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ARTICLE INFO ABSTRACT
Keywords: Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be inte-
COVID-19

grated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply
and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater
CrAssphage samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was
Bacteroides collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in
Human 185 rRNA wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably
detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or
more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were
evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of
these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA
signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data
(Kendall’s Tau-b (t)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation
with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead
time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the
result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater
surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make
wastewater signal more interpretable and comparable across studies.
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1. Introduction

Increasing hospitalizations and limited diagnostic testing capacity
early in the coronavirus disease 2019 (COVID-19) pandemic made it
clear that multiple methods to monitor circulation of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) are needed (Bivins et al.,
2020). One such method is wastewater-based epidemiology (WBE),
which has provided community-scale information on drug use, personal
care products, antibiotic resistance, and pathogen circulation (Choi
et al., 2018). SARS-CoV-2 is a promising candidate for WBE because its
RNA can be detected in stool of infected individuals (Li et al., 2021;
Parasa et al., 2020), and wastewater surveillance has been shown to
provide early detection of population-level increases in occurrence
compared to clinical data in some locations (Ahmed et al., 2021;
Chavarria-Miro¢ et al., 2021; D’Aoust et al., 2021a; Gerrity et al., 2021;
Hata and Honda, 2020; Kumar et al., 2021; Medema et al., 2020;
Nemudryi et al., 2020; Peccia et al., 2020; Randazzo et al., 2020b,
2020a, Wong et al., 2021; Zhu et al., 2021). However, one meta-analysis
study reported that SARS-CoV-2 was detected in stool samples from only
41% of infected patients (Parasa et al., 2020), and the viral load has been
shown to vary with disease progression (Benefield et al., 2020; Walsh
et al., 2020). More work is needed relating SARS-CoV-2 RNA measured
in wastewater to COVID-19 incidence in the contributing population.

Together, wastewater and clinical testing might provide more reli-
able information about disease burden in communities than either
method alone. Clinical testing of individuals is resource-intensive and
has well-known biases (e.g., selection bias based on symptom severity,
symptom recognition, occupation, etc.) (Nunan et al. 2017; Griffith
et al., 2020; Sims and Kasprzyk-Hordern, 2020), which have com-
pounded negative impacts in communities with higher proportions of
low-income residents and of Black, Indigenous, and People of Color,
including in the San Francisco Bay Area (Chamie et al., 2020; Misa et al.,
2020). In contrast, WBE may provide a less biased assessment of
COVID-19 occurrence (Murakami et al., 2020; Sims and Kasprzy-
k-Hordern, 2020). For COVID-19 WBE to be useful for public health
decision-making, a better understanding is needed of the variability of
SARS-CoV-2 in wastewater and how it relates to the true incidence or
prevalence of COVID-19 in the contributing population (McClar-
y-Gutierrez et al., 2021). Sources of target signal variability in waste-
water include inconsistencies in sample collection and laboratory
processing (Ahmed et al., 2020d; Feng et al., 2021), nucleic acid
degradation based on travel time and conditions in the sewer (Hart and
Halden, 2020a), and signal dilution due to rainfall and diurnal flow
changes (Zahedi et al., 2021). Researchers have addressed some of these
sources of variability through normalization to biomarkers, increased
sampling frequency, processing sample replicates, and smoothing/for-
ecasting (D’Aoust et al., 2021b; Feng et al., 2021; Graham et al., 2020;
McLellan et al., 2021; Nemudryi et al., 2020; Stadler et al., 2020).

Normalization of target signal to flow, population, and/or an
endogenous biomarker has the potential to reduce variability and scale
values for comparisons across samples and locations. Across WBE
studies, researchers have normalized wastewater concentrations to flow
rate and population to calculate a per capita load (Chen et al., 2014;
Choi et al., 2018; Zuccato et al., 2005; Zuccato Zuccato et al., 2008) or to
a chemical parameter (e.g., caffeine) (Been et al., 2014; Choi et al.,
2018; D’Aoust et al., 2021b; Polo et al., 2020). More recently, four
biological markers have emerged as promising candidates to normalize
SARS-CoV-2 RNA signal for fecal content. Pepper mild mottle virus
(PMMoV), a nonenveloped RNA plant virus, is commonly used for
COVID-19 WBE (D’Aoust et al., 2021b; Feng et al., 2021; Whitney et al.,
2021; Wu et al., 2020) but concentrations in sewage vary with season
and local diet (Symonds et al., 2019). Another normalization biomarker
is the cross-assembly phage (crAssphage), a non-enveloped, DNA virus
that ubiquitously infects the human gut commensal bacteria Bacteroides
(Edwards et al., 2019; Green et al., 2020; Stachler et al., 2017; Wilder
et al., 2021). In addition, Bacteroides HF183 16S rRNA gene is widely
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used for detecting fecal contamination in environmental waters (Green
et al., 2020; Shanks et al., 2008), and recent studies (D’Aoust et al.,
2021b; Kapoor et al., 2015; Pitkanen et al., 2013) have targeted HF183
rRNA (versus the rRNA gene) to increase the sensitivity of the assay
(D’Aoust et al., 2021b; Feng et al., 2021). Lastly, the human 188 ribo-
somal subunit RNA (18S rRNA) assay has been proposed as a normali-
zation biomarker because it targets human cells that are shed in feces
(D’Aoust et al., 2021b; Whitney et al., 2021). While each of these
normalization biomarkers has been assessed independently, they have
not all been compared within the same study.

In addition to normalizing the target signal, smoothing procedures
can assist in discerning temporal trends in SARS-CoV-2 occurrence.
While seven-day moving averages have been widely used for assessing
clinical data trends in real-time (“Track Testing Trends,” n.d.), waste-
water sampling is often performed only 1-3 times per week. Therefore,
smoothing techniques are needed that can be applied to data with lower
sampling frequency that minimize loss of temporal resolution, such as
locally weighted scatterplot smoothing (Lowess) (Gibas et al., 2021;
Gonzalez et al.,, 2020; Nemudryi et al., 2020; Vallejo et al., 2020).
However, no standard value for the bandwidth parameter exists (anal-
ogous to the selection of a seven-day window for moving averages of
clinical data), and the default parameter value differs between two
common languages used for data analysis (R (“Source code for spatia-
IEco package,” n.d.): 0.75 and Python (“Source code for statsmodels
module,” n.d.): 0.67). Furthermore, the bandwidth selection process
generally has not been specified in studies incorporating Lowess (Gibas
et al., 2021; Gonzalez et al., 2020; Nemudryi et al., 2020; Vallejo et al.,
2020; Wu et al., 2020).

Systematic approaches are also needed to estimate the minimum
number of clinical COVID-19 cases for which SARS-CoV-2 RNA is reli-
ably detected in wastewater (WBE case detection limit). The WBE case
detection limit is dependent on the methods used to extract genetic
material as well as the extent of local clinical testing and may require
sewershed-specific assessment. This value can vary over time with
clinical testing capabilities and is, therefore, referred to as the apparent
WBE case detection limit in this study. A systematic approach to esti-
mate this value across studies can aid interpretation of nondetects and
reproducibly estimate the number of COVID-19 cases per capita above
which COVID-19 WBE will be a useful public health surveillance strat-
egy. In a recent study (Wu et al., 2021), an apparent WBE case detection
limit was estimated using a dataset with 1,687 samples, which was large
enough to include repeated wastewater measurements at low case
numbers. With fewer data points, researchers have estimated this value
observationally by reporting the number of cases they were able to
detect or quantify (Hata and Honda, 2020; Medema et al., 2020).

