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1 Introduction

In the classical paper [1], Alt and Caffarelli used a variational approach to study the existence and regularity
of solutions to the one-phase free boundary problem
Au=0 inQn{u>0},
u=0 onQnofu>0},
[Vul=Q onQnofu >0},

u=uy onl.

(1.1)

Here Q is an open connected subset of RN with Lipschitz continuous boundary and Q is a nonnegative
measurable function. Solutions to (1.1) are critical points for the functional

9 = [ (Yl +xu0 @) dx, u e, (1.2)
Q
where Note 1:
Throughout, we
9{ = {u € Llloc(Q) : Vu € LZ(Q; ]RN) and u= u() on F}, deleteiallttmused

labels.
with I' ¢ 9Q being a measurable set with HN-1(I') > 0 and ug € Hlloc(Q) being a nonnegative function satis- note2:

Red parts indicate

fylng major changes.

Please check them

3(“0) < 0Q. (1.3) carefully.

The equality u = up on I is in the sense of traces.
Under the assumption that Q is a Hélder continuous function satisfying

0 < Qmin £ Q(X) < Qmax < 00, (1.4)
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Alt and Caffarelli [1] proved local Lipschitz regularity of local minima and showed that the free boundary
o{u > 0}isa C*regular curvelocallyin Qif N = 2, whileif N > 3, they proved that the reduced free boundary
o*d{y > 0}isa hypersurface of class C>% locally in Q, for some O < a < 1, and that the singular set

Tsing = QN {o{u > 0} \ 0™%u > 0}}

has zero HN-1 measure; see also [4] for the quasi-linear case and [22] for the case of the p-Laplace operator.

While the regularity of minimizers is optimal, the regularity of the free boundary for N > 3 was improved
by Weiss in [44]. Weiss, following an approach closely related to the theory of minimal surfaces and by means
of a monotonicity formula, proved the existence of a maximal dimension k* > 3 such that for N < k* the free
boundary is a hypersurface of class C** locally in Q, for N = k* the singular set Zgng consists at most of
isolated points, and if N > k*, then H5(Zsing) = O for every s > N — k*. In [14], Caffarelli, Jerison and Kenig
proved the full regularity of the free boundary in dimension N = 3, thus showing that k* > 4. They also conjec-
tured that k* > 7. In alater work, De Silva and Jerison exhibited an example of a global energy minimizer with
non-smooth free boundary in dimension 7 (see [23]); their result gives the upper bound k* < 7. More recently,
Jerison and Savin showed that the only stable homogeneous solutions in dimension N < 4 are hyperplanes,
a result which implies full regularity of the free boundary for N < 4, and consequently that k* € {5, 6, 7}
(see [30]). We refer to the recent paper of Edelen and Engelstein (see [24]) for more details on the structure of
the singular set Zgjng.

As already remarked in [1], if N = 3, the energy functional J admits a critical point with a point singu-
larity in the free boundary. Similar results have been obtained for two-phase free boundary problems (see
[6, 11-13]).

It is important to observe that the regularity of the free boundary is strongly related to the assumption
0 < Qmin < Q(x) in (1.4). Indeed, in the recent paper [10] Arama and the second author showed that for N = 2

and in the special case in which
Q(x,y) = \(h-y), forsomeh >0, (1.5)

if alocal minimizer u has support below the line {y = h} and if there exists a point xo = (xg, h) € o{u > 0} n Q,
then
IVu(x, y)l < C(h—y)/>  for x € B,(xo), (1.6)

provided r is sufficiently small (see [10, Remark 3.5]), and, if in addition u coincides with its symmetric
decreasing rearrangement with respect to the variable x, then

u(0,y) > c(h-y)*>? fory € [0, h]

(see[10, Theorem 5.11]). On the other hand, using a monotonicity formula and a blow-up method, Varvaruca
and Weiss (see [43, Theorem A]) proved that for a suitable definition of solution if the constant C in (1.6) is 1,
then the rescaled function
uxo+mx) | V2 30 cos(z(min{max{é) —5—71} —E} + E)) asr — 0%
2 3P 2 e P Tel T2 ’

strongly in Wlt’cz (R?) and locally uniformly on R?, where (x, y) = (p cos 6, p sin 8), and near x, the free bound-
ary o{u > 0} is the union of two C'-graphs with right and left tangents at xo forming an angle of 23—” (see
also [46]). This type of singular solutions is related to Stokes’ conjecture on the existence of extreme water
waves (see [40]). Indeed, when N = 2, Q takes the form (1.5),

A A A A
(_51 E)X(ano)) I:= <_§s E)X{O}s Up =m, (1-7)
then the free boundary problem (1.1) describes gravity waves of permanent form on the free surface of an
ideal fluid. The motion is assumed to be irrotational and two-dimensional (see [37]).

