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ABSTRACT CCS CONCEPTS

We study the problem of testing discrete distributions with a focus
on the high probability regime. Specifically, given samples from
one or more discrete distributions, a property #, and parameters
0 < e,8 < 1, we want to distinguish with probability at least 1 — §
whether these distributions satisfy # or are e-far from # in total
variation distance. Most prior work in distribution testing studied
the constant confidence case (corresponding to § = Q(1)), and
provided sample-optimal testers for a range of properties. While
one can always boost the confidence probability of any such tester
by black-box amplification, this generic boosting method typically
leads to sub-optimal sample bounds.

Here we study the following broad question: For a given property
P, can we characterize the sample complexity of testing P as a
function of all relevant problem parameters, including the error
probability §? Prior to this work, uniformity testing was the only
statistical task whose sample complexity had been characterized
in this setting. As our main results, we provide the first algorithms
for closeness and independence testing that are sample-optimal,

within constant factors, as a function of all relevant parameters.

We also show matching information-theoretic lower bounds on
the sample complexity of these problems in the full version of this
paper. Our techniques naturally extend to give optimal testers for
related problems. To illustrate the generality of our methods, we
give optimal algorithms for testing collections of distributions and
testing closeness with unequal sized samples.
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1 INTRODUCTION

1.1 Background and Motivation

This paper studies problems in distribution property testing [2,
3, 24], a field at the intersection of property testing [23, 34] and
statistical hypothesis testing [28, 31]. The prototypical problem of
this field is the following: Given sample access to a collection of
unknown probability distributions and a pre-specified global prop-
erty P of these distributions, determine whether the distributions
satisfy P or are “far” from satisfying the property. (See Section 1.2
for a formal definition.) The main goal is to characterize the sample
and computational complexity of this general question, for any
given property P of interest, as a function of the relevant param-
eters. During the past two decades, distribution property testing
has received significant attention within the computer science and
statistics communities. The reader is referred to [5, 33] for two
surveys on the topic. It should be noted that the TCS definition of
distribution testing is equivalent to the minimax view of statistical
hypothesis testing, pioneered in the statistics community by Ingster
and coauthors (see, e.g., [26].)

The vast majority of prior research in distribution testing focused
on characterizing the complexity of testing various properties of
arbitrary discrete distributions in the “constant confidence regime”
That is, the testing algorithm is allowed to fail with probability
(say) at most 1/3. This regime is by now fairly well understood: For
a range of natural and important properties (see, e.g., [1, 7, 8, 15—
18, 30, 32, 36]), prior work has developed testers with provably
optimal sample complexity (up to universal constant factors). More
recently, a body of work has focused on leveraging a priori structure
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of the underlying distributions to obtain significantly improved
sample complexities [4, 6, 9-11, 17-20]. Similarly, all these results
on testing structured distributions study the constant confidence
regime.

Since distribution property testing is a (promise) decision prob-
lem, one can use standard amplification to boost the confidence
probability of any tester to any desired value in a black-box manner.
Suppose we have a testing algorithm for property # that guarantees
confidence probability 2/3 (failure probability 1/3) with N samples.
Using amplification, we can increase the confidence probability
to 1 -4, for any § > 0, by increasing the sample complexity of
the algorithm by a factor of ©(log(1/6)). In part due to this sim-
ple fact, the initial definition of property testing [23] had set the
confidence parameter § to be constant by default. As Goldreich
notes [21], “eliminating the error probability as a parameter does
not allow to ask whether or not one may improve over the straight-
forward error reduction”. Indeed, as we will see below, for a range
of tasks this ©(log(1/5)) multiplicative increase in the sample size
is sub-optimal.

The previous paragraph leads us to the following general ques-
tion:

QUESTION 1.1. For a given property P, can we characterize the
sample complexity of testing P as a function of all relevant problem
parameters, including the error probability §?

We believe that Question 1.1 is of fundamental theoretical and
practical interest that merits investigation in its own right. The
analogous question in the context of distribution learning has been
intensely studied in statistical learning theory (see, e.g., [12, 37])
and tight bounds are known in a range of settings.

Question 1.1 is of substantial interest in statistical hypothesis
testing, where the family of distribution testing algorithms with fail-
ure probability § for a given property P is equivalent to the family
of minimax statistical tests whose probability of Type I error (p-
value) and probability of Type II error are both at most §. Standard
techniques for addressing the problem of multiple comparisons,
such as Bonferroni correction, require vanishingly small p-values.
In such settings, obtaining optimal testers in the high-confidence
regime might have practical implications in application areas of
hypothesis testing (e.g., in biology).

It should be noted that Question 1.1 has received renewed re-
search attention in the information theory and statistics commu-
nities. Specifically, [25, 27] focused on developing testers with
improved dependence on ¢ for uniformity testing [25], equiva-
lence and independence testing [27]. Prior to this work, uniformity
testing—and, via Goldreich’s reduction [22], identity testing—was
the only statistical task whose sample complexity had been char-
acterized in the high-confidence regime [14]. As shown in [14],
all previously studied uniformity testers are in fact sub-optimal in
the high-confidence regime. In other words, obtaining an optimal
sample bound was not just a matter of improved analysis, but a
new algorithm was required.

Most relevant to the results of this paper is the concurrent work
by Kim, Balakrishnan, and Wasserman [27]. Kim et al. [27] give
equivalence and independence testers for discrete distributions
with respect to the total variation distance (i.e., in the same setting
as ours) whose sample complexities beat standard amplification as

543

llias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, and Eric Price

a function of § (in some parameter regimes). As we show in this
paper, their sample complexity upper bounds are sub-optimal — by
roughly a quadratic factor. See Section 1.4 for a detailed description
of the most relevant prior work.

1.2 Our Contributions

In this work, we systematically investigate the sample complexity
of distribution testing in the high-confidence regime. Our main
focus is on the problems of closeness (equivalence) testing and
independence testing. We develop new techniques that lead to the
first sample-optimal testing algorithms for these properties. More-
over, we prove information-theoretic lower bounds showing that
the sample complexity of our algorithms is optimal in all param-
eters (within a constant factor). Our techniques can be naturally
adapted to give sample-optimal testers for other properties. To illus-
trate the generality of our methods, we show that our techniques
lead to sample-optimal testers (and matching lower bounds in the
full version of this paper) for testing properties of collections of
distributions and testing closeness with unequal sized samples.

We start with a general definition of distribution property testing
for tuples of distributions.

Definition 1.1 ((¢, §)-testing of property ). Let # be a property
of a k-tuple of distributions. Given parameters 0 < €, < 1, and
sample access to a collection of distributions p(l) s p(k), we want
to distinguish with probability at least 1 — § between the following
cases:

e Completeness: (p1), ..., p)) e P.

e Soundness: (p(l), e p(k)) is e-far from P, in total variation
distance, i.e., for every (¢V), ..., q(¥)) € P the average total
variation distance between p!) and ¢(?), i € [k], is at least €.

We call this the problem of (e, §)-testing property P. An algorithm
that solves this problem will be called an (¢, §)-tester for property
P.

Here we focus on testing properties of distributions on discrete
domains. Definition 1.1 captures all testing tasks we study in this
paper. Our contributions are described in detail in the proceeding
discussion.

The task of closeness testing (or equivalence testing) of two
discrete distributions p, g supported on [n] corresponds to the case
k = 2 of Definition 1.1 and the property in question is ¥ = {(p, q) :
p = q}. In other words, given samples from p and g, we want to
distinguish between the cases that p = q and dty(p, q) > €. For
closeness testing, we show:

THEOREM 1.2 (CLOSENESS TESTING). There exists a computation-
ally efficient (€, §)-closeness tester for discrete distributions of support
size n with sample complexity

(<) (n2/3 logl/S(l/(S)/e‘*/3 + (nl/2 log1/2(1/5) + log(l/5))/ez) .

Moreover, this sample size upper bound is information-theoretically
optimal, within a universal constant factor, for all n, €, .

The statistical task of (two-dimensional) independence testing of
a discrete distribution p on the domain [n] X [m] corresponds to the
case k = 1 of Definition 1.1, where the property of interest is =
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{p : pis a product distribution}. That is, we want to distinguish
between the case that p is a product distribution versus e-far, in total
variation distance, from any product distribution. For independence
testing, we show:

THEOREM 1.3 (INDEPENDENCE TESTING). There exists a computa-
tionally efficient (€, §)-independence tester for discrete distributions
on [n] X [m], where n > m, with sample complexity:

) (n2/3m1/3 log1/3(1/5)/e4/3) +

+0 (((nm)l/z log'/2(1/8) + log(1 /5))/e2) )

Moreover, this sample size upper bound is information-theoretically
optimal, within a universal constant factor, for alln, m, €, §.