The goal of this research was to develop and assess approaches for
COVID-19 WBE data validation and interpretation. Specific objectives
were to: (i) evaluate normalization biomarkers (crAssphage, pepper
mild mottle virus, Bacteroides rRNA, and human 18S rRNA) for adjusting
SARS-CoV-2 RNA signal to account for variable wastewater fecal con-
tent; (ii) assess SARS-CoV-2 wastewater testing as a complement to
clinical testing for public health surveillance by determining the corre-
lation between these two methods; (iii) determine whether wastewater
trends lead clinical trends and could provide early warning of COVID-19
outbreaks; (iv) evaluate a systematic method for trendline smoothing;
(v) develop a systematic method for estimating an apparent WBE case
detection limit; and (vi) apply these methods to interpret spatial and
temporal trends in COVID-19 occurrence based on wastewater and
clinical testing data. We analyzed a sample set from six locations in the
San Francisco Bay Area containing 5 months of weekly raw wastewater
samples paired with geocoded clinical data.

2. Materials and methods

Six locations in the San Francisco Bay area were sampled (referred to
throughout as locations A, S, N, K, Q, and E; Fig. 1 and Table 1). Raw



H.D. Greenwald et al.

L.
€A
Sae . SanRafael
elmoy -
M.
Strawberry Tiburon
Sausalito]
San
Erancisco
Hillsborough
S Half
EllGranada s, 'Moon
~_Bay,
\.
J
Mapitilesiby;
Stamen
Design, CC
BY/370)--
Map/data
(©
OpenStreetMap

contributors

Water Research X 12 (2021) 100111

/'I od
ez 7) N
4 Clayton /: {I Discsou
g = ‘ L
N ':f;: : .Bag’_
g N ".-, B

2 t
Sunny.v _th 2 ’ i3
TN 2 4";
k. S

f : NS 3

o i

%
Scotts e

Fig. 1. Map of the six wastewater catchment areas sampled in this study. Samples collected from East Bay Municipal Utility District represent three discrete sampling
areas: one including North Berkeley (location N), one including the University of California at Berkeley (location A), and one including Oakland (location S). Location
K consists of the full Central Contra Costa Sanitary District sewershed. Location E consists of the full San Jose - Santa Clara Regional Wastewater Facility sewershed.
Location Q is from San Quentin Prison, which is in the Central Marin Sanitation Agency sewershed. All locations collect predominantly residential wastewater.

wastewater was collected weekly and archived from April to September
2020, and extraction replicates were processed for some locations as
indicated in Table 1. SARS-CoV-2 N1 RNA and normalization bio-
markers (crAssphage, PMMoV, Bacteroides rRNA, and 18S rRNA) were
measured in wastewater samples via RT-qPCR. Associated physico-
chemical data were collected by wastewater utilities, and associated
geocoded clinical COVID-19 data were collected by public health

departments (Table 1).

2.1. Wastewater sample collection and physicochemical data

24-hour time-weighted composite samples of raw wastewater were
collected using Teledyne ISCO autosamplers. Some samples were
collected and processed with extraction replicates (i.e., wastewater
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Table 1
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Descriptions of wastewater sampling locations including associated wastewater utility, clinical testing data sources, population, and flow rates. “d” represents the

number of unique dates on which samples were collected. “n”

represents the total number of wastewater samples collected, including extraction replicates.

Wastewater catchment area Wastewater treatment

COVID-19 clinical data source

Location K Influent to the
wastewater treatment
facility

Location S Upstream of
wastewater treatment
facility

Location A Upstream of
wastewater treatment
facility

Location N Upstream of
wastewater treatment
facility

Location Q* Wastewater
collection point for San

facility

Central Contra Costa Sanitary

District

East Bay Municipal Utility
District

East Bay Municipal Utility
District

East Bay Municipal Utility
District

Central Marin Sanitation
Agency

Contra Costa County Public
Health Department

Alameda County Public Health
Department

Alameda County Public Health
Department

Contra Costa County and
Alameda County Public Health
Departments

California Department of
Corrections and Rehabilitation

Quentin Prison
Location E Influent to the
wastewater treatment

facility

open data portal
San Jose - Santa Clara Not applicable
Regional Wastewater Facility

(SJSC-RWF)

Population Mean flow Mean per capita d n

rate (MGD) flow (L/person/

day)

483,600 33 261 13 39
469,344 35 282 20 22
82,818 6 274 1 17
139,037 10 272 18 18
Ranges from 3,587 0.41 481 10 11
(June) to 2,930
(September)
1,500,000 103 278 19 48

" For location Q, the population and clinical data are from incarcerated people only and do not include staff.

subsamples were aliquoted from the same composite sample but inde-
pendently extracted). After collection, all samples were transported to
the lab on ice, stored at either -20°C or -80°C, and then thawed at 4°C for
36-48 hours before extractions. Wastewater data was not individually
identifiable; therefore, no institutional review board approval was
needed. More information on location-specific data collection and
wastewater sampling, transport, storage, and extraction replicates is
provided in Table 1 and the Supplementary Information (SI) Section
A.

One rainfall event occurred (May 12-19) during which sampling
locations experienced 0.8 to 1.8 inches of precipitation (NOAA Climate
Data Online database). Although none of the sampled locations was a
combined sewer system, rainfall could still increase flow rates through
infiltration and inflow. Daily wastewater flow rate values during this
period varied <4% (Locations K & E, Table S1), which is negligible
when compared to the variation displayed by normalization biomarkers
over time (15%-244%; Fig. 2). Mean flow rates were provided by the
wastewater utility for locations A, N, and S and were calculated from
daily flow rates for locations K, E, and Q (Table 1 and SI Section A).

2.2. Clinical testing and population data

Geospatial vector data of the sewersheds (locations S, K, A, and N)
were used to determine the COVID-19 clinical testing data that mapped
to each wastewater catchment area (Table 1). For all locations, daily
new case data correspond to the date that results were reported (result
date) for each COVID-19 test. For location K, additional data were
available that correspond to the sample collection date and the episode
date, defined as the earliest of: (i) the date of first symptoms; (ii) the
sample collection date; or (iii) the date the sample was received by the
testing lab. Clinical testing data were provided by the corresponding
county or open data portal (Table 1). Data were masked by public health
departments to maintain confidentiality of the contributing population
(below 11 new cases per day) and were provided as 7-day (A, S, K) or 14-
day (N) moving averages. Masked values were substituted at 5.5 new
cases per day for further analysis and plotting. For San Quentin Prison
(location Q), unmasked COVID-19 clinical data were obtained from the
California Department of Corrections and Rehabilitation open data
portal (“CDCR Population COVID-19 Tracking,” n.d.), and instances of
zero cases were substituted at 0.5 cases for comparison to masked data in
statistical data analysis (Fig. 6). For clinical data obtained for this study,
no institutional review board approval was needed because data were
either provided masked or were publicly available. More information

about masking and population data is provided in Table 1 and SI Sec-
tion E.

2.3. Wastewater sample processing via the 4S method

Wastewater samples were extracted following the 4S method
(Whitney, 2020; Whitney et al., 2021), with a minor modification: the
elution buffer was not pre-warmed; instead, it was added to the column,
and the column was heated at 50°C for 10 minutes before centrifugation
to collect the eluate. Both RNA and DNA were captured (Fig. S1). Each
extraction batch contained a negative extraction control, and each
sample or control was spiked with a surrogate virus control (Bovilis
coronavirus; Merck Animal Health, BCoV) and a free RNA control
(synthetic oligomer construct, SOC). BCoV and SOC concentrations were
significantly and strongly correlated (t=0.57, p<0.05). Because it is not
possible to independently quantify the surrogate spike without the in-
fluence of extraction efficiency (Kantor et al., 2021b), extraction con-
trols were used to assess consistency of extractions rather than recovery.
Outlier analysis (alpha=0.05) was conducted for BCoV and SOC Cq
values using Grubbs test. No outliers were detected, and all samples
tested were considered to have passed this quality control screen.
Wastewater sample processing is further described in SI Section B.