The existence of extreme waves and the corner singularity have been proved in a series of papers (see [8,
9, 36, 38, 41], see also [20, 32, 35, 39] for the existence of regular waves) using a hodograph transformation
to map the set {u > 0} onto an annulus.

Note 3:
Throughout, we
changed the form
of some fractions.

Note 4:

Please check that

we did not change
the meaning here.
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The main drawback in proving the existence of regular and extreme water waves using the variational
setting of (1.2) is that global minimizers of the energy functional J specialized to the case (1.5), (1.7) are one-
dimensional functions of the form u = u(y), which correspond to flat profiles (see [10, Theorem 5.1]). For
this reason the paper [10] gives interesting results only for local minimizers or when the Dirichlet bound-
ary datum uy is not constant on the bottom. Necessary and sufficient minimality conditions in terms of the
second variation of J have been derived by Fonseca, Mora and the second author in [25]. We refer to the
papers [16-19, 21, 26, 33, 42] and the references therein for alternative approaches to water waves.

The purpose of this paper is to show that by adding an additional Dirichlet boundary condition on part
of the lateral boundary it is possible to construct global minimizers of J in the setting (1.5), (1.7), which are
not one-dimensional. To be precise, we let Q be the half-infinite rectangular parallelepiped

Q=R x (0, 00), (1.8)

where R is the open cube of RN-1 with center at the origin and side-length A > 0, that is,
A A\N-1
R = (—5, E> .
We will impose periodic boundary conditions on the lateral portion of the boundary, and therefore we will
require that the class of admissible functions is a subset of the Sobolev space

Hper(Q) = {u € H},

o c(BY) s u(x + Ae;) = u(x) for LN-a.e.x e RY andeveryi=1,...,N-1}.

With the choice
Q(x) = (h—xn)2,
where b, h > 0, the functional J in (1.2) can be rewritten as
In(u) = /Q(|Vu|2 + Xwsop(h —xn)?2) dx  foru e Xy, (1.9)
where
Ky :={u € Hpe(Q) :u=uponT,}, y>O0. (1.10)
Here the Dirichlet datum ug, defined by

Up(x) := m(l - XTN)# m >0, (1.11)

is prescribed on
Ty = (Rx{0}) U (0R x (y, 00)).

In particular, notice that ug is constant on R x {0} and zero on 0R x (y, c0).

One of our main results consists of proving that there are choices of the parameter y (depending on b, m,
and h, but independent of A) which have the effect of eliminating trivial solutions from the domain of Jj. This
is specified in the following theorem.

Theorem 1.1 (Existence of non-flat minimizers). Given b, m, h, A > 0, let Q, Jn, and X, be defined as in (1.8),
(1.9), and (1.10), respectively. Let

Bt e b+1 mlB+D) e 2b +2 1/(b+1)
T pbl(b+1) ’ : (2b + 1)b/(b+D) ’

(1.12)
and, for h > h*, let ty, be the first positive root of the polynomial
p(t) = t>(h - t)*P — m?.

Furthermore, for h € (h*, h*), let T, > ty, be the unique value such that

mz h2b+1 _ (h _ th)2b+1 ~ m_z h2b+1 _ (h _ min{h, Th})2b+1

+ + ,
tn 2b+1 Th 2b+1
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Figure 1. N

and set Ty =t = h/(b + 1) if h = h*. Then every global minimizer u € XKy of the functional gy, is not of the form
u = u(xy) provided

y € (0, 00) if h < h*,
Y € (0, tn) U(th,00) ifh* <h<h*, (1.13)
y € (0, tp) ifh>h*.

Remark 1.2. The numbers h*, h*, t, and 7, arise naturally from the study of the minimization problem for
aone-dimensional version of Jj. The analysis of this auxiliary problem is presented in Section 3. In particular,
in Remark 3.2 we give an equivalent characterization of the different ranges in (1.13).

