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ally as global minimizers of the classical Alt–Caffarelli energy functional.

Keywords: Free boundary problems, one-phase, Bernoulli-type

MSC 2010: 35R35
||
Communicated by: Irene Fonseca

1 Introduction
In the classical paper [1], Alt and Caffarelli used a variational approach to study the existence and regularity
of solutions to the one-phase free boundary problem

{{{{{{
{{{{{{
{

∆u = 0 in Ω ∩ {u > 0},
u = 0 on Ω ∩ ∂{u > 0},
|∇u| = Q on Ω ∩ ∂{u > 0},
u = u0 on Γ.

(1.1)

Here Ω is an open connected subset of ℝN with Lipschitz continuous boundary and Q is a nonnegative
measurable function. Solutions to (1.1) are critical points for the functional

J(u) :=
�
Ω
(|∇u|2 + χ{u>0}Q2) dx, u ∈ K, (1.2)

where Note 1:
Throughout, we
deleted all unused
labels.

K := {u ∈ L1loc(Ω) : ∇u ∈ L
2(Ω;ℝN) and u = u0 on Γ},

with Γ ⊂ ∂Ω being a measurable set withHN−1(Γ) > 0 and u0 ∈ H1
loc(Ω) being a nonnegative function satis- Note 2:

Red parts indicate
major changes.
Please check them
carefully.

fying
J(u0) < ∞. (1.3)

The equality u = u0 on Γ is in the sense of traces.
Under the assumption that Q is a Hölder continuous function satisfying

0 < Qmin ≤ Q(x) ≤ Qmax < ∞, (1.4)
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Alt and Caffarelli [1] proved local Lipschitz regularity of local minima and showed that the free boundary
∂{u > 0} is a C1,α regular curve locally in Ω ifN = 2,while ifN ≥ 3, they proved that the reduced free boundary
∂red{u > 0} is a hypersurface of class C1,α locally in Ω, for some 0 < α < 1, and that the singular set

Σsing := Ω ∩ {∂{u > 0} \ ∂red{u > 0}}

has zeroHN−1 measure; see also [4] for the quasi-linear case and [22] for the case of the p-Laplace operator.
While the regularity of minimizers is optimal, the regularity of the free boundary for N ≥ 3was improved

byWeiss in [44].Weiss, following an approach closely related to the theory ofminimal surfaces and bymeans
of a monotonicity formula, proved the existence of a maximal dimension k∗ ≥ 3 such that for N < k∗ the free
boundary is a hypersurface of class C1,α locally in Ω, for N = k∗ the singular set Σsing consists at most of
isolated points, and if N > k∗, then Hs(Σsing) = 0 for every s > N − k∗. In [14], Caffarelli, Jerison and Kenig
proved the full regularity of the free boundary indimensionN = 3, thus showing that k∗ ≥ 4. Theyalso conjec-
tured that k∗ ≥ 7. In a laterwork, De Silva and Jerison exhibited an example of a global energyminimizerwith
non-smooth free boundary in dimension 7 (see [23]); their result gives the upper bound k∗ ≤ 7.More recently,
Jerison and Savin showed that the only stable homogeneous solutions in dimension N ≤ 4 are hyperplanes,
a result which implies full regularity of the free boundary for N ≤ 4, and consequently that k∗ ∈ {5, 6, 7}
(see [30]). We refer to the recent paper of Edelen and Engelstein (see [24]) for more details on the structure of
the singular set Σsing.

As already remarked in [1], if N = 3, the energy functional J admits a critical point with a point singu-
larity in the free boundary. Similar results have been obtained for two-phase free boundary problems (see
[6, 11–13]).

It is important to observe that the regularity of the free boundary is strongly related to the assumption
0 < Qmin ≤ Q(x) in (1.4). Indeed, in the recent paper [10] Arama and the second author showed that for N = 2
and in the special case in which

Q(x, y) = √(h − y)+ for some h > 0, (1.5)

if a localminimizer u has support below the line {y = h} and if there exists a point x0 = (x0, h) ∈ ∂{u > 0} ∩ Ω,
then

|∇u(x, y)| ≤ C(h − y)1/2 for x ∈ Br(x0), (1.6)

provided r is sufficiently small (see [10, Remark 3.5]), and, if in addition u coincides with its symmetric
decreasing rearrangement with respect to the variable x, then

u(0, y) ≥ c(h − y)3/2 for y ∈ [0, h]

(see [10, Theorem5.11]). On the other hand, using amonotonicity formula and a blow-upmethod, Varvaruca
andWeiss (see [43, Theorem A]) proved that for a suitable definition of solution if the constant C in (1.6) is 1,
then the rescaled function

u(x0 + rx)
r3/2 →

√2
3 ρ3/2 cos(32(min{max{θ, −5π6 }, −

π
6 } +

π
2 )) as r → 0+,

strongly inW1,2
loc (ℝ

2) and locally uniformly onℝ2, where (x, y) = (ρ cos θ, ρ sin θ), andnear x0 the free bound-
ary ∂{u > 0} is the union of two C1-graphs with right and left tangents at x0 forming an angle of 2π

3 (see
also [46]). This type of singular solutions is related to Stokes’ conjecture on the existence of extreme water
waves (see [40]). Indeed, when N = 2, Q takes the form (1.5), Note 3:

Throughout, we
changed the form
of some fractions.Ω := (− λ2 ,

λ
2) × (0,∞), Γ := (− λ2 ,

λ
2) × {0}, u0 ≡ m, (1.7)

then the free boundary problem (1.1) describes gravity waves of permanent form on the free surface of an Note 4:
Please check that
we did not change
the meaning here.

ideal fluid. The motion is assumed to be irrotational and two-dimensional (see [37]).
The existence of extreme waves and the corner singularity have been proved in a series of papers (see [8,

9, 36, 38, 41], see also [20, 32, 35, 39] for the existence of regular waves) using a hodograph transformation
to map the set {u > 0} onto an annulus.
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The main drawback in proving the existence of regular and extreme water waves using the variational
setting of (1.2) is that global minimizers of the energy functional J specialized to the case (1.5), (1.7) are one-
dimensional functions of the form u = u(y), which correspond to flat profiles (see [10, Theorem 5.1]). For
this reason the paper [10] gives interesting results only for local minimizers or when the Dirichlet bound-
ary datum u0 is not constant on the bottom. Necessary and sufficient minimality conditions in terms of the
second variation of J have been derived by Fonseca, Mora and the second author in [25]. We refer to the
papers [16–19, 21, 26, 33, 42] and the references therein for alternative approaches to water waves.

The purpose of this paper is to show that by adding an additional Dirichlet boundary condition on part
of the lateral boundary it is possible to construct global minimizers of J in the setting (1.5), (1.7), which are
not one-dimensional. To be precise, we let Ω be the half-infinite rectangular parallelepiped

Ω := R × (0,∞), (1.8)

where R is the open cube ofℝN−1 with center at the origin and side-length λ > 0, that is,
R := (− λ2 ,

λ
2)

N−1
.

We will impose periodic boundary conditions on the lateral portion of the boundary, and therefore we will
require that the class of admissible functions is a subset of the Sobolev space

H1
per(Ω) := {u ∈ H1

loc(ℝ
N+ ) : u(x + λei) = u(x) for LN -a.e. x ∈ ℝN+ and every i = 1, . . . , N − 1}.

With the choice
Q(x) := (h − xN)b+,

where b, h > 0, the functional J in (1.2) can be rewritten as

Jh(u) :=
�
Ω
(|∇u|2 + χ{u>0}(h − xN)2b+ ) dx for u ∈ Kγ , (1.9)

where
Kγ := {u ∈ H1

per(Ω) : u = u0 on Γγ}, γ > 0. (1.10)

Here the Dirichlet datum u0, defined by

u0(x) := m(1 −
xN
γ )+, m > 0, (1.11)

is prescribed on
Γγ := (R × {0}) ∪ (∂R × (γ,∞)).

In particular, notice that u0 is constant on R × {0} and zero on ∂R × (γ,∞).
One of our main results consists of proving that there are choices of the parameter γ (depending on b,m,

and h, but independent of λ) which have the effect of eliminating trivial solutions from the domain of Jh. This
is specified in the following theorem.

Theorem 1.1 (Existence of non-flat minimizers). Given b,m, h, λ > 0, let Ω, Jh, andKγ be defined as in (1.8),
(1.9), and (1.10), respectively. Let

h# := b + 1
bb/(b+1)m1/(b+1), h∗ := 2b + 2

(2b + 1)b/(b+1)m1/(b+1), (1.12)

and, for h > h#, let th be the first positive root of the polynomial

p(t) := t2(h − t)2b − m2.

Furthermore, for h ∈ (h#, h∗), let τh > th be the unique value such that
m2

th
+
h2b+1 − (h − th)2b+1

2b + 1 =
m2

τh
+
h2b+1 − (h −min{h, τh})2b+1

2b + 1 ,
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− λ2
λ
2

u ≡ m

γ

h

u ≡ 0 u ≡ 0

Figure 1:

and set τh = th = h/(b + 1) if h = h#. Then every global minimizer u ∈ Kγ of the functional Jh is not of the form Note 5:
Throughout, please
provide a caption
for every figure.

