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Influence of sublattice bias on superfluid to Mott insulator transitions
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We model the superfluid to Mott insulator transition for a Bose gas on a lattice with two inequivalent
sublattices. Using the Gutzwiller ansatz, we produce phase diagrams and provide an understanding of the
interplay between superfluidity on each sublattice. We explore how the Mott lobes split and describe the
experimental signatures.
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I. INTRODUCTION

The most iconic experiment in cold atom physics was the
observation of the superfluid to Mott insulator transition [1].
In the superfluid phase atoms are delocalized throughout the
entire lattice, while in the Mott insulating phase interactions
suppress atomic motion. This transition is a prototype for un-
derstanding strong correlation effects in quantum degenerate
matter. In subsequent years more sophisticated experiments
were developed for exploring this transition [2–14]. Of par-
ticular interest is the role of lattice geometry, which is being
explored in experiments which create exotic non-Bravais lat-
tices [15]. Here we conduct a mean-field study of interacting
bosons in such lattices.

At its core the superfluid-Mott transition is a competi-
tion between kinetic energy, which favors macroscopically
occupying delocalized states, and interactions, which favor
product states where each site has a definite occupation. As
one changes the lattice geometry, the nature of the delocal-
ized states can change, influencing this energy balance. One
extreme example of this behavior are studies of the superfluid-
Mott transition in Hubbard-Hoffstadter models, which boast
relatively flat bands with topological character [16–19]. Here
we explore a different phenomenon, namely how the structure
within a unit cell influences the transition.

Motivated by experiments at Berkeley [20], we consider
the case where the lattice depth is different for two sublattices.
Figure 1 shows some examples: atoms sit at the sites marked
by x’s and dots, but have different energies on each of these
sublattices. The Berkeley experiments were restricted to the
extreme cases where the energy offset was very large, and
where it vanished. Our work addresses the following general
problems. How does the phase diagram evolve as one changes
the offset? How does this offset influence the condensate?

Technically, one creates such optical lattices by interfer-
ing laser beams. The lattice geometry is set by the intensity
and wave vectors of the lasers. Experiments have demon-
strated kagome, checkerboard, Lieb, striped, triangular, and
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honeycomb lattices [15,21–27]. Superlattice geometries,
which have been used to produce ladders and plaquettes,
are closely related [28,29], and similar techniques are used
to produce disordered and quasiperiodic structures [30–32].
Some theoretical questions have been addressed in specific
geometries [33].

We find that the interplay of superfluidity on the two lat-
tices is quite rich: superfluidity can be suppressed on one
sublattice, while remaining strong on the other. The most
trivial example is when one sublattice has a large offset, and
effectively is depleted of all particles. More interesting is the
case where one sublattice is nearly in a Mott state, with an in-
teger number of particles per site, while the other is in a robust
superfluid state, with large number fluctuations. We explain
how such phenomena can be measured in experiments.

II. MODEL

We consider bosons hopping on a lattice with two dif-
ferent types of sites, A and B. We will mostly be thinking
about two-dimensional examples, but the formalism also ap-
plies to higher dimensions. Extensions to more sublattices are
straightforward, and most of the structure is clear from the
two-sublattice case.

Generically there will be terms in the Hamiltonian which
involve A sites, terms involving B sites, and those that connect
the two sublattices. We will take the interactions to be strictly
local, as is appropriate for most cold-gas experiments. Thus
we write H = HA + HB + HAB with

HA =
∑

i∈A

(
UA

2
a†

i a†
i aiai − µAa†

i ai

)
− tA

∑

〈i, j〉
i, j∈A

(a†
i a j + a†

j ai ),

HB =
∑

i∈B

(
UB

2
b†

i b†
i bibi − µBb†

i bi

)
− tB

∑

〈i, j〉
i, j∈B

(b†
i b j + b†

jbi ),

HAB = −tAB

∑

〈i, j〉
i∈A, j∈B

(a†
i b j + b†

jai ), (1)

where a†
i and ai are the creation and annihilation operators for

the A sites, b†
i and bi are those for B sites, and 〈i, j〉 denotes
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FIG. 1. Example lattices: (a) kagome; (b) checkerboard;
(c) stripe. In all cases the local potential is different on the A
sublattice, marked by x’s, and the B sublattice, marked by dots.

neighbors. The coefficients tA, tB, tAB are hopping matrix ele-
ments, UA,UB are on-site interactions, and µA, µB represent
the chemical potentials of the two sublattices. In particular,
for the experiments we are considering µB = µA + V , where
V is the energy offset. Models of this form have been referred
to as ionic Bose Hubbard models [34,35].

The relevance of the various terms depends on the lattice
geometry. For example, the kagome lattice in Fig. 1(a) has no
B-B neighbors, while the checkerboard lattice in Fig. 1(b) has
neither A-A neighbors nor B-B neighbors.

