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Correlated insulators in twisted bilayer graphene
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Experiments on graphene bilayers, where the top layer is rotated with respect to the one below, have displayed
insulating behavior when the moiré bands are partially filled. We calculate the charge distributions in these

phases, and estimate the excitation gaps.
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I. INTRODUCTION

Graphene bilayers, where the top layer is rotated with
respect to the bottom, show remarkable properties [1-10].
These arise from the presence of a long-wavelength moiré
superlattice. For twists near certain “magic angles,” the low-
energy bands become very flat, and interactions dominate
[11]. Moreover, the bands have nontrivial topological indices.
Experimentally, one observes insulating phases at certain ra-
tional fillings of the bands. Electrostatically doping away from
these rational fillings leads to superconducting phases, whose
transition temperatures are large compared to the bandwidth
[1,2]. An important part of understanding the physics of these
systems is to identify the structure of the correlated insulating
states. Here, we conduct a variational study of the various pos-
sible charge-density, spin-density, and valley-density waves,
which are the most natural candidates. We find that there are
“stripe” ordered spin and valley ferromagnets at fillings of
{1/8,3/8,5/8,7/8}. Atfillings of {1/4, 1/2, 3/4}, the ground
state is a spatially homogeneous spin and valley ferromagnet.
The stripe order should give rise to birefringence.

There is significant prior work on this problem. Two sep-
arate groups, Seo, Kotov, and Uchoa [12], and Kang and
Vafek [13], recently argued for a ferromagnetic state at 1/8
filling. Kang and Vafek’s results are similar to ours, in that
they find charge ordering in addition to the spin ordering.
Our approach is complementary in that we explore different
models for the electron-electron interactions. Kang and Vafek
use a short-range interaction, while we consider two models:
a long-range Coulomb interaction, and a dipolar interaction
which accounts for image charges in the back gate. All three
models give similar results, pointing to the robustness of the
phenomena.
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Related analysis is found in the Supplemental Material
of Choi et al. [3], which considers the half-filled case. Lu
et al. [14] found signatures of an orbital ferromagnetic state
at 3/8 filling. Studies of Wigner crystallization by Padhi,
Setty, and Phillips [15,16] have relevance. Also notable is
the slave-spin treatment of Pizarro, Calderon, and Bascones
[17], the Hartree-Fock analysis of Xie and MacDonald [18],
and the projection-based technique of Repellin, Dong, Zhang,
and Senthil [19]. All of these reveal different aspects of the
correlated insulators.

In addition to those already described [1,2], experimental
studies of the correlated insulators include measurements of
the compressibility [3,4], magnetic response [5], tunneling
spectroscopy [6—8], and further transport properties [9,10].

Beyond finding the lowest-energy charge configurations,
we investigate the energy cost of adding a particle, adding a
hole, or adding a particle-hole pair. We find that the interaction
energy from these defects is large compared to the width of the
moiré minibands. Consequently, one expects large interaction-
driven mixing in of higher bands, which would need to be
included in quantitative models. Our present study, however,
is a necessary prerequisite for those calculations.

II. MODEL

Graphene forms a honeycomb lattice, with a unit cell con-
taining two sites, denoted A and B. For small twist angles (near
1°), the bilayer system displays a large moiré unit cell. There
are three notable regions, denoted by AA, AB, and BA, each
forming triangular lattices (see Fig. 1). In the AA regions,
the two lattices align. In the AB regions, the A sites of the
lower layer line up with the B sites of the upper layer. The BA
region is the opposite. The AB and BA sites together form a
honeycomb lattice.

As described in Ref. [20], the electronic structure of the
low-energy bands is built from Wannier states which are
centered at the AB and BA sites. Each Wannier state has a
three-lobed spatial structure, with each lobe centered on an
AA region. Thus the Wannier state centers are in the AB-BA
regions, but the charge density is peaked in the AA regions.
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FIG. 1. Schematic of twisted bilayer graphene: Green/orange
disks represent carbon atoms in each layer. In the lower left, lines
connect nearest-neighbor atoms in each layer. AA (pink), AB (red),
and BA (blue) regions are labeled. Two schematic trefoil-shaped
Wannier states are shown, which centered on BA and AB regions,
respectively.

This structure is schematically shown in Fig. 1. In addition to
a sublattice index (AB or BA), the Wannier states in this model
are labeled by spin and valley indices, leading to an eight-band
effective Hamiltonian.

There is a number of subtleties about the construction
of the Wannier states. For example, Refs. [21-23] argued
that there is a topological obstruction that prevents the exis-
tence of exponentially localized Wannier states obeying all
the emergent symmetries. Indeed, while the Wannier states
from Ref. [20] that we work with are exponentially localized,
one of the protecting symmetries is broken [22,23]. These
considerations only affect physics on an exponentially small
energy scale, where symmetry breaking effects matter: They
are not relevant to the questions we are asking, and our results
would be unchanged if we worked with a larger basis set.

