or number of extreme heat days in the summer (Briley et al. 2015; Roncoli et al.
2009; Moss et al. 2019; Bornemann et al. 2019). This lack of focus on management-
specific climate science can preclude its use in adaptation decisions, as even translation
or communication of such broader information cannot move the science “off the shelf”

to make it usable (Moss et al. 2019; Lemos et al. 2012; Hackenbruch et al. 2017).

The literature recognizes the importance of determining specific climatic metrics that

could be most applicable for specific problems (Hackenbruch et al. 2017; Briley et al.
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2015; Bornemann et al. 2019). But this task is often assumed to be solely the decision-
makers’ responsibility (Briley et al. 2015), and is not considered a research problem per
se. However, resource managers may not know, a priori, the types of climatic metrics
that could be most useful, and scientists may not always know whether they can
provide information on decision-relevant metrics with reasonable skill (Briley et al.
2015; Porter and Dessai 2017; Lemos et al. 2012). This means that directly asking
decision-makers to explain the types of climate information they need is rarely
sufficient. Therefore, few studies have systematically identified decision-relevant
metrics for sectoral adaptations (Hackenbruch et al. 2017; Vano et al. 2019; Bornemann
et al. 2019). ‘Co-production’, or iterative and continual engagement between scientists
and decision-makers, is often suggested as a means to enable mutual learning and
reconciliation between managers’ needs and scientific priorities (Lemos 2015; Kirchhoff
et al. 2013a; Weaver et al. 2014; Vogel et al. 2016; Kolstad et al. 2019). It can thus help

to identify decision-relevant climatic metrics that are also tractable for modellers.

That being said, not all co-production efforts have led to positive outcomes (Lemos et al.
2018), or have been successful at understanding and responding to resource managers’
needs (Lemos et al. 2018; Porter and Dessai 2017). The success of co-production is
predicated on the level and quality of interactions between (and within) different
groups (Porter and Dessai 2017; Wall et al. 2017; Kirchhoff et al. 2013b; Mach et al.
2019; Lemos et al. 2018; Meinke et al. 2006). While the literature provides rich
guidance on the general principles and prerequisites for successful co-production
(Hegger et al. 2012; Meadow et al. 2015; Lemos and Morehouse 2005; Beier et al. 2017),
there is a dearth of empirically-grounded guidance on co-production processes that

have worked in practice (Djenontin 2018; Lemos et al. 2018; Parker and Lusk 2019).
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Hence, the process of co-production is often a black box; there is no clarity on the types
of scientist-decision-maker engagement processes that can be expected to result in
effective two-way communications and to enable the creation of usable climate science

(Porter and Dessai 2017; Mach et al. 2019; Jagannathan et al. 2019a).

In this paper we present both the process of, and outcomes from, a case of co-
production, Project Hyperion, that (eventually) led to the identification of decision-
relevant climatic metrics for water management decisions. As a response to calls to
detail the practice of ‘how’ co-production works (Porter and Dessai 2017; Lemos et al.
2018; Mach et al. 2019), we focus this paper on not just the knowledge outcomes from
the effort (i.e. the decision-relevant metrics), but also on how the metrics evolved
iteratively through multiple engagements over the course of a year. The rest of the
paper details the boundary spanning and engagement strategies that enabled the
project to overcome institutional and epistemological barriers, and allowed a shared

understanding across professional communities to emerge.

Project Hyperion and the process of co-production

Project Hyperion is a basic science project that aims to advance climate modelling by
evaluating regional climate datasets for decision-relevant metrics. While there has been
an explosive growth in the number of regional climate datasets available to users, there
is limited understanding of the credibility and suitability of these datasets for use in
different management decisions (Moss et al. 2019; Barsugli et al. 2013; Jones et al. 2016;
Jagannathan et al. 2019b; Vandermolen et al. 2019). Hyperion aims to address this need

by developing comprehensive assessment capabilities to evaluate the credibility of
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regional climate datasets, understand the processes that contribute to model biases, and

improve the ability of models to predict management relevant outcomes.