The main focus of this paper is on developing the techniques
required to establish Theorems 1.2 and 1.3. Building on these tech-
niques, we obtain optimal testers for two additional fundamental
properties.

In the task of testing collections of distributions, we are given
access to m distributions p(!), .. ., p™ supported on [n] and we
want to distinguish between the case that p(l) = p(z) =...= p(m)
and the case that ming(1/m) 312, dTV(p(i), q) = €. Our algorithm
is given samples of the form (i, j), where i is drawn uniformly at
random from [m] and j € [n] is drawn from p(i). While this problem
has strong similarities to independence testing, it also has some
significant differences. For this testing task, we show:

THEOREM 1.4 (TESTING COLLECTIONS OF DISTRIBUTIONS). There
exists a computationally efficient (e, §)-tester for testing closeness of
collections of m distributions on [n] with sample complexity:

O (n2m!/% log!(1/8)/¢*) +

+0 (1) 10g1/%(1/8) + log(1/8))/€?) .

Moreover, this sample size upper bound is information-theoretically
optimal, within a universal constant factor, for alln, m, €, §.

Our final result is for the problem of testing closeness between
two unknown discrete distributions when we have access to un-
equal sized samples from the two unknown distributions. This
problem interpolates between the vanilla closeness testing task
(with equal sized samples) and the task of identity testing (where
one of the two distributions is known exactly). For this task, we
show:

THEOREM 1.5 (CLOSENESS TESTING WITH UNEQUAL SIZED SAM-
PLES). There exists a computationally efficient (e, §)-closeness tester
for discrete distributions of support size n that draws O(K +k) samples
from one distribution and O(k) samples from the other, as long as

k>C (m/log(l /8)/min(n, K) + log(1 /5)) /e,

where C > 0 is a universal constant. Moreover, this sample size trade-
off is information-theoretically optimal, within a universal constant
factor, for alln, e, d.
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1.3 Overview of Techniques

In this section, we provide a detailed overview of our upper and
lower bound techniques. Full statements of the lower bounds and
their proofs can be found in the full version of this paper. Our main
technical and conceptual innovation lies in the development of
our upper bounds. To keep this section concrete, we describe our
techniques in the context of closeness and independence testing.
Our algorithms for testing collections and closeness with unequal
sized samples use very similar ideas to those of our independence
tester.

Closeness Tester. To obtain a closeness tester that performs well
in the high confidence regime, we need to design a test statistic that
exhibits strong concentration bounds. A reasonable approach to
enforce this requirement would be to ensure that the test statistic
is Lipschitz in the samples, so that we can leverage an appropriate
concentration inequality (e.g., McDiarmid’s inequality) to obtain
the necessary concentration. We note that the chi-squared closeness
tester of [8] is Lipschitz, but not Lipschitz enough for the straight-
forward analysis to obtain an optimal bound. While we conjecture
that the [8] closeness tester is indeed optimal, here we develop a
new and easier to analyze closeness tester. Our new closeness tester
(and its analysis) will also be crucially used for our independence
tester.

We are now ready to describe the new statistic that our closeness
tester relies on. Let Xj, Y; be the number of samples assigned to
bin (domain element) i € [n], from p and g respectively. A natural
starting point is to consider the absolute value of the difference
|X; —Y;|. Namely, we could consider the statistic Z = 37" |X; - Y;|
and output “YES” or “NO” based on its magnitude. Unfortunately,
this random variable Z does not have mean zero in the completeness
case (i.e., when p = q). Furthermore, one can construct instances
where the expectation of this statistic is not even minimized when
p = q. To fix this issue, we will need to subtract an appropriate
proxy for what the value should be if p = g. To do this, we draw a
second set of samples with X and Y/ samples in bin i from each of
the distributions. We then use the test statistic

n
Z =" (IX: = Yil + IX] = Y| = IXi = X[ | = Y = Y]1) .
i=1

If p = gq, it is clear that Xi,Xi’, Y;, Yl.’ are i.i.d., and so Z is mean
zero. The challenging part of the proof involves showing that if
p is e-far from g, then E[Z] must be large. Since Z is Lipschitz, it
satisfies strong concentration bounds, and so with sufficiently many
samples we can distinguish the two cases with high probability. A
careful analysis shows that this tester is indeed sample optimal for
the entire parameter regime.

Independence Tester. Let p be a discrete distribution on [n] X [m].
It is easy to see (and well-known) that the independence testing
problem amounts to distinguishing the case where p = g from the
case that p is e-far from g, where q is the product of p’s marginals.
Unfortunately, directly applying Theorem 1.2 to this domain of
size nm gives a poor sample complexity in one of the three terms.
In particular, the first term would be n2/3m2/3, not n?/3m!/3. Of
course, this is an issue even for the constant confidence regime. We
thus need a better bound when this term is dominant, which we
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will obtain using tighter concentration bounds on our statistic Z
from the previous subsection.

We start by observing that if Z is computed by drawing a total of
k independent samples, the fact that Z is Lipschitz implies a variance
bound of O(k). By McDiarmid’s inequality, it follows that Z is within
O(+/k log(1/9)) of its mean value with probability 1 — §. However,
we note that the value of the output statistic for Z does not really
depend on all of the samples. In particular, any bin (domain element)
with exactly one sample drawn from it (from the combination of
p and g) will not contribute to the statistic. Hence, if we let N
be the number of non-isolated samples, then in some sense, the
variance of Z will be bounded above by N. Formally speaking, some
technical work is needed here, because there is a low probability of
N being unusually small in which case it would bound the variance.
To address this, we use a symmetrization argument to show that
|Z - E[Z]] = O({/(N + log(1/3)) log(1/5)) with probability at least
1 — 6 (see Lemma 4.5). If we can ensure that the number of non-
isolated samples is not too large, this stronger concentration bound
should allow us to use fewer samples.

In order to decrease the number of non-singleton samples in our
distribution, it is natural to want our underlying distributions to
have small {2 norm. An approach to achieve this is by using the
flattening technique of [16]. The basic idea of flattening is to use
some of our samples to identify the heavy bins in our distribution,
and then to artificially subdivide these bins in order to decrease the
total €2 norm of the distribution. This technique is especially useful
for the product distribution g, as we can separately identify the
heavy x-coordinates and heavy y-coordinates, rather than using
what would need to be substantially more samples to identify all of
the heavy pairs. However, there are two major difficulties with using
flattening in this setting. To circumvent these obstacles, new ideas are
needed, as explained in the proceeding discussion.

First, although flattening can be used to reduce the number of
collisions coming from samples of g, it will not necessarily reduce
the number of collisions from p-samples to acceptable levels. We get
around this issue by noting that if most of the collisions contributing
to N come largely from p-samples, then with high probability it will
be case that Z > N, in which case the larger variance term will not
hurt us much. A second, more difficult, problem to handle is this:
although it is not hard to show that flattening works on average, it
simply is not true that flattening yields a small number of collisions
with sufficiently high probability. This is a major issue in our setting,
since our goal is to obtain the optimal sample complexity with high
confidence!

To circumvent the latter problem, we will need to substantially
restructure our algorithm. Essentially, we will pick a set S of samples
once at the beginning of our algorithm. We then randomly assign
samples of S to be used either to flatten x and y coordinates, or to
generate samples from p and q. If we got unlucky and our flattening
was not sufficient (because the number of g-samples that collided
was too large), we will try again using the same initial set S of
samples, but re-randomizing the way these samples are used.

To show that this new algorithm works, we will need to establish
two statements:
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(1) For any set of initial samples S, the probability that we will
need to try again is at most 50% (so, on average, we only
need to try a constant number of times).

(2) The probability that a given try causes our algorithm to
terminate with the wrong answer is at most 8.

Combining the second statement with the fact that on average we
will only need O(1) many tries before we get an answer, the total
probability of failure will be bounded by SE[# tries] = O(§). This
allows us to get a high-probability bound even though our analysis
of flattening only works on average.

Sample Complexity Lower Bounds. We sketch our sample com-
plexity lower bound for independence testing. Details can be found
in the full version of this paper. The corresponding lower bound for
closeness testing follows as a special case in a black-box manner.

Our lower bound proof follows the same outline as the lower
bound proof in [16]. The gist of the argument in that work was
that we reduced to the following problem: We have two explicit
pseudo-distributions! Dyes (over independent pseudo-distributions)
and Dy, (over usually far from independent pseudo-distributions).
We pick a random pseudo-distribution from one of these families,
take Poi(k) samples from it, hand them to the algorithm, and ask
the algorithm to determine which ensemble we started with. It was
shown in [16] that it is impossible to do this reliably by bounding the
mutual information between the samples and the bit determining
which ensemble was sampled from.