Note 6:
Please provide
where to refer to
Figure 1.

u = u(xN) provided
{{{
{{{
{

γ ∈ (0,∞) if h < h#,
γ ∈ (0, th) ∪ (τh ,∞) if h# ≤ h < h∗,
γ ∈ (0, th) if h ≥ h∗. (1.13)

Remark 1.2. The numbers h#, h∗, th, and τh arise naturally from the study of the minimization problem for
a one-dimensional version of Jh. The analysis of this auxiliary problem is presented in Section3. In particular,
in Remark 3.2 we give an equivalent characterization of the different ranges in (1.13).

We then proceed to study qualitative properties of global minimizers as we vary the parameter h. One of the
main results in this direction is an analogue to [10, Theorem 5.6], which roughly speaking gives a characteri-
zation of the values of h for which the support of globalminimizers stays bounded. The key ingredients of our
proof are the monotonicity techniques developed in [2, Section 5], [27, Theorem 10.1], and ideas borrowed
from the proof of the continuous fit as presented in [5, Section 9].

Theorem 1.3 (Existence of a critical height). Given b,m, λ > 0, let θ : ℝ+ → ℝ+ be a non-increasing function,
set

γh := θ(h), (1.14)

and for every h > 0 consider Ω, Jh, andKγh defined as in (1.8), (1.9), and (1.10), respectively. Then there exists
a threshold value for the parameter h, denoted by hcr, with the following properties:
(i) 0 < hcr < ∞.
(ii) For every h > hcr and for every global minimizer u ∈ Kγh of Jh the support of u stays strictly below the

hyperplane {xN = h}.
(iii) For every 0 < h < hcr and for every global minimizer u ∈ Kγh of Jh the support of u crosses the hyperplane
{xN = h}, and therefore u is positive in R × (h,∞).

Remark 1.4. Although Theorem 1.3 holds for any choice of the non-increasing function θ, it is of particular
interest in the case in which for every h > 0 the value γh = θ(h) satisfies (1.13).

Next, we give bounds on the critical height hcr in terms of the Dirichlet datum m and obtain in return a char-
acterization of its asymptotic behavior.



G. Gravina and G. Leoni, Bernoulli free boundary | 5

(− λ2 , γh)

u ≡ 0

Figure 2:

(− λ2 , γh)

u ≡ 0

Figure 3:

Theorem 1.5 (Scaling of the critical height). Under the assumptions of Theorem 1.3, if in addition γth∗ ≥ th∗ ,
we have

hcr ∼ m1/(b+1).
Here th∗ and γth∗ are the numbers given in Theorem 1.1 and in (1.14) corresponding to h = h∗, where h∗ is
defined in (1.12).

Further properties of solutions to the minimization problem for Jh are summarized in the following theorem.

Theorem 1.6 (Structure theorem). Under the assumptions of Theorem 1.3, if in addition θ is continuous, for
every h > 0 there exist two (possibly equal) global minimizers of Jh in Kγh , namely u+h , u−h , with the following
properties:
(i) For any sequence {(hn , un)}n such that hn ↗ h and un ∈ Kγhn is a global minimizer of Jhn , we have that
∇un → ∇u+h in L2(Ω;ℝN), and un → u+h in H1

loc(Ω) and uniformly on compact subsets of Ω.
(ii) For any sequence {(hn , un)}n such that hn ↘ h and un ∈ Kγhn is a global minimizer of Jhn , we have that
∇un → ∇u−h in L2(Ω;ℝN), and un → u−h in H1

loc(Ω) and uniformly on compact subsets of Ω.
(iii) If w ∈ Kγh is a global minimizer of Jh, then u−h ≤ w ≤ u+h .
(iv) u+h , u−h are symmetric with respect to the coordinate hyperplanes {xi = 0}, i = 1, . . . , N − 1, and coincide

with their respective symmetric decreasing rearrangements with respect to the variables x1, . . . , xN−1.
Furthermore, theminimization problem for Jh inKγh admits a unique solution for all but countably many values
of h.

Finally, we remark that while the additional Dirichlet constraint u = 0 on ∂R × (γh ,∞) allows us to construct
non-flat global minimizers, it has the disadvantage of potentially destroying the regularity of minimizers and
their free boundaries at the interface ∂R × {γh}, where one hasDirichlet boundary conditions on ∂R × (γh ,∞)
and periodic boundary conditions on ∂R × (0, γh).

Notice that due to the periodic boundary conditions below the line {y = γh}, if the free boundary ∂{u > 0}
of a global minimizer u ∈ Kγh of the functional Jh touches the fixed boundary strictly below the line {y = γh}
(as in Figure 2), then it must be regular across periods as a consequence of the interior regularity (see Theo-
rem 2.1). In particular, in dimension N = 2, this implies that the free boundary hits the fixed boundary with
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(− λ2 , γh)

u ≡ 0

Figure 4:

a horizontal tangent, and furthermore every global minimizer is a solution to (1.1) in the entire half-plane.
On the other hand, if the free boundary ∂{u > 0} of a global minimizer u ∈ Kγh of the functional Jh touches
the fixed boundary strictly above the line {y = γh}, thenwe are in a position to apply the recentwork of Chang-
Lara and Savin [15] (see also [3, 7, 45]) in which it is shown that the free boundary of a viscosity solution
of (1.1) detaches tangentially from a portion of the fixed boundary where u vanishes and is a C1,1/2-regular
hypersurface locally in a neighborhood of ∂Ω (see Figure 3). The result is obtained relating the behavior of the
free boundary to a Signorini-type obstacle problem. In the remaining case for the two-dimensional problem,
i.e., when (− λ2 , γh) is an accumulation point for the free boundary, it was proved by the authors (see [28, 29])
that the free boundary of a minimizer which coincides with its symmetric decreasing rearrangement with
respect to the variable x must hit the fixed boundary with horizontal tangent (see Figure 4).

Theorem 1.7. Given m, λ, h > 0 and γ < h, let N = 2, b = 1
2 , and let Ω, Jh, andKγ be defined as in (1.8), (1.9)

and (1.10), respectively. Let u ∈ Kγ be a global minimizer of Jh which coincides with its symmetric decreasing
rearrangement with respect to the variable x and assume that x0 = (− λ2 , γ) is an accumulation point for the free
boundary on ∂Ω, i.e.,

x0 ∈ ∂{u > 0} ∩ Ω.

Then the portion of the free boundary ∂{u > 0} in {x ∈ Ω : − λ2 < x < 0} can be described by the graph of a func-
tion x = g(y), and furthermore the free boundary meets the fixed boundary at the point x0 with horizontal
tangent, i.e.,

lim
y→γ |g(y) − g(γ)||y − γ|

= ∞.

In conclusion, we would like to remark that Theorems 1.1–1.6 are a preliminary step towards a variational
proof of the existence of regular waves and of Stokes waves. Indeed, if one could show that for some partic-
ular choice of the parameters m, λ, h, γh the free boundary touches the fixed boundary below or at the point
y = γh, then (see Figures 2 and 4) Theorem 1.3 and Theorem 1.7 would give a variational proof of the exis-
tence of regular waves established by Krasovskiı̆ [34] and Keady and Norbury [32]. In turn, if in this range of
parameters we could show that the free boundary of uh approaches {xN = hcr} as h ↘ hcr (see Theorem 1.3),
this would give a variational proof of the existence of Stokes waves. Both problems are under study.

Independently of their applications to water waves, we believe that the techniques developed in this
paper are of interest in themselves and could be applied to other free boundary problems.

Our paper is organized as follows: for the convenience of the reader, in Section 2 we recall some well-
known results on the existence and regularity of minimizers of the energy functional Jh. In Section 3 we
study an auxiliary one-dimensional variational problem; the results of that section will be instrumental in
Section 4, where we present the proof of Theorem 1.1. Section 5 is dedicated to the study of qualitative
and structural properties of global minimizers. In particular, Section 5 contains the proofs of Theorem 1.3,
Theorem 1.5, and Theorem 1.6.
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2 Background results
In this section we collect well-known results concerning existence and regularity properties of solutions to
the minimization problem for Jh inKγ.

Theorem 2.1. Given b,m, h, γ, λ > 0, let Ω, Kγ, and Jh be defined as in (1.8), (1.9), and (1.10), respectively.
Then the minimization problem for Jh in Kγ admits a solution. Furthermore, if u ∈ Kγ is a global minimizer of
the functional Jh, the following hold:
(i) u is subharmonic in Ω.
(ii) u is locally Lipschitz continuous in Ω.
(iii) u is harmonic in the set {u > 0}.
(iv) u satisfies the third line of (1.1) as a free boundary condition in a weak sense, i.e., Note 7:

Please check that
we did not change
the meaning here.

lim
ε→0+ �∂{u>ε}(|∇u|2 − (h − xN)2b+ )η ⋅ ν dHN−1 = 0 for every η ∈ C∞c (Ω;ℝN).

(v) For any K compactly contained in R × (0, h), the free boundary ∂{u > 0} ∩ K is a smooth hypersurface
except possibly on a closed singular set Σsing ⊂ ∂{u > 0} of Hausdorff dimension N − 5, and

∂−νu(x) = (h − xN)b , x = (x󸀠, xN) ∈ ∂{u > 0} ∩ K \ Σsing.
Proof. Since Jh(u0) < ∞ for u0 defined as in (1.11), the proof of existence is essentially analogous to that
of [1, Theorem 1.3] (see also [10, Theorem 2.2]), and therefore we omit it. The proofs for statements (i)–(iv)
can be found in [1]; more precisely, we refer to [1, Lemma 2.2, Corollary 3.3, Lemma 2.4, and Theorem 2.5].
Statement (v) is [30, Corollary 1.2].

