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A B S T R A C T   

Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be inte
grated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply 
and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater 
samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was 
collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in 
wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably 
detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or 
more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were 
evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of 
these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA 
signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data 
(Kendall’s Tau-b (τ)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation 
with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead 
time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the 
result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater 
surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make 
wastewater signal more interpretable and comparable across studies.   
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1. Introduction 

Increasing hospitalizations and limited diagnostic testing capacity 
early in the coronavirus disease 2019 (COVID-19) pandemic made it 
clear that multiple methods to monitor circulation of severe acute res
piratory syndrome coronavirus 2 (SARS-CoV-2) are needed (Bivins et al., 
2020). One such method is wastewater-based epidemiology (WBE), 
which has provided community-scale information on drug use, personal 
care products, antibiotic resistance, and pathogen circulation (Choi 
et al., 2018). SARS-CoV-2 is a promising candidate for WBE because its 
RNA can be detected in stool of infected individuals (Li et al., 2021; 
Parasa et al., 2020), and wastewater surveillance has been shown to 
provide early detection of population-level increases in occurrence 
compared to clinical data in some locations (Ahmed et al., 2021; 
Chavarria-Miró et al., 2021; D’Aoust et al., 2021a; Gerrity et al., 2021; 
Hata and Honda, 2020; Kumar et al., 2021; Medema et al., 2020; 
Nemudryi et al., 2020; Peccia et al., 2020; Randazzo et al., 2020b, 
2020a, Wong et al., 2021; Zhu et al., 2021). However, one meta-analysis 
study reported that SARS-CoV-2 was detected in stool samples from only 
41% of infected patients (Parasa et al., 2020), and the viral load has been 
shown to vary with disease progression (Benefield et al., 2020; Walsh 
et al., 2020). More work is needed relating SARS-CoV-2 RNA measured 
in wastewater to COVID-19 incidence in the contributing population. 

Together, wastewater and clinical testing might provide more reli
able information about disease burden in communities than either 
method alone. Clinical testing of individuals is resource-intensive and 
has well-known biases (e.g., selection bias based on symptom severity, 
symptom recognition, occupation, etc.) (Nunan et al. 2017; Griffith 
et al., 2020; Sims and Kasprzyk-Hordern, 2020), which have com
pounded negative impacts in communities with higher proportions of 
low-income residents and of Black, Indigenous, and People of Color, 
including in the San Francisco Bay Area (Chamie et al., 2020; Misa et al., 
2020). In contrast, WBE may provide a less biased assessment of 
COVID-19 occurrence (Murakami et al., 2020; Sims and Kasprzy
k-Hordern, 2020). For COVID-19 WBE to be useful for public health 
decision-making, a better understanding is needed of the variability of 
SARS-CoV-2 in wastewater and how it relates to the true incidence or 
prevalence of COVID-19 in the contributing population (McClar
y-Gutierrez et al., 2021). Sources of target signal variability in waste
water include inconsistencies in sample collection and laboratory 
processing (Ahmed et al., 2020d; Feng et al., 2021), nucleic acid 
degradation based on travel time and conditions in the sewer (Hart and 
Halden, 2020a), and signal dilution due to rainfall and diurnal flow 
changes (Zahedi et al., 2021). Researchers have addressed some of these 
sources of variability through normalization to biomarkers, increased 
sampling frequency, processing sample replicates, and smoothing/for
ecasting (D’Aoust et al., 2021b; Feng et al., 2021; Graham et al., 2020; 
McLellan et al., 2021; Nemudryi et al., 2020; Stadler et al., 2020). 

Normalization of target signal to flow, population, and/or an 
endogenous biomarker has the potential to reduce variability and scale 
values for comparisons across samples and locations. Across WBE 
studies, researchers have normalized wastewater concentrations to flow 
rate and population to calculate a per capita load (Chen et al., 2014; 
Choi et al., 2018; Zuccato et al., 2005; Zuccato Zuccato et al., 2008) or to 
a chemical parameter (e.g., caffeine) (Been et al., 2014; Choi et al., 
2018; D’Aoust et al., 2021b; Polo et al., 2020). More recently, four 
biological markers have emerged as promising candidates to normalize 
SARS-CoV-2 RNA signal for fecal content. Pepper mild mottle virus 
(PMMoV), a nonenveloped RNA plant virus, is commonly used for 
COVID-19 WBE (D’Aoust et al., 2021b; Feng et al., 2021; Whitney et al., 
2021; Wu et al., 2020) but concentrations in sewage vary with season 
and local diet (Symonds et al., 2019). Another normalization biomarker 
is the cross-assembly phage (crAssphage), a non-enveloped, DNA virus 
that ubiquitously infects the human gut commensal bacteria Bacteroides 
(Edwards et al., 2019; Green et al., 2020; Stachler et al., 2017; Wilder 
et al., 2021). In addition, Bacteroides HF183 16S rRNA gene is widely 

used for detecting fecal contamination in environmental waters (Green 
et al., 2020; Shanks et al., 2008), and recent studies (D’Aoust et al., 
2021b; Kapoor et al., 2015; Pitkänen et al., 2013) have targeted HF183 
rRNA (versus the rRNA gene) to increase the sensitivity of the assay 
(D’Aoust et al., 2021b; Feng et al., 2021). Lastly, the human 18S ribo
somal subunit RNA (18S rRNA) assay has been proposed as a normali
zation biomarker because it targets human cells that are shed in feces 
(D’Aoust et al., 2021b; Whitney et al., 2021). While each of these 
normalization biomarkers has been assessed independently, they have 
not all been compared within the same study. 

In addition to normalizing the target signal, smoothing procedures 
can assist in discerning temporal trends in SARS-CoV-2 occurrence. 
While seven-day moving averages have been widely used for assessing 
clinical data trends in real-time (“Track Testing Trends,” n.d.), waste
water sampling is often performed only 1-3 times per week. Therefore, 
smoothing techniques are needed that can be applied to data with lower 
sampling frequency that minimize loss of temporal resolution, such as 
locally weighted scatterplot smoothing (Lowess) (Gibas et al., 2021; 
Gonzalez et al., 2020; Nemudryi et al., 2020; Vallejo et al., 2020). 
However, no standard value for the bandwidth parameter exists (anal
ogous to the selection of a seven-day window for moving averages of 
clinical data), and the default parameter value differs between two 
common languages used for data analysis (R (“Source code for spatia
lEco package,” n.d.): 0.75 and Python (“Source code for statsmodels 
module,” n.d.): 0.67). Furthermore, the bandwidth selection process 
generally has not been specified in studies incorporating Lowess (Gibas 
et al., 2021; Gonzalez et al., 2020; Nemudryi et al., 2020; Vallejo et al., 
2020; Wu et al., 2020). 

Systematic approaches are also needed to estimate the minimum 
number of clinical COVID-19 cases for which SARS-CoV-2 RNA is reli
ably detected in wastewater (WBE case detection limit). The WBE case 
detection limit is dependent on the methods used to extract genetic 
material as well as the extent of local clinical testing and may require 
sewershed-specific assessment. This value can vary over time with 
clinical testing capabilities and is, therefore, referred to as the apparent 
WBE case detection limit in this study. A systematic approach to esti
mate this value across studies can aid interpretation of nondetects and 
reproducibly estimate the number of COVID-19 cases per capita above 
which COVID-19 WBE will be a useful public health surveillance strat
egy. In a recent study (Wu et al., 2021), an apparent WBE case detection 
limit was estimated using a dataset with 1,687 samples, which was large 
enough to include repeated wastewater measurements at low case 
numbers. With fewer data points, researchers have estimated this value 
observationally by reporting the number of cases they were able to 
detect or quantify (Hata and Honda, 2020; Medema et al., 2020). 