The sublattices do not need to have simple Bravais struc-
tures, but in all our examples the sites in each unit cell will
be symmetry related. For example, the A sites in the kagome
lattice [the x’s in Fig. 1(a)] have a three-site basis, but are
all equivalent. Generalizing to more complicated structures is
straightforward.

As explained by Fisher et al. [36], the principle features
of Bose-Hubbard models such as Eq. (1) are captured by the
variational ansatz,

|ψ〉 =
(

⊗

i∈A

∑

n

f A
n |n〉i

)(
⊗

i∈B

∑

n

f B
n |n〉i

)

, (2)

where |n〉i is the Fock state with n particles at site i. We
characterize the ground state by minimizing 〈H〉 = 〈ψ |H|ψ〉,
treating the f σ

n as variational parameters, with the normaliza-
tion constraint

∑
n | f σ

n |2 = 1.
The order parameters for superfluidity in each sublattice

are

α ≡ 〈ai〉 =
∑

n

√
n f A

n−1

(
f A
n

)∗
,

β ≡ 〈bi〉 =
∑

n

√
n f B

n−1

(
f B
n

)∗
. (3)

The hopping in HAB couples these order parameters, so that,
if one of these is nonzero, then so is the other. More formally,
〈H〉 contains a term proportional to αβ, implying that the only
stationary point of the energy with α = 0 also has β = 0.
This feature can be interpreted as a “proximity effect”—
superfluidity on one sublattice induces superfluidity on the
other.

III. RESULTS

As detailed in Appendix A, we numerically minimize the
energy as a function of the parameters in Eq. (1). In addition
to superfluid phases, where α and β are nonzero, we find

insulator phases with α = β = 0. These are incompressible
phases with an integer number of particles nA, nB on the sites
of each sublattice. Figure 2 shows representative phase dia-
grams taking parameters corresponding to the kagome lattice
shown in Fig. 1. We take all hopping matrix elements equal
to one another, tA = tB = tAB = t , but for this lattice there
are no nearest-neighbor sites on the B sublattice, so tB does
not matter. Similarly, we take the interactions to be equal
UA = UB = U . We vary µA and the offset V = µB − µA.

When V = 0 this geometry reduces to a simple triangular
lattice. The Mott lobes have nA = nB and the order parameters
on the two sublattices are identical [Fig. 2(a)]. For small V
the lobes split: nA and nB increment independently [Fig. 2(b)].
When V > U , there will be multiple lobes where nB = 0
[Fig. 2(c)].

In addition to showing phase boundaries, in Fig. 2 we plot
the surfaces of fixed condensate density, |α|2 and |β|2. As is
evident in Fig. 2(b), there are regions where one order param-
eter is much bigger than the other. These regions are found
between pairs of lobes, and alternate: when nA increments, one
finds |α|2 ( |β|2, and vice versa when nB increments. One
interpretation of this asymmetry is that it is a manifestation
of the proximity effect [37]: between two lobes where nB is
unchanged, the B sublattice is nearly a Mott insulator, and it
is only proximity to the A superfluid which makes the order
parameter nonzero.

Another feature of Fig. 2 is that the lobes where nA in-
crement have larger gaps between them than those where
nB increment. This is due to the fact that there are no B-B
neighbors, making the B superfluid less stable. Figure 3 shows
the phase boundaries for the stripe lattice, where the two sub-
lattices are equivalent. There we see much more even spacing
between the lobes.

In Fig. 4, we plot the densities as a function of µA for
fixed t . This corresponds to a vertical slice through the phase
diagram. One sees a series of plateaus, corresponding to the
insulating states. The two densities increment sequentially.
Notice that the density of one of the sublattices is nearly
uniform in the superfluid region between two lobes. Thus the
fluid on that sublattice is approximately incompressible. As
apparent in the inset, if one zooms in, one can find some
variation of the density in these regions. Interestingly the
slope ∂〈nσ 〉/∂µA can even be slightly negative, but the total
compressibility ∂〈nA + nB〉/∂µA is always positive.

Figure 5 illustrates the behavior of the order parameters
as a function of t/U for several fixed values of µA/U . This
corresponds to horizontal slices through the phase diagram.
Figure 5(a) shows a slice between lobes where (na, nb) =
(1, 0) and (1,1). The A-lattice order parameter becomes ex-
tremely small as t → 0, while the B-lattice order parameter
approaches a constant. Figure 5(c) shows the opposite case.
Figure 5(b) shows the generic case, where one has an insulator
at small t . For these parameters one is on the part of the
lobe which is near the (1,1) to (2,1) transition, and hence
|α|2 > |β|2. In this generic case the condensate densities van-
ish linearly as one approaches the Mott lobe.