Remark 2.2. In view of property (i), we can work with the precise representative

u(x) = lim
r→0+  Br(x) u(y) dy, x ∈ Ω.

Typically, a first step for the study of minimizers and their free boundaries is to obtain non-degeneracy esti-
mates. The next proposition, reported below for future reference, is a classical result in this direction and
is essentially due to Alt and Caffarelli (see [1, Lemma 3.4 and Remark 3.5], see also [10, Theorem 3.6 and
Remark 5.2]). For the convenience of the reader, we adapt the statement to our framework.

Proposition 2.3. Given b,m, h, γ, λ > 0, let Ω, Jh, andKγ be defined as in (1.8), (1.9), and (1.10), respectively.
Then for every k ∈ (0, 1) there exists a positive constant C = C(N, k) such that for every minimizer u of Jh inKγ
and for every ball Br(x) ⊂ Ω, if

1
r

 
∂Br(x) u dHN−1 ≤ C(h − xN − kr)b+,

then u ≡ 0 in Bkr(x). Moreover, the result is still valid for balls not entirely contained in Ω if u vanishes on
Br(x) ∩ ∂Ω. In particular, this holds if Br(x) ∩ ∂Ω ⊂ ∂R × (γ,∞).

3 An auxiliary one-dimensional variational problem
This section is dedicated to the study of the minimization problem for the functional

Ih(v) :=
� ∞
0
(v󸀠(t) + χ{v>0}(t)(h − t)2b+ ) dt (3.1)

defined in the class

Kγ,1-d := {v ∈ L1loc((0,∞)) : v ∈ H
1((0, r)) for every r > 0, v(0) = m, and v(γ) = 0}. (3.2)

Giovanni Leoni
Cross-Out
$u$ satisfies the free boundary condition $|\nabla u| = Q$ on $\partial \{ u > 0 \} \cap \Omega$ in a weak sense, i.e., 
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Our motivation for considering this problem comes from the following observation: if u ∈ Kγ is of the form
u = u(xN), then u(0) = m, u(γ) = 0, and by Tonelli’s theorem,

Jh(u) =
�
R

� ∞
0
(|u󸀠(xN)|2 + χ{u>0}(x󸀠, xN)(h − xN)2b+ ) dxNdx󸀠 = λN−1Ih(u). (3.3)

Thus
inf{Jh(u) : u ∈ Kγ} ≤ λN−1 inf{Ih(v) : v ∈ Kγ,1-d} (3.4)

and, consequently, to prove Theorem 1.1 we must show that for γ as in (1.13) the inequality above is a strict
inequality.

Given b,m, h > 0, we let gh : ℝ+ → ℝ be defined by
gh(t) :=

m2

t
+
h2b+1 − (h −min{h, t})2b+1

2b + 1 . (3.5)

Observe that gh ∈ C1(ℝ+). Furthermore, for t > 0, we let vt : ℝ+ → ℝ be defined by
vt(s) := m(1 −

s
t )+. (3.6)

Theorem 3.1. Given b,m, h, γ > 0, let Ih and Kγ,1-d be given as in (3.1) and (3.2), respectively. Then, if gh
and vt are given as above and the numbers h#, h∗ are defined as in (1.12), we have that

inf{Ih(v) : v ∈ Kγ,1-d} = inf{gh(t) : 0 < t < γ}. (3.7)

Furthermore, the following hold:
(i) If h ≤ h#, then gh is decreasing and vγ is the only global minimizer of Ih in the classKγ,1-d.
(ii) If h# < h < h∗, then gh has two critical points th , Th, with

0 < th <
h

b + 1 < Th < h,

which correspond to a point of local minimum and a point of local maximum of gh, respectively. Moreover,
there exists a unique τh > Th such that gh(th) = gh(τh). In this case we have that
(a) if 0 < γ ≤ th, then gh is decreasing in (0, γ) and vγ is the only global minimizer of Ih in the classKγ,1-d;
(b) if th < γ < τh, then inf{Ih(v) : v ∈ Kγ,1-d} = gh(th) and vth is the only global minimizer of Ih in the class

Kγ,1-d;
(c) if γ = τh, then inf{Ih(v) : v ∈ Kγ,1-d} = gh(th) = gh(τh) and vth , vτh are the only global minimizers of Ih

in the classKγ,1-d;
(d) if γ > τh, then inf{Ih(v) : v ∈ Kγ,1-d} = gh(γ) and vγ is the only global minimizer of Ih in the classKγ,1-d.

(iii) If h ≥ h∗, then th is a point of absolute minimum for gh. Moreover, vγ is the only global minimizer of Ih in
the classKγ,1-d if 0 < γ ≤ th, while if th < γ, then the only global minimizer is given by vth .

Remark 3.2. Notice that γ is given as in (1.13) if and only if the following two conditions are simultaneously
satisfied:
(i) g󸀠h(γ) < 0.
(ii) inf{Ih(v) : v ∈ Kγ,1-d} = gh(γ).

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1: By the direct method in the calculus of variations, we have that there exists a global minimizer v
of Ih in Kγ,1-d. We claim that v is linear on {v > 0}. Indeed, the minimality of v implies that the set {v > 0}
is connected and the claim readily follows recalling that v is harmonic in {v > 0} (see Theorem 2.1). In turn,
v must be of the form v = vt for some 0 < t ≤ γ, and so (3.7) follows upon noticing that

Ih(vt) = gh(t). (3.8)

Thus, it remains to study inf{gh(t) : 0 < t < γ}.
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Step 2: Since

g󸀠h(t) = {{{{{{
{

−
m2

t2
+ (h − t)2b if t ≤ h,

−
m2

t2
if t > h,

we have that g󸀠h(t) < 0 if t ≥ h. Moreover, g󸀠h(t) ≤ 0 for t < h if and only if
ψh(t) := −m2 + t2(h − t)2b ≤ 0. (3.9)

Since ψh has a global maximum in (0, h) at the point t = h
b+1 , it follows that

ψh(
h

b + 1) = −m
2 +

b2b

(b + 1)2b+2 h2b+2 ≤ 0 (3.10)

if and only if h ≤ h#, where h# is the number given in the first equation of (1.12). Consequently, if h ≤ h#,
then gh is decreasing, and so

inf{gh(t) : 0 < t < γ} = gh(γ),

which, together with (3.7) and (3.8), shows that vγ is the only global minimizer of Ih in the classKγ,1-d.

Step 3: If h > h#, then, in view of (3.9), (3.10), and the fact that ψh has a single critical point in (0, h), there
exist

0 < th <
h

b + 1 < Th < h

such that gh strictly decreases in (0, th) and in (Th ,∞), and strictly increases in (th , Th). It follows that

inf{gh(t) : 0 < t < γ} =
{{{
{{{
{

gh(γ) if 0 < γ ≤ th ,
gh(th) if th < γ ≤ Th ,
min{gh(th), gh(γ)} if γ > Th .

(3.11)

Hence, in what follows, it remains to treat the case γ > Th. Notice that

inf{gh(t) : 0 < t < γ} = gh(th) ≤ limt→∞ gh(t) = h2b+12b + 1 (3.12)

if and only if
m2(2b + 1) ≤ sup{fh(t) : 0 < t < h},

where fh(t) := t(h − t)2b+1. The function fh has amaximumat t = h
2b+2 , and so the previous condition reduces

to
m2(2b + 1) ≤ fh(

h
2b + 2 )

or, equivalently, h ≥ h∗, where h∗ is the number given in (1.12). Hence, it follows from (3.12) that if h ≥ h∗,
then gh(th) < gh(γ), which, by (3.7), (3.8), and (3.11), proves (iii). On the other hand, if h# < h < h∗, then
by (3.12) there exists τh > Th such that gh(th) = gh(τh).

Properties (a)–(d) now follow again by (3.7), (3.8), and (3.11).

Corollary 3.3. Let th, Th, and τh be defined as in Theorem 3.1. Then, seen as functions of the variable h, th is
decreasing, Th is increasing, and τh is increasing.

Proof. By the implicit function theorem, we have that the maps h 󳨃→ th, h 󳨃→ Th, and h 󳨃→ τh are differen-
tiable, and we write t󸀠h, T󸀠h, and τ󸀠h to denote the derivatives. In particular, we see that for h > h#,

t󸀠h = − bth
h − (b + 1)th

< 0,

T󸀠h = − bTh
h − (b + 1)Th

> 0.
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To prove the statement about τh, we first assume that τh < h. Recall that τh is defined by the identity

m2

th
−
(h − th)2b+1
2b + 1 =

m2

τh
−
(h − τh)2b+1

2b + 1 .

Differentiating both sides with respect to h yields

m2t󸀠h
t2h
+ (h − th)2b(1 − t󸀠h) = m2τ󸀠h

τ2h
+ (h − τh)2b(1 − τ󸀠h). (3.13)

The definition of th can now be used to simplify the left-hand side of (3.13):

m2t󸀠h
t2h
+ (h − th)2b(1 − t󸀠h) = t󸀠h(m2

t2h
− (h − th)2b) + h − th = h − th .

Therefore, we can rewrite (3.13) as

(
m2

τ2h
− (h − τh)2b)τ󸀠h = τh − th ,

and the conclusion follows by recalling that th < τh and m2 − τ2h(h − τh)
2b > 0. The proof for the case τh ≥ h

is similar but simpler, and therefore we omit it.