The goal of this research was to develop and assess approaches for 
COVID-19 WBE data validation and interpretation. Specific objectives 
were to: (i) evaluate normalization biomarkers (crAssphage, pepper 
mild mottle virus, Bacteroides rRNA, and human 18S rRNA) for adjusting 
SARS-CoV-2 RNA signal to account for variable wastewater fecal con
tent; (ii) assess SARS-CoV-2 wastewater testing as a complement to 
clinical testing for public health surveillance by determining the corre
lation between these two methods; (iii) determine whether wastewater 
trends lead clinical trends and could provide early warning of COVID-19 
outbreaks; (iv) evaluate a systematic method for trendline smoothing; 
(v) develop a systematic method for estimating an apparent WBE case 
detection limit; and (vi) apply these methods to interpret spatial and 
temporal trends in COVID-19 occurrence based on wastewater and 
clinical testing data. We analyzed a sample set from six locations in the 
San Francisco Bay Area containing 5 months of weekly raw wastewater 
samples paired with geocoded clinical data. 

2. Materials and methods 

Six locations in the San Francisco Bay area were sampled (referred to 
throughout as locations A, S, N, K, Q, and E; Fig. 1 and Table 1). Raw 
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wastewater was collected weekly and archived from April to September 
2020, and extraction replicates were processed for some locations as 
indicated in Table 1. SARS-CoV-2 N1 RNA and normalization bio
markers (crAssphage, PMMoV, Bacteroides rRNA, and 18S rRNA) were 
measured in wastewater samples via RT-qPCR. Associated physico
chemical data were collected by wastewater utilities, and associated 
geocoded clinical COVID-19 data were collected by public health 

departments (Table 1). 

2.1. Wastewater sample collection and physicochemical data 

24-hour time-weighted composite samples of raw wastewater were 
collected using Teledyne ISCO autosamplers. Some samples were 
collected and processed with extraction replicates (i.e., wastewater 

Fig. 1. Map of the six wastewater catchment areas sampled in this study. Samples collected from East Bay Municipal Utility District represent three discrete sampling 
areas: one including North Berkeley (location N), one including the University of California at Berkeley (location A), and one including Oakland (location S). Location 
K consists of the full Central Contra Costa Sanitary District sewershed. Location E consists of the full San Jose - Santa Clara Regional Wastewater Facility sewershed. 
Location Q is from San Quentin Prison, which is in the Central Marin Sanitation Agency sewershed. All locations collect predominantly residential wastewater. 
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subsamples were aliquoted from the same composite sample but inde
pendently extracted). After collection, all samples were transported to 
the lab on ice, stored at either -20◦C or -80◦C, and then thawed at 4◦C for 
36-48 hours before extractions. Wastewater data was not individually 
identifiable; therefore, no institutional review board approval was 
needed. More information on location-specific data collection and 
wastewater sampling, transport, storage, and extraction replicates is 
provided in Table 1 and the Supplementary Information (SI) Section 
A. 

One rainfall event occurred (May 12-19) during which sampling 
locations experienced 0.8 to 1.8 inches of precipitation (NOAA Climate 
Data Online database). Although none of the sampled locations was a 
combined sewer system, rainfall could still increase flow rates through 
infiltration and inflow. Daily wastewater flow rate values during this 
period varied <4% (Locations K & E, Table S1), which is negligible 
when compared to the variation displayed by normalization biomarkers 
over time (15%-244%; Fig. 2). Mean flow rates were provided by the 
wastewater utility for locations A, N, and S and were calculated from 
daily flow rates for locations K, E, and Q (Table 1 and SI Section A). 

2.2. Clinical testing and population data 

Geospatial vector data of the sewersheds (locations S, K, A, and N) 
were used to determine the COVID-19 clinical testing data that mapped 
to each wastewater catchment area (Table 1). For all locations, daily 
new case data correspond to the date that results were reported (result 
date) for each COVID-19 test. For location K, additional data were 
available that correspond to the sample collection date and the episode 
date, defined as the earliest of: (i) the date of first symptoms; (ii) the 
sample collection date; or (iii) the date the sample was received by the 
testing lab. Clinical testing data were provided by the corresponding 
county or open data portal (Table 1). Data were masked by public health 
departments to maintain confidentiality of the contributing population 
(below 11 new cases per day) and were provided as 7-day (A, S, K) or 14- 
day (N) moving averages. Masked values were substituted at 5.5 new 
cases per day for further analysis and plotting. For San Quentin Prison 
(location Q), unmasked COVID-19 clinical data were obtained from the 
California Department of Corrections and Rehabilitation open data 
portal (“CDCR Population COVID-19 Tracking,” n.d.), and instances of 
zero cases were substituted at 0.5 cases for comparison to masked data in 
statistical data analysis (Fig. 6). For clinical data obtained for this study, 
no institutional review board approval was needed because data were 
either provided masked or were publicly available. More information 

about masking and population data is provided in Table 1 and SI Sec
tion E. 

2.3. Wastewater sample processing via the 4S method 

Wastewater samples were extracted following the 4S method 
(Whitney, 2020; Whitney et al., 2021), with a minor modification: the 
elution buffer was not pre-warmed; instead, it was added to the column, 
and the column was heated at 50◦C for 10 minutes before centrifugation 
to collect the eluate. Both RNA and DNA were captured (Fig. S1). Each 
extraction batch contained a negative extraction control, and each 
sample or control was spiked with a surrogate virus control (Bovilis 
coronavirus; Merck Animal Health, BCoV) and a free RNA control 
(synthetic oligomer construct, SOC). BCoV and SOC concentrations were 
significantly and strongly correlated (τ=0.57, p<0.05). Because it is not 
possible to independently quantify the surrogate spike without the in
fluence of extraction efficiency (Kantor et al., 2021b), extraction con
trols were used to assess consistency of extractions rather than recovery. 
Outlier analysis (alpha=0.05) was conducted for BCoV and SOC Cq 
values using Grubbs test. No outliers were detected, and all samples 
tested were considered to have passed this quality control screen. 
Wastewater sample processing is further described in SI Section B. 

2.4. RT-qPCR plate setup, controls, and data processing 

Reverse transcription quantitative polymerase chain reaction (RT- 
qPCR) was performed on wastewater extract targeting eight sequences: 
(i) SARS-CoV-2 CDC nucleocapsid gene (N1), (ii) VetMAX™ Xeno™ 
Internal Positive Control (Xeno), (iii) crAssphage CPQ_056 (crAss
phage), (iv) pepper mild mottle virus coat protein gene (PMMoV), (v) 
Bacteroides 16S ribosomal RNA HF183/BacR287 (Bacteroides rRNA), (vi) 
bovine coronavirus transmembrane protein gene (BCoV), (vii) Synthetic 
Oligomer Construct T33-21 free-RNA (SOC), and (viii) human 18S ri
bosomal subunit RNA (18S rRNA) (Greenwald, 2021). Reaction condi
tions (Table S2), thermocycling conditions (Table S3), and primers, 
amplicon sequences, and probes (Table S4) are included in the SI. Re
actions consisted of 20 μL total volume, including 5 μL of RNA extract, 
TaqMan Fast Virus 1-Step Master Mix (ThermoFisher Scientific), 
primers, probes, and nuclease-free water. Reactions were completed on 
a QuantStudio 3 Real-Time qPCR system (ThermoFisher Scientific), 
where Cq values were determined through automatic thresholding on 
QuantStudio 3 Design and Analysis Software (v1.5.1). Every plate 
included samples, no-template controls (NTCs), and standards, each 

Table 1 
Descriptions of wastewater sampling locations including associated wastewater utility, clinical testing data sources, population, and flow rates. “d” represents the 
number of unique dates on which samples were collected. “n” represents the total number of wastewater samples collected, including extraction replicates.  