2.4. RT-qPCR plate setup, controls, and data processing

Reverse transcription quantitative polymerase chain reaction (RT-
gqPCR) was performed on wastewater extract targeting eight sequences:
(i) SARS-CoV-2 CDC nucleocapsid gene (N1), (ii) VetMAX™ Xeno™
Internal Positive Control (Xeno), (iii) crAssphage CPQ_056 (crAss-
phage), (iv) pepper mild mottle virus coat protein gene (PMMoV), (v)
Bacteroides 16S ribosomal RNA HF183/BacR287 (Bacteroides rRNA), (vi)
bovine coronavirus transmembrane protein gene (BCoV), (vii) Synthetic
Oligomer Construct T33-21 free-RNA (SOC), and (viii) human 18S ri-
bosomal subunit RNA (18S rRNA) (Greenwald, 2021). Reaction condi-
tions (Table S2), thermocycling conditions (Table S3), and primers,
amplicon sequences, and probes (Table S4) are included in the SI. Re-
actions consisted of 20 pL total volume, including 5 pL of RNA extract,
TagMan Fast Virus 1-Step Master Mix (ThermoFisher Scientific),
primers, probes, and nuclease-free water. Reactions were completed on
a QuantStudio 3 Real-Time qPCR system (ThermoFisher Scientific),
where Cq values were determined through automatic thresholding on
QuantStudio 3 Design and Analysis Software (v1.5.1). Every plate
included samples, no-template controls (NTCs), and standards, each



H.D. Greenwald et al.

CrAssphage (gene copies/person/day) |

leld 4

o 72%
15% 94% 7% 1% ° 16%

—— E:#:ﬂ == = =4 §
" e

19121

1e10+
n=13 n=22 n=18 n=17 n=10 n=18
PMMoV (gene copies/person/day) |
leld
* *
1 1
lel2y 61%
® 69% 0
33% == 59% %
—t — ===
1lel0 ® §
n=13 n=18 n=18 n=17 n=10 n=17

Bacteroides rRNA (gene copies/person/day) |

0,
w% Wl 5%

leld 4 244%
161%

[ ]
[ ]
00 *
1?/ i EETEE . §
le12{ _e

I ®

o Y
|

* e

le10{ o )
*
n=13 n=22 n=18 n=17 n=10 n=17

K S N A Q E

Fig. 2. Spatial and temporal variation in crAssphage, PMMoV, and Bac-
teroides wastewater loads. Only one extraction replicate per date per location
is shown. 18S rRNA results were not included in the figure for consistency of
scale due to the wide range in sample values and are included in the SI
(Fig. S8). The temporal variation within each location was assessed as the
geometric coefficient of variation, displayed as a percentage above each box.
The significance of differences between locations was assessed using a Kruskal-
Wallis test with a Bonferroni correction followed by Dunn’s test, where * in-
dicates p < 0.001 for bracketed relationships and § (above location E) indicates
p < 0.001 for every pairwise location comparison to E, except p > 0.001 when
compared to location K (for crAssphage and Bacteroides) and location N
(for crAssphage).

quantified in triplicate (RT-qPCR replicates). Individual standard curves
(efficiencies ranging from 83.2% to 97.8% and R? ranging from 0.974 to
0.999 for the N1 standard (Twist Bioscience)) were used as a quality
control measure (Table S5) and later combined into master standard
curves (Table S6) to calculate quantities (Ahmed et al., 2020c, 2021). A
subset of samples was run with no reverse transcription (no-RT) controls
for Bacteroides rRNA and 18S rRNA, and RNA was found to be multiple
orders of magnitude greater than DNA in the samples tested (Table S7).
Further details on RT-qPCR materials and no-RT controls are provided in
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the SI Section C.

Raw Cq values that did not amplify or that amplified below the limit
of detection were substituted with the Cq value corresponding to half the
limit of detection (for N1) or half the lowest point of the master standard
curve (for all other assays) (Table S6), and then outliers were assessed
using a two-sided Grubbs test (alpha=0.05). The N1 qPCR limit of
detection (LoD) was calculated by analyzing all RNA standard curves
from the study as well as four additional extended triplicate standard
curves. The N1 LoD was set at 5 gene copies per reaction (which cor-
responds to a Cq of 37.35; Table S6), at which point 67% of RT-qPCR
replicates were positive in the standard curves (Table S8). Further de-
tails on the data processing pipeline are provided in SI Section D.

2.5. Assessing PCR inhibition via serial dilution and an internal
amplification control

To our knowledge, there is no standard methodology for assessing
PCR inhibition in raw wastewater samples. We combined two ap-
proaches to assess PCR inhibition in raw wastewater samples: a non-
competitive internal amplification control (Ahmed et al., 2020b;
Nolan et al., 2006; Schrader et al., 2012; Staley et al., 2012) and serial
dilution (Graham et al., 2020). The internal amplification control can
easily be included in every sample but cannot detect assay-specific in-
hibition (Schrader et al., 2012). Serial dilution consumes more resources
and risks diluting the target signal below the detection limit, but it more
accurately tests the target itself and allows selection of a dilution value
that best reduces the impacts of inhibition. Thus, we used the VetMAX™
Xeno™ Internal Positive Control (ThermoFisher Scientific) assay
duplexed with the N1 assay as a screening tool to select samples for
further testing with serial dilution.

For all samples, Xeno RNA was spiked into the reaction mix
(Table S2), and NTCs were used as an inhibition-free baseline to
compare each sample on that plate. Ten samples showed >2 Cq devia-
tion from the baseline and were selected for further inhibition testing
(Staley et al., 2012). A dilution series (1%, 2x, 5x, 10x) was performed on
these samples, and the duplexed N1 and Xeno assay was repeated. A
dilution was chosen by comparing SARS-CoV-2 N1 signal in each dilu-
tion to theoretical expectations (based on theoretical doubling per PCR
cycle). If diluting the sample led to a 1 Cq difference between actual and
expected change in Cq, then the sample at the base dilution was deemed
inhibited, as in Graham et al. (2020). Following the serial dilution test,
only three samples required dilution (Table S9), and subsequent qPCR
results in this study are reported using this chosen dilution. Results from
the internal amplification control were inconsistent with inhibition
assessed via serial dilution, and we do not recommend the use of Xeno
for testing N1 inhibition in future studies.

2.6. Data analysis

All data analysis was performed in Python (v3.6.9) using key mod-
ules Pandas (v1.1.5), NumPy (v1.19.5), SciPy (v1.4.1), and Plotnine
(v0.6.0).

2.6.1. Normalization biomarker analyses

For N1 normalization to biomarkers, N1 (gene copies per liter, gc/L)
was divided by the normalization biomarker concentration (gc/L). To
calculate flow-scaled biomarker load (gc/person/day), target concen-
tration (gc/L) was multiplied by mean flow for the sampling location
(MGD) and a unit conversion factor (liter per million gallons) and then
divided by population. Daily flow rate data were not available for S, N,
and A (locations upstream of a treatment facility) (Table S1), so mean
dry weather flow rates (and population) were used to scale data when
comparing across locations. We expect that the mean flow rate likely
approximates the daily flow rate throughout the study period, but this
may not hold true in other locations and seasons.