We then proceed to study qualitative properties of global minimizers as we vary the parameter h. One of the
main results in this direction is an analogue to [10, Theorem 5.6], which roughly speaking gives a characteri-
zation of the values of h for which the support of global minimizers stays bounded. The key ingredients of our
proof are the monotonicity techniques developed in [2, Section 5], [27, Theorem 10.1], and ideas borrowed
from the proof of the continuous fit as presented in [5, Section 9].

Theorem 1.3 (Existence of a critical height). Given b, m,A > 0, let 0: R, — R, be a non-increasing function,
set
yn = 0(h), (1.14)

and for every h > 0 consider Q, Jp, and X, defined as in (1.8), (1.9), and (1.10), respectively. Then there exists

a threshold value for the parameter h, denoted by h.,, with the following properties:

(i) 0 < he < oo.

(i) For every h > h¢ and for every global minimizer u € K,, of Jx the support of u stays strictly below the
hyperplane {xy = h}.

(iii) For every O < h < h¢; and for every global minimizer u € Xy, of g, the support of u crosses the hyperplane
{xny = h}, and therefore u is positive in R x (h, c0).

Remark 1.4. Although Theorem 1.3 holds for any choice of the non-increasing function 6, it is of particular
interest in the case in which for every h > 0 the value y, = 6(h) satisfies (1.13).

Next, we give bounds on the critical height h, in terms of the Dirichlet datum m and obtain in return a char-
acterization of its asymptotic behavior.

Note 5:
Throughout, please
provide a caption
for every figure.

Note 6:

Please provide
where to refer to
Figure 1.
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Theorem 1.5 (Scaling of the critical height). Under the assumptions of Theorem 1.3, if in addition y;,. > tp-,

we have
hey ~ mYB+D)

Here tp- and yy,. are the numbers given in Theorem 1.1 and in (1.14) corresponding to h = h*, where h* is
defined in (1.12).

Further properties of solutions to the minimization problem for Jj are summarized in the following theorem.

Theorem 1.6 (Structure theorem). Under the assumptions of Theorem 1.3, if in addition 0 is continuous, for

every h > 0 there exist two (possibly equal) global minimizers of Jp in Xy,, namely uj, u,, with the following

properties:

(i) For any sequence {(hy, un)}, such that h, / h and u, € Xy, is a global minimizer of Jy,, we have that
Vuy — Vuj in L*(Q; RY), and up, — uj, in Hlloc(Q) and uniformly on compact subsets of Q.

(ii) For any sequence {(hy,, un)}, such that h, \. h and u, € Xy,, is a global minimizer of Jn,, we have that
Vu, — Vuy in L*(Q; RY), and up, — uj, in H, (Q) and uniformly on compact subsets of Q.

(iii) If w € Xy, is a global minimizer of gp, then u, < w < u;.

(iv) u;, u, are symmetric with respect to the coordinate hyperplanes {x; =0},i=1,..., N -1, and coincide
with their respective symmetric decreasing rearrangements with respect to the variables x1, . . . , XN-1-
Furthermore, the minimization problem for gy in X, admits a unique solution for all but countably many values

of h.

Finally, we remark that while the additional Dirichlet constraint u = 0 on 0R x (yn, co) allows us to construct
non-flat global minimizers, it has the disadvantage of potentially destroying the regularity of minimizers and
their free boundaries at the interface 0R x {yn}, where one has Dirichlet boundary conditions on 0R x (yx, c0)
and periodic boundary conditions on 0 x (O, yp).

Notice that due to the periodic boundary conditions below the line {y = y3}, if the free boundary o{u > 0}
of a global minimizer u € Xy, of the functional g touches the fixed boundary strictly below the line {y = yn}
(as in Figure 2), then it must be regular across periods as a consequence of the interior regularity (see Theo-
rem 2.1). In particular, in dimension N = 2, this implies that the free boundary hits the fixed boundary with
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Figure 4: I