4 Existence of nontrivial minimizers
In this section we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let γ be as in (1.13). In view of (3.3), (3.4), and Remark 3.2 (ii), it is enough to exhibit
a function w ∈ Kγ with the property that

Jh(w) < λN−1gh(γ). (4.1)

Let δ be a positive real number, which we choose later, and define S to be the convex hull of R × {γ} with the
point {(0, γ + δ)}, that is, the pyramid with base R × {γ} and vertex {(0, γ + δ)}. Define ̃f : R→ ℝ via

̃f (x󸀠) := sup{t : (x󸀠, t) ∈ S},
and let f be the periodic extension of ̃f toℝN−1. We can then define

w(x) := m(1 − xN
f(x󸀠))+, x = (x󸀠, xN) ∈ ℝN+ .

The function w defined as above belongs to the classKγ; furthermore, we claim that if δ is chosen sufficiently
small, then w satisfies (4.1). The proof of the claim is divided into several steps.

Step 1: In this step we study the asymptotic behavior of Jh(w) as δ → 0+ with first-order accuracy. We do so
by first noticing that if x ∈ Ω is such that

|xi| ≥ |xj| for some i ∈ {1, . . . , N − 1} and every j ≤ N − 1, (4.2)

then w can be rewritten as follows:

w(x) = m(1 − xNλ
(γ + δ)λ − 2δ|xi|

)+.
In turn, if we denote by Ω1 the subset of Ω such that xj ≥ 0 for every j and condition (4.2) is satisfied for i = 1,
we find that �

Ω
|∇w(x)|2 dx = 2N−1(N − 1) �

Ω1

|∇w(x)|2 dx. (4.3)
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Notice that w restricted to Ω1 depends only on the variables x1 and xN . Moreover, forLN -a.e. x ∈ Ω1, we have
that

∂w
∂x1
(x) =
{{
{{
{

−2mλδxN
((γ + δ)λ − 2δx1)2

if xN < γ + δ −
2
λ
δx1,

0 otherwise,
(4.4)

∂w
∂xN
(x) =
{{
{{
{

−mλ
(γ + δ)λ − 2δx1

if xN < γ + δ −
2
λ
δx1,

0 otherwise.
(4.5)

In view of (4.4) and (4.5), and by means of a direct direction computation, we see that
�
Ω1

|∇w(x)|2 dx = m2(
4δ2
3λ + λ)

� λ/2
0

F(x1, δ) dx1, (4.6)

where

F(x1, δ) :=
xN−21

(γ + δ)λ − 2δx1
.

Notice that F(x1, ⋅ ) is a smooth function in a neighborhood of the origin, and that its first-order Taylor approx-
imation centered at zero is given by

F(x1, δ) =
xN−21
γλ
−
xN−21 (λ − 2x1)

γ2λ2
δ + O(δ2).

Substituting the previous expansion into (4.6) and combining the result with (4.3), we obtain that
�
Ω
|∇w(x)|2 dx = 2N−1(N − 1)m2λ

� λ/2
0
(
xN−21
γλ
−
xN−21 (λ − 2x1)

γ2λ2
δ) dx1 + O(δ2)

=
λN−1m2

γ
−
λN−1m2

Nγ2
δ + O(δ2). (4.7)

To compute the contribution coming from the area-term we distinguish between two cases. Indeed, if we
assume that h ≤ γ, we have that

�
Ω
χ{w>0}(x)(h − xN)2b+ dx = λN−1 � h

0
(h − xN)2b dxN = λN−1 h2b+12b + 1 . (4.8)

On the other hand, if γ < h, we take δ so small that γ + δ ≤ h. Then, reasoning as in (4.3), we have that
�
Ω
χ{w>0}(x)(h − xN)2b+ dx = 2N−1(N − 1)�

Ω1

χ{w>0}(x)(h − xN)2b+ dx
= λN−1 h2b+12b + 1 −

2N−1(N − 1)
2b + 1

� λ/2
0

G(x1, δ) dx1, (4.9)

where
G(x1, δ) := xN−21 (h − γ − δ +

2
λ
δx1)

2b+1
.

Similarly to above, we consider the first-order Taylor approximation centered at zero for G(x1, ⋅ ), i.e.,

G(x1, δ) = xN−21 (h − γ)
2b+1 + (2b + 1)xN−21 (h − γ)

2b(
2
λ
x1 − 1)δ + O(δ2),

and we substitute this expression into (4.9); by doing so, we obtain
�
Ω
χ{w>0}(x)(h − xN)2b+ dx = λN−1( h2b+12b + 1 −

(h − γ)2b+1
2b + 1 +

(h − γ)2b

N
δ) + O(δ2).
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h# h∗ h

γ

h#/(b + 1)

h∗/(2b + 2) th

τh

?

Figure 5:

Step 2: In this stepwe show that (4.1) is satisfiedwhen h ≤ γ. Indeed, recalling that gh is the function defined Note 8:
Please provide
where to refer to
Figure 5.

in (3.5), by (3.7), (1.13), and Remark 3.2 (ii), we see that (4.1) is equivalent to

Jh(w) < λN−1gh(γ) = λN−1(m2

γ
+
h2b+1
2b + 1).

To conclude, it is enough to notice that by (4.7) and (4.8) the previous condition reduces to

−
λN−1m2

Nγ2
+ O(δ) < 0,

which is satisfied provided δ is sufficiently small.

Step 3: In this final step we deal with the more delicate case in which γ < h. Reasoning as above, we use
(3.5), (4.7), and (4.9) to rewrite (4.1). By (1.13), (3.7), and Remark 3.2 (ii) we have that (4.10) reduces to

Jh(w) < λN−1gh(γ) = λN−1(m2

γ
+
h2b+1 − (h − γ)2b+1

2b + 1 ).

Simplifying the terms that appear on both sides, we are left to verify the following inequality:

−
λN−1m2

Nγ2
δ + λN−1 (h − γ)2b

N
δ + O(δ2) < 0. (4.10)

Notice that the left-hand side of (4.10) can be rewritten as

λN−1δ
N (
−
m2

γ2
+ (h − γ)2b) + O(δ2) = λ

N−1δ
N

g󸀠h(γ) + O(δ2).
Thedesired inequality (4.10), and therefore (4.1), follows fromRemark3.2 (i), provided δ is sufficiently small.
This concludes the proof.

Remark 4.1. The result of Theorem 1.1 is optimal for h < h# and h ≥ h∗. However, it is still unclear whether
the result could be improved for h# ≤ h < h∗.
Remark 4.2. We report here the explicit values of th and Th for the case b = 1

2 . As previously mentioned in
Section 1, this case is of particular interest when N = 2 since it corresponds to Bernoulli-type free boundary
problems related to water waves. For 0 < t < h,

g󸀠h(t) = −m2

t2
+ h − t.
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If h > h#, the cubic equation t3 − ht2 + m2 = 0 has three real solutions, two of which are positive. By setting

θ := arccos(1 − 3
3

2
m2

h3
)

so that 0 < θ < π, the two positive solutions are given by

th :=
2h
3 cos θ + 4π3 +

h
3 ∈ (0,

2h
3 ),

Th :=
2h
3 cos θ3 +

h
3 ∈ (

2h
3 , h).

We also know that
th < 21/3m2/3 < Th .

Indeed, for every η ∈ (0, h − h#) Corollary 3.3 implies that

th < th−η < 23 (h − η) < Th−η < Th .
To conclude, let η → h − h#.

Notice that Theorem 1.1 does not a priori exclude the existence of minimizers with a flat free boundary,
i.e., minimizers whose free boundaries coincide with a horizontal hyperplane. The issue is addressed by the
following corollary.

Corollary 4.3. For γ given as in (1.13), let u ∈ Kγ be a global minimizer of Jh. Then the free boundary ∂{u > 0}
does not coincide with a hyperplane of the form {xN = k} for some k > 0.

Proof. Assume for the sake of contradiction that this is not the case; then k ≤ h. Assume first that 0 < k ≤ γ.
We claim that

v(x󸀠, xN) = m(1 − xNk )+
satisfies Jh(v) = Jh(u). Notice that since by assumption k ≤ γ, we have that v ∈ Kγ. Hence, the claim would
imply that v is a global minimizer of Jh, a contradiction to our choice of γ. To prove the claim it is enough to
observe that Tonelli’s theorem, Jensen’s inequality, and the fundamental theorem of calculus yield

�
Ω
|∇u|2 dx ≥

�
R

� k

0
(∂xN u)2 dxNdx󸀠 ≥ �

R

1
k(

� k

0
∂xN u dxN)

2
dx󸀠

=
�
R

1
k
(u(x󸀠, k) − u(x󸀠, 0))2 dx󸀠

=
λN−1m2

k

=
�
Ω
|∇v|2 dx,

and that the functions u and v have the same support. On the other hand, since the free boundary detaches
tangentially from a smooth portion of the Dirichlet fixed boundary (see [15, Theorem 1.1]), we see also that
it is not possible for k to be larger than γ, and the result is thus proved.