An intuitive way of understanding all of this structure is
to simply take two copies of the phase diagram in Fig. 2(a),
which represent each of the two sublattices. One of the phase
diagrams is displaced vertically by V , and the regions where
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FIG. 2. Phase boundaries for the kagome lattice for three different values of the sublattice bias V . Energies are given in terms of the on-site
interaction U . Mott states with nA and nB atoms per site on each sublattice are labeled by (nA, nB ). Solid (red) curves and dashed (blue) curves
denote evenly spaced contours of fixed condensate densities, |α|2 and |β|2, with spacing 0.25.

the Mott lobes overlap become the Mott lobes of the combined
system. The regions where only one of the sublattices has
Mott lobes develops superfluidity due to the proximity effect.
Note, this intuitive construction only qualitatively captures the
shapes of the Mott lobes.

FIG. 3. Phase boundaries for the striped lattice with sublattice
bias V = 0.5. Energies are given in terms of the on-site interaction
U . Mott states with nA and nB atoms per site on each sublattice
are labeled by (nA, nB ). Solid (red) curves and dashed (blue) curves
denote evenly spaced contours of fixed condensate densities, |α|2
and |β|2, with spacing 0.25. In contrast to the kagome lattice, for
the striped lattice the lobes are more symmetric.

IV. EXPERIMENTAL DETECTION

A key question is how the sublattice superfluidity will
manifest in an experiment. The order parameters |α|2 and
|β|2 correspond to macroscopic occupation of k = 0 states
in each sublattice, and will therefore lead to sharp peaks
in time-of-flight expansion [38]. For the kagome lattice, the
condensate contribution to the time-of-flight image is a series
of peaks which again form a kagome lattice, with the dots
and x’s in Fig. 1 having intensities proportional to |3α + β|2
and |α − β|2. Thus, by comparing the intensities of the Bragg
peaks, one can extract the ratios of the condensate fractions.
The full argument is given in Appendix C.

FIG. 4. Densities on two sublattices of the kagome lattice for
V = 0.5U and t = 0.0125U [see Fig. 2(b)]. Dotted vertical lines
show phase boundaries. Insets show magnified views, with the same
axes.
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FIG. 5. Order parameters on two sublattices of the kagome lat-
tice for V = 0.5U and (a) µA = 0.5U , (b) µA = 0.75U , and (c) µA =
U . Solid (red) and dashed (blue) curves correspond to |α|2 and |β|2.

An alternative probe is site-resolved in situ imaging [39],
which can measure the densities nA and nB. In principle one
could thereby identify the Mott states. As illustrated in Fig. 4,
there are however regions of parameter space in which the
superfluid has nearly an integer number of particles per site.
These regions may make it difficult to use in situ imaging to
find the phase boundaries. Achieving the required precision
may also be challenging.

Another option for detecting the density differences be-
tween sublattices is light scattering. This technique has been
used to find antiferromagnetic spin correlations [40].

V. SUMMARY

We have studied the influence of sublattice bias on the
superfluid to insulator transition of a Bose gas in an optical
lattice. Within the Gutzwiller mean-field theory, superfluid-
ity on one sublattice is always accompanied by superfluidity
on the other. The Mott lobes are characterized by integer
densities on each sublattice. These increment sequentially as
the chemical potential is increased. Between the lobes there
are regions where one superfluid density is much larger than
the other. These features are observable through in situ and
time-of-flight probes.

Our most nontrivial result is the rich structure of the con-
densate density on the two sublattices. As experimental lattice
geometries become ever-more sophisticated, these considera-
tions will become more and more important. Crucially, these

biased lattices are a promising platform for searching for more
exotic physics. For example, related geometries have been
used to study fractional Mott insulators [41,42].
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APPENDIX A: MINIMIZING THE ENERGY

Within our variational theory, the energy 〈H〉 is a quartic
form in the coefficients f σ

n and their complex conjugates,
where σ = A, B labels the sublattice. The quartic terms
are products of the mean fields ψA ≡ α and ψB ≡ β, and
their complex conjugates. This feature, combined with the
relation ∂ψσ/∂ ( f σ

n )∗ =
√

n f σ
n−1, means that the derivative

∂〈H〉/∂ ( f σ
n )∗ has a simple form. Making 〈H〉 stationary, with

the constraint 〈ψ ||ψ〉 = 1, yields a set of cubic equations that
can be written

&σ
n f σ

n + 'σ
n+1 f σ

n+1 + 'σ ∗

n f σ
n−1 = λσ f σ

n , (A1)

where σ, τ ∈ {A, B}, and

&σ
n = Nσ

2
n(n − 1) − Nσ

µσ

U
n, (A2)

'σ
n =

∑

τ

(
− tστ

U

)
(Nσ sστ

√
n ψτ ). (A3)

Here Nσ is the number of sites in sublattice σ and sστ is the
number of τ neighbors of each σ site. & is independent of the
f ’s, while ' depends on the f ’s only through ψ .