Wastewater catchment area Wastewater treatment 
facility 

COVID-19 clinical data source Population Mean flow 
rate (MGD) 

Mean per capita 
flow (L/person/ 
day) 

d n 

Location K Influent to the 
wastewater treatment 
facility 

Central Contra Costa Sanitary 
District 

Contra Costa County Public 
Health Department 

483,600 33 261 13 39 

Location S Upstream of 
wastewater treatment 
facility 

East Bay Municipal Utility 
District 

Alameda County Public Health 
Department 

469,344 35 282 20 22 

Location A Upstream of 
wastewater treatment 
facility 

East Bay Municipal Utility 
District 

Alameda County Public Health 
Department 

82,818 6 274 11 17 

Location N Upstream of 
wastewater treatment 
facility 

East Bay Municipal Utility 
District 

Contra Costa County and 
Alameda County Public Health 
Departments 

139,037 10 272 18 18 

Location Q* Wastewater 
collection point for San 
Quentin Prison 

Central Marin Sanitation 
Agency 

California Department of 
Corrections and Rehabilitation 
open data portal 

Ranges from 3,587 
(June) to 2,930 
(September) 

0.41 481 10 11 

Location E Influent to the 
wastewater treatment 
facility 

San Jose - Santa Clara 
Regional Wastewater Facility 
(SJSC-RWF) 

Not applicable 1,500,000 103 278 19 48  

* For location Q, the population and clinical data are from incarcerated people only and do not include staff. 
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quantified in triplicate (RT-qPCR replicates). Individual standard curves 
(efficiencies ranging from 83.2% to 97.8% and R2 ranging from 0.974 to 
0.999 for the N1 standard (Twist Bioscience)) were used as a quality 
control measure (Table S5) and later combined into master standard 
curves (Table S6) to calculate quantities (Ahmed et al., 2020c, 2021). A 
subset of samples was run with no reverse transcription (no-RT) controls 
for Bacteroides rRNA and 18S rRNA, and RNA was found to be multiple 
orders of magnitude greater than DNA in the samples tested (Table S7). 
Further details on RT-qPCR materials and no-RT controls are provided in 

the SI Section C. 
Raw Cq values that did not amplify or that amplified below the limit 

of detection were substituted with the Cq value corresponding to half the 
limit of detection (for N1) or half the lowest point of the master standard 
curve (for all other assays) (Table S6), and then outliers were assessed 
using a two-sided Grubbs test (alpha=0.05). The N1 qPCR limit of 
detection (LoD) was calculated by analyzing all RNA standard curves 
from the study as well as four additional extended triplicate standard 
curves. The N1 LoD was set at 5 gene copies per reaction (which cor
responds to a Cq of 37.35; Table S6), at which point 67% of RT-qPCR 
replicates were positive in the standard curves (Table S8). Further de
tails on the data processing pipeline are provided in SI Section D. 

2.5. Assessing PCR inhibition via serial dilution and an internal 
amplification control 

To our knowledge, there is no standard methodology for assessing 
PCR inhibition in raw wastewater samples. We combined two ap
proaches to assess PCR inhibition in raw wastewater samples: a non- 
competitive internal amplification control (Ahmed et al., 2020b; 
Nolan et al., 2006; Schrader et al., 2012; Staley et al., 2012) and serial 
dilution (Graham et al., 2020). The internal amplification control can 
easily be included in every sample but cannot detect assay-specific in
hibition (Schrader et al., 2012). Serial dilution consumes more resources 
and risks diluting the target signal below the detection limit, but it more 
accurately tests the target itself and allows selection of a dilution value 
that best reduces the impacts of inhibition. Thus, we used the VetMAX™ 
Xeno™ Internal Positive Control (ThermoFisher Scientific) assay 
duplexed with the N1 assay as a screening tool to select samples for 
further testing with serial dilution. 

For all samples, Xeno RNA was spiked into the reaction mix 
(Table S2), and NTCs were used as an inhibition-free baseline to 
compare each sample on that plate. Ten samples showed >2 Cq devia
tion from the baseline and were selected for further inhibition testing 
(Staley et al., 2012). A dilution series (1x, 2x, 5x, 10x) was performed on 
these samples, and the duplexed N1 and Xeno assay was repeated. A 
dilution was chosen by comparing SARS-CoV-2 N1 signal in each dilu
tion to theoretical expectations (based on theoretical doubling per PCR 
cycle). If diluting the sample led to a 1 Cq difference between actual and 
expected change in Cq, then the sample at the base dilution was deemed 
inhibited, as in Graham et al. (2020). Following the serial dilution test, 
only three samples required dilution (Table S9), and subsequent qPCR 
results in this study are reported using this chosen dilution. Results from 
the internal amplification control were inconsistent with inhibition 
assessed via serial dilution, and we do not recommend the use of Xeno 
for testing N1 inhibition in future studies. 

2.6. Data analysis 

All data analysis was performed in Python (v3.6.9) using key mod
ules Pandas (v1.1.5), NumPy (v1.19.5), SciPy (v1.4.1), and Plotnine 
(v0.6.0). 

2.6.1. Normalization biomarker analyses 
For N1 normalization to biomarkers, N1 (gene copies per liter, gc/L) 

was divided by the normalization biomarker concentration (gc/L). To 
calculate flow-scaled biomarker load (gc/person/day), target concen
tration (gc/L) was multiplied by mean flow for the sampling location 
(MGD) and a unit conversion factor (liter per million gallons) and then 
divided by population. Daily flow rate data were not available for S, N, 
and A (locations upstream of a treatment facility) (Table S1), so mean 
dry weather flow rates (and population) were used to scale data when 
comparing across locations. We expect that the mean flow rate likely 
approximates the daily flow rate throughout the study period, but this 
may not hold true in other locations and seasons. 

For comparisons of biomarker concentrations and variation (Fig. 2), 

Fig. 2. Spatial and temporal variation in crAssphage, PMMoV, and Bac
teroides wastewater loads. Only one extraction replicate per date per location 
is shown. 18S rRNA results were not included in the figure for consistency of 
scale due to the wide range in sample values and are included in the SI 
(Fig. S8). The temporal variation within each location was assessed as the 
geometric coefficient of variation, displayed as a percentage above each box. 
The significance of differences between locations was assessed using a Kruskal- 
Wallis test with a Bonferroni correction followed by Dunn’s test, where * in
dicates p < 0.001 for bracketed relationships and § (above location E) indicates 
p < 0.001 for every pairwise location comparison to E, except p > 0.001 when 
compared to location K (for crAssphage and Bacteroides) and location N 
(for crAssphage). 
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a Kruskal-Wallis test (SciPy v1.4.1) was performed, followed by pairwise 
Dunn’s tests (scikit-posthocs v0.6.6) to determine statistical differences. 
Rank correlations between wastewater and case data (Fig. 3) were 
calculated as Kendall’s Tau-b coefficients (τ; SciPy v1.4.1), a method 
adapted for left-censored data (i.e., datasets with data below a lower 
limit of detection) (Wood et al., 2011) because 22% of the data are 
below the N1 LoD. Correlations were classified as weak (τ < 0.3), 
moderate (0.3 < τ < 0.5), or strong (τ > 0.5). Coefficients of variation 
(CV) were calculated as the arithmetic standard deviation divided by the 
mean, while geometric coefficients of variation (gCV) were calculated as 

the geometric standard deviation minus one. 