This approach, unfortunately, does not suffice for high probabil-
ity bounds. [16] worked in the constant confidence regime, where
the mutual information is close to 0. In contrast, in the high con-
fidence regime, the mutual information will be close to 1. While,
in principle, bounding the mutual information away from 1 might
suffice to prove lower bounds in the high confidence regime, the
mutual information bounds achievable with the [16] techniques
are not sufficiently strong, in the sense that they can only bound
the mutual information by a quantity bigger than 1, given enough
samples.

To overcome this technical hurdle, we replace our bounds on
mutual information with bounds on KL-divergence. Unlike the
mutual information (which is bounded by 1 bit), the KL-divergence
between our distributions can become arbitrarily large. It is also
not hard to see that if two distributions can be distinguished with
probability 1 — , the KL-divergence is Q(log(1/5)). (See Fact 2.2.)

Given the above observation, our lower bound ensembles are
identical to the ones used in [16]. Furthermore, the analytic tech-
niques we use to bound the KL-divergence are very similar, using es-
sentially the same expression as an upper bound on KL-divergence
as was used as an upper bound on mutual information. Another
technical issue is that we need to show that the reduction to our hard
instance over pseudo-distributions still works for high probability
testing, which is not difficult, but needs to be carefully checked.

1.4 Prior and Concurrent Work

Prior to this work, the question of developing sample-optimal
testers in the high-confidence regime has been considered for

1A “pseudo-distribution” is like a distribution, except not necessarily normalized to
sum to one. In other areas of mathematics, they are commonly referred to as finite
measures.
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uniformity testing (and, via Goldreich’s reduction, identity test-
ing). Specifically, [25] showed that Paninski’s uniformity tester
(based on the number of unique elements) has the sample-optimal
sample complexity of O(4/nlog(1/5)/€?) in the sublinear sample
regime, i.e., when the sample size is o(n). More recently, [14] gave
a different tester that achieves the optimal sample complexity
O((+/nlog(1/8) + log(1/5))/€?) in the entire regime of parameters.

As already mentioned, prior to our work, uniformity was the only
property for which the high confidence regime has been analyzed.
We now comment on some closely related literature. [8] gave a chi-
squared tester and showed that it is sample-optimal in the constant
confidence regime. We believe that the same tester is optimal in
the high-confidence regime. However, a proof of this statement
seems rather non-trivial. In particular, simple analyses based on
McDiarmid’s inequality [29] lead to sub-optimal sample complexity
when the sample size is Q(n). The new closeness tester introduced
in this work is arguably simpler with a compact analysis, and it is
crucial for our much more involved independence tester.

The work of [1] gave an independence tester that is sample
optimal ’ in the constant confidence regime for the special case that
the two dimensions have the same support size (i.e., n = m). The
performance of this tester is sub-optimal in the high-confidence
regime, as it relies on a non-Lipschitz identity tester. [16] gave a
sample-optimal independence tester for the general case (where n >
m), which is the only known sample-optimal tester in the constant
confidence regime for this problem. Unfortunately, this tester is also
sub-optimal in the high-confidence regime for the following reason.
[16] uses the flattening technique to reduce the problem under
total variation (¢1) distance to an {2-closeness testing problem. The
issue is that the £»-testing task does not behave well in the high
probability regime, so this approach does not suffice to give optimal
testers in this setting. While our optimal independence tester in this
paper also leverages the flattening technique, it requires several
new conceptual and technical ideas.

Concurrent and independent work [27] provided testers for close-
ness and independence testing in the high-confidence regime. Their
algorithms distinguish between the Type 1 and Type 2 error proba-
bilities & and f respectively. Our results in this paper correspond
to the setting that @ = f = §. Their testers have polynomial de-
pendence on 1/ and therefore do not perform well in our setting.
For constant S, their testers perform better than naive amplifi-
cation but still sub-optimally in the parameter a. For example,
their Theorem 8.1 gives a closeness tester with sample complex-
ity of m = O(n?31og?*(1/a)/*? + n'/21og(1/a)/f?). Even for
B = ©(1), this is essentially quadratically worse in log(1/«) than
applying Theorem 1.2 with § = a.

1.5 Organization

After setting up the required preliminaries in Section 2, we give our
testing algorithms for closeness and independence in Sections 3
and 4. Our testers for other properties and sample complexity lower
bounds are deferred to the full version of this paper [13].

2 PRELIMINARIES

We write [n] to denote the set {1,...,n}. We consider discrete
distributions over [n] with corresponding probability mass func-
tions p : [n] — [0, 1] satisfying 37 | p; = 1. We use the notation
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pi to denote the probability of element i in distribution p. The
{1 (resp. {2) norm of a distribution is identified with the ¢; (resp.
{3) norm of the corresponding vector, ie., [[plli = X, p; and

[Ipll2 = A [2?:1p§. Similarly, the €1 (resp. £3) distance between dis-
tributions p and q is the €1 (resp. {2) norm of the vector of their

difference. The total variation distance between distributions p, ¢

on [n] is dty (p, q) def % - |lp — qll1. The KL divergence between two
discrete distributions p and q on [n] is D(p||lq) = X; pi log(pi/qi)-
A Poisson distribution with parameter A is denoted Poi(4). The
binomial and multinomial distributions are denoted Binom(n, p)
and Multinom(n, {p; };‘:1), respectively.
The main concentration inequality used in our upper bounds is
McDiarmid’s inequality.

FacT 2.1 (McDIARMID’S INEQUALITY([29]). Let f be a multivariate
function with m independent random inputs whose codomain is R
and such that, for each i € [m], changing the ith coordinate alone can
change the output by at most ¢; additively. Then

_ 2t?

Pr{|f(X) - E[f(x)]] > t] < 2¢ i .

A commonly used method for bounding from above the total
variation distance in terms of KL divergence is Pinsker’s inequality.
However, Pinsker’s inequality is mainly useful when the KL diver-
gence is small. In the high probability regime, the KL divergence is
larger than 1 and this gives no information about the total varia-
tion distance. Our sample complexity lower bounds instead use a
different inequality, which is better suited for the high probability
regime.

FACT 2.2 (SEE, E.G., LEMMAS 2.1 AND 2.6 OF [35]). For any pair
of distributions p, q, we have that dry (p,q) < 1 — (1/2)e"P@lla),
Equivalently, it holds D(p||q) > log(2/6), where 1 — & is the total
variation distance.

3 SAMPLE-OPTIMAL CLOSENESS TESTER

In this section, we give our optimal closeness tester, described in
pseudo-code below.

The main result of this section is the following theorem:

THEOREM 3.1. There exists a universal constant C > 0 such that
the following holds: When

k>C (n2/3 log!/3(1/8) /€3 + (n/2 10g!/2(1/8) + log(l/5))/€2) ,

(1)
Algorithm TesT-CLOSENESS is an (€, §)-closeness tester in total varia-
tion distance.

To prove Theorem 3.1, we will show that the expected value of
our statistic Z in the completeness case is sufficiently separated
from the expected value of Z in the soundness case, and also that
the value of Z is highly concentrated around its expectation in
both cases. We proceed to prove these two steps in the following
subsections. We will assume that the parameter k in Step 1 of the
algorithm satisfies (1).
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Algorithm 1: TesT-CLOSENESS(p, ¢, n, €, )

Input :sample access to distributions p, g over [n], € > 0,
and § > 0.

Output: “YES” if p = ¢, “NO” if dty (p, q) = €; both with
probability at least 1 — §.

Set k =

C (w2 10g1/%(1/6)/4/% + (n'/210g!/2(1/6) + log(1/8)) /€2,
where C > 0 is a sufficiently large universal constant.
Set (1, my,’, Mg, fg") = Multinom (4k, (1/4,1/4,1/4,1/4)).
Draw two multi-sets of independent samples from p of sizes

[

[N}

©w

My, my’ respectively, and two multi-sets of independent

samples from g of sizes f1ig, ng’ respectively. Let

X = (R, X' = (R, 7 = (WL, V' = () be
the corresponding histograms of the samples.

Compute the value of the random variable Z = > Zi,

where, for i € [n], we define
Zi = |Xi = Vil + IX] - Y{| - |IXi = X[ | - |Vi - ]| .