The effective electronic hopping matrix element between
two nearest Wannier orbitals is about 0.3 meV, while the effec-
tive direct Coulomb interaction between them is of the order
of 10 meV [12,20]. This clear separation of scales motivates
us to consider stationary charge distributions, where we break
translational symmetry, and distribute the electrons among
various Wannier orbitals. We neglect kinetic energy and find
the configurations which minimize the Coulomb interaction
energy.

We systematically consider periodic arrangements of
charges defined by the generators of the supercell v, =
mja; +mya, and v, = nj a; + np ay, where a; and a, are
the generators of the moiré lattice. We include all unit cells
containing fewer than 13 sublattice sites, with each of m;, m,
ny, and n, restricted to be smaller than or equal to 4. We also
include a small number of larger unit cells. In all, we consider
well over 3000 charge configurations, though many of them
are equivalent, or symmetry related.

We use the interaction model derived by Koshino et al.
[20]. They found that the Coulomb interaction energy from
lobes in the AA regions r; and r;j is well approximated by

e 1
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where —e/3 is the charge in each lobe, and € is the di-
electric constant, which we take equal to 10¢,. Here, Ly, is
the distance between neighboring AB and BA regions. We
use Ly = 13.4 nm, corresponding to a twist angle of 6 =
1.05°. We also include an exchange interaction, which lowers
the energy by J when two overlapping occupied orbitals
have the same spin and valley quantum numbers. We use the
values for the exchange energies from Ref. [20]. These are
dominated by the nearest-neighbor and next-nearest-neighbor
terms: J = 0.376, 0.0645¢?/(eLy). All other exchange en-
ergies are smaller than 0.0014¢?/(eLy). Terms beyond the
fifth-nearest neighbor are ignored.

The Coulomb interaction energy from a two-dimensional
(2D) array of charges is linearly divergent with system size.
The relative energies of the configurations with the same
average density, however, are well defined. Some care must
be taken in calculating these energies, since even after sub-
tracting off the leading divergence, the remaining sums are
conditionally convergent. The process is regularized by using
2D Ewald sums [24,25]:

1
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Here, 7 is an arbitrary parameter which separates the interac-
tions into long-range and short-range parts. The sum is over
a Bravais lattice £, which in our case is generated by the
supercell vectors vy, v2. The reciprocal lattice is £, and £\0
represents the reciprocal lattice with the origin removed. Here,
C is an irrelevant infinite constant, which physically repre-
sents the Coulomb energy from a uniform charge distribution.
The sums in Egs. (3) and (4) are absolutely convergent. We
chose 7 to give a reasonably fast convergence rate, typically
taking it to be 1/3 of the lattice constant.

In the experimental setup of Ref. [2], a metallic back gate
sits roughly 30 nm behind the sample. We supplement our
long-range Coulomb calculations by also calculating energies
where we include a set of image charges in this layer. The
Appendix gives the resulting expressions for the energies. To
leading order, these images uniformly shift the energies of all
configurations by the same amount (corresponding to the clas-
sical capacitance). Configuration-dependent corrections are
exponentially small in the ratio of the supercell periodicity
to the distance from the back gate, and we find that for the
experimental geometry the results for ground state energies
are unchanged when we add the images.
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FIG. 2. The ground state for 1/8 filling. The large red and blue
disks represent electrons occupying the Wannier states on the AB and
BA lattice sites. Each Wannier state has a three-lobed structure—and
lines extend from each colored disk—terminated by small black dots
which represent the center of each lobe. Small pale disks show the
locations of empty Wannier states for part of the lattice. Despite a
breaking of translational invariance, the charge density is uniform:
Each AA region has a charge of —e.

III. GROUND STATES

As previously explained there are eight states per unit cell,
labeled by sublattice (AB or BA), spin, and valley. Due to the
relatively strong exchange interaction, physically correspond-
ing to large spatial overlap between neighboring Wannier
states, it is always favorable to maximize the number of elec-
trons which have the same spin and valley quantum numbers.
Thus we find that at fillings v = 1/8, 1/4, all electrons have
the same spin and valley quantum numbers. At v = 3/8, there
are not enough states for all electrons to carry the same spin
and valley quantum numbers. Instead, two-thirds of the elec-
trons carry one set, while the other one-third carry another
set. At v = 1/2, things are similar, but an equal number of
electrons carry each of the two sets of quantum numbers.
Larger v’s are simply particle-hole mirrors of these configura-
tions. At the level of our model, the exact quantum numbers
do not matter—what matters is just that they follow this
pattern.

