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ABSTRACT

We provide finite sample guarantees for the classical Chow-Liu algo-

rithm (IEEE Trans. Inform. Theory, 1968) to learn a tree-structured

graphical model of a distribution. For a distribution 𝑃 on Σ
𝑛 and

a tree 𝑇 on 𝑛 nodes, we say 𝑇 is an 𝜀-approximate tree for 𝑃 if

there is a 𝑇 -structured distribution 𝑄 such that 𝐷 (𝑃 | | 𝑄) is at
most 𝜀 more than the best possible tree-structured distribution

for 𝑃 . We show that if 𝑃 itself is tree-structured, then the Chow-

Liu algorithm with the plug-in estimator for mutual information

with𝑂 ( |Σ|3𝑛𝜀−1) i.i.d. samples outputs an 𝜀-approximate tree for 𝑃

with constant probability. In contrast, for a general 𝑃 (which may

not be tree-structured), Ω(𝑛2𝜀−2) samples are necessary to find

an 𝜀-approximate tree. Our upper bound is based on a new condi-

tional independence tester that addresses an open problem posed

by Canonne, Diakonikolas, Kane, and Stewart (STOC, 2018): we

prove that for three random variables 𝑋,𝑌, 𝑍 each over Σ, testing

if 𝐼 (𝑋 ;𝑌 | 𝑍 ) is 0 or ≥ 𝜀 is possible with 𝑂 ( |Σ|3/𝜀) samples. Fi-

nally, we show that for a specific tree 𝑇 , with 𝑂 ( |Σ|2𝑛𝜀−1) samples

from a distribution 𝑃 over Σ𝑛 , one can efficiently learn the closest

𝑇 -structured distribution in KL divergence by applying the add-1

estimator at each node.
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1 INTRODUCTION

Probabilistic graphical models form a highly effective framework for

encoding high-dimensional distributions. Graphical models yield

human-interpretable representation of data as they explicitly de-

scribe the statistical dependencies among different features. From

a computational standpoint, the graphical representation enables

efficient algorithms for inference, e.g., message passing, loopy belief

propagation, and other variational inference methods [40]. Graph-

ical models have found extensive applications in many domains,

such as image processing, natural language processing and com-

putational biology; see [39, 42, 56] and the references therein for

examples.

A fundamental question in this area is to learn graphical models

from independently drawn samples. In this paper, we focus on

the basic problem of learning tree-structured distributions. Given a

tree 𝑇 on 𝑛 nodes, fix an arbitrary root and orient it outwards. A

distribution 𝑃 over variables 𝑋1, . . . , 𝑋𝑛 is said to be 𝑇 -structured

iff for every non-root vertex 𝑖:

𝑋𝑖 = 𝑓𝑖 (𝑋pa(𝑖) ,𝑈𝑖 )

where pa(𝑖) is the parent of 𝑖 in the oriented tree, 𝑈𝑖 is an in-

dependent random variable, and 𝑓𝑖 is a (deterministic) function.

A distribution is tree-structured if it is 𝑇 -rooted for some tree 𝑇 .

Equivalently, a tree-structured distribution is a Markov random

field where the underlying undirected graph is a tree.

In a seminal work [19], Chow and Liu observed that the tree-

structured distribution maximizing the likelihood of the observed

samples can be obtained by solving a maximum weight spanning

tree problem. In particular, their algorithm assigns a weight equal to

the empirical mutual information between each pair of variables and

finds a maximum weight spanning tree in this weighted graph. The

resulting tree can be oriented from an arbitrary root, so as to assign

a parent pa(𝑖) for all non-root vertices 𝑖 . Finally, the conditional
probability distributions 𝑋𝑖 | 𝑋pa(𝑖) can be learned from the data.

Chow and Wagner [18] showed that the Chow-Liu algorithm

consistently recovers structure, meaning that if the samples are

generated by a𝑇 -structured distribution for a tree𝑇 , then it recovers

𝑇 with probability approaching 1 as the number of samples tends

to infinity. More recent works [51, 52] have used large-deviation
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theory to study the error exponent 𝐾𝑃 of𝑇 -structured distributions

𝑃 , where:

𝐾𝑃 = lim
𝑁→∞

− 1

𝑁
log Pr[𝑇 ≠ 𝑇 ] .

Here, 𝑇 is the tree output by the Chow-Liu algorithm, and 𝑁 is the

number of samples used. The bounds they obtain depend on the

distribution structure, since it may be very hard to distinguish 𝑇

from an alternative tree that is almost as good.

In this work, we take a different viewpoint that is in the spirit of

distribution learning and probabilistically approximately correct

(PAC) analysis [36, 37, 53]. Instead of trying to exactly recover the

structure of a tree-structured distribution 𝑃 , we consider the objec-

tive of learning a tree-structured distribution 𝑄 that is close to 𝑃 . For

many downstream tasks, most notably statistical inference, it is fine

to not recover the exact structure as long as one can approximate

probabilities of relevant events using the learned distribution. Also,

this viewpoint allows us to analyze Chow-Liu for non-tree struc-

tured distributions 𝑃 , by comparing how far 𝑃 is from the output of

Chow-Liu and how far from the closest tree-structured distribution.

More formally, for a distribution 𝑃 over Σ𝑛 and a tree 𝑇 on 𝑛

vertices, let:

𝑃𝑇 := argmin
𝑇 -structured
distribution𝑄

𝐷 (𝑃 ∥ 𝑄)

where 𝐷 (· ∥ ·) denotes the KL-divergence. We say that a tree 𝑇 is

an 𝜀-approximate tree for 𝑃 if:

𝐷 (𝑃 ∥ 𝑃
𝑇
) ≤ min

tree𝑇
𝐷 (𝑃 ∥ 𝑃𝑇 ) + 𝜀.

The KL divergence, although not a metric, is a useful notion of

distance to consider in this setting. Firstly, with infinite samples,

Chow-Liu’s output maximizes the likelihood of generating samples

from 𝑃 and hence, minimizes 𝐷 (𝑃 ∥ ·). Secondly, via Pinsker’s

inequality, bounding the KL divergence by 𝜀 implies a
√
2𝜀 bound

on total variation distance which may be more directly useful.

1.1 Our Contributions

We study the number of samples required by Chow-Liu to output an

𝜀-approximate tree with a fixed error probability. We first observe

that for any distribution 𝑃 , it can be guaranteed that the output of

Chow-Liu is 𝜀-approximate if each mutual information estimate is

an additive ± 𝜀
2𝑛 estimate. Known bounds for the plug-in entropy

estimator imply the following sample complexity.

Lemma 1.1. The Chow-Liu algorithm when run on 𝑂
(
|Σ |2𝑛
𝜀 +

𝑛2

𝜀2
log 1

𝛿

)
samples from a distribution 𝑃 on Σ

𝑛 outputs an 𝜀-approx.

tree𝑇 with probability at least 1 − 𝛿 . Moreover, the dependence of the

sample complexity on 𝑛 and 𝜀 are tight up to logarithmic factors.

We show that the quadratic dependence on 𝑛 and 𝜀 is unfor-

tunately necessary for general distributions 𝑃 . However, in the

łrealizablež setting where 𝑃 is actually tree-structured, we show

that the sample complexity can be improved to near-linear:

Theorem 1.2. TheChow-Liu algorithmwhen run on𝑂 ( |Σ |
3𝑛
𝜀 log 1

𝛿
)

samples from a tree-structured distribution 𝑃 on Σ
𝑛 outputs an 𝜀-

approximate tree 𝑇 with probability at least 1 − 𝛿 . Moreover, the

dependence on 𝑛 and 𝜀 are tight up to logarithmic factors.

Hence, for example, for tree-structured Ising models (where

Σ = {±1}), there is a provable near-quadratic gap in the sample

complexity for realizable versus non-realizable input distributions.

Note that with 𝑂 (𝑛/𝜀) samples, we do not get accurate estimates

of the mutual information edge weights. However, as we explain

in Section 2, the errors for the edge weights are not independent;

in fact, the errors are correlated in such a way that Chow-Liu still

recovers an approximate tree! We note that our Ω(𝑛/𝜀)-sample

complexity lower bound is specifically for recovering the structure

of the unknown tree. Daskalakis, Dikkala, and Kamath [23] have

shown the same lower bound for learning the distribution, but

learning the tree might have been easier.

Our main tool for proving Theorem 1.2 is a result on testing

conditional independence using the plug-in conditional mutual

information estimator. We show that 𝑂 ( |Σ|3/𝜀) samples suffice to

distinguish 𝐼 (𝑋 ;𝑌 | 𝑍 ) = 0 from 𝐼 (𝑋 ;𝑌 | 𝑍 ) ≥ 𝜀 with constant

probability. In more detail:

Theorem 1.3 (Conditional Mutual Information Tester).

Let (𝑋,𝑌, 𝑍 ) be three random variables over Σ, and (𝑋,𝑌, 𝑍 ) be the
empirical distribution over a size 𝑁 sample of (𝑋,𝑌, 𝑍 ). There exists
a universal constant 0 < 𝐶 < 1 so that for any

𝑁 ≥ Θ

(
|Σ|3
𝜀

log
|Σ|
𝛿

log
|Σ| log(1/𝛿)

𝜀

)
,

the following results hold with probability 1 − 𝛿 :
(1) If 𝐼 (𝑋 ;𝑌 | 𝑍 ) = 0, then 𝐼 (𝑋 ;𝑌 | 𝑍 ) < 𝜀.
(2) If 𝐼 (𝑋 ;𝑌 | 𝑍 ) ≥ 𝜀, then 𝐼 (𝑋 ;𝑌 | 𝑍 ) > 𝐶 · 𝐼 (𝑋 ;𝑌 | 𝑍 ).

We also get a similar result for unconditional mutual informa-

tion testing (testing if 𝐼 (𝑋 ;𝑌 ) = 0 or 𝐼 (𝑋 ;𝑌 ) ≥ 𝜀) with a |Σ| factor
smaller 𝑁 . Conditional independence testing has previously been

studied in [14], which gave optimal bounds for testing whether

(𝑋,𝑌, 𝑍 ) is conditionally independent or 𝜀-far from independent in

total variation distance. Developing a (conditional) independence

tester with respect to mutual information with 𝑜 ( 1
𝜀2
) sample com-

plexity was posed as an open problem in [14]; Theorem 1.3 resolves

this with optimal 𝜀 dependence. Moreover, the test statistic used by

Theorem 1.3 is simply the empirical mutual information, which is

key for our application to Chow-Liu.

Theorem 1.2 describes how Chow-Liu finds a good tree 𝑇 . Our

final result shows how to estimate the nearest𝑇 -structured distribu-

tion for fixed 𝑇 . As above, the spirit of our approach is to make the

algorithms as simple as possible (moving possible complications

to the analysis). For the fixed-structure learning problem, the most

natural approach is to empirically estimate 𝑋𝑖 | 𝑋pa(𝑖) = 𝑥 for each

non-root node 𝑖 and for each setting 𝑥 of the parent of 𝑖 . However,

for KL divergence, the empirical estimator is known to not work;

so, we move to the next most natural estimator: Laplace’s add-1

estimator [41].

Theorem 1.4. Let 𝑃 be a discrete distribution over Σ𝑛 . Let 𝑇 be a

tree on 𝑛 vertices, and 𝑄 be a 𝑇 -structured distribution with condi-

tional probabilities at each node estimated using the empirical add-1

estimator on

𝑁 = Θ

(
𝑛 |Σ|2
𝜀

log
𝑛 |Σ|
𝛿

log

(
𝑛 |Σ|
𝜀

log
1

𝛿

))
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samples from 𝑃 . Then

𝐷 (𝑃 ∥ 𝑄) − 𝐷 (𝑃 ∥ 𝑃𝑇 ) ≤ 𝜀
with probability 1 − 𝛿 .