Set the threshold T = C’+/k log(1/5), where C’ is a universal
constant (derived from the analysis of the algorithm).

if Z < T then
‘ return “YES"

else
‘ return “NO"

end

'S

«

o

N

®

©

10

3.1 Bounding the Expectation Gap

In this section, we will prove an Q(+/k log(1/5)) expectation gap
between the completeness and soundness cases. We proceed by

analyzing the expectation of a slightly modified random variable
Z obtained by taking the number of samples drawn from p and ¢
be Poisson distributed. We then relate the expectation of Z to the
expectation of our actual statistic Z

Definition of modified random variable Z. Independently set
myp = Poi(k), mj, = Poi(k), mq = Poi(k), m = Poi(k). Draw two
multi-sets of independent samples from p of sizes m, m;, respec-
tively, and two multi-sets of independent samples from q of sizes
mg, m"z respectively. Let X = (.Xi ?:.1, X' =X)L, Y= ()L,
Y’ = (Y/)!, be the corresponding histograms of the samples. We
will analyze the random variable

n
Z = ZZ,—, where Z;
i=1

IXi = Yil + IX] = V]| = 1X; = X[ = |V - Y]] .

@)

Let m = my + myj, + mq + mg be the total number of samples
drawn from p, q in the definition of Z. By construction, we have
that Z = Z | (m = 4k). This will allow us to argue that E[Z] and

E[Z] are close to each other.

CLAIM 3.2. We have that [E[Z] - E[Z]| = O(Vk).

Proor. Note that the statistic Z is 2-Lipschitz, i.e., adding a
sample can change Z by at most 2. Therefore, |E[Z | m = a] - E[Z |
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m = b]| < 2|a — b|. This implies that
[E[Z] - E[Z]| = O(E[|m — 4k|]) = O(Vk) ,

as desired. ]

It therefore suffices to show that there is sufficient separation
between E[Z] in the completeness and soundness cases. Specifically,
this subsection is devoted to the proof of the following lemma:

LEmMA 3.3 (EXPECTATION GAP). Let Z be the statistic defined
in (2). Then

(i) Ifp = q (completeness), we have that E[Z] = 0.
(i) Ifdrv(p,q) = € (soundness), then E[Z] = Q(1/klog(1/9)).

Note that for each i € [n], X;, X] ~ Poi(kp;), Y;, Y] ~ Poi(kg;).
Moreover, the random variables {X;, X l’ ,Yi, Yl.' }?:1 are mutually
independent.

The proof of Part (i) in Lemma 3.3 is straightforward and holds
for all k > 1. Since p = g, it follows that, for any fixed i € [n], the
random variables X;, X l’ , Y, Yi’ are identically distributed. There-
fore, the random variables |X; — Y|, | X/ —Y/|, |X; - X[, and |Y; - Y/|
are also identically distributed, which implies that E[|X; — Y;|] =
E[|X] - Y/|] = E[|X; - X]|] = E[|Y; - Y/|]. Thus, E[Z;] = 0 for all
i € [n], and therefore E[Z] = 0.

The proof of Part (ii) in Lemma 3.3 is significantly more chal-
lenging. We note that the proof of Part (ii) crucially relies on the
assumption that k is sufficiently large, satisfying (1).

We start with the following technical claim:

CrLAM 3.4. Foralli € [n], we have that

|2 |kp; — kCIi|2

vVkpi + kq; }) - O

Proor. Recall that for each i € [n], X, X] ~ Poi(kp;), Y, Y/ ~
Poi(kq;) and that these random variables are mutually independent.
This implies that E[|X; — Y;|] = E[|X] — Y/|] and therefore

E[Zi]=Q

min {|kpi — kqil, lkpi — kq;

E[Z;] = 2E[|X; - Yil] - E[IX; - X[ - E[IY; - V][] .

Due to the absolute values in the above expression, we can assume
without loss of generality that a := kp; > kq; =: b.

Let ¢ := a—b > 0. Then we can write that X;, X; ~ Poi(b)+Poi(c)
and Y;, Yl.' ~ Poi(b). Let By, Bz and Cy, C2 be mutually independent
random variables with By, By ~ Poi(b) and C1,C2 ~ Poi(c). Note
that By + Cypr, for £, ¢’ € {1, 2}, have the same distribution as X;
and X]. By linearity of expectation, we can thus write

EIZi] = (1/2) B[ IB1 + C1 = Byl + By + Cy - By|+
+|By = C1— Ba| + By — C2 — Ba| = |By + C1 — B2 — Ca| -
@)

where the first four terms above correspond to 2 E[|X; — Y;|], the
fifth and sixth terms correspond to —E[|X; — X[|], and the last term
corresponds to —E[|Y; — Y/|].

Consider the function f : R? — R defined as

fGey) = 1/2)(Ix +yl + |y — x[ = 2y]).

—|B1 +C2 — By — C1| = 2|B; — By|
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By the definition of f and (4), we have that

E[Zi] =E [f(Cl, B1 — Bz) + f(CZ, Bl — Bz) — f(C1 — Cz, B]
(5)
Now observe that f(x,y) = ly|} and that f(x,y) is an

increasing function of |x|.

max{0, |x| -

Forany x1,x2 > 0 andy € R, we have that |x;—x2| < max{x, x2},

hence

(1 = x2,y) = f(|x1 — x2|, y) < f(max{x1, x2}, 1)
= max{f(x1,y), f(x2,y)} .
This implies that

Fleny) + flxa,y) — fOe1 — x2,9) 2f(x1,y) + f(x2,y)
— max{f(x1,y), f(x2,y)}

=min{f(x1,y), f(x2,y)}
=f (min{x1, x2},y) .

Using (5), the above inequality gives that

E[Z;] 2 E[f (min{C1, C2}, B1 — B)]
= E [max {0, min{Cy, C2} — |B1 - Ba|}] . (6)
Therefore, it suffices to establish a lower bound on the RHS of

(6). We proceed to do so by considering two complementary cases,
based on the value of the parameter ¢ > 0.

Casel:c < 1.
In this case, we can write

E[Z;] = Pr[(min{Cy,C2} = 1) A (B;
=Pr[C; > 1]%Pr[B; = Bs]
>Q (c2 min{l, 1/‘/5}) =Q (min {02,02/\/5}) s

where the first inequality follows from (6) (since min{Cj, C2} —
[B1 — B2|} = 1 under the corresponding event), the first equality
uses the independence of By, By and Cy, and the last inequality uses
the fact that Pr[C; > 1] = 1 — ¢ ¢ > ¢/2 (since 0 < ¢ < 1)
and that Pr[B; = Bj]

= By)]

Q(min{1, 1/Vb}). To prove the latter
lower bound, we will use the fact that By, By are i.i.d. and that
their common distribution B is supported on integers and has stan-
dard deviation ¢ = Vb. By Chebyshev’s inequality, we have that
Pr[|B—-b| = O(c)] = 1/2. Since B is has integer support, there
exists a set of integers S with cardinality |S| < 1 + O(o) such that
Pr[B € S] > 1/2. Now note that Pr{B; = By] = 3;50 Pr[B = i|?> >
SiesPr[B = i]? = (1/|S|)Pr[B € S)? > 1/(4/S|), where the sec-
ond inequality follows by the convexity of the quadratic function.
Therefore, Pr[B; = B2] = Q(1/(1 + O(0))) = Q(min{1,1/0}), as
desired.

Casell: c > 1.
In this case, there exists a universal constant §y > 0 such that
8o = Pr[min{Cy,C2} > c/2]. We will show that Pr[|B; — By| <

¢/4] = Q(min{1, ¢/Vb}). Using (6), the latter inequality implies
that
E[Zi] = (c¢/4)Pr[min{Cy,Cs2} > c¢/2] Pr[|B1 — B2| < c¢/4]

(c/4) 8 Q(min{1, c/Vb})
Q (min{c, cz/\/Z}) .

- By)] .
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To establish the desired upper bound on Pr[|B; — By| < ¢/4], we
apply the argument from Case I for the random variables B] =
LBi/(c/4)], i = 1,2. Note that the B] is an integer-valued random
variable with standard deviation ¢’ = 1 + O(Vb/c), and therefore
Pr[B, = B}] = Q(min{1,1/0’}) = Q(min{1, c/Vb}). Finally, we
note that Pr[|B; — Bz| < ¢/4] > Pr[B] = B}]. This completes Case
1L

Recall that ¢ = |kp; —
is now complete.

kqi| by definition. The proof of Claim 3.4
O

Proof of Lemma 3.3 (ii). Suppose that dty (p, q) > €. For each bin
i € [n], we assign i to set Sy, Sz, S3 if

. |kpi — kqil®
min  [kp; - kqil, lkpi — kqi|*, ——=
{ Vkpi + kqi
is equal to |kp; —kq;|, |kp; —kq;|?, or % respectively (break-
itRq

ing ties arbitrarily). This defines a partition of [n] into three sets,
S1,82,S3. Since 3.7, |pi — qil = €/2, for at least one j € {1,2,3}
we have that 3¢5, |pi — gil > €/6.In each of these three cases, we
will use Claim 3.4 to prove the desired expectation lower bound.