a horizontal tangent, and furthermore every global minimizer is a solution to (1.1) in the entire half-plane.
On the other hand, if the free boundary o{u > 0} of a global minimizer u € X,, of the functional g, touches
the fixed boundary strictly above the line {y = y;}, then we are in a position to apply the recent work of Chang-
Lara and Savin [15] (see also [3, 7, 45]) in which it is shown that the free boundary of a viscosity solution
of (1.1) detaches tangentially from a portion of the fixed boundary where u vanishes and is a C'*'/?-regular
hypersurface locally in a neighborhood of 0Q (see Figure 3). The result is obtained relating the behavior of the
free boundary to a Signorini-type obstacle problem. In the remaining case for the two-dimensional problem,
i.e., when (- % , Yn) is an accumulation point for the free boundary, it was proved by the authors (see [28, 29])
that the free boundary of a minimizer which coincides with its symmetric decreasing rearrangement with
respect to the variable x must hit the fixed boundary with horizontal tangent (see Figure 4).

Theorem 1.7. Givenm,A,h>0andy < h,let N=2,b = % and let Q, Jp, and X, be defined as in (1.8), (1.9)
and (1.10), respectively. Let u € X, be a global minimizer of J, which coincides with its symmetric decreasing
rearrangement with respect to the variable x and assume that xo = (—% , ¥) is an accumulation point for the free
boundary on 0Q, i.e.,

Xo € 0{fu >0} NQ.

Then the portion of the free boundary o{u > O} in{x € Q : —% < x < 0} can be described by the graph of a func-
tion x = g(y), and furthermore the free boundary meets the fixed boundary at the point xo with horizontal
tangent, i.e.,
lim 180 —8WI _
=y ly =l
In conclusion, we would like to remark that Theorems 1.1-1.6 are a preliminary step towards a variational
proof of the existence of regular waves and of Stokes waves. Indeed, if one could show that for some partic-
ular choice of the parameters m, A, h, yj the free boundary touches the fixed boundary below or at the point
y = ¥n, then (see Figures 2 and 4) Theorem 1.3 and Theorem 1.7 would give a variational proof of the exis-
tence of regular waves established by Krasovskii [34] and Keady and Norbury [32]. In turn, if in this range of
parameters we could show that the free boundary of uj, approaches {xy = h¢} as h \, h¢, (see Theorem 1.3),
this would give a variational proof of the existence of Stokes waves. Both problems are under study.

Independently of their applications to water waves, we believe that the techniques developed in this
paper are of interest in themselves and could be applied to other free boundary problems.

Our paper is organized as follows: for the convenience of the reader, in Section 2 we recall some well-
known results on the existence and regularity of minimizers of the energy functional J;. In Section 3 we
study an auxiliary one-dimensional variational problem; the results of that section will be instrumental in
Section 4, where we present the proof of Theorem 1.1. Section 5 is dedicated to the study of qualitative
and structural properties of global minimizers. In particular, Section 5 contains the proofs of Theorem 1.3,
Theorem 1.5, and Theorem 1.6.
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2 Background results

In this section we collect well-known results concerning existence and regularity properties of solutions to
the minimization problem for Jj in X, .

Theorem 2.1. Given b, m, h,y,A > 0, let Q, K, and Jy, be defined as in (1.8), (1.9), and (1.10), respectively.
Then the minimization problem for gy in X, admits a solution. Furthermore, if u € X, is a global minimizer of
the functional Jp, the following hold:

(i) uis subharmonicin Q.

(ii) u is locally Lipschitz continuous in Q.

(iii) u is harmonic in the set {u > 0}.

(iv) u satisfies the-thirdline-of-(--as-afree-boundary-condition in a weak sense, i.e., Note 7:

Please check that
we did not change
the meaning here.

lim (IVul> = (h = xy)?2)n - vdHN"1 =0 foreveryn e CX(Q; RY).

20" Jouse}
(v) For any K compactly contained in R x (0, h), the free boundary o{u > 0} n K is a smooth hypersurface
except possibly on a closed singular set Zsing C 0{u > 0} of Hausdorff dimension N - 5, and

o_yu(x) = (h—xn)?, x=, xy) € 0fu >0} NK\ Zing.