Since decision-relevance is a core motivation for the project, Hyperion is designed on
the principles of co-production. The project brings together scientists from nine
research institutions with managers from twelve water agencies in four watersheds:
Sacramento/San Joaquin, Upper Colorado, South Florida, and Susquehanna. In addition,
the project structure explicitly allows for both the groups to co-develop the science plan
and research questions, in addition to co-producing the science itself. The scientists
include atmospheric and earth system scientists as well as hydrologists. The water
managers, depending on the agency, have functions including planning, operating and
managing water quality, water supply, stormwater management, flood control, and
water infrastructure design. These water managers have high levels of technical
expertise in engineering, hydrology or other sciences, and were purposefully selected
because of their interest in the project concept and their willingness to dedicate time to
the engagement efforts. In addition, the project team for Hyperion includes three
dedicated ‘boundary spanners’ (including two of the authors), i.e., people whose

primary role is to facilitate and mediate the scientist-water manager boundary.

In this paper we focus on Phase 1 of the project, and describe how decision-relevant
metrics in each of the study regions were co-produced by this group. From the water
managers’ perspective, such metrics quantitatively describe climatic phenomena that
are directly related to practical management problems; changes in these quantities
would necessitate shifts in water infrastructure planning and operations. From the
scientists’ perspective, these metrics can be used to test model fidelity for decision-

relevant phenomena and hence push model development and scientific inquiry in more
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use-inspired directions. To identify these metrics, a series of iterative engagement
methods were used. Structured engagement methods included workshops, remote and
in-person focus-group discussions, and quarterly project update calls. There were also
continual less-structured, informal conversations between scientists, managers, and
boundary spanners over phone calls or emails. Approval from Lawrence Berkeley Lab’s
Human Subjects Committee - Institutional Review Board was obtained for key
engagements. The timeline of engagement activities, along with goals and milestones at

each stage, is presented in Fig. 1.

The role of boundary spanners

The boundary spanners in Project Hyperion had varying degrees of social science,
climate science and adaptation expertise; they also had prior experience in co-
production and similar participatory research activities. It is generally acknowledged
that boundary spanners are necessary for the translation of jargon and assumptions
among different actors and across epistemic divides (Bednarek et al. 2016b; Kirchhoff et
al. 2013b; Cash et al. 2003). At the same time, the literature recognizes that this role is
challenging in practice (Bednarek et al. 2018; Safford et al. 2017) and that the functions
and attributes of effective boundary spanning are not well understood (Goodrich et al.

2019; Bednarek et al. 2016a).

The challenges of boundary spanning are often discussed in instances where actors are
resistant to crossing epistemic boundaries or “compromising” their expertise (Cash et
al. 2003). In Hyperion, most of the water managers wanted to incorporate climate
change information in their decisions, and most scientists were committed to
developing decision-relevant science. This collective goodwill notwithstanding, several

rounds of deliberations were needed to mediate differences in incentives and priorities,
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and to translate the water managers’ needs into quantitative metrics and scientific
research questions. The boundary spanners needed to actively ensure that feedback
from both groups was not just heard and documented, but also incorporated into the

overall science plan for the project.

The mediation of the scientist-manager boundary to arrive at actionable rainfall metrics
illustrates these tensions and also their eventual resolution. Several of the managers
wanted information on Intensity Duration Frequency (IDF) curves for rainfall events
(Srivastava et al. 2019) that formed the basis of their flood-related decisions. The
scientists, based on their expertise and modelling capabilities, prioritized metrics such
as frequency and intensity of specific storm events (e.g. tropical cyclones) and
associated rainfall. While these storm metrics were related to decision-relevant rainfall
quantities, they were often one step ‘upstream’ (in both the hydrological and
metaphorical senses) of what the water managers wanted for detailed planning. The
upstream metrics represented drivers of phenomena of interest rather than the
decision-relevant phenomena themselves. Recognizing this tension, the boundary
spanners worked with the group to co-create a shared understanding of the term
‘metric’. We introduced a hierarchical framework that distinguished decision-relevant
from upstream metrics, illustrating the overlaps and linkages between the two, and
showing how both types of metrics could fit within the project’s larger goals. With the
explicit linking of metric-types, managers could better appreciate the scientists’ focus
on upstream storm metrics for modelling causal processes that could eventually make
IDF predictions more accurate. Scientists saw why it was necessary to include the
metric of interest to managers, i.e. IDF curves, in the science plan, and how linking their