2.6.2. Assessment of an apparent WBE case detection limit 
An apparent WBE case detection limit was estimated as follows. The 

paired wastewater and case data for all sewersheds were combined and 
sorted from highest to lowest case counts. For each case count, all RT- 
qPCR replicates in the wastewater data at and above that point were 
tallied to determine the cumulative percentage of replicates that 
amplified in RT-qPCR. Equation 1 was used to fit a logistic function 
(Kyurkchiev and Markov, 2016) to the dataset (SciPy v1.4.1), where y is 
the fraction of amplified RT-qPCR replicates, x is the log10(moving 
average of new cases per person per day), k sets the growth rate of y, and 
γ sets the inflection point. Zero new cases per capita cannot be repre
sented in a logistic growth model, but in this study, case values of zero 
were only available for location Q, and these values were substituted as 
0.5 cases before the analysis. The COVID-19 per capita case rate that 
corresponded to 95% cumulative amplification of RT-qPCR replicates 
was reported as the apparent WBE case detection limit, and the analysis 
was repeated with samples where daily per capita cases were provided 
as masked values. 

y =
1

1 + e(−k ∗(x−γ))
(1)  

2.6.3. Wastewater trendline smoothing 
For wastewater data, any smoothed trendline displayed in a figure 

was determined using a fitted local regression (Lowess; statsmodels 
v0.10.2) with bandwidth parameter (α, the fraction of the dataset used 
for smoothing), set as previously shown (Jacoby, 2000) (Figs. 4 and 
S2-S5). Lowess trends of SARS-CoV-2 N1 signal were also visualized as 
heatmaps to aid in discerning peaks (Figs. S6 and S7). The full dataset 
and associated code are available through GitHub (https://zenodo. 
org/record/4730990#.YIxkrqlKgUo). 

3. Results 

Raw wastewater was collected weekly from April to September 2020 
at six locations (Table 1). The resulting dataset includes 91 samples 
(155 including extraction replicates) which were paired with geocoded 
clinical testing data and analyzed for SARS-CoV-2 along with four po
tential normalization biomarkers (crAssphage, PMMoV, Bacteroides 
rRNA, and human 18S rRNA). This dataset was generated from the San 
Francisco Bay Area in separate sanitary sewer systems during a period 
with minimal rainfall (see Methods), which naturally controlled for 
variability in wastewater strength due to precipitation. Thus, we ex
pected the concentrations of the measured normalization biomarkers to 
be relatively stable. Additionally, geocoded clinical testing data 
included a range of per capita COVID-19 case rates that varied by 
location. 

3.1. CrAssphage and PMMoV were the most consistent biomarkers 

A subset of samples from all locations was used in experiments 
(Fig. 2) comparing crAssphage (98 unique samples, 153 extraction 
replicates), PMMoV (93 unique samples, 95 extraction replicates), 
Bacteroides rRNA (97 unique samples, 99 extraction replicates) and 18S 
rRNA (40 unique samples, 41 extraction replicates) as biomarkers for 
normalization to fecal content. All normalization biomarkers were 
detected at high concentrations (Table S10) in all samples tested, except 
for 18S rRNA, which was inconsistently quantifiable (Fig. S8). Flow 
rates and chemical wastewater parameters (TSS, BOD, COD, cBOD) were 
not consistently measured by utilities (Table S1); thus, robust compar
isons of physicochemical biomarkers could not be made. In the absence 
of daily flow rate data, we used mean flow rate to scale wastewater 
biomarker concentrations by the per capita wastewater flow for each 
sewershed to account for differences across sewersheds (Fig. 2). Mean 

Fig. 3. Rank correlations of both unnormalized and normalized waste
water SARS-CoV-2 concentrations with clinical testing data. N1 concen
tration, and N1 normalized proposed biomarkers are plotted against a seven- 
day moving average of new cases per capita per day for sample locations K, 
S, N, A, and Q. Shapes signify whether wastewater samples were below the 
qPCR limit of detection (LoD) for the N1 assay, associated with masked clinical 
case values, or both. Significance of rank correlation values in facet titles is 
indicated by *=<0.05, ***=<0.0001 
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per capita flow rates were similar for all locations except Q (a facility; 
Table 1), generally resulting in little change after flow-scaling. For this 
reason, flow-scaling was applied to compare biomarkers, but unnor
malized SARS-CoV-2 N1 concentrations are used as a baseline in later 
analyses. 

An ideal normalization biomarker would have minimal spatial 
variation in per capita shedding rates and minimal temporal differences 
in wastewater loads when flow rates are stable, as they were in this 
study. Two methods were used to evaluate biomarker variability 
(Fig. 2): (i) comparing per capita biomarker loads (gene copies/person/ 

day) to assess differences in observed shedding by location; and (ii) 
evaluating the temporal variation of loads for each location. Consistent 
with recent studies (Ahmed et al., 2020d; D’Aoust et al., 2021b), 
crAssphage and PMMoV were the least variable biomarkers across lo
cations and over time (mean gCVcrAssphage=59% and mean 
gCVPMMoV=56%, not statistically different (p>0.05)). In contrast, Bac
teroides rRNA displayed more variability both spatially (Fig. 2) and 
temporally (mean gCV=130%), and 18S rRNA varied dramatically 
(mean gCV=500%) (Fig. S8). 

CrAssphage, PMMoV, and Bacteroides rRNA were quantifiable in all 

Fig. 4. Example of Lowess bandwidth parameter selection process (Location N) (A) Residual plots for Lowess bandwidth parameter (α; column labels) 
determination for location N where the bandwidth parameter increases from inclusion of 1 data point (far left) to inclusion of all data points (far right) in each local 
regression for unnormalized N1 (top) and crAssphage-normalized N1 (bottom). The value of α that minimized the residual was selected (red boxes). (B) Visualization 
of how bandwidth parameter affected the Lowess trendline for location N. Black dashed line indicates the resulting Lowess trendline when α=0.39. 
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samples tested, but 18S rRNA was below the LoD for 24% of samples. 
Furthermore, 18S rRNA was the only biomarker that amplified in the 
extraction negative controls (75%) at similar levels as the samples 
(p>0.05; Fig. S9), which suggests that this target could be a common 
laboratory contaminant. Based on our findings that 18S rRNA was 
frequently detected in negative controls, inconsistently detected in 
sewage, and had high spatial and temporal variation in per capita 
shedding, we conclude that human 18S rRNA is not suitable as a 
normalization biomarker to adjust for fecal content. 

Location E had lower biomarker concentrations (Fig. 2), frequently 
undetected 18S rRNA (Fig. S9), and high variability in N1 signal. We 
suspect that these samples had RNA degradation because: (i) location E 
is the largest sewershed in the study (i.e., longer residence time allowing 
for signal degradation); and (ii) some samples from this site thawed 
during transportation back to the lab (resulting in an additional freeze- 
thaw cycle, which could degrade RNA (Ahmed et al., 2020c; Coryell 
et al., 2020)). Data from sewershed E were excluded from subsequent 
analyses because of the uncertainty surrounding the integrity of these 
samples. 