The result actually holds for arbitrary Bayes net models, not

just trees. The sample complexity becomes 𝑂 (𝑛 |Σ|𝑑+1/𝜀) for Bayes
nets with in-degree at most 𝑑 . To the best of our knowledge, this is

the first efficient algorithm with this guarantee. Combining The-

orem 1.4 with Theorem 1.2 shows that, for any tree-structured

distribution 𝑃 , after 𝑂 ( |Σ|3𝑛/𝜀) samples, we can properly learn a

tree-structured distribution 𝑄 satisfying 𝐷 (𝑃 ∥ 𝑄) ≤ 𝜀 (and hence

∥𝑃 −𝑄 ∥𝑇𝑉 ≤
√
2𝜀) (see Algorithm 1).

input :Sample access to 𝑃 over 𝑋1, . . . , 𝑋𝑛 ∈ Σ
output :A tree Bayes net 𝑄

1 𝑇 ←MST of empirical mutual informations (Lemma 1.1 or

Theorem 1.2) ; // structure learning

2 𝑄 ← the Laplace estimator over the edges of 𝑇

(Theorem 1.4); // conditional probabilities

3 return 𝑄

Algorithm 1: Learning Tree-structured Distributions from

Samples

1.2 Related Work

Learning a multivariate distribution from samples is an important

problem in machine learning and statistics with many applications.

The problem is provably intractable for general high-dimensional

multivariate distributions (e.g., [34]). Thus, structural assumptions

need to be made for designing efficient and practical learning al-

gorithms for high-dimensional distributions. Graphical models in-

cluding Bayesian networks and Markov Random Fields (MRFs)

are widely popular natural classes of structured distributions. In

this setup, the learning problem naturally decomposes into two

subproblems: structure learning and parameter learning.

For structure learning, the goal is to output the best structure

(eg: a Bayes net that maximizes the likelihood of the data), given

independent samples. Unfortunately, in general for both Bayes

nets and MRFs, finding the best structure is known to be NP-

hard [17, 20, 35, 44]. In this context, Chow-Liu algorithm remains

one of the few efficient structure learning algorithms that does

not require any additional assumptions. Since its publication, re-

searchers have continued to look into analyzing properties of this

algorithm [18, 45, 51, 52] and generalizing it to other classes of

graphs, e.g., polytrees [22], bounded treewidth graphs [47, 50], and

mixtures of trees [3, 46]. Most of these works focus on establishing

conditions guaranteeing that the algorithm recovers the exact tree

structure in the limit that the number of samples tends to infin-

ity. Also, for general graph-structured Ising and Markov random

fields, several algorithms [7, 10, 30, 38, 57, 58] have been proposed

that recover the graphical structure under various distributional

assumptions.

As mentioned in the introduction, a common motivation for

structure learning is to subsequently use the structure for inference

algorithms. For such applications, instead of recovering the exact

structure, it is more relevant to recover a model that approximates

the original distribution statistically and on which inference can be

performed efficiently. For example, Wainwright [55] discusses situ-

ations in which it is computationally beneficial to use inconsistent

learning algorithms (even in the infinite sample limit) to feed into

approximate inference algorithms. Trees play an important role

for inference algorithms, since the commonly used sum-product

algorithm assumes tree structure, and other more general inference

algorithms (like the junction tree algorithm and various approxi-

mate inference techniques) rely on tree-like structure. This is what

motivates the notion of learning 𝜀-approximate trees considered in

this paper.

The problem of learning 𝜀-approximate graphical models has a

long history. Höffgen [33] studied the 𝜀-approximate structure learn-

ing of an unknown Bayes net over {0, 1}𝑛 of indegree 𝑑 as a com-

binatorial optimization problem and gave a sample complexity of

𝑂 (𝑛24𝑑𝜀−2)∗. He showed that the optimization problem is efficient

for trees (𝑑 = 1), essentially establishing Lemma 1.1 for distribu-

tions on {0, 1}𝑛 . There have been several other works which provide
PAC-learning guarantees for generalizations of trees: bounded tree-

width junction trees [16, 47], factor graphs [1], and forest-structured

MRF’s [43]. While we consider the KL divergence between the true

distribution and the output of Chow-Liu. Bresler and Karzand [8]

recently studied the same question with respect to maximum total

variation distance between pairwise marginals. Their work is re-

stricted to Ising models, and their sample complexity depends on

bounds on distributional parameters (edge weights) while ours do

not. In another recent work, Brustle, Cai and Daskalakis [11] (gen-

eralizing the results in [26]) get bounds on the sample complexity

of learning 𝜀-approximate† MRF’s with bounded hyper-edges and

Bayesian networks with bounded in-degree, but they do not get

efficient algorithms for these problems.

The main technical component of our analysis of the Chow-Liu

algorithm is a new conditional independence tester which falls in

the framework of distribution property testing [5, 32]. We refer the

reader to the surveys [12, 49] and the textbook [31] and references

therein for more details and results in this rapidly progressing field.

Testing independence of two or more random variables has received

some attention in distribution testing [2, 5, 14, 27, 29]. The simplest

formulation of the problem is the following: Given samples from an

unknown joint distribution on variables (𝑋,𝑌 ): decide with prob-

ability ≥ 2/3 whether 𝑋 and 𝑌 are independent or they are 𝜀 far

(under some distance measure) from the product distribution 𝑋 ×𝑌 .
Very recently, motivated by its practical importance, [14] consid-

ered the problem of conditional independence testing. In particular,

given samples from an unknown discrete random variable (𝑋,𝑌, 𝑍 )
on domain [ℓ1] × [ℓ2] × [𝑛], distinguish, with probability at least 2/3,
between the case that 𝑋 and 𝑌 are conditionally independent given

𝑍 from the case that (𝑋,𝑌, 𝑍 ) is 𝜀-far in TV distance from every

distribution that has this property. The key difference in our setting

is that we are interested in the stronger notion of KL divergence.

The parameter learning problem (i.e., learning the distribution

with given structure) is also well-studied. Dasgupta [21] showed an

∗Höffgen’s capped the empirical probabilities away from 0 and 1 and then used a
plug-in estimator for entropy/MI.

†In total variation distance rather than KL
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𝑂 (𝑛22𝑑 log(1/𝛿)/𝜀2) for learning an 𝜀-approximate Bayes net on 𝑛

boolean variables with in-degree at most 𝑑 . We improve the depen-

dence on 𝑛 and 𝜀−1 to linear. For the realizable setting‡, [6] also

obtained the same improvement but for constant error probability 𝛿 .

The key to obtaining our log(1/𝛿) dependence is a PAC analysis of

the add-1 estimator, which is new to the best of our knowledge. Ka-

math, Orlitsky, Pichapati and Suresh [34] analyze the expected risk,

which does not directly imply a high-probability bound. Recently,

Bresler and Karzand [9] studied the parameter recovery problem

for tree Ising models with respect to the TV distance.

Finally, we note that while our work focuses on learning tree

structured distributions, recent works [6, 15, 23, 24] have investi-

gated testing problems for more general classes of high-dimensional

distributions.

Concurrent Work. During preparation of this paper, a concurrent

work by Daskalakis and Pan [25] was posted online. The head-

line resultÐthat Chow-Liu learns tree-structured distributions with

near-linear number of samplesÐis the same. The techniques em-

ployed are quite different and more involved, with [25] working in

squared Hellinger distance rather than KL and not involving the

connection to conditional independence testing (Theorem 1.3). The

details of the theorem are also somewhat different, most notably

in that our result uses a log𝑛 factor more samples while [25] only

works for a binary alphabet Σ.

2 PROOF OVERVIEW

For the purposes of this proof overview, we consider a constant

size alphabet Σ.

2.1 Finding an Approximate Tree

For any distribution 𝑃 and a tree𝑇 , it is known that 𝑃𝑇 is simply the

distribution that matches the marginals of 𝑃 on each edge of𝑇 . The

Chow-Liu algorithm [19] is based on the following observation:

𝐷 (𝑃 ∥ 𝑃𝑇 ) = 𝐽𝑃 −wt𝑃 (𝑇 ) (2.1)

where 𝐽𝑃 =
∑

𝑣 𝐻 (𝑃𝑣)−𝐻 (𝑃) is independent of𝑇 (𝑃𝑣 is themarginal

on variable 𝑣), and

wt𝑃 (𝑇 ) :=
∑︁

(𝑋,𝑌 ) ∈𝑇
𝐼 (𝑋 ;𝑌 )

is the weight of 𝑇 in the complete graph weighted by pairwise

mutual information. Therefore 𝐷 (𝑃 ∥ 𝑃𝑇 ) is minimized when 𝑇 is

the maximum weight spanning tree 𝑇 ∗ of this weighted complete

graph.

The main question is how many samples are necessary for the

maximum-weight spanning tree of the empirical distribution 𝑃 to

have nearly-optimal weight under the true distribution 𝑃 . That is,

for Chow-Liu to recover a 𝑇 with 𝐷 (𝑃 ∥ 𝑃
𝑇
) ≤ 𝐷 (𝑃 ∥ 𝑃𝑇 ∗ ) + 𝜀, it

is necessary and sufficient that

𝑇 = argmaxwt
𝑃
(𝑇 )

satisfies

wt𝑃 (𝑇 ) ≥ wt𝑃 (𝑇 ∗) − 𝜀. (2.2)

‡This result (for TV distance) was also claimed in the appendix of [15], but the
analysis there appears to incomplete [13].

The non-realizable setting. The simplest approach to achieving (2.2)

would be to ensure that |𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑌 ) | ≤ 𝜀
2𝑛 for all vertex

pairs (𝑋,𝑌 ). This guarantees for every𝑇 that |wt
𝑃
(𝑇 ) −wt𝑃 (𝑇 ) | ≤

|𝑇 | 𝜀2𝑛 < 𝜀/2, which gives (2.2). Estimating mutual information to

within 𝜀
2𝑛 is possible with Θ̃(𝑛2/𝜀2) samples, with high probabil-

ity. A union bound over all vertex pairs then gives the Lemma 1.1

upper bound. We also show that this bound is tight. Estimating

𝐼 (𝑋 ;𝑌 ) to ±𝜀 really does require 1/𝜀2 samples (for example, if 𝑋

is uniform on {0, 1} and Pr[𝑌 = 𝑋 ] = 𝑝 ≈ 3
4 , then estimating

𝐼 (𝑋 ;𝑌 ) = 1 − ℎ(𝑝) requires estimating 𝑝 to within ±Θ(𝜀)). We can

translate this hardness into a Ω(1/𝜀2) lower bound for a (nonśtree-
structured) three-variable 𝑃 [see Figure 1a]; and by concatenating

Ω(𝑛) of these instances together, we get an Ω(𝑛2/𝜀2) lower bound.

The realizable setting. Fortunately, we can do much better in the

realizable setting, where 𝑃 is actually 𝑇 ∗-structured for some tree

𝑇 ∗. We show that the errors in estimating mutual information are

correlated, as illustrated in Figure 1b, so that the difference between

mutual informations will be estimated more accurately than the

mutual information itself.

As an example, consider the three variable case, where the true

𝑇 ∗ is 𝑋 -𝑌 -𝑍 and we want to ensure the algorithm does not pick

edge 𝑋𝑍 over 𝑌𝑍 . We use the identity:

𝐼 (𝑌 ;𝑍 ) − 𝐼 (𝑋 ;𝑍 ) = 𝐼 (𝑌 ;𝑍 | 𝑋 ) − 𝐼 (𝑋 ;𝑍 | 𝑌 ).

In order for picking𝑋𝑍 over 𝑌𝑍 to be 𝜀-bad, the left hand side must

be at least 𝜀. On the other hand, because 𝑃 is 𝑋 -𝑌 -𝑍 -structured,

𝐼 (𝑋 ;𝑍 | 𝑌 ) = 0, and hence 𝐼 (𝑌 ;𝑍 | 𝑋 ) ≥ 𝜀.
Chow-Liu looks at the empirical mutual information, which has

the same identity:

𝐼 (𝑌 ;𝑍 ) − 𝐼 (𝑋 ;𝑍 ) = 𝐼 (𝑌 ;𝑍 | 𝑋 ) − 𝐼 (𝑋 ;𝑍 | 𝑌 ) . (2.3)

In order for Chow-Liu to return the wrong tree by picking XZ over

YZ, this must be negative. For this to happen, either 𝐼 (𝑋 ;𝑍 | 𝑌 ) >
𝜀/10 or 𝐼 (𝑌 ;𝑍 | 𝑋 ) ≤ 𝜀/10. This is, effectively, a question about con-
ditional independence testingÐafter how many samples can we dis-

tinguish the conditionally independent distribution (𝑋,𝑍 | 𝑌 ) from
the 𝜀-far from conditionally independent distribution (𝑌, 𝑍 | 𝑋 )?
Our Theorem 1.3 (discussed in the next section) shows that 𝑂 (1/𝜀)
samples suffice for the empirical conditional mutual information to

distinguish these cases, so that (2.3) will be positive.