5 Properties of global minimizers
The aim of this section is to study qualitative properties of global minimizers of the functional Jh defined
in (1.9). In particular, our main interest lies in understanding how the shape of global minimizers is influ-
enced by the parameter h. To this end, throughout the rest of this section, for every h > 0 we make the
following choice for the parameter γ:

γh := θ(h), θ : ℝ+ → ℝ+ non-increasing.
We then denote by uh solutions to the minimization problem for Jh inKγh .
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5.1 Existence of a critical height

To prove Theorem 1.3 we begin by showing that hcr < ∞.

Theorem 5.1 (Existence of solutions with bounded support). Under the assumptions of Theorem1.3, for every
x̄N > 0 such that

x̄N ̸= lim
h→∞ γh

there exists h0 = h0(b,m, x̄N , λ, θ) such that if h ≥ h0, then the support of every global minimizer of Jh inKγh
is contained in the set {xN < h}.

Proof. Let x̄N > 0 be given and define

r := min{λ, |x̄N − limh→∞ γh|
4 }.

Assume first that x̄N > limh→∞ γh, let h1 be such that γh ≤ limh γh + r for every h ≥ h1, and notice that

Br(x󸀠, x̄N) ⊂ {xN > γh}
for every x󸀠 ∈ R and every h ≥ h1. Then, if h > x̄N − r2 and uh ∈ Kγh is a global minimizer of Jh, it follows from
[1, Lemma 2.3] that

1
r(h − x̄N − r/2)b

 
∂Br(x󸀠 ,x̄N ) uh dHN−1 ≤ m

r(h − x̄N − r/2)b
.

Let h0 ≥ h1 be such that
m

r(h0 − x̄N − r/2)b
≤ C(N, 12),

where C(N, 12 ) is the constant in Proposition 2.3. Then, for every h ≥ h0, we are in a position to apply Propo-
sition 2.3 to conclude that uh is identically equal to zero in the set R × (x̄N − r2 , x̄N +

r
2 ). Since by minimality

the support of uh is connected, it follows that uh must also vanish in R × (x̄N ,∞). This concludes the proof
in this case.

On the other hand, if limh→∞ γh > x̄N , then it must be the case that

Br(x󸀠, x̄N) ⊂ {xN < γh}
for every h > 0, and thus we can proceed as above.

The following result is inspired by [27, Theorem 10.1] (see also [2, Section 5] and [10, Theorem 5.5]).

Theorem 5.2 (Monotonicity). Under the assumptions of Theorem 1.3, consider 0 < d < h and let ud ∈ Kγd and
uh ∈ Kγh be global minimizers of Jd and Jh, respectively. Then

{x ∈ Ω : uh(x) > 0} ⊂ {x ∈ Ω : ud(x) > 0} (5.1)

and
uh ≤ ud . (5.2)

Moreover, if there exists x0 ∈ ∂{uh > 0} ∩ Ω such that the free boundary is regular in a neighborhood of x0, then
uh < ud in {x ∈ Ω : ud(x) > 0}.

Proof. We divide the proof into several steps.

Step 1: Define v1 := min{ud , uh} and v2 := max{ud , uh}. Since by assumption γh is non-increasing as a func-
tion of h, we have that v1 ∈ Kγh and v2 ∈ Kγd , and so

Jd(ud) + Jh(uh) ≤ Jd(v2) + Jh(v1). (5.3)
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Notice that �
Ω
(|∇v1|2 + |∇v2|2) dx =

�{uh>ud}(|∇v1|2 + |∇v2|2) dx +
�{uh≤ud}(|∇v1|2 + |∇v2|2) dx

=
�{uh>ud}(|∇ud|2 + |∇uh|2) dx +

�{uh≤ud}(|∇uh|2 + |∇ud|2) dx
=
�
Ω
(|∇ud|2 + |∇uh|2) dx.

Therefore, we can rewrite (5.3) canceling out the gradient terms, and by rearranging the remaining terms we
obtain �{uh>ud}(χ{uh>0} − χ{ud>0})((h − xN)2b+ − (d − xN)2b+ ) dx ≤ 0. (5.4)

Since χ{uh>0} − χ{ud>0} ≥ 0 on {uh > ud} and h > d, the integrand in (5.4) is nonnegative and so the integral
must be zero. Recalling that ud and uh are continuous in Ω, we see that

({uh > 0} ∩ {xN < h}) ∩ {uh > ud} ⊂ ({ud > 0} ∩ {xN < h}) ∩ {uh > ud},

which together with the fact that

{uh > 0} ∩ {uh ≤ ud} ⊂ {ud > 0} ∩ {uh ≤ ud}

yields
{uh > 0} ∩ {xN < h} ⊂ {ud > 0} ∩ {xN < h}. (5.5)

Notice that if the set {x ∈ Ω : uh(x) > 0} is contained inR × (0, d), then (5.1) follows from (5.5). On the other
hand, if this is not the case, again by (5.5) we deduce the existence of a point x ∈ R × [d,∞) with the prop-
erty that ud(x) > 0. Since ud is harmonic in R × {xN > d}, it must be the case that ud > 0 in R × (d,∞). This
concludes the proof of (5.1).

Step2: Weobserved in theprevious step that (5.4) is actually an equality. Therefore, (5.3)must be an equality
as well, and so v1 and v2 are global minimizers of Jh and Jd inKγh andKγd , respectively. We now claim that
if there is x0 ∈ Ω such that ud(x0) = uh(x0) > 0, then ud = uh everywhere in Ω. To see this, we notice that in
a neighborhood of x0 the functions ud − v2 and uh − v2 are harmonic, nonpositive and attain a maximum at
an interior point. Then, by the maximum principle, both ud − v2 and uh − v2 must vanish in the connected
component of {uh > 0}which contains x0; the claim follows upon recalling that the set {uh > 0} is connected
as a consequence of the minimality of uh.

To prove (5.2), assume by contradiction that there is x ∈ Ω such that uh(x) > ud(x). If there is y ∈ {uh > 0}
such that ud(y) > uh(y), then by the connectedness of {uh > 0}, together with the fact that uh and ud are
continuous, we have that there is z ∈ Ω such that uh(z) = ud(z) > 0. By the claim we just proved, this would
imply that uh = ud, a contradiction. Hence ud ≤ uh in {uh > 0}, which together with (5.1) implies that

{uh > 0} = {ud > 0}. (5.6)

In turn,
{{{
{{{
{

�
Ω
χ{uh>0}(h − xN)2b+ dx = �

Ω
χ{ud>0}(h − xN)2b+ dx,�

Ω
χ{ud>0}(d − xN)2b+ dx = �

Ω
χ{uh>0}(d − xN)2b+ dx. (5.7)

In view of (5.6) and since ud ≤ uh on {uh > 0}, we also see that ud ∈ Kγh . Consequently, we have that
Jh(uh) ≤ Jh(ud) and Jd(ud) ≤ Jd(uh), which together with (5.7) imply that�

Ω
|∇uh|2 dx =

�
Ω
|∇ud|2 dx.

Consider v := 1
2uh +

1
2ud ∈ Kγh . By the strict convexity of the Dirichlet energy, we have

Jh(v) <
�
Ω
(
1
2 |∇uh|

2 +
1
2 |∇ud|

2 + χ{v>0}(h − xN)2b+ ) dx = Jh(uh),
a contradiction to the minimality of uh, and (5.2) is hence proved.
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Step 3: Finally, assume by contradiction that there is x1 ∈ {ud > 0} such that uh(x1) = ud(x1) > 0, so that
uh = ud in Ω. Then, by Theorem 2.1, for x0 = (x󸀠0, xN) as in the statement we have that

(h − xN)b = ∂−νuh(x0) = ∂−νud(x0) = (d − xN)b .
This is in contradiction to the assumption d ̸= h. Hence uh < ud in {ud > 0}, as claimed.

Proof of Theorem 1.3. Let

hcr := inf{h > 0 : there exists a global minimizer uh ∈ Kγh of Jh such that supp uh ⊂ {xN ≤ h}}. (5.8)

By Theorem 5.1, we have that hcr < ∞. Assume for the sake of contradiction that hcr = 0. Then for every
h > 0 there exists a global minimizer uh ∈ Kγh with the property that the support of uh is contained in the set
{xN ≤ h}. Reasoning as in the proof of Corollary 4.3, we see that

Jh(uh) >
�
Ω
|∇uh|2 dx ≥

λN−1m2

h
. (5.9)

Since by assumption the function θ is non-increasing, there exists h̄ such that if h ≤ h̄, then

h ≤ θ(h) = γh .

For every such h we let w be the function defined in the proof of Theorem 1.1. Then it follows from (4.7)
and (4.8) that

Jh(w) <
λN−1m2

γh
+ λN−1 h2b+12b + 1 + O(δ).

Notice that if h is chosen sufficiently small, then

λN−1m2

γh
+ λN−1 h2b+12b + 1 <

λN−1m2

h
.

In turn, by (5.9), for every δ small enough we see that

Jh(w) < Jh(uh).

Since by definition w ∈ Kγ, this contradicts the minimality of uh. Consequently, we have shown that hcr > 0.
Fix h > hcr and assume for the sake of contradiction that there exists a global minimizer of Jh in Kγh ,

namely uh, with the property that the support of uh crosses the hyperplane {xN = h}. By (5.8), we can find
d ∈ [hcr, h) and a global minimizer ud ∈ Kγd for the functional Jd such that the support of ud in Ω is con-
tained in {xN ≤ d}. Since by assumption 0 < d < h, we are in a position to apply Theorem 5.2 to conclude
that {uh > 0} ⊂ {ud > 0}; this leads to a contradiction and thus concludes the proof of (ii). Property (iii)
is a straightforward consequence of (5.8). In particular, observe that since uh is harmonic in {xN > h}, if
{xN ≥ h} ∩ {uh > 0} is nonempty, then uh must be positive in {xN > h}.