Proof. Since Jx(up) < oo for ug defined as in (1.11), the proof of existence is essentially analogous to that
of [1, Theorem 1.3] (see also [10, Theorem 2.2]), and therefore we omit it. The proofs for statements (i)-(iv)
can be found in [1]; more precisely, we refer to [1, Lemma 2.2, Corollary 3.3, Lemma 2.4, and Theorem 2.5].
Statement (v) is [30, Corollary 1.2]. O

Remark 2.2. In view of property (i), we can work with the precise representative
u(x) = lim ][ uly)dy, xeQ.
r—0+ B,(x)

Typically, a first step for the study of minimizers and their free boundaries is to obtain non-degeneracy esti-
mates. The next proposition, reported below for future reference, is a classical result in this direction and
is essentially due to Alt and Caffarelli (see [1, Lemma 3.4 and Remark 3.5], see also [10, Theorem 3.6 and
Remark 5.2]). For the convenience of the reader, we adapt the statement to our framework.

Proposition 2.3. Givenb, m, h,y, A > 0, let Q, Jn, and X, be defined as in (1.8), (1.9), and (1.10), respectively.
Then for every k € (0, 1) there exists a positive constant C = C(N, k) such that for every minimizer u of J, in X,
and for every ball B,(x) c Q, if

1
—7[ udHN"! < C(h-xy - kn)?,
T JoB,(x)

then u = 0 in By, (x). Moreover, the result is still valid for balls not entirely contained in Q if u vanishes on
B,(x) N 0Q. In particular, this holds if B;(x) N 0Q C 0R x (y, 00).

3 An auxiliary one-dimensional variational problem

This section is dedicated to the study of the minimization problem for the functional

Tn(v) = / (V(6) + X0y (O(h — 020 dit G.1)
0
defined in the class

.- 1
Ky1d = {V € Ly,

((0, ) : v € HY((0, r)) for every r > 0, v(0) = m, and v(y) = 0}. (3.2)


Giovanni Leoni
Cross-Out
$u$ satisfies the free boundary condition $|\nabla u| = Q$ on $\partial \{ u > 0 \} \cap \Omega$ in a weak sense, i.e., 
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Our motivation for considering this problem comes from the following observation: if u € X, is of the form
u = u(xy), then u(0) = m, u(y) = 0, and by Tonelli’s theorem,

In(w) = /j2 /O (11 )P+ xrusoy (6 x) (= xx)22) dxwdx’ = AV-193 (). (3.3)

Thus
inf{gn(u) : u € Ky} < AN Hinf{Ip(v) : v € Ky 1.0} (3.4)

and, consequently, to prove Theorem 1.1 we must show that for y as in (1.13) the inequality above is a strict
inequality.
Given b, m, h > 0, we let g5, : R* — R be defined by
mz h2b+1 _ (h _ min{h, t})2b+1

gn(t) = -+ * ShT1 . (3.5)

Observe that g5 € C1(R"). Furthermore, for ¢ > 0, we let v;: R* — R be defined by

ve(s) = m(l - %)+ (3.6)

Theorem 3.1. Given b, m, h,y > 0, let J, and X,,1.4 be given as in (3.1) and (3.2), respectively. Then, if gn
and v; are given as above and the numbers h, h* are defined as in (1.12), we have that

inf{Jp(v) : v e Ky,1.4} = inf{gn(t) : 0 < t < y}. (3.7)

Furthermore, the following hold:
(i) Ifh < h*, then gy, is decreasing and vy is the only global minimizer of J, in the class Ky, 1.4.
(i) Ifh* < h < h*, then gy, has two critical points ty, Th, with

0<th<bh <Tp<h,

+1
which correspond to a point of local minimum and a point of local maximum of gy, respectively. Moreover,
there exists a unique Ty, > Ty such that gy(ty) = gn(Ty). In this case we have that
(@) ifO <y < tp, then gy is decreasing in (0, y) and vy is the only global minimizer of Jy in the class Xy,1.q;
(b) iftnh <y < Th, theninf{Jn(v) : v € Ky, 1.4} = gn(tn) and vy, is the only global minimizer of Jy, in the class
ny,l-d;
(c) ify = th, theninf{Jn(v) : v € Ky 1.a} = gn(tn) = gn(Th) and vy,, v4, are the only global minimizers of Ty
in the class Xy,1.4;
(d) ify > Ty, theninf{Tn(v) : v € Ky,1.q} = gn(y) and vy, is the only global minimizer of Ty in the class Xy, 1.4.
(iii) If h = h*, then ty is a point of absolute minimum for gn. Moreover, vy is the only global minimizer of Jy in
the class Xy,1.4 if 0 < y < tp, while if ty, <y, then the only global minimizer is given by vy, .