For comparisons of biomarker concentrations and variation (Fig. 2),
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a Kruskal-Wallis test (SciPy v1.4.1) was performed, followed by pairwise
Dunn’s tests (scikit-posthocs v0.6.6) to determine statistical differences.
Rank correlations between wastewater and case data (Fig. 3) were
calculated as Kendall’s Tau-b coefficients (t; SciPy v1.4.1), a method
adapted for left-censored data (i.e., datasets with data below a lower
limit of detection) (Wood et al., 2011) because 22% of the data are
below the N1 LoD. Correlations were classified as weak (t < 0.3),
moderate (0.3 < T < 0.5), or strong (t > 0.5). Coefficients of variation
(CV) were calculated as the arithmetic standard deviation divided by the
mean, while geometric coefficients of variation (gCV) were calculated as
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Fig. 3. Rank correlations of both unnormalized and normalized waste-
water SARS-CoV-2 concentrations with clinical testing data. N1 concen-
tration, and N1 normalized proposed biomarkers are plotted against a seven-
day moving average of new cases per capita per day for sample locations K,
S, N, A, and Q. Shapes signify whether wastewater samples were below the
qPCR limit of detection (LoD) for the N1 assay, associated with masked clinical
case values, or both. Significance of rank correlation values in facet titles is
indicated by *=<0.05, ***=<0.0001

Water Research X 12 (2021) 100111
the geometric standard deviation minus one.

2.6.2. Assessment of an apparent WBE case detection limit

An apparent WBE case detection limit was estimated as follows. The
paired wastewater and case data for all sewersheds were combined and
sorted from highest to lowest case counts. For each case count, all RT-
qPCR replicates in the wastewater data at and above that point were
tallied to determine the cumulative percentage of replicates that
amplified in RT-qPCR. Equation 1 was used to fit a logistic function
(Kyurkchiev and Markov, 2016) to the dataset (SciPy v1.4.1), where y is
the fraction of amplified RT-qPCR replicates, x is the log;o(moving
average of new cases per person per day), k sets the growth rate of y, and
y sets the inflection point. Zero new cases per capita cannot be repre-
sented in a logistic growth model, but in this study, case values of zero
were only available for location Q, and these values were substituted as
0.5 cases before the analysis. The COVID-19 per capita case rate that
corresponded to 95% cumulative amplification of RT-qPCR replicates
was reported as the apparent WBE case detection limit, and the analysis
was repeated with samples where daily per capita cases were provided
as masked values.

1

T ek G )
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2.6.3. Wastewater trendline smoothing

For wastewater data, any smoothed trendline displayed in a figure
was determined using a fitted local regression (Lowess; statsmodels
v0.10.2) with bandwidth parameter (o, the fraction of the dataset used
for smoothing), set as previously shown (Jacoby, 2000) (Figs. 4 and
§2-S5). Lowess trends of SARS-CoV-2 N1 signal were also visualized as
heatmaps to aid in discerning peaks (Figs. S6 and S7). The full dataset
and associated code are available through GitHub (https://zenodo.
org/record/4730990+#.YIxkrqlKgUo).

3. Results

Raw wastewater was collected weekly from April to September 2020
at six locations (Table 1). The resulting dataset includes 91 samples
(155 including extraction replicates) which were paired with geocoded
clinical testing data and analyzed for SARS-CoV-2 along with four po-
tential normalization biomarkers (crAssphage, PMMoV, Bacteroides
rRNA, and human 18S rRNA). This dataset was generated from the San
Francisco Bay Area in separate sanitary sewer systems during a period
with minimal rainfall (see Methods), which naturally controlled for
variability in wastewater strength due to precipitation. Thus, we ex-
pected the concentrations of the measured normalization biomarkers to
be relatively stable. Additionally, geocoded clinical testing data
included a range of per capita COVID-19 case rates that varied by
location.

3.1. CrAssphage and PMMoV were the most consistent biomarkers

A subset of samples from all locations was used in experiments
(Fig. 2) comparing crAssphage (98 unique samples, 153 extraction
replicates), PMMoV (93 unique samples, 95 extraction replicates),
Bacteroides rRNA (97 unique samples, 99 extraction replicates) and 18S
rRNA (40 unique samples, 41 extraction replicates) as biomarkers for
normalization to fecal content. All normalization biomarkers were
detected at high concentrations (Table S10) in all samples tested, except
for 18S rRNA, which was inconsistently quantifiable (Fig. S$8). Flow
rates and chemical wastewater parameters (TSS, BOD, COD, cBOD) were
not consistently measured by utilities (Table S1); thus, robust compar-
isons of physicochemical biomarkers could not be made. In the absence
of daily flow rate data, we used mean flow rate to scale wastewater
biomarker concentrations by the per capita wastewater flow for each
sewershed to account for differences across sewersheds (Fig. 2). Mean
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Fig. 4. Example of Lowess bandwidth parameter selection process (Location N) (A) Residual plots for Lowess bandwidth parameter (o; column labels)
determination for location N where the bandwidth parameter increases from inclusion of 1 data point (far left) to inclusion of all data points (far right) in each local
regression for unnormalized N1 (top) and crAssphage-normalized N1 (bottom). The value of « that minimized the residual was selected (red boxes). (B) Visualization
of how bandwidth parameter affected the Lowess trendline for location N. Black dashed line indicates the resulting Lowess trendline when a=0.39.

per capita flow rates were similar for all locations except Q (a facility;
Table 1), generally resulting in little change after flow-scaling. For this
reason, flow-scaling was applied to compare biomarkers, but unnor-
malized SARS-CoV-2 N1 concentrations are used as a baseline in later
analyses.

An ideal normalization biomarker would have minimal spatial
variation in per capita shedding rates and minimal temporal differences
in wastewater loads when flow rates are stable, as they were in this
study. Two methods were used to evaluate biomarker variability
(Fig. 2): (i) comparing per capita biomarker loads (gene copies/person/

day) to assess differences in observed shedding by location; and (ii)
evaluating the temporal variation of loads for each location. Consistent
with recent studies (Ahmed et al., 2020d; D’Aoust et al., 2021b),
crAssphage and PMMoV were the least variable biomarkers across lo-
cations and over time (mean gCVcrassphage=59% and mean
gCVpMmov=56%, not statistically different (p>0.05)). In contrast, Bac-
teroides rRNA displayed more variability both spatially (Fig. 2) and
temporally (mean gCV=130%), and 18S rRNA varied dramatically
(mean gCV=500%) (Fig. S8).

CrAssphage, PMMoV, and Bacteroides rRNA were quantifiable in all
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samples tested, but 18S rRNA was below the LoD for 24% of samples.
Furthermore, 18S rRNA was the only biomarker that amplified in the
extraction negative controls (75%) at similar levels as the samples
(p>0.05; Fig. S9), which suggests that this target could be a common
laboratory contaminant. Based on our findings that 185 rRNA was
frequently detected in negative controls, inconsistently detected in
sewage, and had high spatial and temporal variation in per capita
shedding, we conclude that human 18S rRNA is not suitable as a
normalization biomarker to adjust for fecal content.

Location E had lower biomarker concentrations (Fig. 2), frequently
undetected 18S rRNA (Fig. S9), and high variability in N1 signal. We
suspect that these samples had RNA degradation because: (i) location E
is the largest sewershed in the study (i.e., longer residence time allowing
for signal degradation); and (ii) some samples from this site thawed
during transportation back to the lab (resulting in an additional freeze-
thaw cycle, which could degrade RNA (Ahmed et al., 2020c; Coryell
et al., 2020)). Data from sewershed E were excluded from subsequent
analyses because of the uncertainty surrounding the integrity of these
samples.