Remark 5.3. By Theorem 2.1, it follows that if u ∈ Kγh is a global minimizer of Jh for h > hcr, then for every K
compactly contained in Ω the free boundary ∂{u > 0} ∩ K is a smoothhypersurface except possibly ona closed
singular of Hausdorff dimension N − 5.

5.2 Scaling of the critical height

Theorem 5.4 (Comparison principle). Given b,m, h, δ, γ, λ > 0, let u be a global minimizer of Jh in Kδ and
let w be a global minimizer of Jh inKγ, where Jh is the functional in (1.9) andKδ ,Kγ are defined as in (1.10).
Then either

{u > 0} ⊂ {w > 0} and u ≤ w,

or
{w > 0} ⊂ {u > 0} and w ≤ u.
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Proof. Assume, without loss of generality, that δ ≤ γ. As in the proof of Theorem 5.2, we now consider Note 9:
Do you agree with
the new phrasing
which improves the
line breaks?

v1 := min{u, w} and v2 := max{u, w}. Then v1 ∈ Kδ, v2 ∈ Kγ, and in particular we have

Jh(u) + Jh(w) = Jh(v1) + Jh(v2).

Therefore, v1 and v2 are global minimizers of Jh in Kδ and in Kγ, respectively. Reasoning as in the proof
of Theorem 5.2, we recall that if there exists a point x0 such that u(x0) = w(x0) > 0, then u = w everywhere
in Ω. Next, we assume by contradiction that the supports of u and w do not satisfy the inclusions as in the
statement, i.e., there exist x, y ∈ Ω such that u(x) > 0, w(y) > 0 and u(y) = w(x) = 0. Let z ∈ Ω be such that
u(z) > 0 and w(z) > 0 (such a point z exists since byminimality we have that Jh(u) and Jh(w) are both finite).
We assumefirst thatw(z) > u(z). Then, since byminimality {u > 0} is open and connected and thus path-wise
connected, we can find a continuous curve φ : [0, 1] → Ω joining z to x, with support contained in {u > 0}.
Define

v(t) := w(φ(t)) − u(φ(t)).

Notice that by construction v(0) = w(z) − u(z) > 0 and v(1) = w(x) − u(x) < 0, and so there exists t0 ∈ (0, 1)
such that v(t0) = 0. Thus0 < u(φ(t)) = w(φ(t)), which in turn implies that u = w, a contradiction. Similarly, if
u(z) > w(z), we arrive at a contradiction by considering a continuous curveψ : [0, 1] → Ω that joins z with y
and with support contained in {w > 0}. The rest of the proof is analogous to the proof of (5.2).

Lemma 5.5. Under the assumptions of Theorem 1.3, we have that

hcr ≤ h∗ = 2b + 2
(2b + 1)b/(b+1)m1/(b+1).

Proof. Assume by contradiction that hcr > h∗, and let h∗ < h < hcr. By Tonelli’s theorem and Theorem 3.1 (iii),
we have that the function w : ℝN+ → ℝ defined by

w(x) := vth (xN)

is theunique globalminimizer of Jh inKγ for every γ ≥ th. Notice that by (1.13) itmust be the case that γh < th.
Let uh ∈ Kγh be a global minimizer of Jh. Since by assumption u(x) = 0 for x = (x󸀠, xN) ∈ ∂R × (γh ,∞), by
continuity we can find x󸀠0 ∈ R close to ∂R such that

u(x󸀠0, γh) < m(1 − γhth ) = w(x󸀠0, γh).
Then it follows from Theorem 5.4 that uh ≤ w, and in particular

{uh > 0} ⊂ {w > 0} = {xN < th}.

Hence uh has bounded support in Ω, and so we have reached a contradiction to the definition of hcr (see Note 10:
Please check that
we did not change
the meaning here.

Theorem 1.3).

Lemma 5.6. Under the assumptions of Theorem 1.3, the following hold:
(i) Let a, c ∈ ℝ+ be such that

0 < a
1 − B(b)a2b+2 ≤ c, where B(b) := (2b + 2)

2b+2
(2b + 1)2b+1 , (5.10)

and define h := ah∗. Then hcr ≥ h provided that γh ≥ ch∗.
(ii) If γth∗ ≥ th∗ , then

hcr ≥
m1/(b+1)
(2b + 1)b/(b+1) .

Proof. Let a, c, h, γh be as in statement (i) and assume for the sake of contradiction that hcr < h. Then it
follows from the definition of hcr that there is a global minimizer uh ∈ Kγh of Jh with supp uh ⊂ {xN ≤ h}. As
in the proof of Corollary 4.3,

Jh(uh) >
λN−1m2

h
. (5.11)
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Let w(x) := vγh (xN), where vγh is defined in (3.6). We claim that Jh(w) < Jh(uh). Since this would clearly be
a contradiction to the minimality of uh, the claim implies the desired result, i.e., hcr ≥ h. In view of the fact
that by (3.3) and (3.7) we have

Jh(w) ≤
λN−1m2

γh
+ λN−1 h2b+12b + 1 ,

and by recalling (5.11), to prove the claim it is enough to show that

m2

γh
+
h2b+1
2b + 1 ≤

m2

h
,

which in turn is implied by (5.10).
To prove the second statement, we begin by showing that for every h ≤ th∗ ,

{y < th∗ } ⊂ {uh > 0}, (5.12)

where, as usual, uh refers to a global minimizer of Jh in Kγh . This fact follows from the simple observation
that, for h ≤ th∗ , minimizers of Jh in Kγh are independent of the values of γh for h > th∗ . Consequently, we
can assume without loss of generality that γh ≥ th∗ for every h > th∗ . In particular, this implies that γh∗ ≥ th∗ ,
and therefore uh∗ ( ⋅ , xN) := vth∗ (xN) is the unique global minimizer of Jh∗ (see Theorem 3.1). The rest follows
from Theorem 5.2. Assume for the sake of contradiction that

hcr <
m1/(b+1)
(2b + 1)b/(b+1) = h∗

2b + 2 = th
∗ .

Notice that (5.12) allows us to obtain the following refined version of (5.11):

Jh(uh) ≥
λN−1m2

h
+ λN−1 h2b+12b + 1 for h ≤ th∗ . (5.13)

Reasoning as above, by letting w( ⋅ , xN) := vγh (xN), using the fact that γth∗ ≥ th∗ , and (5.13), we see that
Jth∗ (w) = λN−1m2

γth∗ + λN−1 t2b+1h∗
2b + 1 ≤

λN−1m2

th∗ + λN−1 t2b+1h∗
2b + 1 ≤ min{Jth∗ (u) : u ∈ Kγth∗ }.

In particular, since w ∈ Kγth∗ , it must be the case that w is a global minimizer of Jh, a contradiction to
Theorem 1.1. This concludes the proof.

Remark 5.7. Inequality (5.10) holds for

0 < a ≤ 1
(2B(b))1/(2b+2) , c ≥ 2

(2B(b))1/(2b+2) .
Theorem 1.5 is then an immediate corollary of Lemma 5.5 and Lemma 5.6.

5.3 Structural properties of global minimizers

In this subsection we present the proof of Theorem 1.6. For the clarity of presentation, the proof is divided
into a number of separate results.

Theorem 5.8. Under the assumptions of Theorem 1.3, if θ is right-continuous at h > 0, there exists u−h ∈ Kγh ,
a global minimizer of the functional Jh, with the property that for every strictly decreasing sequence {hn}n with
hn ↘ h and for every sequence {un}n such that un ∈ Kγhn is a global minimizer of Jhn for every n ∈ ℕ,

∇un → ∇u−h in L2(Ω;ℝN),
un → u−h in H1

loc(Ω),
un → u−h uniformly on compact subsets of Ω.

Similarly, if θ is left-continuous at h, there exists a global minimizer of Jh in Kγh , denoted by u+h , which enjoys
analogous properties for strictly increasing sequences converging to h.
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We begin by proving a preliminary lemma.

Lemma 5.9. Under the assumptions of Theorem 1.3, let w ∈ Kγh be such that Jh(w) < ∞. Then, if θ is right-
continuous at h > 0, for every sequence hn ↘ h there is a corresponding sequence {wn}n such that wn ∈ Kγhn
for every n ∈ ℕ and Jhn (wn) → Jh(w) as n →∞.

Proof. Set
σn :=

γh
γhn

and define the rescaled functions wn(x󸀠, xN) := w(x󸀠, σnxN). Notice that wn ∈ Kγhn and that by a change of
variables,

�
Ω
|∇wn|2 dx =

�
Ω
(|∇x󸀠w(x󸀠, σnxN)|2 + σ2n∂xNw(x󸀠, σnxN)2) dx

=
�
Ω
(|∇x󸀠w(x󸀠, z)|2 + σ2n∂xNw(x󸀠, z)2)σ−1n dx󸀠dz

→
�
Ω
|∇w(x󸀠, z)|2 dx󸀠dz,

where in the last step we have used the fact that by assumption σn ↘ 1. Similarly, one can show that
�
Ω
χ{wn>0}(hn − xN)+ dx → �

Ω
χ{w>0}(h − xN)+ dx,

and the result follows.