Case 1: }jes, Ipi — qil > €/6.

In this case, we have that E[Z] = X1, E[Z;] > X;es, E[Zi] =
Q(k) Xies, Ipi — qil = Q(ek). Since k is assumed to satisfy (1)
and in particular we have that k > Clog(1/5)/€?, it follows that

= Q(+/klog(1/5)), as desired.

Case 2: Yjes, Ipi — qil 2 €/6.
In this case, we have that E[Z] = E[Zi] 2 Yjes, ElZi] =

Q(k?) Yies, Ipi — qil? = Q(k?e?/n), where the last inequality fol-
lows from Cauchy -Schwarz and the fact that |S2| < n. Since k is
assumed to satisfy (1) and in particular k > Cn?/3 logl/3 (5)/64/3, it

follows that E[Z] = Q(~/k log(1/9)), as desired.

— qi| > €/6. In this case, we can similarly write

Case 3: Xjcs, |Pi
that
n
=Rz 2 Y Bz = ) Y PO
i=1 i€eSs i€S3

-0 (kz/zez/nl/z) ’

where the last bound follows from our assumption that }’;cs, [pi —
gil > €/6 and a careful application of the generalized Holder’s
inequality. Recall that for any triple of vectors x,y,z € R™, we
have that }}; |x;yizi| < ||x||-llylls||zlls, where 1/r + 1/s + 1/t = 1.
Using this fact, we can write

_pi—aqil

(i +q)1/2

ZS: lpi —qil = ZS i + )1/4 (pi +ql)1/4
1€53 1€53
® 1/2 1/4 1/4
i —9qi . . 4
(Z +q)1/2) (Z(pl+ql)) (Zl)
i€Ss i€Ss i€Ss

%)ies vy = ((pi + qi))ies, 2 =
12 1 3

(1)ies;»and r = 2,5 = t = 4. Since Y5, (pi + i) < 2and |S3] < n,

% = Q(ez/nl/z), as desired.

where we used x = (

we get that ¢,
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We have thus shown that E[Z] = Q(k3/262/n1/2). Since k is
assumed to satisfy (1) and in particular k > cnl/? log1/2(5)/62, it

follows that E[Z] = Q(y/k log(1/6)), as desired.

This completes the proof of Lemma 3.3 (ii). ]

3.2 Concentration of Test Statistic: Proof of
Theorem 3.1

By Lemma 3.3, we have that E[Z] = 0 in the completeness case
and E[Z] = Q(y/klog(1/6)) in the soundness case respectively.
Combined with Claim 3.2, we have that in the completeness case
E[Z] = O(Vk) and in the soundness case E[Z] = Q(+/k log(1/9)).

The random variable Z depends on 4k inputs: the choice, for
each of the 4k samples, of which distribution to be drawn from and
which coordinate to land in. Z is 2-Lipschitz in these 4k inputs. An
application of McDiarmid’s inequality to zZ gives that

(C'[(kog(1/5))* ,
Pr[ e = 26(C)8

7- E[Z]‘ > C’\klog(1 /5)] < 2¢72
e

for some constant C””. If we apply the variable substitution § «
(8/2)Y €” the RHS above becomes & and the number of samples
only changes by a constant factor. Therefore, our tester is correct
with probability at least 1 — §, as desired.

4 SAMPLE-OPTIMAL INDEPENDENCE
TESTER

4.1 Intuition and Setup

The goal in independence testing is to distinguish between p and
q = px Xpy, i.e., the product of the marginal distributions of p on the
two coordinates. Unfortunately, we cannot simply use our closeness
tester to solve this problem, as the sample complexity would contain
an (nm)z/3 logl/g(l/ﬁ)/e“/3 term, which is sub-optimal even for
constant §. Instead, we must take advantage of the fact that g is a
product distribution.

This issue is solved in the large § case in [16] by flattening. The
idea is that the error in their test statistic can be reduced if q is
guaranteed to have small {2 norm. To achieve this, we use flattening
to split up the heavy bins. This can be done especially effectively for
product distributions, as we can use samples to identify the heavy
bins in the marginals rather than having to individually identify all
of the heavy bins in the product.

To make a technique like this work in our context, there are
several obstacles that must be overcome. The first is that we need
to know how flattening can be used to improve the concentration
bounds on our test statistic Z which is defined later in this subsec-
tion. To see why this might be the case, we will observe that any
bins with only a single sample do not contribute to Z, and thus
do not contribute to its variance. In fact, with some extra work
we can prove stronger concentration bounds on Z that depend on
the number N of non-isolated samples. As distributions with small
{2 norm will likely produce fewer non-isolated samples, this will
hopefully improve our concentration bounds.

Unfortunately, while the basic flattening technique [16] works in
the large § regime, it does not work with high probability. To over-
come this issue, we note that the goal of our flattening is actually
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not to produce a distribution with small £2 norm, but to ensure that
the number of collisions among the samples used to compute Z is
relatively small. For this we note that if we are given a fixed pool
S of samples from which we draw samples both for the purposes
of flattening and for computing Z, it can be shown that no matter
what S is, there is always a good probability that the samples to
compute Z have few collisions. The overall strategy for our tester
will be to take this fixed set of samples and repeatedly try different
subdivisions into flattening and testing samples until we find one
that works.

The most basic unit of our tester will be an algorithm called
BasicTEsT, which runs one iteration of this strategy and returns
one of “YES”, “NO”, or “ABORT”, with the last meaning that our
attempt at flattening has failed and needs to be repeated.

Algorithm 2: FurLTesT(S): Given a distribution p over
[n] X [m] (where n > m), test if p is a product distribution.

Input :Sample access to a 2-dimensional distribution p
over [n] X [m]

Output:“YES" if p € P, “NO" if infyep drv(p, q) 2 €,
where P is the set of product distributions, both
with probability at least 1 — §.

1k

C (n2/3 log!/3(1/8)/€* + (n'/210g/%(1/8) + log(1/6)) /62),
where C > 0 is a sufficiently large universal constant.

2 S « 100k samples from p.

3 result « ABORT

4+ while result = ABORT do

5 ‘ result « BASICTEST(S)

¢ end

7 return result

The main result of this section is the following theorem:

THEOREM 4.1. There exists a universal constant C > 0 such that

the following holds: When

n?3m1/3 10g'/3(1/5) . (nm)210g/2(1/8) + log(1/8)

k>C e >

s

™)
Algorithm FULLTEST is an (€, §)-independence tester in total variation
distance.

Setup. Our independence testing procedure BAsICTEST has the
following basic structure:

(1) Choose a large multiset set of samples S.

(2) Choose from S aflattening F = (Fy, Fy), and possibly ABORT.

(3) Choose from S a set S of “flattened” samples, and possibly

ABORT.

(4) Use S to compute a test statistic Z.

(5) Accept or reject based on the test statistic.

At various points in the process, the algorithm may choose to
ABORT (for example, if the number of non-singletons in S is 100x
more than expected). We will show that if the algorithm is run on
a random set S of samples, the probability of outputting a wrong
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answer is O(6), but that for any set S of samples the chance of
aborting is at most 1/2. Therefore, when we abort, we can start
over from Step 2, and repeat until we output “YES" or “NO", with-
out increasing the sample complexity and with only O(9) failure
probability.

Flattening. Flattening involves choosing a set F of samples from
the distribution p with marginals px and p,. We then flatten the
rows and columns of p independently, giving us a new distribution
pf with marginals p{ and pg . The following definition appears as
Definition 2.4 in [16] and describes a subdivision of the domain of
a distribution p that aims at reducing its ¢, norm. For this transfor-
mation to be useful to us, we need to always make sure that the
domain size does not increase by more than a constant factor as a
result.

Definition 4.2 ([16]). Given a distribution p on [n] and a multiset
S of elements from [n], we define the split distribution ps over
[n + |S]] as follows: For 1 < i < n, let f; be the number of times
element i appears in S, and a; = 1 + f;. Our new distribution pg is
supported on the set B = {(i,j) : i € [n],1 < j < a;}. In order to
get a sample (i, j) from pg, we first draw i according to p and then
Jj uniformly at random from [a;].

Note the following fact about split distributions:

FacT 4.3. Let p and q be probability distributions on [n], and S
a given multiset of [n]. Then: (i) We can simulate a sample from ps
orqs by taking a single sample from p or q, respectively. (ii) It holds
that |Ips — gsl = llp - gll-

When we are dealing with multidimensional distributions, it will
be useful to have a definition of flattening only on a specific mar-
ginal. The definition below is given for 2-dimensional distributions,
but it can be easily generalized.