We find that for v = 1/8, the occupied modes (all of which
have the same spin and valley quantum numbers) form a
striped configuration, as shown in Fig. 2. For v = 1/4, the
occupations are uniform, with every Wannier state occupied
by a single electron, all of which share the same spin and
valley quantum numbers. For v = 3/8, the electrons with the
dominant quantum numbers form a uniform pattern, while the
ones with the other quantum number form the pattern from
v = 1/8. For v = 1/2, the occupations are again uniform,
with each Wannier site being doubly occupied.

Our results are confirmed by the experimental observations
of Zondiner et al. [4], where they find that right at an integer
filling, the spin and valley degrees of freedom are not filled
equally. Starting with v = 1/8, only one flavor fills it up. Then
at the next integer filling, another additional flavor fills it up,
and so on.

Despite the symmetry breaking at v = 1/8, the charge
density is nearly uniform: Each AA site has a charge of —e.
The spatial symmetry breaking, however, should be apparent

FIG. 3. Second-lowest-energy periodic configuration that we
found with a filling of 1/8. If one allows larger unit cells, one
can make lower-energy excited states by alternating regions of this
pattern with those from Fig. 2.

in optical measurements through a birefringence. One may
also find that transport measurements are anisotropic.

The energy per particle in each of these four cases is
E=-1.72, —2.39, 355, 49.462/(€LM). In physical units,
this corresponds to £ = —18.4, —25.6, 381, 530 meV per
particle. The relatively small difference between the energy
per particle for v = 1/8 and v = 1/4 occurs because in these
spin/valley polarized states, the direct Coulomb interaction
is largely canceled by the exchange interactions. At higher
fillings, we are adding electrons with different spin/valley
quantum numbers, for which there is no such cancellation.
These energies should all be understood as relative to a clas-
sical uniform charge distribution.

One way to quantify the stability of the striped state at v =
1/8, is to look at the next-lowest-energy state that we found
(Fig. 3). This excited configuration has energy —17.7 meV per
particle, which is only modestly higher than the ground state.
The charge density for this pattern is again uniform, even
though the pattern of occupied Wannier states is nonuniform.
Note, one can create v = 1/8 configurations whose energies
lie between these by alternating these two patterns.

Given the small energy difference, lattice defects, im-
purities, or other irregularities could play a role in the

FIG. 4. The addition of an electron to an empty site in a ground
state configuration for 1/8 filling. The green dot represents the added
electron.
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experimentally observed pattern. Furthermore, kinetic effects
could mix them.

IV. EXCITATIONS

We calculate the energy of four types of excitations: adding
a single electron to one of our ground states, removing a single
electron (i.e., adding a hole), adding an electron-hole pair, or
flipping the spin/valley of a single electron: E., Ey, Eep, E;.
Physically, E. and E} correspond to the chemical potentials
required to add or remove a charge and are experimentally
determined by measuring the charge density as a function of
gate voltage: The charge density is constant over a voltage
range of width AV = (E. + Ey,)/e. The electron-hole excita-
tion energy can experimentally be measured from transport:
One expects the low-temperature resistivity to obey an Arrhe-
nius law with energy scale E,. The spin excitation energy can
similarly be inferred from the temperature dependence of the
spin susceptibility. While we find that the presence of a back
gate plays no role in the ground state energies, it can shift the
excitations energies by ~1 meV. We just quote numbers for
the case without the back gate.

Experiments find the energy scales for excitations are
fractions of meV, while our model yields tens of meV. The
discrepancy has a number of sources. First, since the Coulomb
interaction scale is large compared to the width of the moiré
minibands, the low-energy excitations undoubtedly involve
electronic states which are outside of the minibands (and
hence not included in our model). Second, it is likely that
impurities and other defects are playing a role in the experi-
ment. Third, collective effects can lower the excitation energy.
Nonetheless, our estimates are quite valuable as a starting
point for understanding the phenomena.

For v = 1/8, the lowest energy electron excitation con-
sists of adding a particle with the same quantum numbers
as the other atoms to one of the empty sites (as shown in
Fig. 4): all possibilities are equivalent. This has energy E. =
—1.33% = —14.3meV. Similarly, all ways of removing an
electron are equivalent, with E;, = 36.9meV. As is required
for stability, —Ey, < E., which is a discrete analogy to requir-
ing that the compressibility is positive, 32E /dN? > 0. The
fact that E. < 0 should not cause alarm—this is a common
physical occurrence. The physical picture is that our energies
are measured relative to having a uniform charge distribution,
and we effectively have contributions from a uniform positive
background.

The lowest-energy particle-hole excitation at v = 1/8 oc-
curs when the particle is moved to a neighboring unoccupied
site. This has the energy E.;, = 10.2meV, which is smaller
than E. 4+ Ej, because of the electron-hole interactions. It is
also larger than the energy-per-particle difference between
the configurations in Figs. 2 and 3. One can generate Fig. 3
from Fig. 2 by moving one-fourth of the particles. The inter-
actions between these particle-hole pairs reduce the cost of
this rearrangement. A spin or valley flip excitation costs an
energy of E; = 10.1 meV, which is solely due to the exchange
interaction.