3.2. SARS-CoV-2 N1 and clinical testing data were correlated in 
aggregate and normalization biomarkers did not strengthen this 
relationship 

The SARS-CoV-2 N1 concentration in wastewater was moderately 
correlated to daily per capita clinical cases when aggregated across all 
locations (τ=0.43, p<0.0001; Fig. 3). However, there are several limi
tations to assessing correlation between clinical data and wastewater 
data. First, clinical testing data do not necessarily represent true inci
dence because of biases associated with testing, including that asymp
tomatic cases are often not detected through clinical testing. Similarly, 
wastewater testing data do not necessarily represent true incidence 
because studies have found that fecal shedding is less common than 
nasopharyngeal shedding in symptomatic individuals (Parasa et al., 
2020). Thus, there may be COVID-19 cases that are detected through 
clinical public health surveillance but not through wastewater surveil
lance and vice versa. Furthermore, viral load has been shown to vary 
throughout an infection and to differ in nasopharyngeal and fecal 
samples (Benefield et al., 2020; Walsh et al., 2020). Even if clinical and 
wastewater testing data correspond to the same date, fecal shedding 
could peak before symptom onset, which would impact the correlation 
unless the correct time offset is applied to reflect this discrepancy 
(Hoffmann and Alsing, 2021). Additionally, for this analysis, clinical and 
wastewater testing data would ideally both correspond to the sample 
collection date (as opposed to the result date) to remove lag introduced 
by test result turnaround time (see Section 3.3 for more information). 
However, often only one date was available for clinical testing. For 
example, in this analysis, the only date associated with the daily per 
capita cases from most locations (all but K) was the date that the testing 
results were provided (result date), while the date associated with the 
SARS-CoV-2 N1 wastewater signal was the sample collection date. 
Finally, due to the limited sizes and variation in individual datasets, 
correlations were assessed for all locations in aggregate despite 
site-specific factors that may influence the significance (site-specific 
analyses are conducted later in this section). 

Despite these potential limitations, correlation to daily per capita 
COVID-19 cases was used as a metric to assess the effect of normalization 
to biomarkers (crAssphage, PMMoV, and Bacteroides rRNA). Moderate, 
significant correlations were observed with COVID-19 daily per capita 
cases when SARS-CoV-2 N1 was unnormalized and normalized by 
crAssphage or Bacteroides (τunnormalized=0.43, τcrAssphage=0.38 and 
τBacteroides=0.35, p<0.0001; Fig. 3). Notably, normalization did not 
strengthen the correlation compared to unnormalized signal. 
Conversely, PMMoV normalization produced only a weak correlation of 
0.18 (p < 0.05) (Fig. 3). Analysis was performed with and without 
samples that were below the limit of detection and produced similar 

results (Table S11). Of the normalization biomarkers tested, crAssphage 
had the lowest variability and also maintained significant and moderate 
correlation with clinical testing data, so we included it in subsequent 
analyses alongside unnormalized concentrations. 

The correlation analysis was repeated with data separated by loca
tion to determine whether locational dependencies affect the relation
ship between wastewater and clinical testing data as well as the 
performance of normalization strategies. Locations with at least 75% of 
data above the N1 qPCR LoD (Locations K, N, and S; Table S12) were 
included in this analysis. Only location K had significant correlations 
with clinical testing data, both with and without crAssphage normali
zation (τunnormalized=0.5 and τcrAssphage=0.43, p<0.05; Fig. S10). Loca
tion K is the only site with three extraction replicates for each sample, 
which likely captured a more representative signal than that of locations 
S or N. The lack of significance of correlation for locations S and N could 
also be due to the short time series that may not vary enough to establish 
rank (location S) or may have impacts of outside factors, such as clinical 
undertesting (location A), that skew the rank. Overall, locational de
pendencies (e.g., differences in extent of clinical testing, sewer system 
residence times, etc.) likely affect the correlation with clinical testing 
data and should be considered when evaluating aggregated data. 
Additionally, the location-specific analysis was repeated including only 
samples with detectable SARS-CoV-2 N1 signal, and the results were no 
longer statistically significant (Fig. S10). This finding is likely influ
enced by both the limited sample size and values below the N1 qPCR 
LoD that affect rank correlations. 

In addition to the limitations in clinical testing data mentioned at the 
beginning of this section, there are several explanations for why 
wastewater signal at locations S, N and K did not significantly correlate 
with clinical testing data after removing values below the LoD: (i) the 
daily per capita cases in the population were at or below the WBE case 
detection limit of the wastewater data; (ii) the daily per capita cases that 
were masked by public health departments for patient privacy impaired 
the rank correlation analysis by left-censoring the clinical testing data; 
(iii) the wastewater signal did not vary enough over the time of sampling 
to establish rank. The possibility that the wastewater signal leads the 
clinical testing data was subsequently tested for locations K, N, and S (i. 
e., correlations were examined for zero-, one-, and two-week offsets); 
however, location K was the only location with significant correlation 
between wastewater and clinical testing data for any lead time tested 
(Fig. S10). 

3.3. Impact of the date associated with clinical testing data on lead time in 
wastewater surveillance at location K 

The time for laboratories to process samples and return results 
(testing turnaround time) affects the potential for wastewater surveil
lance to provide lead time over clinical surveillance. In general, clinical 
testing data correspond to either the date the sample was collected or the 
date the results were returned. The ideal date to use for informing public 
health decisions would be the result date, to include differences between 
clinical and wastewater testing turnaround time in the analysis. Alter
natively, sample collection dates should be compared to understand the 
timing of the underlying biological mechanisms that result in a positive 
wastewater signal (onset and duration of fecal shedding) and positive 
clinical test (onset and duration of nasopharyngeal shedding). Onset and 
duration of symptoms may influence the timing of the clinical test 
(sample collection date), depending on whether testing is routine or only 
available to symptomatic individuals. Hence, the ideal date to use for 
comparison of wastewater and clinical testing data differs depending on 
the goals of the comparison. The clinical testing data for location K 
included sample collection date, result date, and episode date (the 
earliest date associated with the case), allowing us to assess the corre
lation between case data and wastewater data with and without clinical 
testing turnaround time. Episode date was frequently the same as the 
sample collection date, unless a patient reported symptoms prior to test 
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date (Fig. S11). It should be noted that wastewater testing data corre
spond to the sample collection date because all samples were processed 
retroactively in this study. Routine wastewater testing turnaround time 
in the San Francisco Bay Area has been reported to be two days or fewer 
for most samples, but this value varies depending on sample transport 
and laboratory methods (“Covid-WEB,” n.d., Kantor et al., 2021a). 

To test the influence of the date associated with clinical testing, we 
repeated correlation analysis for location K (Fig. S11). The wastewater 
testing data (sample collection date) correlated with the clinical testing 
data by episode date (τepisode,unnormalized=0.56, τepisode,crAssphage=0.54, 
p<0.01) and sample collection date (τcollection,unnormalized=0.59, 
τcollection,crAssphage=0.62, p<0.01) without a lead or lag. When the result 
date was used for clinical testing data, the strongest correlation with 
wastewater data was associated with a two-week lead time (unnormal
ized N1 concentration) or one-week lead time (N1 normalized to 
crAssphage; Figs. S10 and S11). When values below the N1 qPCR LoD 
were removed, wastewater data were no longer significantly correlated 
with episode date-associated clinical data, but the strongest correlations 
for the other date associations remained significant. This analysis is 
limited because of the small dataset, but the methodology presented 
here can be used to assess the lead time provided by wastewater sur
veillance with larger data sets and with wastewater data processed 
contemporaneously with decision-making. 

3.4. The Lowess bandwidth parameter affected wastewater data trend 
interpretation 

Variation in wastewater SARS-CoV-2 N1 signal from sources other 
than variation in true incidence or prevalence (e.g., noise introduced 
during sample collection, processing, etc.) can obscure temporal trends. 
Smoothing techniques can be used to visually distinguish temporal 
trends from noise. Similar to the choice of the number of days included 
for each average calculation for moving averages (window), Lowess 
requires selection of the fraction of the whole time series that is used for 
each local regression calculation (bandwidth). We employed a method 
to set the bandwidth parameter systematically based on residuals 
(Jacoby, 2000) independently for each location. The bandwidth was 
increased stepwise, beginning with inclusion of one point in each local 
regression calculation and ending with inclusion of all points (α=1). For 
each bandwidth value, the residuals were calculated and plotted by date, 
and a Lowess trendline with α=1 was fit to these residual plots to 
monitor residual trends as the bandwidth varied. Finally, the maximum 
bandwidth value was selected for which the residuals visually main
tained horizontal Lowess trendlines (see Figs. 4 and S2-S5). 