storm metrics with IDF results added to the novelty and impact of their efforts.
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This and similar resolutions were highly dependent on the presence of a boundary
spanner with domain expertise in climate modelling. While the literature recognises the
importance of ‘background and experience’ in the subject matter (Safford et al. 2017;
Meadow et al. 2015; Bednarek et al. 2016b), there is, we would argue, less appreciation
of the technical expertise required to execute techno-scientific translations (Bednarek
et al. 2018). For our project, having a boundary spanner who was also a modeller
proved essential. Given the aims of Hyperion, many boundary functions towards the
later stages of the project needed in-depth (and often painful) discussions on model
parameters, types of simulations, decision-relevant thresholds, statistical measures of
model performance, etc. which were beyond the technical capacities of the non-
modeller boundary spanners (Fig. 2). In hindsight, we believe that a boundary spanner
with expertise in water management could have been equally beneficial, and may have
augmented our eventual list of metrics. Overall, we found that, depending on the nature
of what is being co-produced, boundary spanners need considerably higher levels of

domain expertise than is generally acknowledged in the literature.

Direct and indirect approaches to ‘making’ metrics

A common approach to user needs assessments in conventionally-designed as well as
co-production projects is to directly ask decision-makers for the types of information
they want (Hudlicka 1996; Briley et al. 2015). This approach is based on the prevalent
assumption that decision-makers not only know the climatic metrics they want, but are
also able to articulate their knowledge in response to direct questions (Hudlicka 1996).
Neither of these assumptions is true for every engagement. We found that determining
the quantitative details of decision-relevant information required both direct and

indirect approaches. We did explicitly ask managers to identify any metrics for which
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235

they required projections, and this direct approach was partially successful. But it put
the onus of metric identification on the water managers, who did not always know what
to ask for or what the scientists had to offer by way of quantification. For example, the
direct approach revealed water supply and floods as key climate-related management
issues in California, with snowpack, snowmelt, streamflow, dry spells and rainfall as
hydroclimatic phenomena of interest. But managers were not used to translating these
phenomena into tractable parameters or thresholds (Briley et al. 2015; Hackenbruch et

al. 2017).

We therefore supplemented the direct approach with an indirect approach that
assumed that relevant knowledge cannot be revealed by direct questions, but needs to
be extracted through more open-ended scenario analysis and contextual inquiry.
Although such discussions are a time-intensive way to access internal knowledge
structures (Hudlicka 1996), combining direct and indirect conversational methods have
been shown to be an effective way of eliciting user needs (Zhang 2007). This indirect
approach is used in software development for user requirements engineering (Hudlicka
1996; Zhang 2007), but is not commonly used in the co-production or actionable
environmental science literatures. Partly guided by research on tacitly-held knowledge,
and partly through trial and error, we developed four indirect strategies that enabled

scientists and water managers to collaboratively identify decision-relevant metrics.

1. Developing hierarchical frameworks: There was often confusion among scientists and

managers on how specific a ‘metric’ needs to be to have an unambiguous
interpretation from a modelling perspective. For example, in the initial engagements,
the whole group understood ‘peak streamflow’ or 'flooding' to be potential metrics.