For v = 1/4, any extra electron must have different quan-
tum numbers than the others. All sites are equivalent, and we
find E. = —13.8 meV. A naive expectation might be that this

excitation energy would be twice what we found at v = 1/8,
since the charge is twice as large. In fact, adding an electron at
v = 1/4 costs much more than twice the v = 1/8 value. Given
that the charge density is very same in both cases, this differ-
ence can be attributed to the exchange interaction. The energy
to remove an electron is E;, = 51.2 meV, which is somewhat
less than twice the energy of the equivalent excitation at v =
1/8. The difference can be attributed to the detailed structure
of the charge distribution in the Wannier states. The particle-
hole excitation energy is Ee, = 21.1 meV. A spin or valley flip
excitation costs an energy of E; = 17.5meV.

At v = 3/8, the ground state contains electrons with two
different quantum numbers. Let us denote these by « and .
The « electrons are spread uniformly, while the 8 electrons
form the zigzag pattern in Fig. 2. The lowest-energy electronic
excitation corresponds to adding another electron in the B
state, with an energy of E, = —28.1 meV. Clearly, this is just
the sum of the values of E. for the v=1/8 and v =1/4
configurations. Note that if we add an electron with a different
spin/valley, the value would have been —20.7 meV, which
is energetically costlier. The lowest-energy hole excitation
comes from removing an electron from the S state, which
yields Ep = 33.2meV. The particle-hole excitation energy
is Ec, = 10.2meV. A spin or valley flip excitation costs an
energy of E; = 10.1 meV.

At v = 1/2, any added electron must have different quan-
tum numbers than the rest of the electrons. The required
energy is E. = —27.6meV. As expected, this comes out to
be twice the value of E. for v = 1/4. The energy required
to remove an electron is E, = 65.0meV. The particle-hole
excitation energy is E., = 21.1meV. A spin or valley flip
excitation costs an energy of E; = 17.5meV. We note that
the value of Ej is the same for v = 1/8 and v = 3/8 (equal to
10.1 meV), and forv = 1/4 and v = 1/2 (equal to 17.5 meV).

Much of the structure in the excitation energies is related
to the exchange interaction: The direct Coulomb energy (in

units of —) for adding a particle to the ground states corre-
spondmg 0 1/8,1/4,3/8, 1/2 fillings are 0.642, 1.284, 1.926,
2.568, which are in the ratio 1 : 2 : 3 : 4. This scaling arises
because the charge distribution is uniform in all cases.

V. SUMMARY AND OUTLOOK

To summarize, we have calculated the charge distributions
of the correlated insulators at all integer fillings of magic
angle twisted bilayer graphene. We have also estimated all
possible excitation gaps over the insulating ground states. In
all these computations, we have neglected the kinetic terms, as
the effective tight-binding models show that the strength of
the hopping terms is much less than the Coulomb interactions,
and will only have a perturbative effect. One essential caveat
is that because the Coulomb scale is so large, it likely leads
to mixing between the flat bands and the spectator bands.
Nonetheless we are able to explain much of the observed
physics, such as the progression of fillings seen by Zondiner
etal. [4].

It would be rewarding to apply similar techniques to
characterize the correlated insulating phases of transition
metal dichalcogenide (TMD) homobilayers and heterobilay-
ers [26-30], as they have much simpler moiré band structures.
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Moreover, in certain TMDs such as WSe,, the flat bands
and the resulting correlated states are found to exist over a
continuum of angles [31] rather than a narrow range around
some “magic angles.”
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APPENDIX: INTERACTIONS WITH IMAGE CHARGES

We model screening by a back gate sitting a distance d /2
from the sample by placing equal and opposite image charges
at a distance d. We treat the charge distribution of each Wan-
nier state as three delta functions, each of charge g = e¢/3. The
Coulomb interaction between a single charge in one plane,
and a Bravais lattice of charges in another is

1
Very ——— (A1)
Ir —w|? 4 d?

wel |

A [r—w|?+d?
erfc (¥

where A = qz/(4ne), w is a 2D lattice vector, and r is the 2D
location of the charge in the device. By Fourier transforming
the potential, one can write

27ad  2mA e .
V=M+— +— ,
Q Q . gl

where the first term contains the same infinite constant
as Eq. (2). The second term is the potential from a uni-
formly charged plane, with  being the area of the unit
cell. The third term falls off exponentially with the sep-
aration. There, £ is the 2D reciprocal lattice. Due to
this exponential cutoff, the image charges play a very
minor role in the energetics of different periodic charge
configurations.

We follow the procedure in Lee and Cai [25] to write V =

Vi 4+ V; with
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