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Driven-dissipative control of cold atoms in tilted optical lattices
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We present a sequence of driven-dissipative protocols for controlling cold atoms in tilted optical lattices. These
experimentally accessible examples are templates that demonstrate how dissipation can be used to manipulate
quantum many-body systems. We consider bosonic atoms trapped in a tilted optical lattice, immersed in a
superfluid bath, and excited by coherent Raman lasers. With these ingredients, we are able to controllably
transport atoms in the lattice and produce self-healing quantum states: a Mott insulator and the topologically
ordered spin-1 Affleck-Kennedy-Lieb-Tasaki state.
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I. INTRODUCTION

While dissipation is often viewed as a hindrance, it can also
be a tool for manipulating quantum states. Here we provide a
series of cold atom examples of using dissipation to prepare
quantum states, and control their behavior. This approach
complements other methods of state preparation, and avoids
some of the challenges those techniques face. By giving spe-
cific protocols for dissipative state preparation and control,
we are able to elucidate the underlying principles and directly
confront the advantages and disadvantages of this approach.

In cold atom experiments, dissipation is provided by sev-
eral mechanisms: off-resonant light scattering, three-body
atom loss, collisions with background atoms, and even
the conversion of coherent excitations into incoherent ones
through elastic collisions of atoms in the sample. Traditional
cooling schemes have long relied on these processes for equi-
libration [1], but the idea of engineering dissipation to target
specific many-body quantum states is more novel [2]. In the
few-particle limit, there are more established examples, such
as optical pumping. The driven-dissipative approach to state
preparation can be viewed as a many-body analog of optical
pumping.

This method offers a practical alternative to other tech-
niques of state preparation, and overcomes some of their
difficulties. For instance, adiabatic state preparation requires
the process to be much slower than the many-body gap [3].
This poses particular challenges if one needs to traverse a
critical region, where the gap vanishes. Another common state
preparation technique is Hamiltonian engineering where the
desired state is the ground state of some fixed Hamiltonian
which can be reached by cooling. Obstacles to Hamiltonian
engineering include the following: (1) The required tempera-
tures may be unachievably low, and (2) the equilibration rates
may become small as one approaches the state of interest. An
example is the fractional quantum Hall state, where particles
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avoid one another, and hence the elastic collision rate is small.
In all of these techniques, the key questions are the follow-
ing: (1) Can you produce the state of interest, and (2) how
long does it take? We answer both these questions for our
examples.

Dissipative state preparation has the potential to be fast—
the time scale is experimentally controllable and the kinetic
bottlenecks can be explicitly removed by properly engineer-
ing the environment. The critical slowing down that plagues
adiabatic methods is completely avoided: One is far from
equilibrium throughout the time evolution. Most importantly,
the final state is self-correcting. If one leaves on the dissipa-
tion (perhaps with some reduced amplitude) any perturbations
can be healed. This has connections to autonomous error
correcting codes: The dissipatively stabilized quantum state is
a protected resource for manipulating quantum information.

Controlled driven-dissipative state preparation is an ac-
tive area of research both theoretically and experimentally.
For example, in superconducting qubits, dissipation has been
used to create a stable Mott insulator of photons [4] and
a long-lived two qubit Bell state [5]. Reservoir engineer-
ing has been used in trapped ion systems to create a four
qubit Greenberger-Horne-Zeilinger state [6]. Ultracold atoms
can be promising candidates for dissipative state preparation.
The Mott-superfluid transition in a driven-dissipative Bose-
Hubbard system has been realized experimentally [7]. Some
theoretical proposals include preparation of number and phase
squeezed bosonic states [8] and dissipatively prepared topo-
logical superconductors [9].

In this paper, we analyze a broadly applicable approach to
driven-dissipative control in cold atoms, which both extends
these examples and provides an experimentally accessible
framework for exploring the general principles. Our setup
is schematically shown in Fig. 1. We consider 7Li atoms
in a “tilted” one-dimensional (1D) optical lattice, modeled
by the sum of a linear and sinusoidal potential. Transitions
are driven by two-photon Raman processes, which use an
electronically excited state as an intermediary in changing the
spatial mode of an atom. Dissipation is provided by coupling
to a superfluid bath of 23Na atoms which are not trapped by
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FIG. 1. Spatial dependence of potential energy in a one-
dimensional tilted optical lattice. Each site has two eigenstates,
labeled |g〉 and |e〉 with an energy gap ω0. Energy offset between
neighboring sites is " and the tunneling within the lowest band is
tgg. As depicted by black and orange arrows, labeled by #0, coherent
Raman lasers drive transitions between the ground band of site m and
the excited band of site m + 1. The Raman transition is detuned by δ

from an intermediate electronic excited state. The lattice is immersed
in a 3D superfluid bath (bath atom shown in red). The blue curvy
arrow shows spontaneous decay from excited band to ground band
through bath interactions with a rate, %. Upper right: A finite length
tilted lattice with the additional box potential walls at the edges.

the lattice. Lithium atoms can decay from excited vibrational
states to lower ones by emitting Bogoliubov excitations in
the superfluid bath. We note that all the different parts of our
proposed process have been experimentally demonstrated in
other works [10–14]. Similarly, these ingredients have been
studied in a number of theory works [15,16]. We explicitly
calculate all the relevant energy and time scales and quanti-
tatively show how the drive and dissipation can produce our
target states.