The cubic eigenvalue equation in Eq. (A1) can be solved
efficiently by an iterative method. We start with a guess for
ψτ in Eq. (A2). We then solve Eq. (A1) as a linear eigenvalue
equation. That solution is then used to update ψτ . Both the
time for each iteration and the total number of iterations
needed for convergence are favorable.

APPENDIX B: PHASE BOUNDARIES

The Mott insulator regions in the µ
U - t

U parameter space can
be labeled by integers nA = 〈a†

i ai〉 and nB = 〈b†
i bi〉. Consider

a point in the superfluid region infinitesimally close to the
insulator region with nA = j, nB = k. To the leading order, we
must have

f A
j−1 = ε−,

f A
j+1 = ε+,

f A
j =

√
1 − ε2

− − ε2
+,

f B
k−1 = η−,

f B
k+1 = η+,

f B
k =

√
1 − η2

− − η2
+.

All the other f ’s vanish. As we approach the insulator, the
parameters {ε, η} become smaller, vanishing at the phase
boundary. Consequently, we can expand the energy as

〈H〉 = (ε+ ε− η+ η−)M





ε+
ε−
η+
η−



 + · · · ,

063308-4



INFLUENCE OF SUBLATTICE BIAS ON SUPERFLUID TO … PHYSICAL REVIEW A 103, 063308 (2021)

where M is a 4 × 4 matrix and, in addition to a constant, the
neglected terms contain higher powers of the small parame-
ters. The phase transition is characterized by det(M ) = 0, as
M is positive definite in the insulating phase, but has at least
one negative eigenvalue in the superfluid phase. This equation
gives the phase transition boundary in the µ

U - t
U parameter

space.
The equation det(M ) = 0 can be factored as the product of

two quadratic equations in t which have closed form solutions.
These analytic expressions are not particularly enlightening.

APPENDIX C: TIME OF FLIGHT

As explained in the main text, the time-of-flight density
pattern can reveal the sublattice condensate fraction. Here we
calculate this pattern for a kagome lattice with sublattice bias.

The time-of-flight image from a lattice gas contains two
components: a diffuse background from the noncondensed
particles and sharp Bragg peaks from the condensate. Here
we solely consider the latter, which are readily distinguished.
As explained in [38], the asymptotic profile is simply given by
the Fourier transform of the in situ condensate wave function,
ψ (k, t ) ∝ ψk= mr

t
, where ψk =

∫
dr e−ik·rψ (r, 0).

The initial state of the system can be written as

ψ (r, 0) =
∑

i∈A

αφ(r − ri) +
∑

i∈B

βφ(r − ri), (C1)

with the Fourier transform,

ψk(0) =
∑

i∈A

α e−ik·riφk +
∑

i∈B

β e−ik·riφk, (C2)

where φk is the Fourier transform of the Wannier state φ(r).
The sites in sublattice A belong to one of three Bra-

vais lattices rs = mu + nv + δs, where u = (a, 0), v =
(a cos π

3 , a sin π
3 ), m and n are integers, and δs takes on one of

three values: δ0 = (0, 0), δ1 = u/2, or δ2 = v/2. The sites in
sublattice B belong to the Bravais lattice r3 = mu + nv + δ3,
with δ3 = (u + v)/2. Then, we can write

∑

i∈A

e−ik·ri = F (k)
(
1 + e−ik· u

2 + e−ik· v
2
)
,

∑

i∈B

e−ik·ri = F (k) e−ik·( u
2 + v

2 ),
(C3)

where F (k) =
∑

m,n e−ik·(mu+nv) is zero unless k · (mu + nv)
is a multiple of 2π for all integers m, n. We define reciprocal
lattice vectors k1, k2 such that k1 · u = 2π , k1 · v = 0, k2 ·
u = 0, and k2 · v = 2π . In particular, k1 = ( 2π

a ,− 2π
a cot π

3 ),
k2 = (0, 2π

a csc π
3 ) are the basis for a triangular lattice. Stan-

dard analysis gives F (k) ∝
∑

m,n δ(k − mk1 − nk2).
Because of coherence factors in Eq. (C3), the number of

atoms in the peak at position rmn = t
m (mk1, nk2) is

Nnm ∝ |α[1 + (−1)n + (−1)m] + β(−1)n+m|2|φnm|2, (C4)

where φnm = φk at k = mr/t . Neglecting this slow envelope
yields

N00 = N22 ∝ |3α + β|2,

N11 = N10 = N01 ∝ |α − β|2. (C5)
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