However, when modelling methods were being developed, the scientists had
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259

questions as to what ‘peak’ might mean or how ‘flooding’ was defined by the
managers. Further direct questions that probed the managers for “more specific”
metrics were unsuccessful in eliciting the details that scientists were looking for. At
the same time, scientists were not able to clearly articulate what constituted an
unambiguous metric. To resolve this stalemate, the boundary spanners asked the
scientists to provide examples of what might constitute a specific metric for their
modelling exercises. The group then decided to contextualize metrics by developing a
hierarchical framework: a management issue came first, then the hydroclimatic
phenomena related to the issue, then the aspects of each phenomenon that were of
most relevance to the water managers, and finally a tractable metric for each aspect
(Fig. 3) (see also(Maraun et al. 2015)). For Hyperion, the hierarchy represented a
logical framework that helped us to understand that peak streamflow could have
varied interpretations for modelling; it could be daily maximum flow, or the high end
of streamflow distribution, or values above certain thresholds. Each interpretation
represented a very different ‘metric’ with unique results. Through the framework we
collectively understood that peak streamflow was best characterized as an ‘aspect’ of a
hydroclimatic phenomenon, and one step ahead of being an unambiguous metric,
which required further quantitative details describing the characteristics of the peak

that were important to managers.

. Starting from the planning challenge/goal rather than the science question: A focus on

current and future planning challenges or goals as they related to different
hydroclimatic phenomena was a productive path towards metric identification. For
example, when asked about planning goals with respect to streamflow quantity, some

managers suggested that the aim was to have a full reservoir on July 1st. Through this
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exchange we identified cumulative run-off on July 1 as a decision-relevant metric.
Another discussion centred on recent climate- or weather-related planning challenges
(such as Hurricane Irma, or the Oroville dam failure) in the managers’ regions. One of
the managers discussed an ice-jam related flooding event and described how warm
temperatures and heavy rain conditions in early spring caused the snow to melt
rapidly, leading to flooding. This prompted a collective discussion about whether
frequency of rain-on-snow events and the associated run-off could be an actionable
metric to help anticipate and manage such events. These results support
recommendations from other studies that also suggest starting the co-production
process from the management goal rather than from a scientific “puzzle” (Beier et al.

2017; Kolstad et al. 2019).

Collaboratively exploring the planning relevance of new models, tools, or datasets: It is
often assumed that practitioners are mainly interested in pragmatic solutions and
may be less open to exploring novel models and tools (Vogel et al. 2016). However, in
Hyperion, collaboratively and critically examining whether and how new models,
datasets or tools could be relevant to managers’ contexts, proved to be a productive
strategy for identifying metrics. For example, one of the scientists sought the water
managers’ opinion on a new type of satellite data on terrestrial water storage (TWS)
that had the potential to aid in flood/drought prediction. Managers responded that
their agencies mainly used 10-year ground water (GW) baseflow as a key metric for
drought predictions, but that it was not easy to collect data for computing GW
baseflow. They were interested in alternatives to this metric, whereupon the scientist
explained that new findings suggested that TWS can be a good predictor of GW flow

(in some regions). The group collectively agreed that both TWS and 10-year GW
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baseflow would be good metrics, and that TWS would be explored as a potential proxy

or upstream metric to GW baseflow.

Using analogies for ‘good’ metrics: Finally, some of the new metrics identified in our
project came from discussions of other ‘good’ metrics. For example, one well-received
set of metrics was visualized through the ‘Snow Water Equivalent (SWE) triangle’,
which uses a fitted triangle to characterize the annual cycle of snow accumulation and
melt (Rhoades et al. 2018). The SWE triangle represents a composite of six metrics of
management relevance: peak water volume and timing, snow accumulation and melt
rates, and the lengths of the accumulation and melt seasons. Each metric is tractable
as well as decision-relevant, and the triangle itself presents a visually digestible linear
approximation of all six metrics comprising the snow cycle (Rhoades et al. 2018). The
water managers thought this was a “nifty” multi-metric representation as it allowed
for both a comprehensive and an individual examination of the management-relevant
components of seasonal snow dynamics. Their response led to discussions on whether
a similar set of metrics describing the annual cycle of rainfall would also be useful. A
new composite approach, tentatively termed ‘rainfall geometry’ (to signify whatever
geometric figure fits the annual cycle of rainfall in a given location), and which
includes the start date of the wet season, peak rainfall, and length of the wet season,
was co-developed as a promising multi-metric representation of key management-

relevant components of rainfall.