Definition 4.4. Given a distribution p on [n] X [m] with marginals
px and py. Also let S be a multiset of elements from [n] (respectively
[m]), we define the row-split (respectively column-split) distribution
ps over [n + |S|] X [m] (respectively [n] X [m + |S]|]) as follows:
in order to get a sample ((i, k), j) (respectively (i, (j, k))) from the
row-split (respectively column-split) distribution ps, we first draw
(i, j) according to p and then independently draw k uniformly at
random from [a;] (respectively [a;]).

Test Statistic. Define the product distribution ¢/ := p{ X pzf . Note
that dry (p', ¢) = drv(p, q) where g = py X py. Therefore, the goal
of determining whether p is a product distribution or far from it
is equivalent to distinguishing between pf = qf and pf far from
qf . In addition to sampling from pf , we can sample qf by taking
two samples from pf : we combine the first coordinate of the first
sample with the second coordinate of the second sample.

The sample set S consists of four pieces:

® 50, Sp1: two sets of Poi(k) samples from pf
® 540,Sq1: two sets of Poi(k) samples from qf

We let XLP % denote the number of times element u appears in
Spo, and similarly for the other three sets. For each u in the range

of ¢/ we get the test statistic:
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Zu = XX XD =X -0 - P - - x )

Our final test statistic is the sum of this:
Z = Z Zy.
u

Note that, if a given item u appears exactly once in the entire set
S of samples, then Z;, = 0. We say that such a sample is a singleton,
and define N < [S| to be the number of non-singleton samples.

4.2 Concentration of Z

The goal of this section is to prove that the test statistic Z concen-
trates. We will show this happens for any setting of the flattening
F, and ignoring the possibility of ABORT (that is, if we ran even
aborted procedures to completion). In particular, our goal is the
following lemma:

LEmMMA 4.5. For a fixed flattening F and any § > 0, there exists a
constant C > 0 such that

Pr[|Z - E[Z]] > C - (N + log(1/)) log(1/8)] < 5.

Intuitively, the idea is that since singletons do not change the
statistic, the variance—and concentration—of Z should depend on
the number of non-singletons N rather than the total number of
samples k. Note that the concentration is relative to N, which is
also a random variable.

We show this using symmetrization. For the sake of analysis we
introduce an independent copy of the statistic Z’, generated from
another set S’ of samples. Let T = S U S’ be the set of all samples
used by Z and Z’, and let M be the number of non-singletons in T.

Note that we could generate these same variables in a different
way: rather than first generating Spo and S 1”0 with Poi(k) samples
S 1’)0,
with Poi(2k) samples, then randomly assign each sample in Ty to
one of Spo and S 1’)0 (and similarly for p1, g0, g1). These are equivalent

each and setting Tpo = Spo U we can instead first sample Ty

generative processes. This second process leads to the following
lemma:

LEmMA 4.6. For every possible T, and any § > 0,
Pr[|Z - Z'| > \/8Mlog(2/8) | T] < 6.

Proor. We apply McDiarmid’s inequality, and use the alterna-
tive generative process. Conditioned on T = (Tpo, Tp1, Tqos qu), the
only randomness lies in whether each sample v is placed in S or S”.
Let ¢, be the maximum amount that |Z — Z’| can change by when
v € T is switched between S and S’. Switching v can only change
Z by at most 2, and similarly for Z’, so ¢, < 4. Moreover, if v is
a singleton in T, then switching v has zero effect on Z or Z’, so

¢y = 0. Hence
D <16M.
veT

Since Z and Z’ are identically distributed, E[Z — Z’ | T] = 0.
Therefore McDiarmid’s inequality states that, for any ¢,
2
Prl|Z - 2| > t| T] < 2¢ Tom.
Setting ¢ appropriately gives the result. O
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Since our desired lemma is in terms of N, not M, we relate the
two:

LEMMA 4.7. There exists a constant C such that, for every possible
T, and any § > 0,

Pr[M > C(N +1log(1/6)) | T] < 6.

ProoF. We again use the alternative generative process. There
are M non-singletons in T, which means we can pair them up into
M/2 disjoint pairs of colliding elements. Each such pair has a 1/4
chance of having both elements land in S, independent of every

other pair. Let n be the number of such pairs that land entirely in S.
By a Chernoff bound:

Pr[n < M/16 | T] < e M/C

for some constant C > 8. Now, if T is such that M < Clog(1/0), the
lemma statement is trivially true. Otherwise, since N > 2n,

Pr[M > 8N |T]<§

as desired. |

We also need to prove a constant-probability version of the result:
LEMMA 4.8. It holds that
Pr(|Z - E[Z]| > CVN + 1] < 1/2.
Proor. We will show this with Markov’s inequality, by showing
E[(Z - E[Z])*/(N + 1)] = O(1) ®

using symmetrization. Since Z’ is independent of Z, and by con-
vexity,
E[(Z - E[Z])*/(N + D] < E[(Z - Z')*/(N +1)]
=Er[E[(Z - Z) /(N + DITI]. (9)
For any fixed T, by Lemma 4.6 and Lemma 4.7 applied with §/2 and
a union bound we have with probability 1 — ¢ that both:

(Z-2Z")? < 8Mlog(4/5)
N > M/C —1log(2/d)
The latter equation implies N + 1 > M/(Clog(2/5)), and hence
(Z - Z") /(N +1) < 8Clog(4/6)log(2/8)

with probability 1 — §. This strong concentration implies a bound
in expectation:

E[(Z - Z')?/(N + 1)|T] < O(C) = O(1).

Plugging back into (9) gives (8), which implies the result. O

We now have the tools for the main result of the section.

PROOF OF LEMMA 4.5. Consider any two thresholds 7 and 7/,
where 7 is a random variable depending on the sampling used
for Z and 7’ depends on that for Z’. Because Z’ is independent of
Z, we have:

Pr[|Z -E[Z]| > tn|Z' - E[Z]| < '] = Pr[|Z - E[Z]|
> r]Pr[|Z" - E[Z]| < T’].
On the other hand,
Pr[|Z-E[Z]|>tNn|Z' -E[Z]| <] <Pr[|Z-Z'| >t - 7].
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Hence

Prl|Z —E[Z]| > 7] < Pr[|Z - Z'| > © — 7']/Pr[|Z’ - E[Z]] < 7'].
(10)

We now define these two thresholds 7 and 7’.

Defining t’. By Lemma 4.8 applied to Z’, with 50% probability
we have

|Z' —E[Z]| < O(YN’ + 1). (11)
Define 7’ to be this RHS.
By Lemma 4.7, with 1 — § probability we have
M = O(N + log(1/9)). (12)

(Note that we are no longer conditioning on T.) Since N’ < M, this
implies that there exists a constant C > 0Osuch that

t’ < Cy/N +1og(1/6) (13)
with probability 1 — .

Defining . On the other hand, combining (12) with Lemma 4.6,
with 1 — 26 probability we have

\Z - 2’| < O((N +1og(1/8)) log(2/5)).

We would like to define 7 to be this RHS plus 7’, but this would be
invalid: 7 must be independent of Z’. Hence we instead define 7

to be this RHS plus Cy/N + log(1/6); by (13), this is larger than the
RHS plus 7’ with 1 — § probability. Hence:

Pr[|Z-Z'|>7r-7"] <35 (14)

for this 7, which is O(y/(N + log(1/5))log(2/6)).

Combining the results. Plugging (14) and (11) into (10), we have
for this 7 that

Pr(|Z - E[Z]| > 7] < 38/(1/2) = 65.

Using 8’ = §/6 gives the desired result.

4.3 Algorithm

We begin with a helper algorithm BasicTEesT (Algorithm 3).
Our analysis will depend on two key facts:

(1) For any set of samples S, the probability that BASICTEST
returns ABORT is at most 1/2.

(2) If BASICTEST is run on a set of ii.d. samples from p, the
probability that it returns an incorrect answer (“NO” if p is
actually independent, or “YES” if p is e-far from independent)
is at most 4.

The latter of these points will hold because our algorithm will
ABORT unless Ng is small. This, combined with Lemma 4.5 and
Claim 4.14, will imply that the output is correct (along with a
separate argument (see Lemma 4.12) for when N > Nj).

To show the first of these points, one can first use Markov to
bound the probability of aborting due to Fx or Fy or £ or £’ being
too large. The more interesting case is to show that Ng is bounded
with appropriate probability. This will follow from the following
lemma:
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Algorithm 3: BasicTesT(S): Given a distribution p over
[n] x [m] (where n > m) test if p is a product distribution.