For the general 𝑛-variable case, consider the tree 𝑇 returned by

Chow-Liu. We can pair up the edges in 𝑇 \ 𝑇 ∗ with those from

𝑇 ∗ \ 𝑇 , such that each edge𝑊𝑍 in 𝑇 \ 𝑇 ∗ is matched to an edge

𝑋𝑌 ∈ 𝑇 ∗ \𝑇 along the𝑊 { 𝑍 path in 𝑇 ∗. We then use the more

complicated identity

𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑊 ;𝑍 )
= 𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 ) + 𝐼 (𝑋 ;𝑍 ) − 𝐼 (𝑊 ;𝑍 )
= 𝐼 (𝑋 ;𝑌 | 𝑍 ) − 𝐼 (𝑋 ;𝑍 | 𝑌 ) + 𝐼 (𝑍 ;𝑋 |𝑊 ) − 𝐼 (𝑍 ;𝑊 | 𝑋 ) .

As in the three-variable case, the negative terms in this RHS are zero,

and (if picking𝑊𝑍 over 𝑋𝑌 is 𝜀/𝑛-bad) at least one of the positive
terms is at least 𝜀/(2𝑛). If this is the case, then again Theorem 1.3

means that the empirical estimates of these terms, after 𝑂 (𝑛/𝜀)
samples, will be sufficiently accurate that 𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑊 ;𝑍 ) > 0,

and hence Chow-Liu will choose 𝑋𝑌 over𝑊𝑍 . As a result, with
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X

Y

Z

𝑝𝑋=𝑌 =
3
4 𝑝𝑌=𝑍 =

3
4 ±𝑂 (𝜀)

𝑝𝑋=𝑍 =
3
4

(a) Hard instance for non-realizable setting. 𝑋,𝑌 , and 𝑍 are individ-

ually uniform on {0, 1}, and pairwise match with probability ≈ 3
4 .

Any 𝜀-optimal tree will include edge 𝑌𝑍 if 𝑝𝑌=𝑍 =
3
4 +𝑂 (𝜀) and not

if 𝑝𝑌=𝑍 =
3
4 −𝑂 (𝜀) ; determining which takes Ω (1/𝜀2) samples.

X

Y

Z

𝑝𝑋=𝑌 = 1 − Θ(𝜀) 𝑝𝑌=𝑍 =
3
4 +𝑂 (𝜀)

𝑝𝑋=𝑍 =
3
4

(b) A similar example in the realizable setting fails: if 𝑃 is actually

𝑋 -𝑌 -𝑍 -structured, and 𝑝𝑌=𝑍 , 𝑝𝑋=𝑍 are as on the left, then 𝑝𝑋=𝑌 must

be 1−𝑂 (𝜀) . This means that 𝐼 (𝑌 ;𝑍 ) is highly correlated with 𝐼 (𝑋 ;𝑍 ) ,
so 𝐼 (𝑌 ;𝑍 ) − 𝐼 (𝑋 ;𝑍 ) is 𝜀-accurate with only𝑂 (1/𝜀) samples.

Figure 1: The Ω(1/𝜀2) bound in the non-realizable setting, and its inapplicability to the realizable setting.

𝑂 (𝑛/𝜀) samples, the tree𝑇 recovered by Chow-Liu will satisfy (2.2),

giving Theorem 1.2.

2.2 Conditional Independence Testing

Independence Testing. To build up to conditional independence

testing with respect to mutual information, consider unconditional

independence testing: given samples (𝑋,𝑌 ) ∼ 𝑃𝑋𝑌 , determine

whether 𝐼 (𝑋 ;𝑌 ) is 0 or ≥ 𝜀. We would like to show that, with

𝑂 ( 1𝜀 log
1
𝜀 ) samples, the empirical mutual information 𝐼 (𝑋 ;𝑌 ) will

distinguish between these two cases. [Note that Ω( 1𝜀 log
1
𝜀 ) samples

are necessary even in the binary setting: if 𝑋 = 𝑌 always, but

Pr[𝑋 = 1] is either 0 or 𝜀/log(1/𝜀), the mutual information is

either 0 or Θ(𝜀), but the first Ω( 1𝜀 log
1
𝜀 ) samples will probably all

be zero in either case.]

For intuition, consider the binary setting. Let 𝑝𝑦 = Pr[𝑋 = 1 |
𝑌 = 𝑦], and 𝑝 = Pr[𝑋 = 1] = E𝑦 [𝑝𝑦], so

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 | 𝑌 ) = ℎ(𝑝) − E
𝑦∼𝑌
[ℎ(𝑝𝑦)]

for the binary entropy function ℎ. Now, estimating either ℎ(𝑝) or
the ℎ(𝑝𝑦) to ±𝜀 would require 1/𝜀2 samples: if 𝑝 ≈ 1

4 , we would

need |𝑝 −𝑝 | ≲ 𝜀 to estimate the individual entropies accurately. But

if we expand ℎ(𝑝𝑦) in a Taylor expansion around 𝑝 = E𝑦 [𝑝𝑦], the
constant and linear terms cancel leaving 𝐼 (𝑋 ;𝑌 ) ≈ 1

2ℎ
′′(𝑝)𝐸𝑦 [(𝑝𝑦 −

𝑝)2]. So distinguishing 𝐼 (𝑋 ;𝑌 ) = 0 from 𝐼 (𝑋 ;𝑌 ) ≥ 𝜀 involves dis-
tinguishing between E[(𝑝𝑌 −𝑝)2] = 0 and E[(𝑝𝑌 −𝑝)2] ≳ 𝜀/ℎ′′(𝑝).
Up to a log factor coming from ℎ′′(𝑝), at least if the distribution
of 𝑦 is fairly balanced, this means it suffices to estimate each 𝑝𝑦 to

within ±
√
𝜀/10, which takes 𝑂 (1/𝜀) samples.

More formally and more generally, by expressing mutual infor-

mation as KL and removing each entry in the sum’s linear depen-

dence on Δ𝑥𝑦 := 𝑃𝑥𝑦 − 𝑃𝑥𝑃𝑦 , we can write

𝐼 (𝑋 ;𝑌 ) = 𝐷 (𝑃𝑋𝑌 ∥ 𝑃𝑋𝑃𝑌 ) =
∑︁

𝑥,𝑦∈Σ2
𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) (2.4)

for some function 𝑓 satisfying

𝑓 (𝑎, 𝑏) = Θ

(
min

(
𝑎2

𝑏
, |𝑎 | log

(
2 + |𝑎 |

𝑏

)))
.

We then apply Chernoff bounds to show that every individ-

ual entry of the sum (2.4) concentrates: in the completeness case

(Lemma 4.5), for any 𝑥,𝑦,

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≳ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) −
log𝑁 log(1/𝛿)

𝑁

with probability 1 − 𝛿 , and in the soundness case (Lemma 4.7)

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≲
log𝑁 log(1/𝛿)

𝑁
.

Taking a union bound over 𝑋 and 𝑌 , and plugging this into the

sum (2.4), gives the desired tester: as long as 𝑁
log𝑁

≳ Σ
2 log(Σ/𝛿)

𝜀 , the

empirical mutual information will distinguish between 𝐼 (𝑋 ;𝑌 ) > 𝜀
and 𝐼 (𝑋 ;𝑌 ) = 0.

The proofs of Lemma 4.5 and Lemma 4.7 are somewhat technical,

but straightforward. We give intuition for the soundness case and

constant probability. We use the two branches of 𝑓 depending on

whether 𝑃𝑥𝑦 = 𝑃𝑥𝑃𝑦 is large or small. If 𝑃𝑥𝑦 ≲ 1/𝑁 , then we will

typically have Δ̂𝑥𝑦 ≤ 𝑃𝑥𝑦 ≲ 1/𝑁 , so

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≲ Δ̂𝑥𝑦 log𝑁 ≲
log𝑁

𝑁
.

On the other hand, if 𝑃𝑥𝑦 ≫ 1/𝑁 , then typically 𝑃𝑥 = Θ(𝑃𝑥 ),
𝑃𝑦 = Θ(𝑃𝑦), and (we show) |Δ̂𝑥𝑦 | ≲

√︁
𝑃𝑥𝑃𝑦/𝑁 . Hence

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≲
Δ̂
2
𝑥𝑦

𝑃𝑥𝑃𝑦
≲

1

𝑁
.

Conditional independence testing. By definition,

𝐼 (𝑋 ;𝑌 | 𝑍 ) =
∑︁
𝑧

Pr[𝑍 = 𝑧]𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧).

Given 𝑁 samples of (𝑋,𝑌, 𝑍 ), we expect about 𝑁 Pr[𝑍 = 𝑧]
samples from (𝑋 ;𝑌 | 𝑍 = 𝑧). This means our unconditional mutual

independence tester will distinguish 𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) = 0 from

𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) > |Σ |2
Ω̃ (𝑁 Pr[𝑍=𝑧 ])

. If the distribution passes all these

independence checks, then

𝐼 (𝑋 ;𝑌 | 𝑍 ) ≤
∑︁
𝑧

Pr[𝑍 = 𝑧] |Σ|2

Ω̃(𝑁 Pr[𝑍 = 𝑧])
=
|Σ|3

Ω̃(𝑁 )
.

Thus 𝑁 = 𝑂 ( |Σ|3/𝜀) samples suffice to test conditional indepen-

dence. A bit more care shows that the empirical conditional mutual

information works as a test statistic, achieving Theorem 1.3.
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2.3 Distribution Learning with Known Structure

For Theorem 1.4, it is implicit in [19, 21] that it suffices to learn the

conditional distributions in KL. While the empirical add-1 estimator

of a discrete distribution was known to have small expected KL error

with 𝑂 ( |Σ|/𝜀) samples [34], to our knowledge a high-probability

bound was not known. We use a similar analysis to our indepen-

dence testerÐincluding the same decomposition (2.4) of KLÐto

show that the empirical add-1 estimator is accurate with high prob-

ability (Theorem 6.1). We then show that our samples from 𝑃 give

enough samples from each individual conditional distribution to

estimate 𝑃 well.

2.4 Questions

A natural question is whether the |Σ|3 dependence in our bounds

can be improved. The |Σ|3 term is necessary to achieve Theorem 1.3

as stated; with fewer measurements, in the soundness case of a

perfectly uniform distribution, the empirical conditional mutual

information will exceed 𝜀. However, it is quite possible that the

empirical conditional mutual informationÐthough ≫ 𝜀Ðis still

smaller than in the completeness case. Just such behavior occurs

when using the empirical total variation statistic in testing total

variation from uniformity [28].

Another natural question is whether one can reduce tree struc-

ture learning to conditional independence testing as a black box.

The Chow-Liu algorithm only considers pairwise mutual informa-

tion, and never looks at conditional mutual information at all. Our

analysis introduces conditional mutual information through (2.3),

which relies on the test statistic being the empirical mutual in-

formation. If future work develops better conditional indepen-

dence testers based on different test statistics, does that imply more

sample-efficient (but possibly slower) algorithms for tree structure

learning?

Recovering the structure of an unknown bounded degree Bayesian

network remains an outstanding open question. Recently, Brustle,

Cai, and Daskalakis [11] have settled the sample complexity of

this problem. But finding a polynomial time algorithm remains a

challenge, even if we assume a correct topological ordering of the

variables.

2.5 Organization

The rest of the paper is organized as follows. Section 3 describes the

background and fixes notation. Section 4 analyzes conditional in-

dependence testing via empirical mutual information (Theorem 1.3).

Section 5 uses this to show that Chow-Liu recovers an 𝜀-approximate

tree (Theorem 1.2). Section 6 shows how to recover the distribution

given the tree (Theorem 1.4). Finally, Section 7 gives lower bounds

for finding an 𝜀-approximate tree 𝑇 , showing that Lemma 1.1 and

Theorem 1.2 are nearly optimal.

3 NOTATION AND PRELIMINARIES

For an undirected tree𝑇 , a rooted orientation of𝑇 fixes a root vertex

and orients the edges outwards from it. For a rooted orientation

of 𝑇 , if 𝑖 is a vertex in 𝑇 , pa(𝑖) denotes its parent node if any, and
nd(𝑖) denotes the subset of vertices not reachable from 𝑖 .