304 Overall, we found that the making of decision-relevant metrics needed an iteratively-

305 derived mix of direct and indirect engagement approaches to capture the information

306 needs of the water managers, and to translate them into tractable quantitative metrics for
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the scientists. Fig. 4 shows the evolution of two decision-relevant metrics using different

direct and indirect strategies.

Decision-relevant metrics and their characteristics

Table 1 presents examples of the metrics identified in the project (Supplement Table 1
has the full list for all four regions). In some cases, these metrics already existed in other
contexts (such as in engineering or hydrology manuals), but had not been recognized as
metrics relevant for climate modelling prior to our co-production process. We also
observed that not every identified metric mapped onto a specific management decision.
Some metrics, such as deviations from historical mean snowpack, were more useful for
understanding the future state of watersheds than for making decisions. The interest in
snowpack shows that there are overlaps between upstream and decision-relevant
metrics; several water managers were, in fact, interested in understanding upstream

processes in addition to working with actionable metrics (Vano et al. 2019).

Finally, we found that the relevance of metrics depends on, and evolves with, the
availability of climate information. In regions with limited availability of climate data
even simple climatic metrics such as monthly or annual run-off were considered
relevant enough. In regions with more information such simple metrics were not as
useful; managers identified more detailed metrics, such as the runoff associated with
highest snow melt rate, or maximum daily or 3-day flow volumes, as actionable. An
analysis of how and why the characteristics of decision-relevant metrics differed among

the water management agencies is planned for the next phase of the project.
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Discussion and Conclusions

In this paper, we open up the black box of co-production and document in detail the
strategies that enabled (and did not enable) the creation of decision-relevant science.
We illustrate how co-production works in practice by analyzing the numerous back-
and-forth collaborative engagements of Project Hyperion, and describing how the
science changed and evolved during the process. By describing how climate scientists
and water managers (eventually) crossed the boundaries of both mandate and
epistemology to co-produce decision-relevant metrics, we add to the sparse literature
on ‘how and when’ co-production works. To our knowledge, this is the first study to
document in detail the actionable climatic metrics for adaptive water management, and
the co-production processes needed to arrive at such metrics. Our outcomes (i.e. the co-
produced decision-relevant metrics), can be used as inputs for developing actionable
climate science for adaptation in the water sector. Our learnings on engagement
approaches provide co-production scholars with insights on how to design and

implement productive scientist-decision-maker interactions.

We found that identifying problem-specific climatic metrics is even more iterative, and
needs more social and technical negotiations, than is generally implied in the literature
promoting co-production. These metrics often represent new scientific directions for
the scientists as well as new ways of management for the water managers. The
commonly used direct approach to identifying decision-makers’ information needs was
insufficient for getting at the quantitative details of climatic metrics, even when the
decision-makers had high levels of scientific knowledge. We found that the task of
translating user needs into quantitative metrics needs the expertise of both resource

managers and climate scientists, as well as an enabling process for both groups’
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knowledge(s) to evolve. Hence, a judicious mix of direct and indirect approaches was
needed to “make” these metrics. The indirect methods, in particular, revealed the
groups’ tacitly-held knowledge and allowed a comprehensive set of shared learnings to
emerge. Key indirect strategies included developing a hierarchical framework linking
management issues with actionable metrics and upstream phenomena; starting
discussions from the planning challenges and then moving to the model-specific
metrics; collaboratively exploring the planning relevance of new models, datasets and
scientific findings that managers did not yet know about; and using analogies of good
metrics from other hydroclimatic phenomena. Eventually, the twin functions of the
metrics -- of being decision-relevant and extending model capability -- spoke to both
the decision-makers’ and the scientists’ priorities, and allowed both groups to co-exist
within the project. Additionally, the institutionalization of the boundary spanning role,
and the domain expertise of at least one boundary spanner (an under-appreciated
phenomenon in the co-production literature), proved to be crucial for effective trans-

boundary translation.