We give three examples to demonstrate the capabilities
of our driven-dissipative scheme. First, we show a way to
control atom transport along a one-dimensional tilted optical
lattice potential, both up and down the lattice. This would
be relatively simple to implement and an excellent target for
initial experiments. Additionally, it provides a way to fully
control the speed of atom transport in a lattice. Second, we
show how it can be further modified to drive the system into a
strongly correlated Mott insulator state in a tilted lattice with
a mechanism to self-heal any holes. Finally, we propose how
the iconic Affleck-Kennedy-Lieb-Tasaki (AKLT) state can be
achieved with this technique.

The AKLT state occurs in a spin-1 chain. It has unique
properties, including symmetry protected topological order
and valence bond order. It has emergent spin-1/2 edge modes
and a gapped ground state. It is also a prototypical example
of a matrix product state. The AKLT state has never been cre-
ated experimentally in cold atom systems. One of our central
results is a protocol to create it in a driven-dissipative ultracold
atomic system.

Our paper is organized as follows. In Sec. II we introduce
the physical system and derive the effective model which

we will use to describe it. This includes showing how the
driving and dissipation processes are engineered. In Sec. III,
we describe our protocols and calculate state preparation time,
including the scaling with system size.

II. MODEL

A. System and effective model

As already introduced, our basic setup is shown in Fig. 1.
For each of our examples, we consider two populations of
bosons, referred to as the lattice and the bath atoms. The lattice
atoms are constrained to move in one dimension. They experi-
ence a “tilted lattice” potential along that direction, consisting
of the superposition of sinusoidal and linear potentials. The
bath atoms form a three-dimensional (3D) cloud. There is
also a series of control lasers that are used to drive Raman
transitions. Each of these components is discussed in detail
below.

In its simplest incarnation, the resulting effective model
has the structure of a 1D chain of sites with a linear potential
gradient. Each site j contains two states: the ground state |g〉 j
and a vibrationally excited state |e〉 j , with an energy gap h̄ω0
between them:

Ĥ0 =
∑

j

− j"|g〉 j〈g| j + (− j" + h̄ω0)|e〉 j〈e| j . (1)

Additionally, there is an onsite interaction Hamiltonian,

Ĥint = Ugg|gg〉〈gg| + Uge|ge〉〈ge| + Uee|ee〉〈ee|, (2)

and coherent drives,

Hcoh = #′e−iωt |g〉 j〈e| j+1 + H.c. (3)

Our decay terms are modeled by on-site jump operators of
the form

L̂ j =
√

%|g〉 j〈e| j . (4)

Sections II B–II F derive this effective model, starting with
a microscopic description of the trapped gas.

B. 1D lattice

The system atoms are trapped in a one-dimensional tilted
optical lattice. The lattice is generated by interfering two
counterpropagating laser beams. The tilt can be generated by
using the AC Stark shift from a large waist laser which is
incident on the system from a direction perpendicular to the
lattice [10]. The resulting potential is shown in Fig. 1.

When the energy difference between neighboring sites,
", is large compared to the tunneling amplitude, t , then the
eigenstates of the tilted lattice become strongly localized to
individual sites. If we limit ourselves to nearest-neighbor hop-
ping, the exact Wannier-Stark eigenstates are [17]

ψm,α =
∑

l

Jl−m

(
tα
"

)
φα

l . (5)

Here, α is the band index, l and m are site indices, φα
l is

the site localized Wannier function for the αth band, and tα
is the hopping matrix element for that band. Jn(x) is the nth
Bessel function: For small arguments, Jn(x) ∼ x|n|, and we see
that the wave function falls off exponentially. For a sufficiently
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tight lattice, one can approximate the Wannier states, φα
m, as

harmonic oscillator eigenstates, with energy

Em,α = −mh̄" + (α + 1/2)h̄ω0, (6)

where ω0 is the small oscillation frequency. Throughout we
will only consider two bands, labeled by α = g, e; regardless
of the accuracy of the harmonic approximation, we can define
h̄ω0 = Em,e − Em,g.

For two particles on a site, the on-shell components of the
on-site interaction are

Ĥint = Ugg|gg〉〈gg| + Uge|ge〉〈ge| + Uee|ee〉〈ee| (7)

where |αβ〉 is the state with particles in bands α and β, and
the site index has been suppressed. The U ’s scale as as/d2

⊥,
where as is the scattering length, and d⊥ is the transverse
size of the Wannier state. If one approximates the Wannier
states as harmonic oscillator eigenstates, then Ugg can be
calculated as

Ugg = 8π h̄2as

md2
⊥

∫ ∞

−∞
dx |wg(x)|4. (8)

Here, wg is the ground-state harmonic oscillator wave
function. Analogous expressions give the interaction ener-
gies involving higher bands, and one finds Uge = 1

2Ugg and
Uee = 3

4Ugg.
We model the lattice potential as V (r) =

V0Erec sin2(2πx/d ), where V0 is the dimensionless lattice
strength, d is the lattice beam wavelength, and Erec = 2h̄2π2

md2 is
the recoil energy. This potential has a lattice spacing of d/2.

The tunneling amplitude tgg in the lowest motional band in
the harmonic approximation can be written as

tgg =
∫

dx w∗
g (x + d/2)Ĥwg(x) (9)

∼ Erec
√

V0e− π2
4

√
V0 . (10)

The tunneling in the higher band can be similarly found to
be tee ∼ 3tgg√

2
(1 + π2

4

√
V0). The band gap between the ground

and excited motional band is

h̄ω0 ∼ 2Erec
√

V0. (11)

As a rule of thumb, these approximations work well when
V0 ! 9. For d = 1064 nm, a typical laser wavelength, one
then has a tunneling amplitude on the order of tens to hundreds
of Hz, while the band gap between the ground and first band
is on the order of tens of kHz. Typical background scattering
lengths are of the order of a few nm for 7Li atoms [18].
These scattering lengths can be easily tuned via Feshbach
resonances, with the caveat that one may find enhanced in-
elastic processes if they are made too large. In our system,
we envision that the lattice atoms are tightly confined in the
transverse directions with d⊥ * d and thus the interaction
energy is also on the order of tens of kHz.