As an example, for unnormalized and crAssphage-normalized SARS- 
CoV-2 N1, bandwidth parameters of 0.39 and 0.33 were respectively 
chosen for location N (Fig. 4 A). This process was repeated for all lo
cations, and bandwidths in the range of 0.25-0.6 were selected based on 
the optimization procedure (see Figs. 4 and S2-S5). To assess the impact 
of bandwidth on SARS-CoV-2 N1 signal interpretation, Lowess was 
performed for all locations sampled and for all possible bandwidths (see 
Figs. 4 B and S2-S5). The bandwidth parameter influenced the overall 
temporal trends of wastewater data for some locations (N and A; Figs. 4 
and S5). For example, at location A (Fig. S5), a bandwidth of 1 resulted 
in a gradual increase in SARS-CoV-2 N1 signal during sampling, while a 
bandwidth of 0.73 resulted in a peak around July. However, for location 
K (Fig. S2), all bandwidths resulted in trends that would have similar 
interpretations. These results illustrate that choice of bandwidth could 
have implications for interpreting WBE data and informing COVID-19 
response strategies, and systematic methods should be used to select 
the appropriate bandwidth. 

3.5. Wastewater and clinical data had similar overall trends regardless of 
normalization, with notable exceptions 

To assess the impact of crAssphage normalization on SARS-CoV-2 N1 

temporal trends, we compared unnormalized and crAssphage- 
normalized Lowess trendlines (Fig. 5). We found that crAssphage- 
normalized trends were similar to unnormalized trends for three of 
the locations (K, N, and A) but had differences in overall trend for lo
cations Q (Fig. 6) and S (Fig. S12). Discrepancies are concerning 
because they could have implications for pandemic response. We note 
that the trend in location K, for which extraction replicates were pro
cessed routinely, was the least impacted by bandwidth or normalization 
(Figs. S2 and S12) and was the only site analyzed with significant 
correlation with clinical data (Fig. S10). Larger datasets with more 
frequent sampling and processing of replicates, would give single points 
less influence over the trend. 

Relative spatio-temporal trends in clinical and wastewater testing 
results were compared across sampling sites (Figs. 5, S6, and S7). In 
general, clinical and wastewater data at all locations paralleled one 
another, with San Quentin Prison (Q) showing the highest COVID-19 
burden across locations. Due to a COVID-19 outbreak, location Q had 
a maximum that was 53 times (SARS-CoV-2 N1 4.89 × 103 gene copies/ 
mL), 17 times (crAssphage-normalized SARS-CoV-2 N1 ratio 2.9 ×

10−3), and 203 times (~85 new cases per 1000 people on 6/29) higher 
than the highest value at the sewershed scale. There were a few dis
crepancies between clinical and wastewater trends (heatmap visualiza
tions in Figs. S6 and S7 highlight discrepancies in peaks). For example, 
at location N, there may have been clinical undertesting, based on the 
peak in wastewater data in August (Figs. 5 and S6) and higher SARS- 
CoV-2 signal in wastewater at location N (relative to other locations) 
than represented by the clinical data (Figs. 5 and S7). 

3.6. The apparent WBE case detection limit was estimated to be 2.4 
COVID-19 cases per 100,000 people 

Quantifying the minimum per capita new COVID-19 cases in a 
sewershed at which there is reliable detection of SARS-CoV-2 N1 in 
wastewater (apparent WBE case detection limit) is important for 
gauging the utility of COVID-19 WBE when the true incidence is low. 
This apparent WBE case detection limit depends on the detection limit of 
the wastewater measurement (i.e., on the methods used to store, 
concentrate, extract, and measure SARS-CoV-2 RNA in wastewater) and 
the accuracy of the clinical testing data available (as described in more 
detail in Section 3.3). Ideally, this value would be calculated using the 
true incidence, but that information is generally not available, and the 
best available data should be used instead. This limit will vary over time 
and location with the extent of clinical testing but could be useful in a 
practical sense to compare wastewater and clinical surveillance efforts 
locally. To estimate an apparent WBE case detection limit in a way that 
is replicable across studies, the cumulative percentage of amplified RT- 
qPCR replicates of the wastewater data for inversely-ranked daily per 
capita COVID-19 cases was fit to a logistic growth model (without 
samples associated with masked case values; see Methods). When 
COVID-19 case rates equaled or exceeded 2.4 daily cases per 100,000 
people, 95% of wastewater RT-qPCR replicates amplified via RT-qPCR 
for N1 (Fig. 7). Other researchers have used non-cumulative methods 
to estimate an apparent WBE case detection limit by calculating the 
percent of amplified wastewater replicates for each case value (Wu et al., 
2021). This method requires repeated wastewater measurements asso
ciated with each possible clinical case value or range of case values (i.e., 
bins). Otherwise, the percent of amplified RT-qPCR replicates is limited, 
as was the case in this study where only one extraction replicate was 
often associated with each case number (Fig. S13 A). Ideally, all data 
would be unmasked when applying this method. To verify that the 
masked clinical data did not affect the apparent WBE case detection 
limit, the process was repeated with masked values, and the estimate 
was similar (2.2 cases in 100,000 people; Fig. S13 B). These limits are 
within the theoretical range possible (Hart and Halden, 2020b) and 
similar in magnitude to previous findings of 10 in 100,000 (Hata and 
Honda, 2020) and 13 in 100,000 (Wu et al., 2021). 
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Based on the contributing population of each sewershed in this study, 
the apparent WBE case detection limit translates to 11.6 cases for K, 11.3 
cases for S, 3.3 cases for N, 2.0 cases for A, and 0.1 cases for Q. Therefore, 
theoretically, a single case should be detectable at location Q based on 
results from this analysis, but this could not be tested observationally 
because there was only one instance when a single new case was 
detected by clinical testing after August 12th (Fig. 6). Only one RT-qPCR 
replicate amplified for two samples taken within seven days of the single 

clinical case detected, and these samples were classified below the limit 
of detection. Larger data sets with more instances of single clinical case 
detections are needed to assess the ability to detect a single case from 
this facility. Nonetheless, a single case may still go undetected, despite 
being above the apparent WBE case detection limit. For example, SARS- 
CoV-2 RNA is not shed consistently in stool samples of all infected in
dividuals (Parasa et al., 2020) and wastewater surveillance relies on the 
autosampler aliquots capturing the feces from each infected individual, 

Fig. 5. Comparison of wastewater SARS-CoV-2 N1 to geocoded COVID-19 clinical testing results from May to September 2020. Wastewater SARS-CoV-2 N1 
signal is compared as unnormalized (top) and crAssphage-normalized (middle), where lines are the most optimal Lowess trendlines. COVID-19 clinical testing results 
are the daily per capita COVID-19 cases, where lines are the fourteen-day moving average (location N) or seven-day moving averages (all other locations) (bottom). 
Heatmap visualization of the unnormalized N1 trendlines is included in the SI (Figs. S6 and S7) and visualization of sewersheds by location can be found in Fig. S12. 
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which becomes less likely when there are fewer infected individuals and 
wastewater has less mixing prior to the sampling location. Despite these 
limitations, other studies have reported detection of one case in waste
water from residential facilities ranging from 60 to 415 people (Gibas 
et al., 2021; Karthikeyan et al., 2021; Spurbeck et al., 2021). More work 
is needed applying WBE for SARS-CoV-2 across a broader set of facilities 
with longer time series and higher frequency sampling. 