[

W N

ECICN

©

10

1

oy

12

13

14

15

16

17

18

19

20

2

_

22

23

24

25

26

27
28
29
30

31

Input :A Multiset S of 100k samples from [n] x [m] with

c n23m1og'?(1/5) + \/nmlog(1/5) 4 log(1/8)
2 2 5

€43 € €

where C is a sufficiently large universal constant.
Output:Information relating to whether these samples
came from an independent distribution.
/* Choose flattening F */
Fx,Fy <0
fors € S do
Fx = Fx U {s} with prob min{n/100k, 1/100}
Fy = Fy U {s} with prob m/100k ; // note that
k > m always.

end

if |Fx| > 10n or |[Fy| > 10m then

‘ return ABORT

end

/* Draw samples S];,Sg */

LetS = {(xi,yi)} be a uniformly random permutation of
S\ (Fx UFy)

Draw ¢, ¢’ ~ Poi(2k).

if 20+ ¢ > |§’| then
‘ return ABORT

end

Let Sg = {Gezjt. )} _y. Sp = Gy

Create Sg , Sg by assigning to corresponding sub-bins
uniformly at random

Np « #samples in S[j: that collide with another sample in S}j:

Ny « #samples in S{; that collide with another in S]; U S{; .
if Ny > cmax(k/m, k% /mn) then
‘ return ABORT
end
if Np > 20Ng + C"log(1/6) then // C" a sufficiently
large constant
‘ return “NO"

end
/* Compute test statistic Z */

Flag each sample of Sf; , SJ; independently with prob. 1/2.

Let X l(p 0>, ngo) be the number of times element i appears
flagged in each set Sf, SJ(; respectively and Xgpl),ngl) be
the corresponding counts on unflagged samples.

Compute the statistic Z = }}; Z;, where Z; = |X$p0) -

X§q0)| + |X,(p1) _ Xf_ql)| _ |X§P0) _ xl(Pl)| _ |X§q0) _X§q1)|_

if Z < C" - \/min(k, (k2 /(mn) + k/m))log(1/5) then
‘ return “YES"

else
‘ return “NO"

end
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LEMMA 4.9. For any set of samples S,
- k2
E[Ng|S]=0 (max (—,k/m)),
nm

where Ng is considered to be 0 in the case that the algorithm aborts
before computing it.

Proor. Throughout this proof we will condition on S. We note
that £ > k/2 except with probability exponentially small in k, in
which case Ny = O(k). Thus, the contribution from the case where
€ < k/21is O(1) and we can henceforth assume that £ > k/2 (note
that given the size of the parameters k/m > 1).

In order to bound Ny we bound it as a sum of simpler random
variables whose expectations we can bound individually. For 1 <
i < 100k, we let N; be 0 unless the ith element of S is in Sp, and in

that case, it is the number of elements of Sé that the corresponding

element of S]; collides with (with the exception that we define N;
tobe 0if £ < k/2). For 1 < i # j < 100k let N; ; be 0 unless one
of the elements of Sq is obtained by taking the x-coordinate from
the i'" element of S and y-coordinate from the j’ h element of S,
and if so is equal to the number of other elements in Sj; that the

corresponding element of SJ; collides with (with the exception that
we define N; ;j to be 0 if £ < k/2). It is easy to see that

Nq < Zi:Ni +l,Zj:Ni’j'

Our final result will follow from two bounds: Firstly, for all i, we
claim that

(15)

k2
E[N;] = O(max (—,k/m) /k). (16)
nm
We also claim that for all i, j that
k2 2
E[N; ;] = O(max | —, k/m] /k"). (17)
nm

We begin with our proof of Equation (16) as it is slightly easier.
Assume that the i’ element of § is (X, Y). Let Cx denote the num-
ber of other elements of S with the same x-coordinate and Cy the
number with the same y-coordinate. Upon flattening, let Fx and Fy
denote the number elements of Fx equal to X and the number of
elements of Fy, equal to Y, respectively. Note that Fx is distributed
as a binomial distribution Binom(Cyx, min(n/100k, 1/100)) and thus
E[1/(Fx + 1)] = O(1/(Cx min(n/k, 1))). Similarly, E[1/(Fy + 1)] =
O(k/(Cym)).

Once we have conditioned on the flattening sets Fx and Fy, we
consider Cx vy, the number of elements of Sq equal to (X, Y), where
Cxy is setto 0 if £ < k/2 (recall that this case can safely be ignored
in our final analysis). We claim that E[Cx y|Fx, Fy] < CxCy/k.
This is because the expectation of Cxy is a sum of all pairs of one
of the Cx elements of S with the correct x-coordinate and one of the
Cy elements of S with the correct y-coordinate of the probability
that this pair of elements is used to create an element of Sg. We claim
that this probability is O(1/k). In fact, this probability is at most
1/¢, where € > k/2 due to our conditioning. That is because even
conditioning on £ and which 2¢ elements of S are used to construct
the elements of Sy, there is only an O(1/£)= O(1/k) probability that
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the two designated elements of S are adjacent to each other after
the random permutation is applied.

However, once Sq is fixed, each of these Cx y elements that
might collide with our i* element of S only do if they are mapped
to the same sub-bin. This happens only with probability 1/((1 +
Fx)(1 + Fy)). Therefore, we have that:

E[N;|Cx,y, Fx, Fy] = CX—Y

’ (1+ Fx)(1+ Fy)

Therefore, using the fact that Fx, Fy are independent random vari-
ables, we have that

E[Ni] < sup (E[Cx,y|Fx,FyDE[1/(1 + Fx)IE[1/(1 + Fy)]

Fx,Fy
= O(CxCy /[k)O(max(k/n, 1)/Cx )O(k/(Cy m))
= O(max(k/(mn), 1/m)),

as desired.

The proof of Equation (17) is similar. Assume that the i*" element
of S has x-coordinate X and that the j** element has y-coordinate
Y. Let Cx and Cy be the number of other elements of S with x-
coordinate equal to X and y-coordinate equal to Y, respectively.
Again let Fx and Fy denote the number elements of Fy equal to X
and the number of elements of Fy equal to Y, respectively. Once
again E[1/(Fx + 1)] = O(1/(Cx min(n/k, 1))) and E[1/(Fy + 1)] =
O(k/(Cym)).

We now let Cxy be 0 unless £ > k/2 and the ith and jth ele-
ments pair to make an element of Sq» and in this case define it to
be the number of other elements of Sy equal to (X, Y). We claim
now that E[Cx y|Fyx, Fy] < CxCy /k? (note that this differs from
the above because of the k? in the denominator rather than k). This
is because Cxy is the sum over the CxCy pairs of other elements
with the correct x and y values of the probability that this pair
of elements of S and the pair of the i’ h and jt" elements both
end up in Sg4. Even conditioning on Fy, Fy and ¢, the probability
that the random permutation of elements put the two elements of
both of these pairs next to each other is O(1/£%) = O(1/k?). Thus,
E[Cx,y|Fx, Fy] < CxCy /K.

From here the argument is the same as above. Each of these
Cx,y elements of Sy has only a 1/((Fx + 1)(Fy + 1)) of colliding
with our designated one after assigning them to random sub-bins.
Thus, we have that Therefore, we have that:

Cx,y
E[N; ;ICx,y, Fx, Fy] = T+ P+ Fy)’

And thus,
E[Nij] < sup (E[Cx,y|Fx. FyDE[1/(1 + Fx)IE[1/(1 + Fy)]
= 0(CxCy /k?)O(max(k/n, 1)/Cx)O(k/(Cym))
= O(max(1/(mn), 1/(km))),
as desired.

Our lemma now follows from combining Equations (15), (16) and
(17). o

We are now prepared to prove the second of our main points
about BASICTEST.
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LEMMA 4.10. For any sample multiset S, the probability that Ba-
SICTEST returns ABORT is at most 1/2.

Proor. First, consider the case that BASICTEST returns ABORT
in line 6, because either |Fx| > 10n or |Fy| > 10n. Note that Fy ~
Binom(100k, min{rn/100k, 1/100}) and Fy ~ Binom(100k, m/100k).
Therefore, we have that: E[|Fx|] < n and E[|Fy|] = m. By applying
Markov’s inequality for each random variable and a union bound,
we get that

Pr[(|Fx| > 10n) v (|Fy| > 10n)] < 1/5..

The second possibility to return ABORT is in line 11 when 2+ ¢’ >
|§/| > 100k — |Fx| — |Fy|. Thus, we need to bound: Pr[2¢ + ¢ +
|Fx| + |Fy| > 100k]. Note that by linearity of expectation:

E[20+€"+|Fx|+|Fy|] = E[2C]+E[¢"+E[|Fx [J+E[|Fy|] < 4k+2k+k+k .
By applying Markov’s inequality again, we get that:
Pr[20 + €' + |Fx| + |Fy| > 100k] < 8/100 .