Such one-dimensional tilted optical lattices have been re-
alized in experiments either using the AC Stark shift gradient
from a laser [10] or with a magnetic-field gradient [11].

C. Coherent drive

Transitions are driven by a two-photon coherent drive: The
lasers are tuned so that absorbing a photon from one beam and
emitting it into the second is resonant with a band-changing
hopping event. For example, as illustrated in Fig. 1, this
Raman process could drive the transition from the ground
band on one site to the excited band on a neighboring site,
in which case ω1 − ω2 = ω0 − ". Here ω1 = c|k1| and ω2 =
c|k2| are the frequencies of the lasers. An incoherent scattering
event will later return the atom to the ground band.

The Raman laser frequencies can be adjusted to bring other
possible transitions like hopping between ground bands of
neighboring sites into resonance.

In our concrete scenario, one laser beam drives the atom
in the lowest band in site m to a virtual level, corresponding
to an electronically excited state. This single-photon process
is detuned by frequency δ, and has transition rate #0. The
second laser drives the transition from this virtual level to the
motionally excited state of site m + 1.

If δ + #0, the effective rate of this two-photon process
can be calculated by adiabatically eliminating the higher elec-
tronic level and is given by

#′ = #2
0

δ

∣∣∣∣

∫
dx ψ∗

m,g(x)ei(k1−k2 )xψm+1,e(x)
∣∣∣∣
2

(12)

∼ #2
0

δ

(
1 + π2√V0

2

)
e− π2√V0

2 . (13)

The latter result is derived in the Appendix, in the deep lattice
limit, with the angle between the Raman beams chosen to
optimize the transition rate.

To make unwanted transitions highly off-resonant, we want
to be in the regime where #′ * ",ω0 (which as previously
explained are on the order of 104Hz).

These conditions would ensure that our drive induces
coherent Rabi oscillations of atom transfer between adja-
cent sites. A similar coherent atom transfer process in a
Wannier-Stark ladder has been experimentally demonstrated
by Beaufils et al. [12]. They were able to achieve Raman
transition rates larger than needed for our proposal.

D. Dissipation medium

Dissipation is provided by scattering from a particle bath
of superfluid bosons that do not feel the optical lattice [15].
An atom in the higher band can transition to the ground band
through spontaneous emission of a Bogoliubov excitation in
the superfluid bath. This spontaneous decay process is shown
schematically in Fig. 1.

The temperature of the superfluid bath is much smaller
than ω0, so the bath of Bogoliubov particles can effectively
be taken as T = 0: These excitations can be created, but are
never absorbed.

Fermi’s “golden rule” can be used to calculate the resulting
decay rate from the motionally excited state to the ground
state. Following the argument of Griessner et al. [15], we find
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the decay rate in our system to be

% = 8πρba2
ab

√
Erec

V 1/4
0

m1/2
a

e− 4π2mr
√

V0d2
⊥

d2 f (mr ),

f (mr ) = (1 + mr )2

mr
[
√

πerf (
√

mr ) − 2
√

mre−mr ]. (14)

Here, mb and ma are the masses of the bath atoms and lattice
atoms, respectively, and mr = mb

ma
is their ratio. The interac-

tions between the lattice and bath atoms are parametrized by
the s-wave scattering length, aab. The number density of bath
atoms is ρb, and erf (x) is the error function.

The rate can be tuned by changing the superfluid bath
density, scattering length, and atomic mass ratios. The first
of these is experimentally the most accessible—but Feshbach
resonances can be used to control aab.

The rate strongly depends on the mass ratio, mr . For
mr * 1, f (mr ) scales as

√
mr , while for mr + 1 the rate

exponentially decays as e− 4π2mr
√

V0d2
⊥

d2 . The rate exponentially
decreases at larger mass ratios because the energy transfer is
poorer in collisions with higher mass atoms. The optimal mass
ratio occurs for mr ∼ 10 (for experimentally typical values
of

√
V0d2

⊥
d2 ).

For concreteness, we consider the 7Li atoms in the lat-
tice immersed in a superfluid bath of 23Na atoms. For a
typical bath atom density of 1013 cm−3 and interspecies scat-
tering length on the order of a few nm, the decay rate is
on the order of a few kHz. This rate sets the time scale of
the experiment. Our coherent transfers rely upon resolving
the motional sidebands and the lattice tilts, and hence require
% * #′,ω0,",U .

In this setup, the bath atoms do not feel the optical lattice:
This can be arranged due to the different AC polarizabilities
of the atomic species. For example, Scelle et al. [13] immerse
lithium atoms in a condensate of sodium atoms where only the
lithium atoms are trapped in a species-specific optical lattice.
A detailed discussion of techniques to create species-specific
optical lattices for various alkali-metal atom mixtures is given
by LeBlanc and Thywissen in [16].

This decay process can be viewed as a form of sympathetic
cooling and has been experimentally studied by Chen et al.
[14] in that context.

E. Additional potentials

For some of our protocols we also add an additional po-
tential, which can be created with an off-resonant laser. In
particular, we wish to be able to create a finite length chain as
shown in the upper right corner in Fig. 1, by adding barriers at
the end of the chain. Such potentials are commonly generated
in experiments [19].