4. Discussion 

4.1. Validation and potential use scenarios of SARS-CoV-2 wastewater 
testing 

During the COVID-19 pandemic, both the methodological research 
for SARS-CoV-2 testing in wastewater and the application of WBE have 
been occurring simultaneously. For COVID-19 WBE to be useful for 
public health decision-making, public health officials need to be confi
dent that the resulting SARS-CoV-2 signal reflects COVID-19 trends in 
the contributing population. Despite limitations in clinical testing data 
and the potential lag in wastewater trends, assessing correlations be
tween clinical and wastewater testing data can help validate WBE 
(Xagoraraki and O’Brien, 2020). Moderate correlations with clinical 
data observed in this study (τ=0.43) support that trends in wastewater 
surveillance data reflect trends in COVID-19 disease occurrence; how
ever, locational dependencies were observed. Wastewater data paired 
with clinical data can be a more robust public health surveillance 
strategy compared to either method alone, both for sewershed-scale and 
facility-scale surveillance applications. In some settings, wastewater 
testing may be a less resource-intensive way to implement 
population-scale surveillance, and policymakers will need to balance 
allocation of resources to each approach. 

A critical question for public health decision-making is how much 
early warning WBE can provide ahead of clinical testing, which could 
allow more timely public health responses to slow COVID-19 outbreaks. 
However, lead time is difficult to measure. Biologically, the time be
tween onset of fecal shedding and nasal shedding is unclear (Benefield 
et al., 2020; Walsh et al., 2020). Practically, lead time depends on testing 
turnaround time and frequency of sampling for both wastewater and 
clinical testing. For example, clinical testing capabilities can increase the 
lead time of wastewater data if patients are only tested after symptom 
onset and can decrease the lead time if asymptomatic and symptomatic 
individuals are regularly screened with rapid turnaround time. Ideal 
assessments of wastewater data lead time due to biological mechanisms 
would not include turnaround time, whereas assessments of the per
formance of clinical and wastewater laboratories for public health action 
and practical limitations would include turnaround time. Although 

Fig. 6. Comparison of wastewater and clinical data at location Q from 
June to September 2020, where symbols indicate how many RT-qPCR repli
cates amplified. Wastewater data: (top) unnormalized and (middle) 
crAssphage-normalized SARS-CoV-2 N1 signal in wastewater, where the hori
zontal dashed line indicates the limit of detection, and trendlines are the most 
optimal Lowess trendline (Fig. S4). Clinical data (bottom): daily per capita 
COVID-19 cases, where the horizontal dashed line indicates 1 case in 1000 
people. Vertical dashed lines indicate August 26th, the only date after August 
12th when a new COVID-19 case was detected at location Q through clinical 
surveillance. 

Fig. 7. Estimated minimum number of COVID-19 clinical cases needed for 
reliable detection of SARS-CoV-2 RNA in wastewater. The cumulative per
centage of amplified wastewater RT-qPCR replicates was calculated by ranking 
the moving averages of daily per capita cases (x-axis) from highest to lowest 
and calculating the fraction of RT-qPCR replicates that amplified cumulatively 
(y-axis) for each value of x. The dashed line represents the daily new cases per 
capita value above which 95% of wastewater RT-qPCR replicates amplified (2.4 
cases in 100,000 people). 
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other studies observed lead time for wastewater data over clinical data 
starting on the order of days (D’Aoust et al., 2021a; Nemudryi et al., 
2020; Peccia et al., 2020), the weekly sampling in our study could 
explain why no lead time was determined when the sample collection 
date was used for both wastewater and clinical testing data (Fig. S14). 
However, the impact of clinical testing strategy (i.e., only screening 
symptomatic individuals) could also be affecting this result. We could 
not directly compare wastewater and clinical result dates in this retro
active study, but when clinical data were associated with the result date 
and wastewater data were associated with sample collection date, lead 
time of 1-2 weeks was observed (Fig. S14). Other researchers have 
observed lead time in wastewater data of up to three weeks (Ahmed 
et al., 2021; Medema et al., 2020), and our results reflect a similar range 
in possible lead times (0-2 weeks) depending on which date is associated 
with the clinical data. 

At the sewershed scale, the benefit of WBE to public health extends 
beyond early warning. Discrepancies between wastewater testing data 
and clinical testing data trends from early in the time series at location N 
(April-July 2020; Fig. S12) could be used to infer clinical undertesting, 
which is supported by lower testing capacity in this time frame at nearby 
location K (Figs. 1, S15). Although pairing COVID-19 clinical testing 
data with wastewater SARS-CoV-2 data can generate new insights for 
public health decision-making, it can be challenging in practice. Pairing 
wastewater SARS-CoV-2 data with geocoded COVID-19 clinical testing 
data required collaboration between academics, wastewater treatment 
facility representatives, and public health officials. These collaborations 
may be particularly difficult at sewershed-scale, where multiple public 
health department jurisdictions overlap within one sewershed (e.g., 
location N). Partnerships for data sharing between agencies are critical 
to support ongoing wastewater-based epidemiology for SARS-CoV-2 and 
other pathogens. 

At the facility scale, monitoring raw wastewater for SARS-CoV-2 
might be particularly useful for early detection of COVID-19 out
breaks, especially when resources are insufficient for routine clinical 
testing of all individuals. San Quentin Prison (location Q) had a COVID- 
19 outbreak during the study period after a transfer from the California 
Institution for Men (Cassidy and Fagone, 2020), where, at its peak, 47% 
of the incarcerated population had active COVID-19 cases. The 
maximum SARS-CoV-2 N1 concentration (4.89 × 103 gene copies/mL) 
was higher than any sewershed sampled in this study and among the 
highest values we found in the literature for N1 in raw wastewater 
(Gerrity et al., 2021; Gonzalez et al., 2020; Medema et al., 2020; Ran
dazzo et al., 2020b; Wu et al., 2020; Wurtzer et al., 2020), despite reg
ular clinical testing (Fig. S15). Prison conditions cause incarcerated 
people to be particularly susceptible to respiratory disease outbreaks, 
and maintaining safety in prisons requires deliberate planning and co
ordination by correctional institutions (e.g., coordination with local 
public health systems to develop pandemic response plans, coordination 
of transfers between institutions, etc.) (Montoya-Barthelemy et al., 
2020). Furthermore, the health of incarcerated people is linked to the 
health of the surrounding community, and incorporating correctional 
institutions into community safety plans will help ensure better pro
tection against COVID-19 for everyone (Montoya-Barthelemy et al., 
2020). Once protective measures are implemented, WBE may be useful 
to monitor prisons and other high-risk facilities (e.g., skilled nursing 
facilities, homeless shelters, etc.), especially where clinical testing is not 
available or routine. 