Proof of Theorem 5.8. We divide the proof into several steps.

Step 1: Assume first that θ is right-continuous at h and let {hn}n and {un}n be given as in the statement. We
begin by showing that there exists a subsequence of {un}n that converges to a function u−h ∈ Kγh . To this end,
let v : ℝN+ → ℝ be defined by

v( ⋅ , xN) := m(1 −
xN
γh1
)+.

Then v ∈ Kγhn for every n ∈ ℕ and in particular we have the following chain of inequalities:�
Ω
|∇un|2 dx ≤ Jhn (un) ≤ Jhn (v) ≤ Jh1 (v) < ∞.

Hence {∇un}n is bounded in L2(Ω;ℝN). Moreover, since un − v = 0 on R × {0}, by Poincaré’s inequality we
obtain �

Ωr
|un − v|2 dx ≤ C(Ωr)

�
Ωr
|∇un − ∇v|2 dx,

where Ωr := Ω ∩ {xN < r}with r > 0. This shows that {un}n is bounded inH1(Ωr) and thus, up to the extraction
of a subsequence, un ⇀ ur in H1(Ωr). If we now let s > r, eventually extracting a further subsequence, we
have that un ⇀ ur in H1(Ωr) and un ⇀ us in H1(Ωs). By the uniqueness of the weak limit, we conclude that

ur(x) = us(x) for LN -a.e. x ∈ Ωr .

By letting r ↗ ∞ and by a diagonal argument, up to the extraction of consecutive subsequences, this defines
a function u−h such that for some {nk}k ⊂ ℕ,

{{{{{{
{{{{{{
{

∇unk ⇀ ∇u−h in L2(Ω;ℝN),
unk → u−h in L2loc(Ω),
unk → u−h pointwise a.e. in Ω,
unk → u−h in L2loc(∂Ω).

(5.14)

In particular, this shows that u−h can be extended to a function inKγh .
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Step 2: Next, we show that u−h is a global minimizer of Jh. We do so by first showing that up to the extraction
of a subsequence which we do not relabel,

χ{unk>0} ∗⇀ ξ in L∞(Ω),
where the function ξ satisfies

ξ(x) ≥ χ{u−h>0}(x) for LN -a.e. x ∈ Ω. (5.15)
Indeed, arguing as in the proof of [1, Theorem 1.3], we observe that for every K compactly contained in
{u > 0},

0 =
�
K
(χ{unk>0} − 1)unk dx → �

K
(ξ − 1)u−h dx.

Since u−h > 0 in K, then necessarily ξ(x) = 1 for LN -a.e. x ∈ K and hence, by exhaustion, in {u > 0}. To prove
that u−h is a global minimizer of Jh inKγh , we fix r > 0 and let w ∈ Kγh . If Jh(w) = ∞, there is nothing to do.
Hence we assume without loss of generality that Jh(w) < ∞ and consider {wn}n as in Lemma 5.9. Then we
have �

Ωr
(|∇u−h |2 + χ{u−h>0}(h − xN)+) dx ≤ �Ω(|∇u−h |2 + ξ(h − xN)+) dx

≤ lim inf
k→∞ Jhnk (unk )

≤ lim
k→∞ Jhnk (wnk )

= Jh(w). (5.16)

We then conclude that Jh(u) ≤ Jh(w) for every w ∈ Kγh by letting r ↗ ∞.

Step 3: Notice that taking w = u−h in (5.16) yields�
Ωr
(|∇u−h |2 + χ{u−h>0}(h − xN)+) dx ≤ lim inf

k→∞ Jhnk (unk ) ≤ lim sup
k→∞ Jhnk (unk ) ≤ Jh(u

−
h).

In turn, by letting r ↗ ∞, we obtain
Jh(u−h) = lim

k→∞ Jhnk (unk ). (5.17)

On the other hand, by the lower semicontinuity of the L2-norm and (5.15), we see that�
Ω
|∇u−h |2 dx ≤ lim inf

k→∞ �
Ω
|∇unk |2 dx

and �
Ω
χ{u−h>0}(h − xN)+ dx ≤ lim inf

k→∞ �
Ω
χ{unk>0}(h − xN)+ dx.

In view of (5.17), we notice that the previous two inequalities are necessarily equalities, and therefore

∇unk → ∇u−h in L2(Ω;ℝN).

We recall that, by Theorem 5.2, {unk }k is an increasing sequence of continuous functions with a continuous
pointwise limit (see (5.14)). Hence, by Dini’s convergence theorem, the convergence is uniform on compact
subsets of Ω. This shows that, by eventually extracting a subsequence, the sequence {un}n converges in the
desired fashion to a minimizer of Jh.

Step 4: Suppose by contradiction that the entire sequence {un}n does not converge to u−h as in the statement
of the theorem, and let {unj }j be a subsequence for which this fails. Applying the results of the previous steps
to {unj }, we can extract a further subsequence (whichwe do not relabel) that converges uniformly on compact
subsets of Ω to a function w ∈ Kγh . Notice that w is also a global minimizer of the functional Jh and that by
assumption it doesnot coincidewith u−h . Consequently, it follows fromTheorem5.2 that unk ≤ w and unj ≤ u−h .
Let x and r be such that Br(x) is compactly contained in the support of u−h . Then, passing to the limit as k →∞
and j →∞ in the previous inequalities, we obtain u−h = w in Br(x) and in particular that 0 < u(x) = w(x).
Reasoning as in the proof of Theorem 5.2, we obtain that u = w in Ω.

Notice that the same technique can be used to show that u−h is independent of the sequences {hn}n
and {un}n, i.e., it only depends on the type of monotonicity. This concludes the proof of the first part.
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Step 5: Assume that θ is left-continuous at h. Notice that the analogous result to Lemma 5.9 is trivial in
this case since the monotonicity assumption on θ guarantees that Kγh ⊂ Kγhn for every n. Indeed, for every
w ∈ Kγh we can set wn := w and obtain immediately that Jh(wn) → Jh(w). On the other hand, the additional
assumption on θ is required to conclude from (5.14) that u+h belongs to the classKγh . The rest follows essen-
tially without changes, and therefore we omit the details.

The following result is an immediate corollary of Theorem 5.2 and Theorem 5.8.

Corollary 5.10. Under the assumptions of Theorem 1.3, if θ is continuous at h > 0, there are two (possibly
equal) global minimizers of Jh in Kγh , namely u−h , u+h , such that u−h ≤ u+h and if w is another global minimizer,
then u−h ≤ w ≤ u+h .
Theorem 5.11 (Uniqueness). Under the assumptions of Theorem 1.3, if in addition θ is continuous, the func-
tional Jh admits a unique global minimizer inKγh for all but countably many values of h.

Proof. Let

Λ := {h ∈ ℝ+ : the minimization problem for Jh inKγh has at least two distinct solutions},

for every integer j ≥ 2 let uj ∈ Kγj be a global minimizer of Jj, and denote by Bj a ball compactly contained in
the set {x ∈ Ω : uj(x) > 0}. Furthermore, for every n ∈ ℕ define the sets

Λj,n := {h ∈ (
1
j
, j) : sup{|u+h(x) − u−h(x)| : x ∈ Bj} ≥ 1n },

where the functions u−h , u+h are given as in Theorem 5.8. We claim that

Λ =
∞
⋃
j=2 ∞⋃n=1Λj,n .

Indeed, if h ∈ Λ and j is such that 1
j < h < j, to prove the claim it is enough to show that h ∈ Λj,n for some n.

Assume by contradiction that this is not the case. Then it follows from Theorem 5.2 that for every x ∈ Bj,

u−h(x) = u+h(x) ≥ uj(x) > 0,
and in turn, reasoning as in the proof of Theorem 5.2, we obtain that u−h and u+h must coincide in Ω. In view
of Corollary 5.10, this contradicts the assumption that h ∈ Λ.

Assume that Λj,n has a countable subset. Then we can find a sequence {hi}i ⊂ Λj,n and h ∈ [1j , j] such
that {hi}i converges strictly monotonically to h. By Theorem 5.8, there exists a function u ∈ Kγh such that
u−hi , u+hi → u uniformly in the compact set Bj. In turn, for i large enough we have that

|u+hi (x) − u−hi (x)| ≤ |u+hi (x) − u(x)| + |u(x) − u−hi (x)| < 1n
for all x ∈ Bj, a contradiction to the definition of Λj,n. Hence, we have shown that the sets Λj,n are finite for
every j ≥ 2 and n ∈ ℕ. This concludes the proof.

Having established the convergence of monotone sequences of minimizers in Theorem 5.8, we now investi-
gate the convergence of the associated free boundaries. Our proof is inspired by standard techniques which
are more commonly used in the study of blow-up limits (see, for example, [1, Section 4.7]).