F. Limitations of the effective model

An experiment can only be described by the effective
model in Eqs. (1) through (4) if ",ω0 + #′,%.

The condition ",ω0 + #′ is required so that the drive
does not produce transitions to unwanted sites. For example,
the drive inevitably produces a matrix element connecting |g〉 j
and |g〉 j+1. This transition is off-resonant, though, and the

rate is suppressed by a factor of #′/ω0 relative to the wanted
transition. Similarly, the matrix element connecting |g〉 j and
|e〉 j is suppressed by #′/".

The condition ",ω0 + % is required so that the level
broadening does not bring any of those same unwanted tran-
sitions into resonance.

Note, these conditions puts constraints on the techniques
which can be used to introduce the dissipation. For example,
it would be challenging to design the protocols so that spon-
taneous emission of a photon would provide the dissipation.
The characteristic scales of optical processes are much larger
than " and ω0. The scales of the Bogoliubov excitations are
better matched.

III. PROPOSALS

As already explained, we propose three scenarios: In
Sec. III A, we describe a transport scheme where this driven-
dissipative approach controls the motion of a cold gas. In
Sec. III B, we show a variant of the technique that can be
used to heal defects in a Mott state. Finally, in Sec. III C,
we explain how to pump the system into the AKLT state—a
highly nontrivial example of state engineering.

All of these will be described using variants of the model
introduced in Eqs. (1)–(4).

A. Raman sideband elevator

Transport in solid-state systems is a driven-dissipative pro-
cess. A potential gradient provides energy to the system,
while inelastic scattering off of impurities acts as a regulator,
controlling the average speed of the electrons. We propose
constructing the analogous process in our atomic system. As
in the solid-state system, the atoms will move with constant
velocity. By changing the intensity and frequency of the
Raman lasers, one can control both the direction and speed of
motion, which leads us to refer to this as a “Raman sideband
elevator.”

As depicted in Fig. 1, the coherent Raman drive resonantly
couples atoms from the ground band of one site to the excited
band of its nearest neighbor. The atom in the higher band
interacts with the dissipative bath and decays to the ground
band at that site. This irreversibly transfers the atom one site
down the ladder. The process can then repeat itself. In steady
state, all atoms are moving at a constant speed. This eleva-
tor can transfer atoms in either direction, depending on the
frequencies of the Raman lasers: When ω1 − ω2 = ω0 − ",
the transfer is downhill, while when ω1 − ω2 = ω0 + " the
transfer is uphill. The analysis is identical, and throughout this
section we use the notation appropriate for downhill transport.

We will neglect interactions between atoms, and just model
the single-particle problem. The weakly interacting regime is
readily reached by either reducing the strength of transverse
confinement or using a Feshbach resonance.

Given that the single-particle eigenstates are localized on
each site, this situation can be modeled via a classical rate
equation: The only relevant variable is ni, the expectation
value of the number of particles on site i, and

dni

dt
= %̃ni−1 − %̃ni. (15)
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The rate %̃ is found by modeling the three levels involved
in the transport of atoms by one site. Under the regime where
the driving rate is greater than the decay rate, that is, #′ + %,
one finds %̃ = %/2. The Raman lasers cause the atom to
execute many Rabi oscillations, so it spends half of its time
in the unstable state—which decays with rate %.

These rate equations can be solved exactly to determine the
speed at which the center of mass moves downhill and how
much the cloud spreads over time. Using Eq. (15), the rate of
change of the center-of-mass position of the atom cloud, Xcom,
is given by

dXcom

dt
= 1∑

i ni

d
( ∑

i ini
)

dt
= %̃. (16)

Similarly, the rate of change of the cloud spread, σ 2, can
be derived from Eq. (15) to be

dσ 2

dt
= 1∑

i ni

d
( ∑

i i2ni −
( ∑

i ini
)2)

dt
= %̃. (17)

Under this process, the atom cloud’s center of mass moves
downhill with a constant speed, controlled by the dissipation
rate, %̃. At the same time, there is a linear spread of the square
of the cloud size with time. Both the drift and the spread are
readily measured in experiments.

One can also envision a finite length chain with all the
atoms initially confined at the upper end of the ladder, and
a potential barrier at the bottom, as described in Sec. II E. The
final steady state would be reached when all atoms accumulate
in the last site downhill. For a chain of length L, the time taken
would scale as t ∼ L/%̃.

B. Mott state

An ideal Mott insulating state contains exactly one par-
ticle per site. This is the ground state of the Bose-Hubbard
model with very strong interactions [20]. Finite temperature
introduces defects, as do atom loss events. A variant of our
Raman sideband elevator can pump the system into an ideal
Mott state, and heal defects which are later created.

We consider a finite length chain, with a potential similar
to the one in the upper right corner in Fig. 1. We require that
the atom-atom interaction Uge + %,#′. This large interaction
strength can be engineered by tightening the transverse con-
finement, or using a Feshbach resonance.

With strong interactions amongst the lattice atoms, the
Raman transition between the ground state of site i and the
excited state of site i + 1 is only resonant if there are no
atoms on site i + 1. Effectively, this means our incoherent
hopping only occurs on an empty site. Starting from a sparsely
filled chain where the average occupation per site is less than
1, as shown in Fig. 2, the driven-dissipative process enables
transport of the atoms down the ladder from filled sites to
empty sites. The rightmost atom stops when it hits the barrier.
Subsequent atoms stop when they encounter the filled states.
The end result is an idealized Mott state, with one atom per
site. If holes later develop, they are rapidly filled, as all uphill
particles shift over by one site.