3.2. SARS-CoV-2 N1 and clinical testing data were correlated in
aggregate and normalization biomarkers did not strengthen this
relationship

The SARS-CoV-2 N1 concentration in wastewater was moderately
correlated to daily per capita clinical cases when aggregated across all
locations (t=0.43, p<0.0001; Fig. 3). However, there are several limi-
tations to assessing correlation between clinical data and wastewater
data. First, clinical testing data do not necessarily represent true inci-
dence because of biases associated with testing, including that asymp-
tomatic cases are often not detected through clinical testing. Similarly,
wastewater testing data do not necessarily represent true incidence
because studies have found that fecal shedding is less common than
nasopharyngeal shedding in symptomatic individuals (Parasa et al.,
2020). Thus, there may be COVID-19 cases that are detected through
clinical public health surveillance but not through wastewater surveil-
lance and vice versa. Furthermore, viral load has been shown to vary
throughout an infection and to differ in nasopharyngeal and fecal
samples (Benefield et al., 2020; Walsh et al., 2020). Even if clinical and
wastewater testing data correspond to the same date, fecal shedding
could peak before symptom onset, which would impact the correlation
unless the correct time offset is applied to reflect this discrepancy
(Hoffmann and Alsing, 2021). Additionally, for this analysis, clinical and
wastewater testing data would ideally both correspond to the sample
collection date (as opposed to the result date) to remove lag introduced
by test result turnaround time (see Section 3.3 for more information).
However, often only one date was available for clinical testing. For
example, in this analysis, the only date associated with the daily per
capita cases from most locations (all but K) was the date that the testing
results were provided (result date), while the date associated with the
SARS-CoV-2 N1 wastewater signal was the sample collection date.
Finally, due to the limited sizes and variation in individual datasets,
correlations were assessed for all locations in aggregate despite
site-specific factors that may influence the significance (site-specific
analyses are conducted later in this section).

Despite these potential limitations, correlation to daily per capita
COVID-19 cases was used as a metric to assess the effect of normalization
to biomarkers (crAssphage, PMMoV, and Bacteroides rRNA). Moderate,
significant correlations were observed with COVID-19 daily per capita
cases when SARS-CoV-2 N1 was unnormalized and normalized by
crAssphage or Bacteroides (Tunnormalized=0.43, Tcrassphage=0.38 and
TBacteroides—0-35, p<0.0001; Fig. 3). Notably, normalization did not
strengthen the correlation compared to unnormalized signal.
Conversely, PMMoV normalization produced only a weak correlation of
0.18 (p < 0.05) (Fig. 3). Analysis was performed with and without
samples that were below the limit of detection and produced similar

Water Research X 12 (2021) 100111

results (Table S11). Of the normalization biomarkers tested, crAssphage
had the lowest variability and also maintained significant and moderate
correlation with clinical testing data, so we included it in subsequent
analyses alongside unnormalized concentrations.

The correlation analysis was repeated with data separated by loca-
tion to determine whether locational dependencies affect the relation-
ship between wastewater and clinical testing data as well as the
performance of normalization strategies. Locations with at least 75% of
data above the N1 qPCR LoD (Locations K, N, and S; Table S12) were
included in this analysis. Only location K had significant correlations
with clinical testing data, both with and without crAssphage normali-
zation (Tunnormalized=0.5 and Terassphage=0.43, p<0.05; Fig. S10). Loca-
tion K is the only site with three extraction replicates for each sample,
which likely captured a more representative signal than that of locations
S or N. The lack of significance of correlation for locations S and N could
also be due to the short time series that may not vary enough to establish
rank (location S) or may have impacts of outside factors, such as clinical
undertesting (location A), that skew the rank. Overall, locational de-
pendencies (e.g., differences in extent of clinical testing, sewer system
residence times, etc.) likely affect the correlation with clinical testing
data and should be considered when evaluating aggregated data.
Additionally, the location-specific analysis was repeated including only
samples with detectable SARS-CoV-2 N1 signal, and the results were no
longer statistically significant (Fig. $10). This finding is likely influ-
enced by both the limited sample size and values below the N1 qPCR
LoD that affect rank correlations.

In addition to the limitations in clinical testing data mentioned at the
beginning of this section, there are several explanations for why
wastewater signal at locations S, N and K did not significantly correlate
with clinical testing data after removing values below the LoD: (i) the
daily per capita cases in the population were at or below the WBE case
detection limit of the wastewater data; (ii) the daily per capita cases that
were masked by public health departments for patient privacy impaired
the rank correlation analysis by left-censoring the clinical testing data;
(iii) the wastewater signal did not vary enough over the time of sampling
to establish rank. The possibility that the wastewater signal leads the
clinical testing data was subsequently tested for locations K, N, and S (i.
e., correlations were examined for zero-, one-, and two-week offsets);
however, location K was the only location with significant correlation
between wastewater and clinical testing data for any lead time tested
(Fig. S10).

3.3. Impact of the date associated with clinical testing data on lead time in
wastewater surveillance at location K

The time for laboratories to process samples and return results
(testing turnaround time) affects the potential for wastewater surveil-
lance to provide lead time over clinical surveillance. In general, clinical
testing data correspond to either the date the sample was collected or the
date the results were returned. The ideal date to use for informing public
health decisions would be the result date, to include differences between
clinical and wastewater testing turnaround time in the analysis. Alter-
natively, sample collection dates should be compared to understand the
timing of the underlying biological mechanisms that result in a positive
wastewater signal (onset and duration of fecal shedding) and positive
clinical test (onset and duration of nasopharyngeal shedding). Onset and
duration of symptoms may influence the timing of the clinical test
(sample collection date), depending on whether testing is routine or only
available to symptomatic individuals. Hence, the ideal date to use for
comparison of wastewater and clinical testing data differs depending on
the goals of the comparison. The clinical testing data for location K
included sample collection date, result date, and episode date (the
earliest date associated with the case), allowing us to assess the corre-
lation between case data and wastewater data with and without clinical
testing turnaround time. Episode date was frequently the same as the
sample collection date, unless a patient reported symptoms prior to test
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date (Fig. S11). It should be noted that wastewater testing data corre-
spond to the sample collection date because all samples were processed
retroactively in this study. Routine wastewater testing turnaround time
in the San Francisco Bay Area has been reported to be two days or fewer
for most samples, but this value varies depending on sample transport
and laboratory methods (“Covid-WEB,” n.d., Kantor et al., 2021a).

To test the influence of the date associated with clinical testing, we
repeated correlation analysis for location K (Fig. $11). The wastewater
testing data (sample collection date) correlated with the clinical testing
data by episode date (Tepisode,unnormalized=0-56, Tepisode,crassphage=0-54,
p<0.01) and sample collection date (Tcollection,unnormalized=0.59,
Teollection,crAssphage=0.62, p<0.01) without a lead or lag. When the result
date was used for clinical testing data, the strongest correlation with
wastewater data was associated with a two-week lead time (unnormal-
ized N1 concentration) or one-week lead time (N1 normalized to
crAssphage; Figs. $10 and S11). When values below the N1 qPCR LoD
were removed, wastewater data were no longer significantly correlated
with episode date-associated clinical data, but the strongest correlations
for the other date associations remained significant. This analysis is
limited because of the small dataset, but the methodology presented
here can be used to assess the lead time provided by wastewater sur-
veillance with larger data sets and with wastewater data processed
contemporaneously with decision-making.