Definition 3.1 (Tree-structured distributions). Let 𝑇 be

a tree. Fix any rooted orientation of it. Label the nodes of 𝑇 in topo-

logical order (so, node 1 is the root). A probability distribution 𝑃

over 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ Σ
𝑛 is said to be 𝑇 -structured if: every

variable 𝑋𝑖 is conditionally independent of {𝑋 𝑗 : 𝑗 ∈ nd(𝑖)} given
𝑋pa(𝑖) .Equivalently, 𝑃 admits the following factorization:

Pr[𝑋 = 𝑥] ≔ Pr[𝑋1 = 𝑥1] ·
𝑛∏
𝑖=2

Pr[𝑋𝑖 = 𝑥𝑖 | 𝑋pa(𝑖) = 𝑥pa(𝑖) ]

A tree-structured distribution is 𝑇 -structured for some tree 𝑇 .

The following classical result justifies why the rooted orientation

does not matter in Definition 3.1.

Theorem 3.2 ([54]). Let 𝑇 be a tree on 𝑛 variables, and suppose

𝑃 is a 𝑇 -structured distribution on (𝑋1, . . . , 𝑋𝑛). For any 3 nodes

𝑖, 𝑗, 𝑘 ∈ [𝑛], if the unique path between 𝑖 and 𝑘 in𝑇 passes through 𝑗 ,

then 𝑋𝑖 and 𝑋𝑘 are independent conditioned on 𝑋 𝑗 .

To compare distributions, we use the well-known notion of KL-

divergence. Given two discrete probability distributions 𝑃 and 𝑄

over Σ, their KL-divergence is defined asğ

𝐷 (𝑃 ∥ 𝑄) ≔
∑︁
𝑥 ∈Σ

𝑃 (𝑥) log 𝑃 (𝑥)
𝑄 (𝑥) .

Recall that we say a tree 𝑇 is 𝜀-approximate for a distribution 𝑃 if

there exists a 𝑇 -structured distribution 𝑄𝑇 such that:

𝐷 (𝑃 ∥ 𝑄𝑇 ) ≤ 𝜀 + min
tree𝑇 ′

min
𝑇 ′-structured
distribution𝑄′

𝐷 (𝑃 ∥ 𝑄 ′) .

input :Sample access to 𝑃 over 𝑋1, . . . , 𝑋𝑛 ∈ Σ
output :A tree 𝑇

1 𝑃 ← the empirical distribution of𝑚 i.i.d. samples from 𝑃 ;

2 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do

3 𝐼 (𝑋𝑖 , 𝑋 𝑗 ) ← the mutual information between the

variables 𝑋 and 𝑌 with respect to 𝑃 ;

4 end

5 𝐺 ← the weighted complete undirected graph on [𝑛] whose
edge-weight (𝑖, 𝑗) is 𝐼 (𝑋𝑖 , 𝑋 𝑗 );

6 𝑇 ← a maximum weight spanning tree of 𝐺 ;

7 return 𝑇

Algorithm 2: Learning the Skeleton of Tree-structured Dis-

tributions from Samples

The following lemma is implicit in [19, 21].

Lemma 3.3. For a fixed tree 𝑇 , let pa(𝑣) denote the parent of 𝑣 in
𝑇 (or ⊥ if 𝑣 is the root). Let 𝑋 ∼ 𝑃 and 𝑋 ′ ∼ 𝑄 for some 𝑇 -structured

𝑄 . Then, if 𝐷 (𝑃 ∥ 𝑄) is bounded:

𝐷 (𝑃 ∥ 𝑄) =
(
−𝐻 (𝑋 ) +

∑︁
𝑣∈𝑉

𝐻 (𝑋𝑣)
)
−

∑︁
𝑣∈𝑉

𝐼 (𝑋𝑣 ;𝑋pa(𝑣) )

+
∑︁
𝑣∈𝑉

∑︁
𝑥 ∈Σ

Pr[𝑋pa(𝑣) = 𝑥]𝐷 (𝑋𝑣 | 𝑋pa(𝑣) = 𝑥 ∥ 𝑋 ′𝑣 | 𝑋 ′pa(𝑣) = 𝑥)

ğAll logarithms in this paper are natural, so we measure information-theoretic
quantities in nats not bits.
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Lemma 3.3 is a generalization of (2.1): since KL divergence is

nonnegative, the 𝑄 = 𝑃𝑇 minimizing 𝐷 (𝑃 ∥ 𝑄) has every entry in

the final sum is zero, which happens if 𝑄 matches the marginals of

𝑃 on each edge of 𝑇 . In that case, 𝐷 (𝑃 ∥ 𝑃𝑇 ) drops the final sum
and gives (2.1), which we write formally:

Corollary 3.4 ([19]). Let 𝑃 be a distribution over Σ𝑛 and 𝑇 be

an undirected tree over the vertex set [𝑛]. Let 𝑃𝑇 be the most likely

distribution of 𝑃 for the tree 𝑇 . Then,

𝐷 (𝑃 ∥ 𝑃𝑇 ) = 𝐽𝑃 −wt𝑃 (𝑇 ) (3.1)

where 𝐽𝑃 =
∑

𝑣 𝐻 (𝑃𝑣) −𝐻 (𝑃) is independent of𝑇 (𝑃𝑣 is the marginal

on variable 𝑣), and wt𝑃 (𝑇 ) :=
∑
(𝑋,𝑌 ) ∈𝑇 𝐼 (𝑋 ;𝑌 ).

This suggests the Chow-Liu algorithm (see Algorithm 2) that we

analyze.

4 TESTING INDEPENDENCE AND
CONDITIONAL INDEPENDENCE

Setup. We assume all random variables are over a discrete do-

main Σ. Let 𝑋 and 𝑌 be random variables over Σ distributed jointly

according to 𝑃 . For any pair 𝑥,𝑦 ∈ Σ, let 𝑃𝑥 , 𝑃𝑦, 𝑃𝑥𝑦 denote Pr[𝑋 =

𝑥], Pr[𝑌 = 𝑦], Pr[(𝑋,𝑌 ) = (𝑥,𝑦)], respectively. Let Δ𝑥𝑦 := 𝑃𝑥𝑦 −
𝑃𝑥𝑃𝑦 . Hence

∑
𝑥𝑦 Δ𝑥𝑦 = 0. Let (𝑋,𝑌 ) be the random variable dis-

tributed according to the empirical distribution 𝑃 over (𝑋,𝑌 ) over
a finite set of independent samples. Let 𝑃𝑥 , 𝑃𝑦, 𝑃𝑥𝑦, Δ̂𝑥𝑦 denote the

same values for (𝑋,𝑌 ).
Define

𝑓 (𝑎, 𝑏) := (𝑎 + 𝑏) log(1 + 𝑎/𝑏) − 𝑎
for all 𝑏 ∈ [0, 1], 𝑎 ∈ [−𝑏, 1 − 𝑏] [with 𝑓 (−𝑏,𝑏) = 𝑏, being the

limiting value].

Claim 4.1. For two random variables 𝑋 and 𝑌 over Σ, 𝐼 (𝑋 ;𝑌 ) =∑
𝑥,𝑦 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦).

Proof.

𝐼 (𝑋 ;𝑌 ) = 𝐷 (𝑃𝑋𝑌 | |𝑃𝑋𝑃𝑌 )

=

∑︁
𝑥,𝑦

(𝑃𝑥𝑃𝑦 + Δ𝑥𝑦) log(1 + Δ𝑥𝑦/(𝑃𝑥𝑃𝑦))

=

∑︁
𝑥,𝑦

[
(𝑃𝑥𝑃𝑦 + Δ𝑥𝑦) log(1 + Δ𝑥𝑦/(𝑃𝑥𝑃𝑦)) − Δ𝑥𝑦

]

=

∑︁
𝑥,𝑦

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦). (4.1)

□

4.1 Analysis of 𝑓

Lemma 4.2. For any 𝑎 ≥ −𝑏 and 𝑏 ≥ 0,

𝑓 (𝑎, 𝑏) = 𝐶𝑎,𝑏 min

(
𝑎2

𝑏
, |𝑎 | log

(
2 + |𝑎 |

𝑏

))

where the coefficient 1/3 ≤ 𝐶𝑎,𝑏 ≤ 1.

Proof. Using Calculus and Taylor expansion. □

Claim 4.3. For any 𝑥,𝑦, the following holds:

(1) 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≤ 1.

(2) min(𝑃𝑥 , 𝑃𝑦, |Δ𝑥𝑦 |) ≳ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)/log(3/𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)).

Proof. Of (1): WLOG 𝑃𝑥 ≤ 𝑃𝑦 . Note that −𝑃𝑥𝑃𝑦 ≤ Δ𝑥𝑦 ≤
𝑃𝑥 − 𝑃𝑥𝑃𝑦 , and 𝑓 (𝑥, 𝑎) is convex in 𝑥 , so that:

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≤ max(𝑓 (−𝑃𝑥𝑃𝑦, 𝑃𝑥𝑃𝑦), 𝑓 (𝑃𝑥 − 𝑃𝑥𝑃𝑦, 𝑃𝑥𝑃𝑦))
≤ max(𝑃𝑥𝑃𝑦, 𝑃𝑥 log(1 + 1/𝑃𝑦) − 𝑃𝑥 + 𝑃𝑥𝑃𝑦)
≤ max(1, 𝑃𝑥 log(1 + 1/𝑃𝑥 ))
≤ 1.

Of (2): We have

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)

≲ |Δ𝑥𝑦 | log
(
2 +
|Δ𝑥𝑦 |
𝑃𝑥𝑃𝑦

)
≤ 𝑃𝑥 log

(
2 + 1

𝑃𝑦

)
≤ 𝑃𝑥 log

(
3

𝑃𝑥

)

and hence

min(𝑃𝑥 , 𝑃𝑦) ≳ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)/log(3/𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)) .
But then

|Δ𝑥𝑦 | ≳ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)/log
(
3

𝑃𝑦

)
≳ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)/log(3/𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)),

finishing the result. □

4.2 Properties of the Empirical Distribution

By Chernoff bounds, the empirical distribution is close to the actual

one:

Claim 4.4. Let 𝑃𝑥 , 𝑃𝑦 , and 𝑃𝑥𝑦 be empirical distributions over

𝑁 > 1 samples. Then with 1 − 3𝛿 probability, all of the following

bounds hold:

|𝑃𝑥 − 𝑃𝑥 | ≲

√︄
𝑃𝑥 log

2
𝛿

𝑁
+
log 2

𝛿

𝑁

|𝑃𝑦 − 𝑃𝑦 | ≲

√︄
𝑃𝑥 log

2
𝛿

𝑁
+
log 2

𝛿

𝑁

|𝑃𝑥𝑦 − 𝑃𝑥𝑦 | ≲

√︄
𝑃𝑥𝑦 log

2
𝛿

𝑁
+
log 2

𝛿

𝑁

|𝑃𝑥𝑃𝑦 − 𝑃𝑥𝑃𝑦 | ≲

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ (𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+
log2 2

𝛿

𝑁 2

|Δ̂𝑥𝑦 − Δ𝑥𝑦 | ≲

√︄
|Δ𝑥𝑦 |

log 2
𝛿

𝑁
+

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+
log 2

𝛿

𝑁
+
log2 2

𝛿

𝑁 2
.

Proof. By the multiplicative Chernoff bound,

Pr[|𝑃𝑥 − 𝑃𝑥 | > 𝜀𝑃𝑥 ] < 2 exp(−𝐶 min(𝜀, 𝜀2)𝑃𝑥𝑁 ) .
Rearranging, with probability 1 − 𝛿 ,

|𝑃𝑥 − 𝑃𝑥 | ≲ max
©­«
log 2

𝛿

𝑃𝑥𝑁
,

√︄
log 2

𝛿

𝑃𝑥𝑁

ª®¬
𝑃𝑥 ≤

√︄
𝑃𝑥 log

2
𝛿

𝑁
+
log 2

𝛿

𝑁
.

Similarly for 𝑃𝑦 and 𝑃𝑥𝑦 . Then

|𝑃𝑥𝑃𝑦 − 𝑃𝑥𝑃𝑦 |

≲

√︄
log 2

𝛿

𝑁
(𝑃𝑥

√︃
𝑃𝑦 + 𝑃𝑦

√︁
𝑃𝑥 ) +

√︃
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ (𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+
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(
√︁
𝑃𝑥 +

√︃
𝑃𝑦)

log1.5 2
𝛿

𝑁 1.5
+
log2 2

𝛿

𝑁 2

≤ 2

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ 2(𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+ 2(

√︃
𝑃𝑥 + 𝑃𝑦)

log1.5 2
𝛿

𝑁 1.5
+

log2 2
𝛿

𝑁 2

≤ 2

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ 3(𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+ 2

log2 2
𝛿

𝑁 2
.