We can estimate the time needed for a partially filled ladder
to reach the final Mott state. The model from Sec. III A is

m
m-1

m-2
m-3

m+1
m+2

FIG. 2. A partially filled configuration. The driven dissipative
process leads to incoherent hopping in the downhill direction. In the
presence of strong interactions, hopping onto a filled site is detuned
and therefore forbidden. This is indicated by the red arrows with x’s
through them.

simply modified to forbid hopping onto an occupied site. We
use a Gillespie algorithm to simulate the resulting stochastic
dynamics [21].

We find that the results are very well approximated by
assuming that the probability distributions on different sites
are uncorrelated and incoherent hopping is only allowed on
empty sites. Thus the dynamics are efficiently simulated using
the “mean-field” rate equation:

dni

dt
= %̃ni−1(1 − ni ) − %̃ni(1 − ni+1). (18)

As before, ni is the expectation value of the number of parti-
cles on site i.

For a finite length chain, the infinite time solution of the
above equation is the desired Mott state, where all atoms are
jammed up at the right-hand side. For generic initial condi-
tions, the time to reach this dark state scales linearly with the
size of the system.

Double occupancies are highly disruptive here. Our proce-
dure does not allow them to move, and they act as barriers
that prevent the motion of other atoms. There are several
techniques to remove doubly occupied sites [22].

After the ideal Mott state is formed, an atom loss event
will create a hole. This is healed by the hole hopping to the
left. The hole needs to hop at most N sites, where N is the
number of particles. Thus the characteristic time for the repair
is τ ∼ N/%̃.

C. AKLT state

Finally, a variant of this setup can be used to create the
AKLT state of the spin-1 chain. As previously explained, the
AKLT state is a symmetry protected topologically ordered
state having topologically protected edge modes.

The setup here is slightly more involved than our previous
examples, as we need to manipulate the hyperfine spin degrees
of freedom. We consider the construction demonstrated in ex-
periments at MIT [23] where they build local spin-1 objects by
placing two atoms on each site. Each atom has two accessible
hyperfine states, and is effectively a spin-1/2 object. Because
two bosons in the same site must be in a spin symmetric state,
these form a spin-1 composite. In the experiments, bosonic
7Li was used.

The physical structure in this experiment parallels the
“parton” construction often used to understand the AKLT
state [24]. In that picture, each spin-1 is broken into two
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FIG. 3. AKLT state described in a parton picture, where the
spin-1’s are represented by two spin-1/2 particles at each site. Each
blue square corresponds to projection of the two spin-1/2’s into a
triplet state while each red double arrow connecting spin-1/2’s on
neighboring sites represents a singlet. The green (dashed) spins at
the two ends are spin-1/2 edge modes.

(symmetrized) spin-1/2’s as shown in Fig. 3. Each of these
spin-1/2’s forms a singlet with a parton from a neighboring
site. The edge modes are understood as the leftover spins
which do not have singlet partners. The partons are usually a
mathematical construct, but in the experiment they represent
individual atoms.

In the original spin-1 language, the AKLT state is uniquely
(up to the boundary modes) defined by the property that if
you take any two neighboring spin-1’s they have zero weight
in the spin-2 channel. In other words, the AKLT state is anni-
hilated by the operators P(ST =2)

i, j = 1
2 Si · Sj + 1

6 (Si · Sj)2 + 1
3 ,

each of which projects the spins on neighboring sites i and j
into spin-2. The simultaneous null space of these operators is
fourfold degenerate, corresponding to the two spin-1/2 edge
degrees of freedom. The AKLT state is one of the prototypical
examples of a matrix product state. It has also been proposed
as a potential platform for measurement based quantum com-
puting [25], and this projector construction has analogs with
stabilizer codes [26].

Our goal is to engineer a dissipative process which occurs
only when two neighboring sites are in the spin-2 sector.
The AKLT state will then be the unique dark state. Again,
uniqueness is only up to the boundary mode configuration.
The strategy will be to have the dissipation involve an interme-
diate state with four bosons on a single site—a configuration
which can only be reached if the atoms are in the spin-2 sector.

Each site can be in one of the following three triplet states,
which are the different Sz projections of spin 1:

| ↑↑〉 = |+〉, (19)

1√
2
| ↑↓ + ↓↑〉 = |0〉, (20)

| ↓↓〉 = |−〉. (21)

As seen in [23], each of the spin-1 states on a site, |+〉,
|0〉, and |−〉, have spin-dependent on-site interaction energies,
U |σ 〉

gg , with σ = −,+, 0. These interaction energies depend on
the magnetic field. Amato-Grill et al. [23] find that there are
special values of magnetic fields where the three Sz projec-
tions have equally spaced interaction energies, that is, U |+〉

gg −
U |0〉

gg = U |0〉
gg − U |−〉

gg = "Ugg ∼ kHz. Under those conditions,
the spin dependence of the interactions is equivalent to a mag-
netic field in the ẑ direction. In our dynamics, the total Sz will
be conserved, so this field plays no role. The spin Hamiltonian
is then effectively rotationally invariant. Note that "U is small
compared to U |σ 〉

gg ∼ Ugg, which is tens of kHz.

FIG. 4. (a) Coherent resonant Raman transfer of two atoms from
the left site to the right site. (b) Coherent resonant Raman transfer
of the two atoms back to the excited band on the left site. The two
atoms then decay to the ground band. Due to bosonic symmetry, this
sequence is only possible if the total spin of the four atoms is ST = 2,
and hence this process cannot occur in the AKLT state.