Theorem 5.12. Under the assumptions of Theorem1.3, if θ is continuous at h > 0, let {hn}n ⊂ (0,∞)beamono-
tone sequence that converges to h. For every n ∈ ℕ, let un be a global minimizer of Jhn in Kγhn and consider
u+h , u−h as in Corollary 5.10. Then the following statements hold:
(i) If hn ↘ h, then ∂{un > 0} → ∂{u−h > 0} in Hausdorff distance locally in Ω.
(ii) If hn ↗ h, then ∂{un > 0} → ∂{u+h > 0} in Hausdorff distance locally in R × (0, h).
(iii) If hn ↘ h, then χ{un>0} → χ{u−h>0} in L1loc(R × (0, h)).
(iv) If hn ↗ h, then χ{un>0} → χ{u+h>0} in L1loc(R × (0, h)).
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Proof. (i) Let hn ↘ h > 0 and consider a ball Br(x) ⊂ Ω such that Br(x) ∩ ∂{u−h > 0} = 0. Then either u−h ≡ 0
in Br(x) or u−h > 0 in Br(x). By Theorem 5.2, we have that {un > 0} ⊂ {u−h > 0} for every n ∈ ℕ. Thus if u−h ≡ 0
in Br(x), so does un ≡ 0 hold for every n ∈ ℕ. In particular, this implies that Note 11:

Please check that
we did not change
the meaning here.Br/2(x) ∩ ∂{un > 0} = 0. (5.18)

On the other hand, if u−h > 0 in Br(x), since by Theorem 5.8 we have that {un}n converges uniformly to u−h in
Br/2(x), then for n sufficiently large we have

un(x) ≥
1
2 min{u−h(y) : y ∈ Br/2(x)} > 0

for every x ∈ Br/2(x), and hence (5.18) is satisfied.
Conversely, if Br(x) ∩ ∂{un > 0} = 0, then for all n sufficiently large we have that either un > 0 in Br(x) or

un = 0 in Br(x). Assume first that um > 0 in Br(x) for some m ∈ ℕ. Then, by Theorem 5.2, un > 0 in Br(x)
for every n ≥ m, and therefore u−h is harmonic in Br/2(x) being the uniform limit of harmonic functions.
Consequently, either u−h > 0 in Br/2(x) or u−h = 0 in Br/2(x). In both cases,

Br/2(x) ∩ ∂{u−h > 0} = 0. (5.19)

On the other hand, if un ≡ 0 in Br/2(x) for every n ∈ ℕ, then also u−h ≡ 0 in Br/2(x). This shows that (5.19) is
also satisfied in this case. By a standard compactness argument, one can show that ∂{un > 0} → ∂{u−h > 0} in
Hausdorff distance locally in Ω.

(ii) Let hn ↗ h and consider a ball Br(x) ⊂ R × (0, h) such that Br(x) ∩ ∂{u+h > 0} = 0. As before, either
u+h ≡ 0 in Br(x) or u+h > 0 in Br(x). If u+h > 0 in Br(x), by Theorem 5.2, un > 0 in Br(x) for every n ∈ ℕ. There-
fore, (5.19) holds. On the other hand, if u+ ≡ 0, for every δ > 0 we can find m such that un ≤ δ in B3r/4(x) for
every n ≥ m. Hence, for δ = δ(r) sufficiently small and n ≥ m,

4
3r

 
B3r/4(x) un dHN−1 ≤ 4δ3r ≤ C(N, 23)(h − xN − 23 ⋅ 34 r)b .

Then we can conclude from Proposition 2.3 that un ≡ 0 in Br/2(x), proving that (5.18) holds. The rest of the
proof follows as in the previous case, and therefore we omit the details.

(iii) Let hn ↘ h > 0 and let K be a compact subset ofR × (0, h). If dist(K, ∂{u−h > 0}) > 0, then either u−h ≡ 0
in K or u−h > 0 in K. Reasoning as in the proof of (i), we can conclude that either un ≡ 0 in K for every n or
un > 0 in K for n sufficiently large; hence in this case there is nothing to prove. Therefore, we can assume
that K ∩ ∂{u−h > 0} ̸= 0. By (i), for every 0 < η < dK := dist(K, ∂(R × (0, h)))we can findm = m(η, K) such that
if n ≥ m, then

∂{un > 0} ∩ K ⊂ Nη(∂{u−h > 0}),
whereNη(A), for any set A ⊂ Ω, represents the tubular neighborhood of A of width η, i.e.,

Nη(A) := {x ∈ Ω : dist(x, A) < η}.

Observe that by Proposition 2.3, for every ball Br(x) ⊂ K with center on ∂{u−h > 0},
1
r

 
∂Br(x) u−h dHN−1 ≥ C(N, 12)(h − xN − r2)b > C(N, 12)(dK)b .

Similarly, by [1, Lemma 3.2] (see also [10, Theorem 3.1]), there is a constant Cmax = Cmax(N) > 0 such that

1
r

 
∂Br(x) u−h dHN−1 ≤ Cmax(h − xN + r)b < Cmax(2h)b .

Hence we are in a position to apply [1, Theorem 4.5] to conclude that

HN−1(∂{u−h > 0} ∩ K) < ∞.
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Since χ{un>0} → χ{u−h>0} in L1(K \Nη(∂{u−h > 0})) and since
LN(Nη(∂{u−h > 0}) ∩ K) ≤ 2ηHN−1(∂{u−h > 0} ∩ K),

letting η → 0+ in the previous estimate concludes the proof.
The proof of (iv) is almost identical, thus we omit the details.

The following result is adapted from [10, Theorem 5.10].

Theorem 5.13. Let u+h , u−h be as in Corollary 5.10. Then u+h , u−h are symmetric with respect to the coordinate
hyperplanes {xi = 0} and the maps

xi ∈ [0,
λ
2] 󳨃→ u+h(x), xi ∈ [0,

λ
2] 󳨃→ u−h(x)

are decreasing for i = 1, . . . , N − 1.

Proof. We prove this theorem in two steps.

Step 1: Let h ∈ ℝ+ \ Λ, where Λ is defined as in Theorem 5.11, and let uh be the unique global minimizer
of Jh inKγh . For i = 1, . . . , N − 1, let wi be the function obtained by applying to uh an even reflection about
the hyperplane {xi = 0}, i.e.,

wi(x) := {
uh(−x1, x2, . . . , xN) if i = 1,
uh(x1, . . . , −xi , . . . , xN) if i ≥ 2.

Notice that wi ∈ Kγh and Jh(w) = Jh(uh). Thus, since by assumption Jh has exactly one global minimizer
in Kγh , it must be the case that uh = wi for every i. This proves that uh is symmetric with respect to the
hyperplanes {xi = 0} for i = 1, . . . , N − 1, and in particular the support of uh in Ω coincides with its Steiner
symmetrizations with respect to the same hyperplanes. Let u∗h be the symmetric decreasing rearrangement
of uh with respect to the variables x1, . . . , xN−1 (see [31, Chapter 2], see also [27, Definition 7.1]). Then
u∗h ∈ Kγh and by the Pólya-Szegö inequality (see [31, Corollary 2.14], see also [27, Theorem 7.1]), together
with Tonelli’s theorem and Lebesgue’s monotone convergence theorem, we obtain

�
Ω
|∇u∗h |2 dx ≤ �

Ω
|∇uh|2 dx.

Furthermore, the definition of u∗h implies that for L1-a.e. xN ∈ ℝ+,
�
R

χ{u∗h>0}(x󸀠, xN) dx󸀠 = �
R

χ{uh>0}(x󸀠, xN) dx󸀠,
and thus, again by Tonelli’s theorem,

�
Ω
χ{u∗h>0}(h − xN)2b+ dx = � h

0
(h − xN)2b+ �

R

χ{u∗h>0}(x󸀠, xn) dx󸀠 dxN
=
� h

0
(h − xN)2b+ �

R

χ{uh>0}(x󸀠, xn) dx󸀠 dxN
=
�
Ω
χ{uh>0}(h − xN)2b+ dx.

Consequently, Jh(u∗h) ≤ Jh(uh), which in turn gives that uh ≡ u∗h .
Step 2: If h ∈ Λ, consider a sequence {hn}n ⊂ ℝ \ Λ such that hn ↗ h and let uhn be the unique minimizer
of Jhn in Kγhn . Then uhn ≡ u

∗
hn and by Theorem 5.8 it follows that u+h has all the desired properties. The

analogous result for u−h follows by considering a sequence {hn}n ⊂ ℝ \ Λ such that hn ↘ h.

Remark 5.14. Let uh ∈ Kγh be a global minimizer of Jh and assume that the map

xi ∈ [0,
λ
2] 󳨃→ uh(x)
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is decreasing for some i ∈ {1, . . . , N − 1}. Then the free boundary of uh in (0, λ2 )
N−1 × ℝ+ can be described by

the graph of a function
xi = gi(x̂i),

where the vector x̂i is obtained from x by removing the entry corresponding to xi. Indeed, it is enough to
define

gi(x̂i) := sup{xi : uh(x) > 0}.

Notice that Theorem1.6 follows directly fromTheorem5.8, Corollary 5.10, Theorem5.11, and Theorem5.13.

6 Comments
It is important to observe that Theorem 1.3 implies that the critical height hcr is the only value of h for
which the free boundaries of global minimizers of Jh can touch the hyperplane {xN = h} while having sup-
port contained in {xN ≤ h}. As previously observed in [10] in dimension N = 2, it follows from Theorem 5.8
and Proposition 2.3 that the support of u+hcr cannot be strictly contained in {y < hcr}, while the support of u−hcr
cannot cross the line {y = hcr}. In turn, a necessary condition for the existence of aminimizer with the desired
properties is that u+hcr ≡ u−hcr . As previously remarked in Section 1, our interest in the matter is due to the fact
that in view of the results of [10, Theorem 5.11] such aminimizer would behave as a Stokes wave locally in Ω.
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