This implies:

|Δ̂𝑥𝑦 − Δ𝑥𝑦 | ≤ |𝑃𝑥𝑦 − 𝑃𝑥𝑦 | + |𝑃𝑥𝑃𝑦 − 𝑃𝑥𝑃𝑦 |

≲

√︄
𝑃𝑥𝑦

log 2
𝛿

𝑁
+

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+
log 2

𝛿

𝑁
+
log2 2

𝛿

𝑁 2
.

The result follows because 𝑃𝑥𝑦 ≤ 2Δ𝑥𝑦 whenever that term is

largest. □

4.3 Completeness

Lemma 4.5. Let 𝑃 be the empirical distribution over 𝑁 samples.

Then there exist constants 𝐶,𝐶 ′ > 0 such that for every 𝛿 > 0 if

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≥ 𝐶 log𝑁
𝑁 log 2

𝛿
, then:

Pr[𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) > 𝐶 ′𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)] > 1 − 3𝛿.

Proof. By Claim 4.3 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≤ 1. Claim 4.3 also implies

min( |Δ𝑥𝑦 |, 𝑃𝑥 , 𝑃𝑦) ≳
𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)

log(2/𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦))
≳
𝐶

𝑁
log

2

𝛿
. (4.2)

Suppose that the Claim 4.4 statements hold, as happens with

1 − 3𝛿 probability. We will show that this implies the result.

We split into cases, based on whether Δ𝑥𝑦 > 8𝑃𝑥𝑃𝑦 .

Large Δ𝑥𝑦 . This case of Δ𝑥𝑦 > 8𝑃𝑥𝑃𝑦 implies

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≂ Δ𝑥𝑦 log
Δ𝑥𝑦

𝑃𝑥𝑃𝑦
.

In this regime, we have by Claim 4.4 holding that

|Δ̂𝑥𝑦 − Δ𝑥𝑦 | ≲
√︂

Δ𝑥𝑦

𝑁
log

2

𝛿
+
log 2

𝛿

𝑁
.

Since 𝑁 ≳ 𝐶 log 2
𝛿
/Δ𝑥𝑦 by (4.2), this implies

|Δ̂𝑥𝑦 − Δ𝑥𝑦 | ≲ Δ𝑥𝑦/𝐶

and hence |Δ̂𝑥𝑦 − Δ𝑥𝑦 | < Δ𝑥𝑦/10 for a sufficiently large 𝐶 .

We also have by Claim 4.4 holding that

|𝑃𝑥𝑃𝑦 − 𝑃𝑥𝑃𝑦 | ≲

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ (𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+
log2 2

𝛿

𝑁 2

≲

√︂
Δ𝑥𝑦

𝑁
log

2

𝛿
+
log 2

𝛿

𝑁

and hence (by (4.2)) |𝑃𝑥𝑃𝑦 −𝑃𝑥𝑃𝑦 | ≤ Δ𝑥𝑦/10 for a sufficiently large

𝐶 . This implies 𝑃𝑥𝑃𝑦 ≤ 0.23Δ𝑥𝑦 . Therefore:

Δ̂𝑥𝑦

𝑃𝑥𝑃𝑦
≥

0.9Δ𝑥𝑦

0.23Δ𝑥𝑦
> 3.9,

so that (in Lemma 4.2),

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≂ Δ̂𝑥𝑦 log
Δ̂𝑥𝑦

𝑃𝑥𝑃𝑦
≳ Δ𝑥𝑦 log

Δ𝑥𝑦

𝑃𝑥𝑃𝑦

Now,

|𝑃𝑥𝑃𝑦 − 𝑃𝑥𝑃𝑦 | ≲

√︄
𝑃𝑥𝑃𝑦

log 2
𝛿

𝑁
+ (𝑃𝑥 + 𝑃𝑦)

log 2
𝛿

𝑁
+
log2 2

𝛿

𝑁 2

≲

√︃
𝑃𝑥𝑃𝑦Δ𝑥𝑦/𝐶 + 2𝑃𝑥𝑃𝑦/𝐶 + 𝑃𝑥𝑃𝑦/𝐶2

(Using (4.2))

≲
1
√
𝐶
(𝑃𝑥𝑃𝑦 +

√︃
𝑃𝑥𝑃𝑦Δ𝑥𝑦) .

For sufficiently large constant 𝐶 the constant factor is overcome,

so that

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≳ Δ𝑥𝑦 log
Δ𝑥𝑦

2𝑃𝑥𝑃𝑦 +
√︁
𝑃𝑥𝑃𝑦Δ𝑥𝑦

≥ Δ𝑥𝑦 min(log
Δ𝑥𝑦

4𝑃𝑥𝑃𝑦
, log

Δ𝑥𝑦

2
√︁
𝑃𝑥𝑃𝑦Δ𝑥𝑦

)

≂ Δ𝑥𝑦 min(log
Δ𝑥𝑦

𝑃𝑥𝑃𝑦
,
1

2
log

Δ𝑥𝑦

𝑃𝑥𝑃𝑦
)

≂ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦)
as desired.

Small Δ𝑥𝑦 . This case of −𝑃𝑥𝑃𝑦 ≤ Δ𝑥𝑦 ≤ 8𝑃𝑥𝑃𝑦 implies

𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) ≂ Δ
2
𝑥𝑦/(𝑃𝑥𝑃𝑦) ≤ 64𝑃𝑥𝑃𝑦 .

Now, the condition that 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) > 𝐶 log𝑁
𝑁 log 2

𝛿
implies

𝑃𝑥𝑃𝑦 ≥
1

64
Δ
2
𝑥𝑦/(𝑃𝑥𝑃𝑦) ≳ 𝐶

log𝑁

𝑁
log

2

𝛿
(4.3)

and hence 𝑁 ≳ 𝐶 log 2
𝛿
/min(𝑃𝑥 , 𝑃𝑦). Therefore, for a sufficiently

large 𝐶 , we have by Claim 4.4 that both:

|𝑃𝑥 − 𝑃𝑥 | ≤ 𝑃𝑥/10

|𝑃𝑦 − 𝑃𝑥 | ≤ 𝑃𝑦/10.
Furthermore, the condition (4.3) also implies:

|Δ𝑥𝑦 | ≳
√︂
𝐶𝑃𝑥𝑃𝑦

𝑁
log

2

𝛿
. (4.4)

Hence by Claim 4.4 and the conditions (4.3) and (4.4),

|Δ̂𝑥𝑦 − Δ𝑥𝑦 | ≲
√︂
𝑃𝑥𝑃𝑦

𝑁
log

2

𝛿
+
log 2

𝛿

𝑁
≲ |Δ𝑥𝑦 |/

√
𝐶 + Δ2

𝑥𝑦/(𝑃𝑥𝑃𝑦𝐶).

Using |Δ𝑥𝑦 | ≤ 8𝑃𝑥𝑃𝑦 , we get |Δ̂𝑥𝑦 − Δ𝑥𝑦 | < |Δ𝑥𝑦 |/10 for a suffi-

ciently large constant 𝐶 . Therefore:

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≳
Δ̂
2
𝑥𝑦

𝑃𝑥𝑃𝑦
≂

Δ
2
𝑥𝑦

𝑃𝑥𝑃𝑦
≂ 𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦).

□

Corollary 4.6. Let 𝑃 be the empirical distribution over 𝑁 > 1

samples. Then there exist universal constants𝐶1,𝐶2 > 0 such that for

every 𝛿 > 0:

𝐼 (𝑋 ;𝑌 ) ≥ 𝐶1𝐼 (𝑋 ;𝑌 ) −𝐶2 |Σ|2
log𝑁

𝑁
log
|Σ|
𝛿
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with probability at least 1 − 𝛿 .

Proof. Lemma 4.5 has a condition on 𝑓 being large. But in gen-

eral, since 𝑓 ≥ 0 always, it shows that with probability 1 − 3𝛿 ,

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) > 𝐶 ′𝑓 (Δ𝑥𝑦, 𝑃𝑥𝑃𝑦) −𝐶 ′𝐶
log𝑁

𝑁
log

2

𝛿
.

Taking a union bound over the sum (4.1), and rescaling 𝛿 by 3|Σ|2,
we get the result. □

4.4 Soundness

Lemma 4.7. Let 𝑃 be the empirical distribution over 𝑁 samples.

Then there exists a universal constant𝐶 > 0 such that for every 𝛿 > 0,

if Δ𝑥𝑦 = 0 then:

Pr[𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) < 𝐶
log𝑁

𝑁
log

2

𝛿
] > 1 − 3𝛿.

Proof. As in the completeness section, we suppose that the

equations of Claim 4.4 all hold. In particular, this implies that

|Δ̂𝑥𝑦 | ≲
√︂
𝑃𝑥𝑃𝑦

𝑁
log

2

𝛿
+
log 2

𝛿

𝑁
.

We again split into cases depending on 𝑃𝑥𝑃𝑦 <
log 2

𝛿

𝐶𝑁 or not for

a large enough constant 𝐶 .

Small 𝑃𝑥𝑃𝑦 . Suppose 𝑃𝑥𝑃𝑦 <
log 2

𝛿

𝐶𝑁 , so that

|Δ̂𝑥𝑦 | ≲
1

𝑁
log

2

𝛿
.

First note that, if either of 𝑃𝑥 = 0 or 𝑃𝑦 = 0, then 𝑃𝑥𝑦 = 0 and

Δ̂𝑥𝑦 = 0, so 𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) = 0. Therefore, in order for 𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦)
to be nonzero, we must sample 𝑥 and 𝑦 in our set, in which case

𝑃𝑥𝑃𝑦 ≥ 1/𝑁 2.

Therefore

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≲ |Δ̂𝑥𝑦 | log(1 + Δ̂𝑥𝑦/(𝑃𝑥𝑃𝑦))

≲ |Δ̂𝑥𝑦 | log(1 + 𝑁 2) ≲ 1

𝑁
log

2

𝛿
log𝑁 .

Large 𝑃𝑥𝑃𝑦 . If 𝑃𝑥𝑃𝑦 ≥
log 2

𝛿

𝐶𝑁 , then

min(𝑃𝑥 , 𝑃𝑦) ≥
log 2

𝛿

𝐶𝑁

and hence by Claim 4.4 holding we have

|𝑃𝑥 − 𝑃𝑥 | ≤ 𝑂
(√︂

𝑃𝑥

𝑁
log

2

𝛿
+
log 2

𝛿

𝑁

)
≤ 𝑃𝑥/2,

for a large enough 𝐶 and similarly for 𝑃𝑦 . Therefore:

𝑓 (Δ̂𝑥𝑦, 𝑃𝑥𝑃𝑦) ≲
Δ̂
2
𝑥𝑦

𝑃𝑥𝑃𝑦
≤ 4

Δ̂
2
𝑥𝑦

𝑃𝑥𝑃𝑦
≲

1

𝑁
log

2

𝛿
+

log2 2
𝛿

𝑁 2𝑃𝑥𝑃𝑦
≲
𝐶

𝑁
log

2

𝛿
.

Therefore the result holds regardless of the case, as long as

Claim 4.4 holds. □

Corollary 4.8. Let 𝑃 be the empirical distribution over 𝑁 > 1

samples. There exists a universal constant 𝐶3 > 0 such that if 𝑃 is a

product distribution, then for every 𝛿 > 0:

𝐼 (𝑋 ;𝑌 ) ≤ log𝑁

𝑁
𝐶3 |Σ|2 log

|Σ|
𝛿

with probability at least 1 − 𝛿 .

Proof. Follows from taking the sum (4.1) and applying a union

bound over the events in Lemma 4.7 for all possible 𝑥,𝑦. □

4.5 Conditional Independence Testing

Theorem 1.3 (Conditional Mutual Information Tester).