3.4. The Lowess bandwidth parameter affected wastewater data trend
interpretation

Variation in wastewater SARS-CoV-2 N1 signal from sources other
than variation in true incidence or prevalence (e.g., noise introduced
during sample collection, processing, etc.) can obscure temporal trends.
Smoothing techniques can be used to visually distinguish temporal
trends from noise. Similar to the choice of the number of days included
for each average calculation for moving averages (window), Lowess
requires selection of the fraction of the whole time series that is used for
each local regression calculation (bandwidth). We employed a method
to set the bandwidth parameter systematically based on residuals
(Jacoby, 2000) independently for each location. The bandwidth was
increased stepwise, beginning with inclusion of one point in each local
regression calculation and ending with inclusion of all points (a=1). For
each bandwidth value, the residuals were calculated and plotted by date,
and a Lowess trendline with a=1 was fit to these residual plots to
monitor residual trends as the bandwidth varied. Finally, the maximum
bandwidth value was selected for which the residuals visually main-
tained horizontal Lowess trendlines (see Figs. 4 and S2-S5).

As an example, for unnormalized and crAssphage-normalized SARS-
CoV-2 N1, bandwidth parameters of 0.39 and 0.33 were respectively
chosen for location N (Fig. 4 A). This process was repeated for all lo-
cations, and bandwidths in the range of 0.25-0.6 were selected based on
the optimization procedure (see Figs. 4 and S2-S5). To assess the impact
of bandwidth on SARS-CoV-2 N1 signal interpretation, Lowess was
performed for all locations sampled and for all possible bandwidths (see
Figs. 4 B and $2-S5). The bandwidth parameter influenced the overall
temporal trends of wastewater data for some locations (N and A; Figs. 4
and S5). For example, at location A (Fig. S5), a bandwidth of 1 resulted
in a gradual increase in SARS-CoV-2 N1 signal during sampling, while a
bandwidth of 0.73 resulted in a peak around July. However, for location
K (Fig. S2), all bandwidths resulted in trends that would have similar
interpretations. These results illustrate that choice of bandwidth could
have implications for interpreting WBE data and informing COVID-19
response strategies, and systematic methods should be used to select
the appropriate bandwidth.

3.5. Wastewater and clinical data had similar overall trends regardless of
normalization, with notable exceptions

To assess the impact of crAssphage normalization on SARS-CoV-2 N1
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temporal trends, we compared unnormalized and crAssphage-
normalized Lowess trendlines (Fig. 5). We found that crAssphage-
normalized trends were similar to unnormalized trends for three of
the locations (K, N, and A) but had differences in overall trend for lo-
cations Q (Fig. 6) and S (Fig. S12). Discrepancies are concerning
because they could have implications for pandemic response. We note
that the trend in location K, for which extraction replicates were pro-
cessed routinely, was the least impacted by bandwidth or normalization
(Figs. S2 and S12) and was the only site analyzed with significant
correlation with clinical data (Fig. S10). Larger datasets with more
frequent sampling and processing of replicates, would give single points
less influence over the trend.

Relative spatio-temporal trends in clinical and wastewater testing
results were compared across sampling sites (Figs. 5, S6, and S7). In
general, clinical and wastewater data at all locations paralleled one
another, with San Quentin Prison (Q) showing the highest COVID-19
burden across locations. Due to a COVID-19 outbreak, location Q had
a maximum that was 53 times (SARS-CoV-2 N1 4.89 x 10° gene copies/
mL), 17 times (crAssphage-normalized SARS-CoV-2 N1 ratio 2.9 x
10~3), and 203 times (~85 new cases per 1000 people on 6,/29) higher
than the highest value at the sewershed scale. There were a few dis-
crepancies between clinical and wastewater trends (heatmap visualiza-
tions in Figs. S6 and S7 highlight discrepancies in peaks). For example,
at location N, there may have been clinical undertesting, based on the
peak in wastewater data in August (Figs. 5 and S6) and higher SARS-
CoV-2 signal in wastewater at location N (relative to other locations)
than represented by the clinical data (Figs. 5 and S7).

3.6. The apparent WBE case detection limit was estimated to be 2.4
COVID-19 cases per 100,000 people

Quantifying the minimum per capita new COVID-19 cases in a
sewershed at which there is reliable detection of SARS-CoV-2 N1 in
wastewater (apparent WBE case detection limit) is important for
gauging the utility of COVID-19 WBE when the true incidence is low.
This apparent WBE case detection limit depends on the detection limit of
the wastewater measurement (i.e., on the methods used to store,
concentrate, extract, and measure SARS-CoV-2 RNA in wastewater) and
the accuracy of the clinical testing data available (as described in more
detail in Section 3.3). Ideally, this value would be calculated using the
true incidence, but that information is generally not available, and the
best available data should be used instead. This limit will vary over time
and location with the extent of clinical testing but could be useful in a
practical sense to compare wastewater and clinical surveillance efforts
locally. To estimate an apparent WBE case detection limit in a way that
is replicable across studies, the cumulative percentage of amplified RT-
gPCR replicates of the wastewater data for inversely-ranked daily per
capita COVID-19 cases was fit to a logistic growth model (without
samples associated with masked case values; see Methods). When
COVID-19 case rates equaled or exceeded 2.4 daily cases per 100,000
people, 95% of wastewater RT-qPCR replicates amplified via RT-qPCR
for N1 (Fig. 7). Other researchers have used non-cumulative methods
to estimate an apparent WBE case detection limit by calculating the
percent of amplified wastewater replicates for each case value (Wu et al.,
2021). This method requires repeated wastewater measurements asso-
ciated with each possible clinical case value or range of case values (i.e.,
bins). Otherwise, the percent of amplified RT-qPCR replicates is limited,
as was the case in this study where only one extraction replicate was
often associated with each case number (Fig. S13 A). Ideally, all data
would be unmasked when applying this method. To verify that the
masked clinical data did not affect the apparent WBE case detection
limit, the process was repeated with masked values, and the estimate
was similar (2.2 cases in 100,000 people; Fig. S13 B). These limits are
within the theoretical range possible (Hart and Halden, 2020b) and
similar in magnitude to previous findings of 10 in 100,000 (Hata and
Honda, 2020) and 13 in 100,000 (Wu et al., 2021).
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Fig. 5. Comparison of wastewater SARS-CoV-2 N1 to geocoded COVID-19 clinical testing results from May to September 2020. Wastewater SARS-CoV-2 N1
signal is compared as unnormalized (top) and crAssphage-normalized (middle), where lines are the most optimal Lowess trendlines. COVID-19 clinical testing results
are the daily per capita COVID-19 cases, where lines are the fourteen-day moving average (location N) or seven-day moving averages (all other locations) (bottom).
Heatmap visualization of the unnormalized N1 trendlines is included in the SI (Figs. S6 and S7) and visualization of sewersheds by location can be found in Fig. S12.