The same story works in the excited band, but U |σ 〉
ee .= U |σ 〉

gg .
Within our approximations, U |σ 〉

ee = (3/4)U |σ 〉
gg , which means

"Uee = (3/4)"Ugg.
The protocol is shown in Fig. 4. We switch on a coherent

Raman drive such that it is in resonance with transitions where
two atoms from the ground band of one site are transported to
the ground band of the (filled) site next to it down the ladder,
resulting in four atoms on that site. Due to Bose statistics, four
spin-1/2 bosons on the same site in the same band must be in a
total spin symmetric state. Thus this Raman process can only
occur if the atoms on neighboring sites are in an ST = 2 state.
This process cannot occur if we are in the AKLT state.

The initial, final, and intermediate states in this process
have (2,2),(0,4), and (1,3) atoms on the two sites. They have
interaction energies 2Ugg, 6Ugg, and 2Ugg. If the drive is cho-
sen so that the initial and final states are resonant, then the
intermediate state is detuned by " − 3Ugg. The process there-
fore occurs at a rate

#′′ ∼ #′2

|" − 3Ugg|
. (22)

As in Sec. II C, #′ is the rate of coherently transferring one
atom by one site.

We would operate in the limit where Ugg," + #′′ !
"U,%. This hierarchy of energy scales ensures that unwanted
processes are far off resonant.

Simultaneously, another set of Raman lasers resonantly
transfers two atoms from the four-atom site back to their
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original site but in the excited motional band as shown in
Fig. 4. Following our previous arguments, the rate of this
process would scale as #′′ ∼ #′2/|" − 3Ugg + ω0|. Here the
intermediate state with three atoms on one of the sites has an
extra detuning ω0 due to the atoms being transferred into the
excited band. The same hierarchy of energy scales makes only
this process resonant for all Sz combinations. The two atoms
in the higher band can now decay through their interaction
with the superfluid bath atoms.

Spin decoherence is engineered through two mechanisms.
First, there is a dephasing resulting from time spent in
the excited-state configuration. For concreteness, consider a
neighboring pair in the |ST = 2, SZ

T = 1〉 state, 1√
2
(| +e 0〉 +

|0e+〉), with atoms on one of the sites in the excited band. The
| +e 0〉 state has energy U |+〉

ee + U |0〉
gg , while the |0e+〉 state has

energy U |0〉
ee + U |+〉

gg . These two states have an energy differ-
ence given by "Ugg − "Uee − (1/4)"U . Thus their relative
phases wind at a rate (1/4)"U . As long as %′"(1/4)"U , then
the phase is effectively scrambled. Here %′ = %/2 represents
the effective decay rate of the two atoms from the motionally
excited band.

A second mechanism for decoherence comes from the
decay process itself. The transition |+e〉 → |+〉 requires
emitting a different frequency Bogoliubov phonon than the
transition |0e〉 → |0〉. The bath learns which-path informa-
tion, and this is then analogous to a measurement. For the
energy difference to be resolvable, we require %′"(1/4)"U .

After the decay, the probability of being in the ST = 2
sector has been reduced. These processes would continue until
no neighboring pairs are in the ST = 2 channel. The chain is
then in the AKLT state, and all dynamics stop.

We used a Lindblad master equation approach to model the
dynamics. As in our previous treatments, we do not explic-
itly model the various intermediate states, and instead work
with an effective model, where the incoherent processes are
described by jump operators of the form

Ĉi,kk′ =
√

%′|kk′〉〈kk′|P̂ST =2
i,i+1 . (23)

Here, k, k′ ∈ {|+〉, |0〉, |−〉}, and P̂ST =2
i,i+1 projects the spin-1

objects on neighboring sites to the spin-2 sector. The effective
rate is %′.

The master equation for the density matrix ρ̂ is

d ρ̂

dt
=

i=N−1∑

i=1

∑

kk′

Ĉi,kk′ ρ̂Ĉ†
i,kk′ − 1

2
{Ĉ†

i,kk′Ĉi,kk′ , ρ̂}. (24)

By construction, superpositions of the four AKLT states are
the only steady states.

We use two approaches for analyzing the behavior: In
Sec. III C 1, we numerically calculate the eigenvalues of the
Lindblad superoperator. The real part of the smallest nonzero
eigenvalue gives the time scale for approaching the AKLT
state. The size of the matrix we need to diagonalize grows ex-
ponentially with the size of the system, limiting this technique
to chains with fewer than seven sites.

In Sec. III C 2, we instead use a stochastic wave-function
approach which is equivalent to Eq. (24). We write the wave
function as a matrix product state, and use tensor network
tools to efficiently evolve it in time. We take the initial state as

a product state of |0〉 on all sites. We measure the expectation
value of the sum of all the nearest-neighbor spin-2 projectors.
At long times, this decays exponentially, and we extract the
time scale by fitting this exponential.

We find that the time to create the AKLT state scales
as (N − 1)2, where N is the number of sites. We give an
intuitive understanding of this result based upon diffusion of
domain walls.

1. Exact diagonalization

We vectorize the density matrix by putting all of its ele-
ments in a column vector, denoted ρ̃. The Lindblad equation
then has the structure of a linear differential equation with
constant coefficients and we can use standard linear algebra
techniques to find the rate of approaching equilibrium.

If we do not take advantage of any symmetries, our Hilbert
space has length 3N , where N is the number of spins. The
density matrix is a 3N × 3N matrix, so ρ̃ is a vector of length
32N . The index α which labels the elements of ρ̃ is associated
with a bra 〈ψ | and a ket |φ〉, and ρ̃α = 〈ψ |ρ̂|φ〉α . Here 〈ψ | and
|φ〉 are arbitrary states in the 3N -dimensional Hilbert space.