Let (𝑋,𝑌, 𝑍 ) be three random variables over Σ, and (𝑋,𝑌, 𝑍 ) be the
empirical distribution over a size 𝑁 sample of (𝑋,𝑌, 𝑍 ). There exists
a universal constant 0 < 𝐶 < 1 so that for any

𝑁 ≥ Θ

(
|Σ|3
𝜀

log
|Σ|
𝛿

log
|Σ| log(1/𝛿)

𝜀

)
,

the following results hold with probability 1 − 𝛿 :
(1) If 𝐼 (𝑋 ;𝑌 | 𝑍 ) = 0, then 𝐼 (𝑋 ;𝑌 | 𝑍 ) < 𝜀.
(2) If 𝐼 (𝑋 ;𝑌 | 𝑍 ) ≥ 𝜀, then 𝐼 (𝑋 ;𝑌 | 𝑍 ) > 𝐶 · 𝐼 (𝑋 ;𝑌 | 𝑍 ).

Proof. For any 𝑧 ∈ Σ let 𝑁𝑧 be the number of samples with

𝑍 = 𝑧.

Proof of (1): If 𝐼 (𝑋 ;𝑌 | 𝑍 ) = 0 then 𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) = 0 for each 𝑧.

Then Corollary 4.8 gives us that, with probability at least 1 − 𝛿 ,

𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) ≲ |Σ|
2

𝑁𝑧
log
|Σ|
𝛿

log𝑁𝑧 ≤
|Σ|2
𝑁𝑧

log
|Σ|
𝛿

log𝑁 .

Let 𝑆 ⊆ Σ contain the set of 𝑧 such that Pr[|𝑃𝑧 − 𝑃𝑧 | > 𝑃𝑧/2] ≤ 𝛿 .
By a Chernoff bound, this consists of all 𝑧 with 𝑃𝑧 ≥ 𝑂 ( log 1/𝛿𝑁 ).
With probability 1 − 2|Σ|𝛿 , then,

∑︁
𝑧∈𝑆

𝑃𝑧𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) ≲
∑︁
𝑧∈𝑆

𝑃𝑧
|Σ|2
𝑁𝑃𝑧/2

log
|Σ|
𝛿

log𝑁

≤ log𝑁

𝑁
2|Σ|3 log |Σ|

𝛿
.

On the other hand, 𝑧 ∉ 𝑆 will have 𝑃𝑧 ≲
log(1/𝛿)

𝑁 with probability

1 − 𝛿 , so that with probability 1 − |Σ|𝛿
∑︁
𝑧∉𝑆

𝑃𝑧𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) ≲ |Σ| log(1/𝛿)
𝑁

log |Σ| ≲ |Σ|
2 log(1/𝛿)
𝑁

is even smaller. Rescaling 𝛿 , we get with probability 1 − 𝛿 that

𝐼 (𝑋 ;𝑌 | 𝑍 ) =
∑︁
𝑧

𝑃𝑧𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) ≲ log𝑁

𝑁
|Σ|3 log |Σ|

𝛿

which is at most 𝜀 for the desired 𝑁 .

Proof of (2): Consider the set 𝑆 of 𝑧 ∈ Σ which satisfy 𝑃𝑧 × 𝐼 (𝑋 ;𝑌 |
𝑍 = 𝑧∗) ≥ 𝐼 (𝑋 ;𝑌 |𝑍 )

2 |Σ | . Note that this implies 𝑃𝑧 ≥ 𝜀
2 |Σ | log |Σ | . We also

have, ∑︁
𝑧∈𝑆

𝑃𝑧 × 𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧)

=

∑︁
𝑧

𝑃𝑧 × 𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) −
∑︁
𝑧∉𝑆

𝑃𝑧 × 𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧)

≥ 𝐼 (𝑋 ;𝑌 | 𝑍 ) − |Σ| 𝐼 (𝑋,𝑌 | 𝑍 )
2|Σ|

≥ 𝐼 (𝑋,𝑌 | 𝑍 )/2.
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Our 𝑁 is large enough that for 𝑧 ∈ 𝑆 , E[𝑁𝑧] = 𝑃𝑧𝑁 ≳ log( |Σ|/𝛿).
Hence, with probability 1 − 𝛿 , we have 𝑁𝑧 ≥ 𝑁𝑃𝑧/2 for all 𝑧 ∈ 𝑆 .
Then Corollary 4.6 gives us, with probability 1 − 𝛿 ,

𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) ≥ 𝐶1𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧)−2𝐶2 |Σ|2
log(0.5𝑁𝑃𝑧)

𝑁𝑃𝑧
log
|Σ|
𝛿
,

for all 𝑧 ∈ 𝑆 . Multiplying 𝑃𝑧 and summing over all 𝑧 ∈ 𝑆 give us:

𝐼 (𝑋 ;𝑌 | 𝑍 ) ≥
∑︁
𝑧∈𝑆

𝑃𝑧𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧)

≥
∑︁
𝑧∈𝑆

𝑃𝑧

2

(
𝐶1𝐼 (𝑋 ;𝑌 | 𝑍 = 𝑧) − 2𝐶2 |Σ|2

log(0.5𝑁𝑃𝑧)
𝑁𝑃𝑧

log
|Σ|
𝛿

)

≥ 𝐶1
4
𝐼 (𝑋 ;𝑌 | 𝑍 ) −𝐶2 |Σ|3

log𝑁

𝑁
log
|Σ|
𝛿
.

For 𝑁 as large as given, the term being subtracted is at most 𝜀𝐶1
8 ,

which is at most half the first term. □

A (non-conditional) independence tester with a sample complex-

ity of |Σ|−1-factor of that of Theorem 1.3 closely follows from the

above proof.

5 TREE STRUCTURE RECOVERY

5.1 Non-realizable Case

Let 𝑃 be an unknown distribution over Σ𝑛 and 𝑃 be the empirical

distribution of 𝑃 for a certain number of samples to be fixed later.

Our algorithm Chow-Liu returns a maximum spanning tree 𝑇 of

the complete graph whose edge weights for every pair of variables

are given by the estimated mutual informations with respect to 𝑃 .

Let 𝑇 ∗ be the tree minimizing 𝐷 (𝑃 ∥ 𝑃𝑇 ∗ ). Recall that wt𝑃 (𝑇 )
is defined as the sum of the pairwise mutual informations across

𝑇 . By Corollary 3.4, the Chow-Liu algorithm will return a tree 𝑇

satisfying

𝐷 (𝑃 ∥ 𝑃
𝑇
) ≤ 𝐷 (𝑃 ∥ 𝑃𝑇 ∗ ) + 𝜀

if wt𝑃 (𝑇 ) ≥ wt𝑃 (𝑇 ∗) − 𝜀. Since 𝑇 maximizes wt
𝑃
(𝑇 ), it would

suffice to ensure wt
𝑃
(𝑇 ) = wt𝑃 (𝑇 ) ± 𝜀/2 for all 𝑇 ; and therefore it

would suffice for

𝐼 (𝑋 ;𝑌 ) = 𝐼 (𝑋 ;𝑌 ) ± 𝜀

2𝑛

for all pairs of variables (𝑋,𝑌 ). The following result is standard,

which analyzes the the plug-in estimator 𝐻 (𝑋 ) for estimating a

single discrete entropy 𝐻 (𝑋 ) to ±𝜀 with probability 1 − 𝛿 .

Theorem 5.1 ([4, 48]). For 𝑁 ≳
(
|Σ |
𝜀 +

1
𝜀2

log 1
𝛿
log2 ( |Σ |𝜀 log 1

𝛿
)
)
,

|𝐻 (𝑋 ) − 𝐻 (𝑋 ) | ≤ 𝜀 with probability at least (1 − 𝛿).

Since 𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ), Theorem 5.1 tells us

that once

𝑁 ≳

(
|Σ|2𝑛
𝜀
+ 𝑛

2

𝜀2
log

𝑛

𝛿
log2 (𝑛 |Σ|

𝜀
log

𝑛

𝛿
)
)
,

all the pairwise mutual informations of the variables of 𝑃 will be

estimated to within 𝜀
2𝑛 . In that case, Chow-Liu would return a tree

𝑇 , the best distribution on which would be close to the closest tree

Bayes net of 𝑃 .

Lemma 5.2. Let 𝑃 be any unknown distribution over Σ𝑛 . Let 𝑄 be

the tree Bayes net which is closest to 𝑃 in KL distance. Then Chow-Liu,

when run with 𝑂
(
|Σ |2𝑛
𝜀 + 𝑛2

𝜀2
log 𝑛

𝛿
log2 ( 𝑛 |Σ |𝜀 log 𝑛

𝛿
)
)
samples, re-

turns a tree𝑇 such that there exists a𝑇 -structured 𝑅 with𝐷 (𝑃 ∥ 𝑅) ≤
𝐷 (𝑃 ∥ 𝑄) + 𝜀.

We conclude this section by noting that when 𝑃 itself is a tree

Bayes net (realizable case) 𝐷 (𝑃 ∥ 𝑄) = 0 and the best Bayes net 𝑅

on the tree returned by Chow-Liu with the sample complexity of

Lemma 5.2 would satisfy𝐷 (𝑃 ∥ 𝑅) ≤ 𝜀 with probability at least (1−
𝛿). In the next section, we show how to bring the sample complexity

analysis down from 𝑂 (𝑛2/𝜀2) to 𝑂 (𝑛/𝜀) when 𝑃 is actually tree-

structured for some unknown tree.

5.2 Realizable Case

We will need the following fact which follows from the chain rule

of mutual information.

Fact 5.3. For three random variables 𝑋,𝑌, and 𝑍

𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 ) = 𝐼 (𝑋 ;𝑌 | 𝑍 ) − 𝐼 (𝑋 ;𝑍 | 𝑌 ) .

Proof. Follows from observing 𝐼 (𝑋 ;𝑌 )+𝐼 (𝑋 ;𝑍 | 𝑌 ) = 𝐼 (𝑋 ;𝑌, 𝑍 )
= 𝐼 (𝑋 ;𝑍 ) + 𝐼 (𝑋 ;𝑌 | 𝑍 ). □

We also use the following fact about spanning trees:

Fact 5.4. Let 𝑇1 and 𝑇2 be two spanning trees on 𝑛 vertices such

that their symmetric difference consists of the edges 𝐸 = {𝑒1, 𝑒2 . . . , 𝑒ℓ }
∈ 𝑇1 \ 𝑇2 and 𝐹 = {𝑓1, 𝑓2 . . . , 𝑓ℓ } ∈ 𝑇2 \ 𝑇1. Then 𝐸 and 𝐹 can be

paired up, without loss of generality say ⟨𝑒𝑖 , 𝑓𝑖 ⟩, such that for all 𝑖 ,

𝑇1 ∪ {𝑓𝑖 } \ {𝑒𝑖 } is a spanning tree.

Proof. We use induction on ℓ . Base case of ℓ = 0 is trivial.

Assume it holds for any two trees 𝑇1 and 𝑇2 so that |𝑇1 \𝑇2 | =
|𝑇2 \𝑇1 | = (𝑙 −1). Now, pick an arbitrary 𝑒 = (𝑢, 𝑣) ∈ 𝑇1 \𝑇2.𝑇1 \ {𝑒}
has two connected components, 𝐿 ∋ 𝑢 and 𝑅 = (𝑉 \ 𝐿) ∋ 𝑣 . In 𝑇2,
there is some path connecting 𝑢 to 𝑣 . This path starts in 𝐿 and ends

in 𝑅, so it must have some edge 𝑓 connecting 𝐿 to 𝑅. But 𝑓 ∉ 𝑇1,

since 𝑒 ∉ 𝑇2 is the only edge connecting 𝐿 and 𝑅 in 𝑇1.

Because 𝑓 connects 𝐿 and 𝑅, which are otherwise unconnected

in 𝑇1 \ {𝑒}, 𝑇1 ∪ {𝑓 } \ {𝑒} is a spanning tree. Thus it is valid to pair

⟨𝑒, 𝑓 ⟩. Furthermore, because 𝑓 lies on the path connecting 𝑒 in 𝑇2,

𝑇3 := 𝑇2 ∪ {𝑒} \ {𝑓 } is also a spanning tree, and it differs in only

ℓ − 1 edges from 𝑇1. Therefore by induction, 𝑇3 can be paired with

𝑇1 in the desired way. Adding ⟨𝑒, 𝑓 ⟩ to this pairing means that 𝑇2
can be paired with 𝑇1. □

Theorem 5.5. Let 𝑁 be such that the bound in Theorem 1.3 holds

for a given 𝜀, 𝛿 > 0. Then in the realizable case with 𝑛 nodes, with

probability 1 − 4𝑛𝛿 Chow-Liu returns a tree𝑇 with 𝐷 (𝑃 ∥ 𝑃
𝑇
) ≤ 𝜀𝑛.