Although the co-production was time-consuming, the richness of our understanding
came from analyzing the many iterative back-and-forth engagements, where even the
processes that did not fully work were essential to get to the processes that did
eventually work. Co-production is often presented as an outcome in itself, rather than as
ameans to an end (Lemos et al. 2018). This perspective may have its merits, but we
argue that the ability to achieve desired outcomes is quite sensitive to how the co-
production process is structured and implemented. More critical assessments of specific
co-production processes would help to move the practice forward more efficiently, and

to meet the growing need for actionable climate science across many sectors of society.
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530 Figure Captions List

531  FIG. 1. Co-production process and timeline.

532  FIG. 2. Dialogue between Water manager (W) and Boundary spanner (B).
533  FIG. 3. Hierarchical framework with examples.

534  FIG. 4. Examples showing the evolution of decision-relevant metrics.
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541  FIG. 1. Co-production process and timeline summarising key engagement activities over the
542  course of a year, along with the most important outcomes at each stage (depicted by the blue
543  documenticon). ‘Sci’ refers to Scientists, ‘WM’ refers to Water Manager and ‘HC ph.’ refers to
544  Hydroclimatic Phenomena. For details of each of these activities please see the Supplement.
545  There was constant boundary spanning work during and between each of these activities.

546
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547

“We want to be able to read and evaluate the multi-decadal events we have
W here. They have a big interference in our historical rainfall data. We also need to
know how we are going to be projecting those for our future rainfall datasets.”

“You mean the multi-decadal modes of variability?” B

“Yes, it is really important for us to evaluate how we are going to be using

w the rainfall data now. We have some measures and standards that do not
represent the variability among those multi decadal events, so it is
interesting to have metrics representing this too.”

“That can be a really interesting one for us to evaluate our models on. Following our

earlier conversations on aspects of variability, | think we may need separate metrics that
describe the frequency of those modes, and another set of metrics on how the modes

affect local-scale metearological phenomena like rainfall that you care for. It may be, for B
example, that in the El-Nino frequency we cannot detect a change signal but the

characteristics of how an El-Nino plays out on a local scale changes. So separating out

the timing and frequency of the modes from their actual meteorological effects would be

a nice use of Hyperion’s multi-metric framework.”

w “Yes, Perfect that is a really nice way of putting it.”

548  FIG. 2. Dialogue between Water manager (W) and Boundary spanner (B) showing the benefits
549  of having a modeller as a “translator” of the water manager’s description of information needs

550 into quantitative metrics that can be pursued by modellers.

551
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FIG. 3. Hierarchical framework with examples. (a) illustrates the hierarchical framework

starting from a management issue and ending in the metrics. (b) and (c) are examples of metrics

and how they fit within the framework. The hierarchy starts with the ‘Issue’ or topic of

management relevance in the region (e.g. Flooding), and moves to the ‘Hydroclimatic

Phenomenon'’ related to the issue (e.g. Precipitation is a hydroclimatic phenomenon related to

the issue of Flooding), and then to the ‘Aspect of the Phenomenon’ that is of specific interest for

the management decision (e.g. Extreme precipitation is the aspect of precipitation that is of

specific management interest). Finally, the hierarchy yields the actual ‘Decision-relevant metric’,

which refers to a quantity that has potential use for the water managers and has an

unambiguous formula or algorithm that can be applied to both observation-based data and

model outputs (e.g. Probable Maximum Precipitation (PMP) is a metric related to extreme

precipitation). We also identified upstream metrics that describe phenomena hypothesized to

be important drivers of the decision-relevant phenomena (e.g. Intensity of tropical storms of

certain durations or return periods are an upstream driver of PMP).
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FIG. 4. Examples showing the evolution (;f decision-reievant metrics. (a) shows the evolution of
the metric that represents the 3-year critical duration of October-March high flows ata 10-year
recurrence interval. The initial direct identification approach gave a broad understanding of the
importance of runoff for nutrients and sediments, and then a discussion of runoff-based
planning led to identifying hydrologic extremes as one of the important components of runoff.
Using the hierarchy (Fig. 3), we came to understand that ‘extremes’ were an ‘aspect of
phenomenon’, and we probed further to find that extremes actually meant flows above certain

thresholds. We derived the final unambiguous metric at the next iteration where we
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579  interrogated the types of exceedance thresholds that impact water quality management in the
580 region. (b) shows the making of a rainfall metric. First, the direct approach highlighted that
581  changes in rainfall patterns were an important challenge for the region. In the next 2 iterations,
582  which also used direct engagements, we identified the specific aspects of rainfall that were of
583  importance. Finally, with the analogy of the ‘good metrics’ of the SWE triangle, we identified

584  “Rainfall Geometry” as a promising concept for additional decision-relevant metrics.