In its vectorized form, the Lindblad equation from
Eq. (24) is

dρ̃α

dt
=

∑

β

L̂αβρ̃β (25)

where the matrix on the right has elements

L̂αβ = (|ψ〉 ⊗ 〈φ|)αL̂(|ψ〉 ⊗ 〈φ|)β . (26)

The Lindblad superoperator L̂ is

L̂ =
i=N−1∑

i=1

∑

kk′

Ĉi,kk′ ⊗ Ĉi,kk′ − 1
2

Ĉ†
i,kk′Ĉi,kk′ ⊗ 1

− 1
2
1 ⊗ Ĉ†

i,kk′Ĉi,kk′ . (27)

The nonzero eigenvalues of L̂ have negative real parts
which give the rates of decay of various perturbations. The
zero eigenvalues identify the dark states. The total Sz of the
chain is conserved in the dynamics, so L̂ is block diagonal.
We restrict ourselves to the block with Sz = 0.

We find four zero eigenvalues, corresponding to two of the
AKLT states, and the coherences between them. These AKLT
states have edge modes | ↑↓〉 and | ↓↑〉.

The time taken to reach the AKLT state is controlled by
the eigenvalue the real part of which has the smallest nonzero
magnitude, γ . Figure 5 shows how this slowest rate scales
with N for the exact diagonalization calculation. Due to the
exponential scaling of the Hilbert space, we are restricted
to N < 7.

As will be discussed in more detail in Sec. III C 2, the rate
scales inversely with the number of sites as γ ∝ 1/(N − 1)2.

2. DMRG calculation

To explore larger systems, we use the stochastic wave-
function formalism [27]. In this approach, one uses a
non-Hermitian effective Hamiltonian to evolve an initial wave
function in time, stochastically including discrete “quantum
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FIG. 5. Scaling of slowest rate of decay, γ , with the number of
spins, N . Large red triangles, diagonalization of the Lindblad super-
operator; blue dots with error bars, stochastic DMRG simulation.
The error bars represent the statistical uncertainty from using 75
realizations in the DMRG calculation. The decay is measured in
terms of %′, the rate of the local dissipation.

jumps.” The non-Hermitian part of the Hamiltonian is con-
structed using the jump operators and leads to a nonunitary
evolution of the wave function. The stochastic quantum jumps
represent the effects of random “measurements” by the envi-
ronment through the application of a random jump operator
onto the wave function.

Following the approach introduced by Daley et al. [28],
and also used by Bonnes and Läuchli [29], we use a matrix
product state ansatz for the time dependent wave function.
This is extremely efficient, allowing us to model systems with
as many as nine sites (corresponding to a Hilbert space with
almost 20 000 states, a density matrix with almost 400 × 106

elements, and a superoperator with over 1017 elements).
In particular, we take

|ψ (t )〉 =
∑

{i j ,σ j}
A(1)

1,i1,σ1
A(2)

i1,i2,σ2
· · · A(n)

in−1,1,σn
|σ1 · · · σn〉. (28)

The bond indices i j are dummy variables which take on no
more than χ different values, where χ is referred to as the
bond dimension. The indices σ j = −1, 0, 1 correspond to the
physical spins. All time dependence is contained in the tensors
A( j)

i j−1,i j ,σ j
. The AKLT state can be represented in this form with

χ = 2.
We take an initial product state of |0〉 on all sites. We

discretize time. During each time step, we evolve the wave
function as |ψ (t + δt )〉 = (1 − iĤeffδt )|ψ (t )〉, where Ĥeff =
Ĥ0 − i

∑
i,kk′ Ĉ†

i,kk′Ĉi,kk′ is a non-Hermitian effective Hamilto-
nian. In our model Ĥ0 = 0 as all dynamics simply comes from
the jump operators.

We construct the time evolution operator Ô = (1 −
iĤeffδt ) as a matrix product operator:

Ô =
∑

{k j ,σ
′
j ,σ j}

W (1)
1,k1,σ

′
1σ1

W (2)
k1,k2,σ

′
2σ2

· · ·

W (n)
kn−1,1,σ ′

nσn
|σ ′

1 · · · σ ′
n〉〈σ1 · · · σn|. (29)

Here again the k j are bond indices and σ j and σ ′
j are physical

spins. Our effective Hamiltonian only has nearest-neighbor
terms, and the tensors W (i) take the standard form, where
blocks of nonzero elements appear on the first column and
last row [30]. To evolve the wave function |ψ (t )〉 with Ô, we
take tensor products of A(i) with W (i). The bond dimension
of the evolved wave function increases after each step. We
use the zip-up method described in [31] to control the bond
dimension of the resulting state at each time step and proceed
with the time evolution.

Due to the nonunitary evolution of the wave function by
Ĥeff , the wave-function norm is reduced. We calculate this
norm, 1 − p = 〈ψ (t + δt |ψ (t + δt )〉. We then draw a random
number x between 0 and 1. If x > p, we normalize |ψ〉, then
continue with the next time step.

If x < p it means a quantum jump has occurred. We then
calculate the probabilities, pi,kk′ = 〈ψ (t )|Ĉ†

i,kk′Ĉi,kk′ |ψ (t )〉,
where p =

∑
i,kk′ pi,kk′ , and draw another random number to

determine which has occurred [27]. We apply the relevant
jump operator and renormalize the state.

We measured the total spin-2 projection of all nearest-
neighbor pairs as a function of time and fit the tail with a
decaying exponential function. Our resulting estimate for the
slowest decay rate, γ , is plotted in Fig. 5 for up to nine sites.
The DMRG simulation reproduces the exact diagonalization
rates and shows the same 1/(N − 1)2 scaling. We use 75 real-
izations, and error bars in Fig. 5 correspond to the statistical
uncertainty in γ .