Proof. Let 𝑃 be the unknown distribution on the true tree 𝑇 ∗.
Let 𝑇 be the tree returned by the Chow-Liu algorithm with 𝑁

samples. For any set of vertex pairs 𝑆 , let wt(𝑆) and ŵt(𝑆) denote
the sum of mutual information over all pairs in 𝑆 with respect to

the true and empirical distributions respectively, so wt(𝑇 ∗) and
ŵt(𝑇 ) are each maximal over spanning trees.
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For our analysis, we make at most 4𝑛 invocations of Theorem 1.3.

We will assume the conclusion holds in all cases, as happens with

at least 1 − 4𝑛𝛿 probability.
Let {⟨𝑒𝑖 , 𝑓𝑖 ⟩}𝑖 be a pairing given by Fact 5.4 for𝑇 ∗ and𝑇 . By (2.1),

𝐷 (𝑃 ∥ 𝑃
𝑇
) = wt(𝑇 ∗) −wt(𝑇 ) =

∑︁
𝑖

(wt({𝑒𝑖 }) −wt({𝑓𝑖 })) .

For any 𝑖 , let 𝑒𝑖 = (𝑋𝑖 , 𝑌𝑖 ) ∈ 𝑇 ∗ and 𝑓𝑖 = (𝑊𝑖 , 𝑍𝑖 ) ∈ 𝑇 . Because
𝑇 ∗ ∪ {𝑓𝑖 } \ {𝑒𝑖 } is a spanning tree, the path connecting𝑊𝑖 and 𝑍𝑖
in𝑇 ∗ must go through 𝑒𝑖 . Without loss of generality let𝑊 { 𝑋 →
𝑌 { 𝑍 be this path (it is possible that𝑊 = 𝑋 or 𝑌 = 𝑍 ). Hence,

from Theorem 3.2, we have for the true distribution

𝐼 (𝑋𝑖 ;𝑍𝑖 | 𝑌𝑖 ) = 𝐼 (𝑍𝑖 ;𝑊𝑖 | 𝑋𝑖 ) = 0

and so

𝐼 (𝑋𝑖 ;𝑌𝑖 ) − 𝐼 (𝑊𝑖 ;𝑍𝑖 )
= 𝐼 (𝑋𝑖 ;𝑌𝑖 ) − 𝐼 (𝑋𝑖 ;𝑍𝑖 ) + 𝐼 (𝑋𝑖 ;𝑍𝑖 ) − 𝐼 (𝑊𝑖 ;𝑍𝑖 ) (5.1)

= 𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) − 𝐼 (𝑋𝑖 ;𝑍𝑖 | 𝑌𝑖 ) + 𝐼 (𝑋𝑖 ;𝑍𝑖 |𝑊𝑖 ) − 𝐼 (𝑍𝑖 ;𝑊𝑖 | 𝑋𝑖 )
= 𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) + 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 ) . (5.2)

On the other hand the empirical distribution will have

𝐼 (𝑋𝑖 ;𝑌𝑖 ) − 𝐼 (𝑊𝑖 ;𝑍𝑖 ) (5.3)

= 𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) − 𝐼 (𝑋𝑖 ;𝑍𝑖 | 𝑌𝑖 ) + 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 ) − 𝐼 (𝑍𝑖 ;𝑊𝑖 | 𝑋𝑖 ).
(5.4)

Because 𝑇 is maximal under ŵt,

0 ≥ ŵt(𝑇 ∗) − ŵt(𝑇 )

=

∑︁
𝑖

(𝐼 (𝑋𝑖 ;𝑌𝑖 ) − 𝐼 (𝑊𝑖 ;𝑍𝑖 ))

=

∑︁
𝑖

(
𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) + 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 )

)
−

∑︁
𝑖

(
𝐼 (𝑋𝑖 ;𝑍𝑖 | 𝑌𝑖 ) + 𝐼 (𝑍𝑖 ;𝑊𝑖 | 𝑋𝑖 )

)
. (5.5)

We invoke Theorem 1.3 with 𝜀 ′ := 𝐶𝜀/10 where 𝐶 < 1 is the

constant given by the theorem. As a consequence of Theorem 1.3

and the fact that each of 𝐼 (𝑋𝑖 ;𝑍𝑖 | 𝑌𝑖 ) = 𝐼 (𝑍𝑖 ;𝑊𝑖 | 𝑋𝑖 ) = 0, the

second sum is at most 𝐶𝜀𝑛/5.
On the other hand, Theorem 1.3 implies that

𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) ≥ 𝐶𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) −𝐶𝜀 ′

and similarly for 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 ). As a result, the first sum has∑︁
𝑖

(
𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) + 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 )

)

≥ 𝐶
∑︁
𝑖

(𝐼 (𝑋𝑖 ;𝑌𝑖 | 𝑍𝑖 ) + 𝐼 (𝑍𝑖 ;𝑋𝑖 |𝑊𝑖 ) − 2𝜀 ′)

≥ 𝐶 (wt(𝑇 ∗) −wt(𝑇 )) − 2𝐶𝜀 ′𝑛
by (5.1). Combining these bounds into (5.5),

0 ≥ 𝐶 (wt(𝑇 ∗) −wt(𝑇 )) − 1

5
(𝐶2 +𝐶)𝜀𝑛

or

𝐷 (𝑃 ∥ 𝑃
𝑇
) = wt(𝑇 ∗) −wt(𝑇 ) ≤ 1

5
(𝐶 + 1)𝜀𝑛 ≤ 𝜀𝑛. □

6 DISTRIBUTION RECOVERY

This section shows how, for a fixed tree 𝑇 , to find a 𝑇 -structured

distribution 𝑄 with 𝐷 (𝑃 ∥ 𝑄) ≤ 𝐷 (𝑃 ∥ 𝑃𝑇 ) + 𝜀. We start by

analyzing how to learn an arbitrary distribution over Σ.

6.1 KL Learning of Discrete Distributions

Given 𝑁 samples from a distribution 𝑃 over Σ, the ładd-1ž empirical

estimator is based on Laplace’s rule of succession. This distribution

𝑄 is defined by: for each item 𝑖 ∈ Σ, if 𝑖 appears𝑇𝑖 times in the sam-

ples, then 𝑄𝑖 =
𝑇𝑖+1
𝑁+|Σ | . Kamath, Orlitsky, Pichapati and Suresh [34]

have analyzed the expected behavior of the add-1 empirical estima-

tor. In this section, we analyze its behavior in the high-probability

regime.

Theorem 6.1. Let 𝑃 be a distribution over Σ and 𝑁 ≥ 1. Let 𝑄

be the empirical add-1 estimator from 𝑁 samples of 𝑃 . There is an

universal constant 𝐶 > 0 such that, with probability 1 − 𝛿 ,

𝐷 (𝑃 ∥ 𝑄) ≤
𝐶 |Σ| log |Σ |

𝛿
log𝑁

𝑁
.

Proof. Let 𝐶 ′ > 1 be a large constant to be determined later.

If 𝑁 ≤ 𝐶 ′ |Σ|, the result follows from 𝐷 (𝑃 ∥ 𝑄) ≤ log 1
min𝑖 𝑄𝑖

≤
log(𝑁 + |Σ|) ≲ log |Σ|, so we may assume 𝑁 ≥ 𝐶 ′ |Σ|. Then

𝐷 (𝑃 ∥ 𝑄) =
∑︁
𝑖

𝑃𝑖 log
𝑃𝑖

𝑄𝑖

=

∑︁
𝑖

𝑓 (𝑃𝑖 −𝑄𝑖 , 𝑄𝑖 )

(where 𝑓 (𝑥, 𝑎) = 𝑎[(1 + 𝑥
𝑎 ) log(1 +

𝑥
𝑎 ) −

𝑥
𝑎 ])

≲

∑︁
𝑖

min

(
(𝑃𝑖 −𝑄𝑖 )2

𝑄𝑖
, |𝑃𝑖 −𝑄𝑖 | log

(
1 + |𝑃𝑖 −𝑄𝑖 |

𝑄𝑖

))
(From Lemma 4.2)

≲

∑︁
𝑖

min

(
(𝑃𝑖 −𝑄𝑖 )2

𝑄𝑖
, |𝑃𝑖 −𝑄𝑖 | log𝑁

)
. .

(Since 𝑄𝑖 ≥ 1
𝑁+|Σ | )

We also know from Claim 4.4 that with probability at least 1 − 𝛿
for each 𝑖 ,

|𝑃𝑖 −
𝑇𝑖

𝑁
| ≲

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁

=⇒ |𝑃𝑖 −𝑄𝑖 | ≲

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁
+

����𝑇𝑖𝑁 − 𝑇𝑖 + 1
𝑁 + |Σ|

����
=

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁
+ ||Σ|𝑇𝑖/𝑁 − 1|

𝑁 + |Σ|

≲

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁
+ |Σ|
𝑁 + |Σ|

𝑇𝑖

𝑁

≲

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁
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+ |Σ|
𝑁 + |Σ|

©­­«
𝑃𝑖 +

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁

ª®®¬
≲

√︄
𝑃𝑖 log

1
𝛿

𝑁
+
log 1

𝛿

𝑁
+ |Σ|
𝑁 + |Σ| 𝑃𝑖

If 𝑃𝑖 ≤
𝐶′ log 1

𝛿

𝑁 , then |𝑃𝑖 −𝑄𝑖 | log𝑁 ≲
log 1

𝛿

𝑁 log𝑁 .

If 𝑃𝑖 >
𝐶′ log 1

𝛿

𝑁 , then |𝑃𝑖 −𝑄𝑖 | ≲ 𝑃𝑖 ( 1√
𝐶′
+ 1

𝐶′ +
1

𝐶′+1 ) is at most

𝑃𝑖
2 for sufficiently large 𝐶 ′, so 𝑄𝑖 ≥ 𝑃𝑖/2 and hence

(𝑃𝑖−𝑄𝑖 )2
𝑄𝑖

≲

log 1
𝛿

𝑁 + 𝑃𝑖
(
|Σ |

𝑁+|Σ |

)2
.

By a union bound, with probability at least 1− |Σ|𝛿 we have that
these equations hold for all 𝑖 . If true, then

𝐷 (𝑃 ∥ 𝑄) ≲ |Σ|
𝑁

log
1

𝛿
log𝑁 +

(
|Σ|

𝑁 + |Σ|

)2
≲
|Σ|
𝑁

log
1

𝛿
log𝑁

Rescaling 𝛿 gives the desired bound. □

6.2 Learning Trees

We are ready to prove the main result of this section. Algorithm 3

shows the algorithm we analyze below.

input :Samples access to 𝑃 over Σ𝑛 ; Rooted tree 𝑇 on 𝑛

nodes labeled in topological order.

output :𝑛 row-stochastic |Σ| × |Σ| matrices 𝑄1, . . . , 𝑄𝑛 that

define a 𝑇 -structured distribution 𝑄 by

𝑄 (𝑥) = ∏𝑛
𝑖=1𝑄𝑖 [𝑥pa(𝑖) , 𝑥𝑖 ] (where 𝑥pa(1) is

arbitrary).

1 Draw 𝑁 i.i.d. samples 𝑋 (1) , . . . , 𝑋 (𝑁 ) from 𝑃 ;

2 for 𝑖 ← 1 to 𝑛 do

3 for 𝑥 ∈ Σ do

4 𝑘 ← ∑𝑁
𝑗=1 1

[
𝑋
( 𝑗)
pa(𝑖) = 𝑥

]
; // condition on

parent satisfied vacuously if 𝑖 = 1

5 for 𝑦 ∈ Σ do

6 𝑡 ← ∑𝑁
𝑗=1 1

[
𝑋
( 𝑗)
pa(𝑖) = 𝑥,𝑋

( 𝑗)
𝑖 = 𝑦

]
;

// condition on parent sat. vacuously

if 𝑖 = 1

7 𝑄𝑖 [𝑥,𝑦] ← (𝑡 + 1)/(𝑘 + |Σ|);
8 end

9 end

10 end

11 return (𝑄1, . . . , 𝑄𝑛)
Algorithm 3: Learning closest 𝑇 -structured distribution

Theorem 1.4. Let 𝑃 be a discrete distribution over Σ𝑛 . Let 𝑇 be a

tree on 𝑛 vertices, and 𝑄 be a 𝑇 -structured distribution with condi-

tional probabilities at each node estimated using the empirical add-1

estimator on

𝑁 = Θ

(
𝑛 |Σ|2
𝜀

log
𝑛 |Σ|
𝛿

log

(
𝑛 |Σ|
𝜀

log
1

𝛿

))

samples from 𝑃 . Then

𝐷 (𝑃 ∥ 𝑄) − 𝐷 (𝑃 ∥ 𝑃𝑇 ) ≤ 𝜀
with probability 1 − 𝛿 .