Based on the contributing population of each sewershed in this study,
the apparent WBE case detection limit translates to 11.6 cases for K, 11.3
cases for S, 3.3 cases for N, 2.0 cases for A, and 0.1 cases for Q. Therefore,
theoretically, a single case should be detectable at location Q based on
results from this analysis, but this could not be tested observationally
because there was only one instance when a single new case was
detected by clinical testing after August 12" (Fig. 6). Only one RT-qPCR
replicate amplified for two samples taken within seven days of the single

10

clinical case detected, and these samples were classified below the limit
of detection. Larger data sets with more instances of single clinical case
detections are needed to assess the ability to detect a single case from
this facility. Nonetheless, a single case may still go undetected, despite
being above the apparent WBE case detection limit. For example, SARS-
CoV-2 RNA is not shed consistently in stool samples of all infected in-
dividuals (Parasa et al., 2020) and wastewater surveillance relies on the
autosampler aliquots capturing the feces from each infected individual,
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Fig. 6. Comparison of wastewater and clinical data at location Q from
June to September 2020, where symbols indicate how many RT-qPCR repli-
cates amplified. Wastewater data: (top) unnormalized and (middle)
crAssphage-normalized SARS-CoV-2 N1 signal in wastewater, where the hori-
zontal dashed line indicates the limit of detection, and trendlines are the most
optimal Lowess trendline (Fig. S4). Clinical data (bottom): daily per capita
COVID-19 cases, where the horizontal dashed line indicates 1 case in 1000
people. Vertical dashed lines indicate August 26th, the only date after August
12th when a new COVID-19 case was detected at location Q through clinical
surveillance.

which becomes less likely when there are fewer infected individuals and
wastewater has less mixing prior to the sampling location. Despite these
limitations, other studies have reported detection of one case in waste-
water from residential facilities ranging from 60 to 415 people (Gibas
et al., 2021; Karthikeyan et al., 2021; Spurbeck et al., 2021). More work
is needed applying WBE for SARS-CoV-2 across a broader set of facilities
with longer time series and higher frequency sampling.
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Fig. 7. Estimated minimum number of COVID-19 clinical cases needed for
reliable detection of SARS-CoV-2 RNA in wastewater. The cumulative per-
centage of amplified wastewater RT-qPCR replicates was calculated by ranking
the moving averages of daily per capita cases (x-axis) from highest to lowest
and calculating the fraction of RT-qPCR replicates that amplified cumulatively
(y-axis) for each value of x. The dashed line represents the daily new cases per
capita value above which 95% of wastewater RT-qPCR replicates amplified (2.4
cases in 100,000 people).

4. Discussion

4.1. Validation and potential use scenarios of SARS-CoV-2 wastewater
testing

During the COVID-19 pandemic, both the methodological research
for SARS-CoV-2 testing in wastewater and the application of WBE have
been occurring simultaneously. For COVID-19 WBE to be useful for
public health decision-making, public health officials need to be confi-
dent that the resulting SARS-CoV-2 signal reflects COVID-19 trends in
the contributing population. Despite limitations in clinical testing data
and the potential lag in wastewater trends, assessing correlations be-
tween clinical and wastewater testing data can help validate WBE
(Xagoraraki and O’Brien, 2020). Moderate correlations with clinical
data observed in this study (t=0.43) support that trends in wastewater
surveillance data reflect trends in COVID-19 disease occurrence; how-
ever, locational dependencies were observed. Wastewater data paired
with clinical data can be a more robust public health surveillance
strategy compared to either method alone, both for sewershed-scale and
facility-scale surveillance applications. In some settings, wastewater
testing may be a less resource-intensive way to implement
population-scale surveillance, and policymakers will need to balance
allocation of resources to each approach.

A critical question for public health decision-making is how much
early warning WBE can provide ahead of clinical testing, which could
allow more timely public health responses to slow COVID-19 outbreaks.
However, lead time is difficult to measure. Biologically, the time be-
tween onset of fecal shedding and nasal shedding is unclear (Benefield
etal., 2020; Walsh et al., 2020). Practically, lead time depends on testing
turnaround time and frequency of sampling for both wastewater and
clinical testing. For example, clinical testing capabilities can increase the
lead time of wastewater data if patients are only tested after symptom
onset and can decrease the lead time if asymptomatic and symptomatic
individuals are regularly screened with rapid turnaround time. Ideal
assessments of wastewater data lead time due to biological mechanisms
would not include turnaround time, whereas assessments of the per-
formance of clinical and wastewater laboratories for public health action
and practical limitations would include turnaround time. Although
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other studies observed lead time for wastewater data over clinical data
starting on the order of days (D’Aoust et al., 2021a; Nemudryi et al.,
2020; Peccia et al., 2020), the weekly sampling in our study could
explain why no lead time was determined when the sample collection
date was used for both wastewater and clinical testing data (Fig. S14).
However, the impact of clinical testing strategy (i.e., only screening
symptomatic individuals) could also be affecting this result. We could
not directly compare wastewater and clinical result dates in this retro-
active study, but when clinical data were associated with the result date
and wastewater data were associated with sample collection date, lead
time of 1-2 weeks was observed (Fig. S14). Other researchers have
observed lead time in wastewater data of up to three weeks (Ahmed
etal.,, 2021; Medema et al., 2020), and our results reflect a similar range
in possible lead times (0-2 weeks) depending on which date is associated
with the clinical data.

At the sewershed scale, the benefit of WBE to public health extends
beyond early warning. Discrepancies between wastewater testing data
and clinical testing data trends from early in the time series at location N
(April-July 2020; Fig. $12) could be used to infer clinical undertesting,
which is supported by lower testing capacity in this time frame at nearby
location K (Figs. 1, §15). Although pairing COVID-19 clinical testing
data with wastewater SARS-CoV-2 data can generate new insights for
public health decision-making, it can be challenging in practice. Pairing
wastewater SARS-CoV-2 data with geocoded COVID-19 clinical testing
data required collaboration between academics, wastewater treatment
facility representatives, and public health officials. These collaborations
may be particularly difficult at sewershed-scale, where multiple public
health department jurisdictions overlap within one sewershed (e.g.,
location N). Partnerships for data sharing between agencies are critical
to support ongoing wastewater-based epidemiology for SARS-CoV-2 and
other pathogens.

At the facility scale, monitoring raw wastewater for SARS-CoV-2
might be particularly useful for early detection of COVID-19 out-
breaks, especially when resources are insufficient for routine clinical
testing of all individuals. San Quentin Prison (location Q) had a COVID-
19 outbreak during the study period after a transfer from the California
Institution for Men (Cassidy and Fagone, 2020), where, at its peak, 47%
of the incarcerated population had active COVID-19 cases. The
maximum SARS-CoV-2 N1 concentration (4.89 x 10° gene copies/mL)
was higher than any sewershed sampled in this study and among the
highest values we found in the literature for N1 in raw wastewater
(Gerrity et al., 2021; Gonzalez et al., 2020; Medema et al., 2020; Ran-
dazzo et al., 2020b; Wu et al., 2020; Wurtzer et al., 2020), despite reg-
ular clinical testing (Fig. S15). Prison conditions cause incarcerated
people to be particularly susceptible to respiratory disease outbreaks,
and maintaining safety in prisons requires deliberate planning and co-
ordination by correctional institutions (e.g., coordination with local
public health systems to develop pandemic response plans, coordination
of transfers between institutions, etc.) (Montoya-Barthelemy et al.,
2020). Furthermore, the health of incarcerated people is linked to the
health of the surrounding community, and incorporating correctional
institutions into community safety plans will help ensure better pro-
tection against COVID-19 for everyone (Montoya-Barthelemy et al.,
2020). Once protective measures are implemented, WBE may be useful
to monitor prisons and other high-risk facilities (e.g., skilled nursing
facilities, homeless shelters, etc.), especially where clinical testing is not
available or routine.