585
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Table. 1. Examples of decision-relevant metrics for each region, highlighting management

issues, hydroclimatic phenomena, aspect of phenomena and then each decision-relevant metric.

‘CA’ refers to the Sacramento/San Joaquin watershed, ‘CO’ is Upper Colorado, ‘FL’ is South

Florida, and ‘SQ’ is Susquehanna. The last column also describes some of the potential decisions

or uses for these metrics that were identified by the case study water managers. Supplement

Table 1 has the full list for all four regions.

Hydroclimatic Aspect of Decision-relevant
Region Issue Decision/Use
Phenomenon | Phenomenon Metric
Snow Water
Equivalent (SWE)
triangle (Rhoades On-stream reservoir
etal. 2018) - Peak management, and
snow (amountand | understanding future
Annual cycle of
timing), and its streamflow characteristics.
Water snow
CA Snowpack relationship with Shape of the triangle shows
Supply accumulation
average snow- the changing dynamics of
and melt
accumulation and - | the snow season, and what
melt rates, and to expect in terms of runoff
timing and length timing and amounts.
of accumulation
and melt seasons
Frequency of Rain-
Peakflow on-snow events Reservoir operations and
CA Flooding | Streamflow
{Pulse events} | and magnitude of flood management.
associated run-off
Deviations from
historical mean in
Inter-annual Multi-year water supply
Water SWE, Snowpack
CA Snowpack Variability in planning and drought
Supply and Snowmelt
Snowpack preparedness.
(amount and
timing)
30




Annual water supply
Seasonal
planning for the year done
Streamflow Cumulative run-off
Water based on July 1 or August 1
Cco Streamflow amount (in on July 1 and
Supply reservoir level estimates
snowmelt August 1
(depending on the
season)
reservoir).
Seasonal
Reservoir management -
Streamflow % of average
this metric is an input into
co Floods Streamflow amount (in annual inflow for
some reservoir operations
snowmelt Apr-July
models.
season)
Water quality management
(issuing discharge permits),
Water Low-end 7-day 10 year low | and water supply planning
Cco Streamflow
Supply Streamflow flows during dry years
(determining permit limits
for water withdrawals).
To calculate applicable
Intensity Duration
discharge rates for different
Frequency or IDF
storm water management
curves, specifically,
infrastructure. Design
1-day, 3-day and up
Extreme criteria used for drainage
FL Flooding | Rainfall to 7-day rainfall
Rainfall and flood protection are in
events, for 10, 25,
terms of IDFs. In other
50 and 100 year
words, designing of
frequency
standard engineering
intervals.
practices for infrastructure.
Probable maximum
precipitation. For Large storage
Extreme
FL Flooding | Rainfall 1-day, 3-day and infrastructure design (like
Rainfall
maybe up to 7-day | high dams).
events
Rainfall anomalies
Water Variability in Water supply planning, and
FL Rainfall at Monthly time
Supply Rainfall | drought monitoring
scales
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10- year frequency | Water quality management
Water 3-year duration in terms of monitoring

SQ Streamflow Peakflow
Supply high flows for Oct- | Chesapeake Bay water

March quality standards.

Water supply planning, for
monitoring passby flows
and conservation releases
Average/ Mean annual flow associated with water

SQ Flooding | Streamflow cumulative and harmonic withdrawal permits. Water
flows mean flow quality management for
calculating design flows for
effluent limitations based

on water quality criteria.

Water quality management
in terms of wastewater
assimilation standards for
Water Low-end 7-day10-year low discharge permits. Water
SQ Streamflow
Supply Streamflow flow supply planning in terms of
passby flows or
conservation releases for

water withdrawal permits.

592
593

594
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