It remains to bound the chance of ABORT on line 18. By Lemma 4.9
and Markov’s inequality,

Pr[Ny > ¢ - max{k/m, k* /nm}|S] < 1/5,

for some constant c.

Using a union bound for all the above three cases, we get that
the probability that BASICTEST returns ABORT is at most 1/5 +
8/100 + 1/5 < 1/2. o

For the rest of the analysis, we consider running BASICTEST on
a set S of random samples from some distribution p on [n] X [m].
We note that we can simulate the algorithm in the following way:
First, for each i from 1 to 100k, if our algorithm wants to add an
element to Fx or Fy, we generate a random element from p and
add it to the appropriate set(s). If either |Fx| > 10n or |Fy| > 10m
we abort, so we will condition on Fyx and Fy for which this does
not happen. Next, we generate an infinite sequence of elements
(xi,yi) from p, and let S4 be the set of (xzj-1,yz;) for j € [1,£] and
Sp the set of (xj, y;) for j € [2€ + 1, 2¢ + £’]. Note that conditioned
on not returning ABORT, this gives sets Fx, Fy,Sp, Sq identically
distributed as BasicTesT. However, unconditionally, it gives an Sq
and S, sets of Poi(2k) samples from q := px X py and p, respectively.
Furthermore, we can compute Z, Ng and N regardless. Note that
this statistic Z will be an instance of the statistic computed for our
closeness tester applied to the distribution p/ and ¢/ In particular,
Lemmas 4.5, 4.6, 4.8 and 4.11 will still apply to it.

For the next several lemmas, we consider Fx and Fy as being
fixed and Z, Ng and N being computed in this way regardless of
potential aborts. In the next few lemmas, we wish to show that with
high probability N will be O(Ng) if p is a product distribution. This
will allow us to use our bounds on Ny as bounds on N (or more
precisely, allow us to reject if N is not bounded in terms of Ng).

LEMMA 4.11. For a fixed set of samples Sf;, SJ;, consider the distri-
bution of Z over the partition into p0/p1 and q0/q1. We have:

Pr[Z < Np/6 — 2Ng — 100] < 1/2.

Proor. Let Xl@
in Sljj, so that N, = D

denote the number of times element i appears

®) 5 oo
s X;"’. Define the statistic Z = }; Z;,
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where Z; = XEPO) +Xi@1) - |X§p0) —X§p1)| = Zmin(Xgpo),Xgpl)), to
be the value Z would take if S{; were empty. Since Z is 2-Lipschitz
and invariant to singletons, we have

|Z - Z| < 2Ny. (18)

Hence, our goal is to show that Z is usually at least Np /4. We have
that

E[Z:] > |xP/2] ,
because we can partition the elements i into |_X§p ) /2] pairs, each
of which has a 1/2 chance of being divided between p0 and p1, and
hence contributing 1 to each of XEPO) and Xgpl), or 2 to Z, We also
have that

Var(Z;) < 4X§p) ,

because Z; is a 2-Lipschitz function of XEP ) independent random

choices, and of course Var(Zi) =0 ifXgp) = 0. Therefore,

E[Z] > N, /3,

Var[Z] < 4N, .
By Chebyshev’s inequality, this means

Pr|Z < Np/3—4,Np] <1/4, or

Pr[Z < Np/6 and N,, > 600] < 1/4.
Combined with (18), we have
Pr{Z < N, /6 — 2Ng and N, > 600] < 1/4 .
But, of course, Pr[Z < 0] = 0, so for all Ny we have that
Pr[Z < N, /6 — 2Ny —100] < 1/4 < 1/2..

O

We can now bound the probability that we reject incorrectly on
line 22.

LEMMA 4.12. If p is a product distribution, then the probability
that BASICTEST returns “NO" on line 22 is O(5).

This is essentially because if N is a sufficient multiple of Ng
then by Lemma 4.11 we have that Z is likely to be at least a large
multiple of N. However Lemma 3.3 says that E[Z] = 0 and Lemma
4.5 says that |Z — E[Z]| < 4/N log(1/6) with high probability.

Finally, we can bound the probability of BASICTEST giving an
incorrect output on lines 30 or 28.

LEmMA 4.13. Ifp is a product distribution, then the probability that
BasicTEsST returns “NO" on line 30 is O(8). Similarly, ifdrv (p, q) > €
then the probability that BASICTEST returns “YES" is O(5).

This holds because if we reach this stage of the algorithm N =
Np + Ng. We know by previous checks that Ny is not too large and
Njp is not much bigger than Ng. This gives us strong concentration
bounds on Z and a careful analysis of the separation in expectations

between the soundness and completeness cases will yield our result.

Proor. In order for the algorithm to return “YES" or “NO" on

line 30, it has to avoid “aborting" or returning “NO" on line 22.

Therefore, it must be the case that N, < 20Ny + C’log(1/6) and
Ng = O(% + k/m), which implies N = O(% + k/m). Note also
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that % > log(1/0) ,as well as k > log(1/9) by definition of k.
Note also the trivial bound that N = O(k).
Therefore, by Lemma 4.5, we have that:

Pr[|Z - E[Z]| > C\/min(k, (k?/mn + k/m))log(1/8)] < §/2,

for some constant C > 0.

If p is a product distribution (i.e., p = g), then by Lemma 3.3,
we have that E[Z] = 0. Thus, the algorithm will return “NO" with
probability at most §/2.

For the soundness case, where dry (p, q) > ¢, it suffices to show
the following lower bound on the expected value of Z:

Cramm 4.14. Ifdryv(p,q) > €, then

E[Z] > 2C"\/min(k, (k2 /mn + k/m)) log(1/5) .

Proor. Suppose that we condition on the flattening samples.
This will determine the flattened distributions pf s qf . From the
proof of Lemma 3.3 it follows that:

k2e2 k3 /2 €2

IDpr| 1Dyr
where |D of | = ©(nm) is the domain size of the flattened distribution.
We now distinguish the following three cases:

e Case 1: E[Z|Fy, Fy] = Q(ek).
Using the fact that k = Q(log(1/8)/€?), it follows that

E[Z|Fx, Fy] = Q(yklog(1/5)).

kzez)

nm

E[Z|Fy, Fy] = Q| min { €k,

o Case 2: E[Z|Fy, Fy] = Q (

— Using the fact that k = Q (—’nml:zg(lm) we get that:
2 y/nmlog(1/5 2
E[Z|Fy Fy] = @ | X Ym ogtl/0) ozg( 19 _ Q( k—log(l/é)).
nm € nm

2/3,.1/3151/3
- Using the fact thatk = Q (M) we get that:

473
ezn\/mlog(l/S))

P
|2l =
-Q (\/(k/m) 1og(1/5)) .

) B K322
e Case 3: E[Z|Fy, Fy] = Q (T;)

We note that this is larger than the expression in Case 2

K32e2 _
t N
Q(y/klog(1/6)). However, this follows from the fact that
kO (\/nmlog(l/c?))

€2

k 62k3/2
m nym

E[Z|Fx,Fy] = Q
m

unless k > nm. Thus, it suffices to show tha

Combining these two bounds, we get the required statement for
any possible choice of flattening samples. Thus, the unconditional

version of the statement also holds. O
This completes the proof of the lemma. O

Recall that the full algorithm is the following:
(1) Let S be a random set of 100k samples.
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(2) Run BASICTEST on S until it does not return ABORT.
(3) Return “YES'/NO" as appropriate.

LEmMA 4.15. Ifp = q the probability that FULLTEST returns “NO"
is O(), and if drv (p, q) > € the probability that it returns “YES" is
0(9).

Proor. We bound the probability as follows:

Pr[FULLTEST incorrect]

(e8]
= Z Pr[BasICTEST Returns ABORT ¢ times
=0
and then wrong output]

= Z Eg[Pr{BasICTEsT returns ABORT|S]’

- Pr[BasICTEST returns wrong output|S]]
< Z 2_tE§[Pr[BASICTEST returns wrong 0utput|§]]
=0

= Z 27 'Pr[BASICTEST returns wrong output]
=0
= 2Pr[BasICTEST returns wrong output] = O(J).

]

Proor oF THEOREM 4.1. By Lemma 4.15, we get that there exists
some constant ¢ > 0, such that Algorithm 2 outputs “NO" with
probability at most §” = ¢ - § if p is a product distribution, and
outputs “YES" with probability at most 8" if drv (p, px X py) = €.
Since § = §’/c, the sample complexity is:

0 (n*3m/*10g'3(1/8") /4% +

+0 (((nm)1/2 log!/2(1/8") + log(1 /5’))/62) .

as desired. o
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