4.2. Tools for translatable WBE

4.2.1. Normalization of wastewater targets to adjust for fecal content
Results from this study suggest that PMMoV, Bacteroides rRNA, and
18S rRNA were less promising normalization biomarkers than crAss-
phage. While PMMoV was present in high and stable concentrations, the
diet-dependency (Symonds et al., 2019) and large range in concentra-
tions in the literature (six orders of magnitude; Table S10) remain
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concerns for its use over longer time scales and across larger geographic
regions. Normalization to PMMoV resulted in the weakest significant
correlation to clinical testing data of the biomarkers tested (t=0.18,
p<0.05). Bacteroides rRNA loads varied more spatially and temporally
than crAssphage or PMMoV in this study (Fig. 2), but Bacter-
oides-normalized SARS-CoV-2 N1 had a moderate correlation with
clinical testing data (t=0.35). While measurement of Bacteroides rRNA
gene in wastewater has been commonly applied for fecal source tracking
and Bacteroides rRNA has been targeted to increase assay sensitivity
(D’Aoust et al., 2021b; Feng et al., 2021), to our knowledge, no prior raw
wastewater values have been reported in the literature for Bacteroides
rRNA (Table S10). Similarly, no values were found in the literature for
18S rRNA concentrations in raw wastewater (Table $10). In this study,
18S rRNA signal displayed a wide range in concentrations and consis-
tently amplified in negative extraction controls. Furthermore, 18S rRNA
was less stable in wastewater than SARS-CoV-2 RNA and nonenveloped
viruses (e.g., crAssphage and PMMoV), which is consistent with previ-
ous studies (Whitney et al., 2021; Wurtzer et al., 2020). Therefore, we do
not recommend 18S rRNA use as a normalization biomarker. In com-
parison to all the biomarkers tested, crAssphage had low spatial vari-
ability (i.e., the fewest locations with statistically different loads; Fig. 2)
and temporal variability (gCV=59%; Fig. 2). Additionally, SARS-CoV-2
N1 normalized to crAssphage correlated with daily per capita COVID-19
cases (t=0.38). Although crAssphage concentrations in the literature
had a wide range (six orders of magnitude; Table S10), they were
consistent across locations in this study. Based on this dataset and
findings from earlier studies that biomarker normalization has utility in
some settings (D’ Aoust et al., 2021b; Wu et al., 2020; Wolfe et al., 2021),
crAssphage remains a promising endogenous normalization biomarker
for broader WBE applications that require adjustment for fecal content.

Although a standardized approach would facilitate comparisons
across studies, the ideal normalization strategy may be situationally
dependent. For example, in this study, biomarker normalization did not
improve correlations to clinical data compared to unnormalized signal,
which is in contrast to other studies that found normalization to PMMoV
improved relationships with clinical data. However, these conclusions
were based on visual inspection of trends rather than correlations (Wu
et al., 2020) or measurements made in sludge rather than raw waste-
water samples (D’ Aoust et al., 2021b; Wolfe et al., 2021). Findings from
this study suggest that biomarker normalization may have limited utility
when comparing intra-study composite samples across a confined region
with stable wastewater flows, which is in agreement with recent studies
where biomarker normalization did not improve associations with
clinical data (Feng et al., 2021; Graham et al., 2020). Several factors
should be considered when deciding whether to normalize to a
biomarker or report unnormalized concentrations. First, adding another
assay introduces additional analytical variation that could outweigh the
benefits of biomarker normalization in some settings, especially when
wastewater fecal content is expected to be stable across samples (Feng
et al., 2021). An additional consideration is ensuring methods compat-
ibility with the WBE target and normalization biomarker. Ideally,
normalization to an endogenous biomarker would account for losses in
target signal during residence time in sewers, sample storage, and lab-
oratory processing, but the ideal biomarker for fecal content may not be
the best surrogate for the target of interest. For example, crAssphage is
not expected to be a good surrogate for SARS-CoV-2 stability, parti-
tioning, and extraction (Ye et al., 2016), and as a DNA virus, crAssphage
may be incompatible with some extraction methods used for
SARS-CoV-2 RNA. Other controls (e.g., endogenous biomarkers, recov-
ery controls) and modeling may be applied to improve measurement
accuracy and translate results across labs and methods, although there
are challenges associated with these corrections (Kantor et al., 2021b;
Wolfe et al., 2021). Degradation modeling with target-specific decay
constants (Ahmed et al., 2020a) and sewershed-specific parameters
could assist in correcting for degradation or determining sample integ-
rity, but no comprehensive approach for this correction exists, and more
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work is needed developing these methods.

4.2.2. A systematic approach for data smoothing (Lowess)

In general, public health decisions are based on temporal trends in
disease burden, not individual data points, but trends in wastewater and
clinical data can be difficult to visually distinguish, especially when
available resources constrain sampling frequencies. Applying Lowess to
wastewater data, we found that the value of one parameter could in-
fluence the trend visualization such that the same dataset could lead to
different public health responses (Figs. 4 and S5). Based on our analysis,
the bandwidth parameter for Lowess should be determined for each
sewershed sampled. Lowess with a systematically chosen bandwidth
could be used to smooth trendlines and minimize the loss of temporal
resolution. The method presented here could be applied in retrospective
analysis or in real-time analysis completed as part of wastewater public
health surveillance programs. For real-time applications, the bandwidth
parameter could be selected using a subset of data, and the residuals plot
could be frequently checked to ensure no new residual patterns emerge
over time that could obscure the smoothed trend.

4.2.3. A systematic approach to estimate an apparent WBE case detection
limit

Our approach for identifying an apparent WBE case detection limit
that can be applied systematically to studies using PCR-based methods.
We applied this analysis to SARS-CoV-2 N1 signal in wastewater and
found that the daily new clinical cases at which wastewater surveillance
could reliably detect clinically diagnosed COVID-19 cases in the
contributing population was estimated at 2.4 cases per 100,000 people.
There are multiple limitations to this analysis because wastewater
detection depends on factors other than incidence, such as sampling
methods (e.g., frequency of sampling aliquots), which can influence the
probability of capturing shed viral particles from an infected individual.
Additionally, the estimate may vary based on site-specific clinical
testing availability, wastewater sampling methods (e.g., composite
sampling, freezing before processing) and laboratory processing (e.g., 4S
extraction method, RT-qPCR). The estimation method for an apparent
WBE case detection limit presented here could benefit both COVID-19
WBE and other disease WBE by providing a systematic method to
compare wastewater and clinical testing capabilities locally.

5. Conclusion

Wastewater N1 concentrations had a moderate correlation with
geocoded clinical testing data (Tynnormalized=0-43). Normalization of
SARS-CoV-2 N1 signal in wastewater to any biomarker did not
improve the correlation with clinical testing data, likely because of
the low variation in daily flow rates.

Of the four normalization biomarkers tested, crAssphage was the
most promising due to low spatial and temporal variability and
because crAssphage-normalized N1 had the strongest correlation
with clinical testing data (Tcrassphage=0.38,
TpmMMov=0.18).

18S rRNA was not suitable as a normalization biomarker due to its
variability in sample concentrations, high degradation rate, and
ubiquity as a laboratory contaminant.

Discrepancies between wastewater and clinical testing data provided
evidence of clinical undertesting at location N, which supports that
wastewater testing could provide insights about COVID-19 trends in
the population when clinical testing capabilities are limited.

The COVID-19 outbreak at San Quentin Prison (location Q) corre-
sponded to a measured N1 concentration that was higher than any
sewershed tested (4.89 x 10° gene copies/mL).

The wastewater-based epidemiology case detection limit using the
4S RNA extraction method on frozen samples was estimated to be 2.4
COVID-19 cases in 100,000 people.

TBacteroides=0-35,
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e Lead time in wastewater over clinical testing varied from O to 3
weeks depending on the location, biomarker normalization, and
testing turnaround time.

e Systematic approaches for determining an apparent WBE case
detection limit, biomarker normalization, and trendline smoothing
were presented that can be applied in future WBE studies.
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