This 1/(N − 1)2 scaling can be qualitatively understood
by analyzing how string order develops in the spin chain.
The AKLT state in the spin-1 basis is a superposition of
different arrangements of |+〉, |0〉, and |−〉; for example, with
three sites, an AKLT state is 1

2 |000〉 − | + −0〉 − |0 + −〉 + |
+ 0−〉. There is a “string order” here in that if you throw away
all of the spin-zero sites each of these terms corresponds to
an antiferromagnetic arrangement | + −〉. This same property
occurs for longer chains.

Domain walls in the string order can be assigned a “charge”
corresponding to the excess local magnetization: A config-
uration | − + + −〉 has a positively charged domain wall,
and | + − − +〉 has a negatively charged domain wall. Our
stochastic process involves local projections, which conserve
the total magnetization, and hence cannot remove an isolated
domain wall. Instead, during the stochastic process, the do-
main walls undergo random walks—and can be annihilated
when two oppositely charged domain walls touch. For ex-
ample, to establish string order in the state | + +©00 -©−〉,
the circled spins must either exchange position or annihilate
each other.

The underlying domain wall dynamics are diffusive, and
the slowest processes involve the motion of a domain wall
over a distance of order N − 1, where N is the number of sites.
Thus one expects the time required to scale as (N − 1)2, as
seen in the numerics.

We conclude that the state preparation time would scale
quadratically with the number of sites. This scaling is quite
favorable. In contrast, for an adiabatic preparation scheme,
one expects the smallest gap to scale exponentially in
the system size, and hence the preparation time would also
scale in that manner.
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IV. SUMMARY AND OUTLOOK

We present concrete examples which elucidate how engi-
neered dissipation, in conjunction with an appropriate drive,
can be used to manipulate bosonic atoms in tilted optical
lattices. In these examples, the drive is supplied by coherent
Raman lasers, and the dissipation comes from band-changing
collisions with a superfluid bath. Using these ingredients,
we present protocols for controlling transport, forming a
Mott insulator state, and creating the topologically ordered
spin-1 AKLT state. In the latter two cases, the states are
autonomously stabilized, and any perturbations can be auto-
matically healed.

We calculate the relevant time scales for state preparation
and their dependence on system size. We note that in all cases
the preparation time scales polynomially with system size. By
contrast, adiabatic state preparation techniques typically scale
exponentially.

All of the ingredients in our protocols have been individ-
ually realized in existing experiments. Moreover, the three
examples form a natural progression for an experimental pro-
gram, each adding a layer of sophistication to the previous
one. While all three examples are important, the observation
of the AKLT state would be particularly impactful.

As previously stated, these examples are also important
for the way they exemplify general principles of the driven-
dissipative manipulation of quantum states. In describing
them, we are able to address the interplay of different energy
scales, and rates of processes. We show how the symmetries
of the system and the target quantum state can be exploited
for dissipative state preparation. The techniques are readily
extended into other systems, and into other forms of manipu-
lation.

While all of the ingredients have been realized in ex-
periments, a real challenge with our proposals is that they
require combining a number of sophisticated experimental
techniques. The superfluid bath, which provides our dissi-
pation, is one of the most challenging elements. It would
be desirable to construct an all-optical scheme which uses
spontaneous photon emission to provide the dissipation. As
discussed in Sec. II F, the difficulty there is that optical
linewidths are larger than the other scales in the system, and
would lead to unwanted transitions. An important future re-
search direction would be to explore dressed state techniques
or other ways to overcome this difficulty.
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APPENDIX: RAMAN RATES

Here we derive the expression in Eq. (13) for the Raman
matrix elements. We begin with Eq. (12):

#′ = #2
0

δ

∣∣∣∣

∫
dx ψ∗

m,g(x)ei(k1−k2 )xψm+1,e(x)
∣∣∣∣
2

. (A1)

In the limit where " + tα , we can approximate the
Wannier-Stark eigenstates in Eq. (5) up to leading order as

ψm,α (x) ∼ φα
m(x). (A2)

As described in Sec. II B, in the deep lattice limit, φα
m(x) ≈

wα (x − md/2), where wα (x − md/2) are highly localized
harmonic oscillator eigenstates. The Raman matrix element
becomes

#′ = #2
0

δ
|I|2 (A3)

where

I =
∫

dx w∗
g (x − md/2)eikxwe[x − (m + 1)d/2]. (A4)

Here k = k1 − k2 where k1 and k2 are the wave vectors
of the two Raman lasers. The Gaussian integral is readily
calculated:

I =
(

iC −
πV 1/4

0√
2

)

e− C2
2 − ikd

4 − π2√V0
4 (A5)

with C = kd/(2
√

2πV 1/4
0 ).

For a sufficiently deep lattice, the net transition rate
scales as

#′ ∼ #2
0

δ

(
k2d2

8π2
√

V0
+ π2√V0

2

)
e
− k2d2

8π2√V0
− π2√V0

2 . (A6)

Many of the coefficients are under experimental con-
trol. #0 is the dipole matrix element between the ground
and excited electronic levels of the lattice atoms, which di-
rectly depends on the laser intensity. The wave vector k is
tuned by changing the angle between the two lattice beams;
the optimal value is given by k2 = 8π2√V0/d2, in which
case

#′ ∼ #2
0

δ

(
1 + π2√V0

2

)
e− π2√V0

2 . (A7)
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