4.2. Tools for translatable WBE 

4.2.1. Normalization of wastewater targets to adjust for fecal content 
Results from this study suggest that PMMoV, Bacteroides rRNA, and 

18S rRNA were less promising normalization biomarkers than crAss
phage. While PMMoV was present in high and stable concentrations, the 
diet-dependency (Symonds et al., 2019) and large range in concentra
tions in the literature (six orders of magnitude; Table S10) remain 

concerns for its use over longer time scales and across larger geographic 
regions. Normalization to PMMoV resulted in the weakest significant 
correlation to clinical testing data of the biomarkers tested (τ=0.18, 
p<0.05). Bacteroides rRNA loads varied more spatially and temporally 
than crAssphage or PMMoV in this study (Fig. 2), but Bacter
oides-normalized SARS-CoV-2 N1 had a moderate correlation with 
clinical testing data (τ=0.35). While measurement of Bacteroides rRNA 
gene in wastewater has been commonly applied for fecal source tracking 
and Bacteroides rRNA has been targeted to increase assay sensitivity 
(D’Aoust et al., 2021b; Feng et al., 2021), to our knowledge, no prior raw 
wastewater values have been reported in the literature for Bacteroides 
rRNA (Table S10). Similarly, no values were found in the literature for 
18S rRNA concentrations in raw wastewater (Table S10). In this study, 
18S rRNA signal displayed a wide range in concentrations and consis
tently amplified in negative extraction controls. Furthermore, 18S rRNA 
was less stable in wastewater than SARS-CoV-2 RNA and nonenveloped 
viruses (e.g., crAssphage and PMMoV), which is consistent with previ
ous studies (Whitney et al., 2021; Wurtzer et al., 2020). Therefore, we do 
not recommend 18S rRNA use as a normalization biomarker. In com
parison to all the biomarkers tested, crAssphage had low spatial vari
ability (i.e., the fewest locations with statistically different loads; Fig. 2) 
and temporal variability (gCV=59%; Fig. 2). Additionally, SARS-CoV-2 
N1 normalized to crAssphage correlated with daily per capita COVID-19 
cases (τ=0.38). Although crAssphage concentrations in the literature 
had a wide range (six orders of magnitude; Table S10), they were 
consistent across locations in this study. Based on this dataset and 
findings from earlier studies that biomarker normalization has utility in 
some settings (D’Aoust et al., 2021b; Wu et al., 2020; Wolfe et al., 2021), 
crAssphage remains a promising endogenous normalization biomarker 
for broader WBE applications that require adjustment for fecal content. 

Although a standardized approach would facilitate comparisons 
across studies, the ideal normalization strategy may be situationally 
dependent. For example, in this study, biomarker normalization did not 
improve correlations to clinical data compared to unnormalized signal, 
which is in contrast to other studies that found normalization to PMMoV 
improved relationships with clinical data. However, these conclusions 
were based on visual inspection of trends rather than correlations (Wu 
et al., 2020) or measurements made in sludge rather than raw waste
water samples (D’Aoust et al., 2021b; Wolfe et al., 2021). Findings from 
this study suggest that biomarker normalization may have limited utility 
when comparing intra-study composite samples across a confined region 
with stable wastewater flows, which is in agreement with recent studies 
where biomarker normalization did not improve associations with 
clinical data (Feng et al., 2021; Graham et al., 2020). Several factors 
should be considered when deciding whether to normalize to a 
biomarker or report unnormalized concentrations. First, adding another 
assay introduces additional analytical variation that could outweigh the 
benefits of biomarker normalization in some settings, especially when 
wastewater fecal content is expected to be stable across samples (Feng 
et al., 2021). An additional consideration is ensuring methods compat
ibility with the WBE target and normalization biomarker. Ideally, 
normalization to an endogenous biomarker would account for losses in 
target signal during residence time in sewers, sample storage, and lab
oratory processing, but the ideal biomarker for fecal content may not be 
the best surrogate for the target of interest. For example, crAssphage is 
not expected to be a good surrogate for SARS-CoV-2 stability, parti
tioning, and extraction (Ye et al., 2016), and as a DNA virus, crAssphage 
may be incompatible with some extraction methods used for 
SARS-CoV-2 RNA. Other controls (e.g., endogenous biomarkers, recov
ery controls) and modeling may be applied to improve measurement 
accuracy and translate results across labs and methods, although there 
are challenges associated with these corrections (Kantor et al., 2021b; 
Wolfe et al., 2021). Degradation modeling with target-specific decay 
constants (Ahmed et al., 2020a) and sewershed-specific parameters 
could assist in correcting for degradation or determining sample integ
rity, but no comprehensive approach for this correction exists, and more 
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work is needed developing these methods. 

4.2.2. A systematic approach for data smoothing (Lowess) 
In general, public health decisions are based on temporal trends in 

disease burden, not individual data points, but trends in wastewater and 
clinical data can be difficult to visually distinguish, especially when 
available resources constrain sampling frequencies. Applying Lowess to 
wastewater data, we found that the value of one parameter could in
fluence the trend visualization such that the same dataset could lead to 
different public health responses (Figs. 4 and S5). Based on our analysis, 
the bandwidth parameter for Lowess should be determined for each 
sewershed sampled. Lowess with a systematically chosen bandwidth 
could be used to smooth trendlines and minimize the loss of temporal 
resolution. The method presented here could be applied in retrospective 
analysis or in real-time analysis completed as part of wastewater public 
health surveillance programs. For real-time applications, the bandwidth 
parameter could be selected using a subset of data, and the residuals plot 
could be frequently checked to ensure no new residual patterns emerge 
over time that could obscure the smoothed trend. 

4.2.3. A systematic approach to estimate an apparent WBE case detection 
limit 

Our approach for identifying an apparent WBE case detection limit 
that can be applied systematically to studies using PCR-based methods. 
We applied this analysis to SARS-CoV-2 N1 signal in wastewater and 
found that the daily new clinical cases at which wastewater surveillance 
could reliably detect clinically diagnosed COVID-19 cases in the 
contributing population was estimated at 2.4 cases per 100,000 people. 
There are multiple limitations to this analysis because wastewater 
detection depends on factors other than incidence, such as sampling 
methods (e.g., frequency of sampling aliquots), which can influence the 
probability of capturing shed viral particles from an infected individual. 
Additionally, the estimate may vary based on site-specific clinical 
testing availability, wastewater sampling methods (e.g., composite 
sampling, freezing before processing) and laboratory processing (e.g., 4S 
extraction method, RT-qPCR). The estimation method for an apparent 
WBE case detection limit presented here could benefit both COVID-19 
WBE and other disease WBE by providing a systematic method to 
compare wastewater and clinical testing capabilities locally. 

5. Conclusion  

• Wastewater N1 concentrations had a moderate correlation with 
geocoded clinical testing data (τunnormalized=0.43). Normalization of 
SARS-CoV-2 N1 signal in wastewater to any biomarker did not 
improve the correlation with clinical testing data, likely because of 
the low variation in daily flow rates.  

• Of the four normalization biomarkers tested, crAssphage was the 
most promising due to low spatial and temporal variability and 
because crAssphage-normalized N1 had the strongest correlation 
with clinical testing data (τcrAssphage=0.38, τBacteroides=0.35, 
τPMMoV=0.18).  

• 18S rRNA was not suitable as a normalization biomarker due to its 
variability in sample concentrations, high degradation rate, and 
ubiquity as a laboratory contaminant.  

• Discrepancies between wastewater and clinical testing data provided 
evidence of clinical undertesting at location N, which supports that 
wastewater testing could provide insights about COVID-19 trends in 
the population when clinical testing capabilities are limited. 

• The COVID-19 outbreak at San Quentin Prison (location Q) corre
sponded to a measured N1 concentration that was higher than any 
sewershed tested (4.89 × 103 gene copies/mL).  

• The wastewater-based epidemiology case detection limit using the 
4S RNA extraction method on frozen samples was estimated to be 2.4 
COVID-19 cases in 100,000 people.  

• Lead time in wastewater over clinical testing varied from 0 to 3 
weeks depending on the location, biomarker normalization, and 
testing turnaround time.  

• Systematic approaches for determining an apparent WBE case 
detection limit, biomarker normalization, and trendline smoothing 
were presented that can be applied in future WBE studies. 
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Jonge, P.A., Desnues, C., Díaz Muñoz, S.L., Fineran, P.C., Kurilshikov, A., Lavigne, 
R., Mazankova, K., McCarthy, D.T., Nobrega, F.L., Reyes Muñoz, A., Tapia, G., 
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