Proof. Note that 𝐷 (𝑃 ∥ 𝑄) is bounded, because 𝑄 (𝑥) > 0 for

all 𝑥 . By Lemma 3.3 and (2.1), the learned 𝑇 -structured distribution

𝑄 satisfies

𝐷 (𝑃 ∥ 𝑄) − 𝐷 (𝑃 ∥ 𝑃𝑇 )

=

∑︁
𝑖∈[𝑛]

∑︁
𝑥 ∈Σ

Pr[𝑋pa(𝑖) = 𝑥] · 𝐷 (𝑋𝑖 | 𝑋pa(𝑖) = 𝑥 ∥ 𝑋 ′𝑖 | 𝑋
′
pa(𝑖) = 𝑥)

(6.1)

where 𝑋 ∼ 𝑃 and 𝑋 ′ ∼ 𝑄 . Now, the node-wise conditional proba-
bilities of 𝑄 are the add-1 empirical distribution of the conditional

probabilities of 𝑃 . Therefore by Theorem 6.1, if we have 𝑘 samples

of (𝑋 | 𝑋pa(𝑖) = 𝑥), we will have with probability 1 − 𝛿 that

𝐷 (𝑋𝑖 | 𝑋pa(𝑖) = 𝑥 ∥ 𝑋 ′𝑖 | 𝑋
′
pa(𝑖) = 𝑥) ≲

|Σ| log( |Σ|/𝛿) log𝑘
𝑘

≤ |Σ| log( |Σ|/𝛿) log𝑁
𝑘

.

If E[𝑘] = 𝑁 Pr[𝑋pa(𝑖) = 𝑥] > 15 log 1
𝛿
, then by a Chernoff bound,

with probability 1 − 𝛿 we have 𝑘 >
1
2 E[𝑘] and

Pr[𝑋pa(𝑖) = 𝑥] · 𝐷 (𝑋𝑖 | 𝑋pa(𝑖) = 𝑥 ∥ 𝑋 ′𝑖 | 𝑋
′
pa(𝑖) = 𝑥)

≲
|Σ| log( |Σ|/𝛿) log𝑁

𝑁
(6.2)

On the other hand, if E[𝑘] ≤ 15 log 1
𝛿
, then 𝐷 (𝑋𝑖 | 𝑋pa(𝑖) =

𝑥 ∥ 𝑋 ′𝑖 | 𝑋
′
pa(𝑖) = 𝑥) ≤ log(𝑘 + |Σ|) [because 𝑄 is the add-1

estimator, so the minimum probability is 1
𝑘+|Σ | ] and we have

Pr[𝑋pa(𝑖) = 𝑥] · 𝐷 (𝑋𝑖 | 𝑋pa(𝑖) = 𝑥 ∥ 𝑋 ′𝑖 | 𝑋
′
pa(𝑖) = 𝑥)

≤ E[𝑘]
𝑁

log(𝑘 + |Σ|)

≲

log 1
𝛿
log𝑁

𝑁

Regardless, each term in (6.1) is bounded by (6.2). Taking a union

bound, with probability 1 − 𝑛 |Σ|𝛿 we have

𝐷 (𝑃 ∥ 𝑄) − 𝐷 (𝑃 ∥ 𝑃𝑇 ) ≲ 𝑛 |Σ|
|Σ| log( |Σ|/𝛿) log𝑁

𝑁
.

Rescaling 𝛿 and choosing 𝑁 appropriately gives the result. □

The algorithm and analysis in Theorem 1.4 straightforwardly

generalizes to Bayes nets. This shows that if 𝐺 is a directed acyclic

graph with in-degree bounded by 𝑑 , we can obtain a 𝐺-structured

distribution 𝑄 using 𝑂 (𝑛 |Σ|𝑑+1/𝜀) samples from 𝑃 which satisfies

𝐷 (𝑃 ∥ 𝑄)−𝐷 (𝑃 ∥ 𝑃𝐺 ) ≤ 𝜀, where 𝑃𝐺 = argmin𝐺-struct. 𝑅 𝐷 (𝑃 ∥ 𝑅).

7 LOWER BOUNDS FOR STRUCTURE
RECOVERY

7.1 Non-Realizable Case

This section focuses on the non-realizable case, i.e., the input distri-

bution is not necessarily a tree structured distribution. We prove
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that Ω(𝑛2/𝜀2) samples from a distribution 𝑃 over {0, 1}𝑛 are re-

quired to find an 𝜀-approximate tree for 𝑃 . First, we prove a lower

bound for 𝑛 = 3. We define three distributions 𝑅1, 𝑅2, 𝑅3 each over

{0, 1}3 as follows.
Let 𝐵1 ∼ Ber(1/2), 𝐵2 ∼ Ber(1/2), and 𝐵3 ∼ Ber(1/2) be three

i.i.d. random bits. In 𝑅1: 𝑋1, 𝑌1, 𝑍1 copies 𝐵1 with probabilities 3
4 +

𝜀, 34 +𝜀,
3
4 −𝜀 respectively and with the remaining probabilities, they

independently follow Ber(1/2). In 𝑅2: 𝑋2, 𝑌2, 𝑍2 copies 𝐵2 with

probabilities 3
4 + 𝜀,

3
4 − 𝜀,

3
4 + 𝜀 respectively and with the remaining

probabilities, they independently follow Ber(1/2). In 𝑅3: 𝑋3, 𝑌3, 𝑍3
copies 𝐵3 with probabilities 3

4 − 𝜀,
3
4 + 𝜀,

3
4 + 𝜀 respectively and with

the remaining probabilities, they independently follow Ber(1/2).
We need the following Fact to get our lower bound for 𝑛 = 3.

Fact 7.1. (i) 𝐷 (𝑅1 ∥ 𝑅2) = 𝑂 (𝜀2) and (ii) 𝐼 (𝑋1;𝑌1) − 𝐼 (𝑋1;𝑍1) ≥
0.4𝜀.

Proof. The calculations are skipped. □

Lemma 7.2. (i) Every tree 𝑇 on 3 vertices is not 0.4𝜀-approx.

for one of 𝑅1, 𝑅2, 𝑅3.

(ii) Given samples from a uniformly random distribution among

𝑅1, 𝑅2, 𝑅3, Ω(1/𝜀2) samples are needed to rule out an incorrect

one with probability at least 4/5.

Observe that Lemma 7.2 implies that if the distribution that gen-

erates the samples is chosen uniformly at random among 𝑅1, 𝑅2, 𝑅3,

then any algorithm that outputs an 𝜀-approximate tree with error

probability < 1/5 must draw Ω(𝜀−2) samples.

Proof of Lemma 7.2. For part (i), note that the possible trees are

𝐺 :𝑋Ð𝑍Ð𝑌 ,𝐻 :𝑋Ð𝑌Ð𝑍 and 𝐹 :𝑌Ð𝑋Ð𝑍 . Let𝑅1,𝐺 denote the closest

𝐺-structured distribution to 𝑅 and so on. Then using Corollary 3.4

and Fact 7.1, 𝐷 (𝑅 ∥ 𝑅1,𝐺 ) − 𝐷 (𝑅 ∥ 𝑅1,𝐻 ) = 𝐼 (𝑋1;𝑌1) − 𝐼 (𝑋1;𝑍1) ≥
0.4𝜀, which means 𝐷 (𝑅 ∥ 𝑅1,𝐺 ) ≥ 0.4𝜖 . Similarly for 𝑅2 and 𝑅3 by

symmetric calculations.

The proof for part (ii) is skipped. □

We can now prove the main result of this section.

Theorem 7.3. The sample complexity of computing an 𝜀-approx.

tree on 𝑛 variables with error probability less than 1/3 is Ω(𝑛2𝜀−2).

Proof. Suppose 𝑛 = 3𝑚 is a multiple of 3. We consider the 𝑛

variables as being divided into𝑚 blocks, each of size 3. Let 𝑃 be a

random distribution on {0, 1}𝑛 , defined by setting the distribution of
the 𝑖’th block to be 𝑅 or 𝑅′ with probability 1/2 each independently,

where 𝑅 and 𝑅′ satisfy Lemma 7.2.

For the sake of contradiction, suppose we have an algorithm

that draws 𝑐𝑛2𝜀−2 samples from 𝑃 (for a sufficiently small constant

𝑐) and outputs an 𝜀-approximate tree 𝑇 with probability at least

2/3 (over the choice of 𝑃 as well as the algorithm’s randomness).

Since each block is independent, without loss of generality, 𝑇 is

a union of disjoint trees 𝑇1, . . . ,𝑇𝑚 for each block. By Lemma 7.2

(with 𝜀 replaced with 10𝜀/𝑚), each 𝑇𝑖 is not 10𝜀/𝑚-approximate

with probability at least 1/5. Hence, by a Chernoff bound, with

probability > 2/3, for at least 𝑚
10 trees,𝑇𝑖 is not 10𝜀/𝑚-approximate.

Therefore, for any 𝑇 -structured distribution 𝑄 , 𝐷 (𝑃 ∥ 𝑄) > 𝑚
10 ·

10𝜀
𝑚 = 𝜀. □

7.2 Realizable Case

We now show that if 𝑃 is a tree-structured distribution on 𝑛 vari-

ables, then Ω(𝑛𝜀−1 log 𝑛
𝜀 ) samples are required to find an 𝜀-approx.

tree. As with the non-realizable case, we first show the construction

for 𝑛 = 3. We define three distributions 𝑅1, 𝑅2, 𝑅3 each over {0, 1}3
as follows.

In 𝑅1, (𝑌1, 𝑍1) randomly takes values between (0, 0) and (1, 1),
and 𝑋1 copies the other 2 bits with (1 − 𝜀) probability and with the

remaining probability follows Ber(1/2). 𝑅2 and 𝑅3 are defined sym-

metrically with the restrictions 𝑋2 = 𝑍2 and 𝑋3 = 𝑌3 respectively.

Let 𝐻 (𝑃,𝑄) =
√︂

1
2

∑
𝑥 ∈Ω

(√︁
𝑃 (𝑥) −

√︁
𝑄 (𝑥)

)2
be the Hellinger dis-

tance between two distributions. We need the following facts.

Fact 7.4. (i) 𝐻2 (𝑅1, 𝑅2) = Θ(𝜀) and (ii) 𝐼 (𝑌1;𝑍1) − 𝐼 (𝑋1;𝑍1) =
Θ(𝜀 log 1

𝜀 ).

Proof. The calculations are skipped. □

Lemma 7.5. (i) Every tree 𝑇 on 3 vertices is not Θ(𝜀 log 1
𝜀 )-

approximate for one of 𝑅1, 𝑅2, 𝑅3.

(ii) Given samples from a random distribution from 𝑅1, 𝑅2, 𝑅3,

Ω(1/𝜀) samples are needed to rule out an incorrect one with

4/5 probability.

The same argument used for Theorem 7.3 implies:

Theorem 7.6. The sample complexity of computing an 𝜀-approx.

tree for a tree-structured distribution on 𝑛 variables with error proba-

bility less than 1/3 is Ω(𝑛𝜀−1 log 𝑛
𝜀 ).

Proof of Lemma 7.5. For part (i), let 𝐺 := 𝑋Ð𝑌Ð𝑍 and 𝐻 :=

𝑌Ð𝑋Ð𝑍 . Let 𝑅1,𝐻 be the closest 𝐻 -structured distribution to 𝑅1
and so on. Then by Corollary 3.4, 𝐷 (𝑅1 ∥ 𝑅1,𝐻 ) − 𝐷 (𝑅1 ∥ 𝑅1,𝐺 ) =
𝐼 (𝑌1;𝑍1)−𝐼 (𝑋1;𝑍1) = Ω(𝜀 log 1

𝜀 ) using Fact 7.4. Hence𝐷 (𝑅1 ∥ 𝑅1,𝐻 )
= Ω(𝜀 log 1

𝜀 ). Similarly, it can be shown for the other two trees.

The proof for part (ii) is skipped. □
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