Remark 3.2. Notice that y is given as in (1.13) if and only if the following two conditions are simultaneously
satisfied:

@ g,y <o.

(ii) inf{In(v) : v € Ky, 1.a} = 8n(y).

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1: By the direct method in the calculus of variations, we have that there exists a global minimizer v
of Jp in X,,1.4. We claim that v is linear on {v > 0}. Indeed, the minimality of v implies that the set {v > 0}
is connected and the claim readily follows recalling that v is harmonic in {v > 0} (see Theorem 2.1). In turn,
v must be of the form v = v for some O < t < y, and so (3.7) follows upon noticing that

In(ve) = gn(t). (3.8)

Thus, it remains to study inf{gp(t) : 0 < t < y}.
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Step 2: Since

mZ

— (h-t)?P ift<h,
gp(t) = )
m .
7 ift > h,

we have that g}, (t) < 0if t > h. Moreover, gj () < 0 for t < h if and only if
PYr(t) == -m? + 2(h-t)?? < 0. (3.9)

Since Yy, has a global maximum in (0, h) at the point ¢ = ﬁ, it follows that

h 2 be 2b+2
lph(b+1)=—m +mh <0 (3.10)

if and only if h < h*, where h* is the number given in the first equation of (1.12). Consequently, if h < h*,
then gy, is decreasing, and so

inf{gn(t) : 0 < t <y} = gn(y),
which, together with (3.7) and (3.8), shows that v, is the only global minimizer of J; in the class Xy, 1.4.

Step 3: If h > h*, then, in view of (3.9), (3.10), and the fact that 1 has a single critical point in (0, h), there
exist

h
O<th<m<Th<h

such that gy, strictly decreases in (0, t;) and in (T}, 00), and strictly increases in (ty, Ty). It follows that

gn(y) ifO <y <ty
inf{gn(t) : 0 < t <y} = { gnltn) iftp <y < Ty, (3.11)
min{gx(tn), gn(y)} ify > Th.
Hence, in what follows, it remains to treat the case y > Tj. Notice that

2b+1

inf{gn(t) : 0 <t <y} = gn(tn) < lim gy(6) =
if and only if
m?(2b + 1) < sup{fu(t) : 0 < t < h},

h

where fy(t) := t(h — t)2b*1, The function f, has a maximumat t = Sho3

to

and so the previous condition reduces

)

2
m(2b+1)§fh(zb+2

or, equivalently, h > h*, where h* is the number given in (1.12). Hence, it follows from (3.12) that if h > h*,
then gn(tn) < gn(y), which, by (3.7), (3.8), and (3.11), proves (iii). On the other hand, if h* < h < h*, then
by (3.12) there exists Ty > Tj, such that gi(tn) = gn(Th).

Properties (a)—(d) now follow again by (3.7), (3.8), and (3.11). O

Corollary 3.3. Let tp, Ty, and Ty, be defined as in Theorem 3.1. Then, seen as functions of the variable h, ty is
decreasing, Ty, is increasing, and Ty, is increasing.

Proof. By the implicit function theorem, we have that the maps h — tp, h — Tp, and h — 7y are differen-
tiable, and we write t;l, T;l, and ‘r;l to denote the derivatives. In particular, we see that for h > h*,

bty

,—_—
b= =g O
bTy
’—_—
==+~
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To prove the statement about 75, we first assume that 7, < h. Recall that 7, is defined by the identity

m2 (h _ th)2b+1 ~ m2 (h _ Th)2b+1

th 2b+1 1 2b+1
Differentiating both sides with respect to h yields

2 2

t m27]
A (h- )P - ) = — L+ (h-1)?P (1 - T)). (3.13)
ty Th

The definition of t; can now be used to simplify the left-hand side of (3.13):

2ty b m? b
St (=) (1—t;l):t;l(t—2—(h—th)2)+h—th:h—th.
h h

Therefore, we can rewrite (3.13) as

2
m
(—2 —(h—Th)Zb)T;, =Th—th,
Th

and the conclusion follows by recalling that t; < 5 and m? — T,Zl(h —11)2P > 0. The proof for the case 7, > h
is similar but simpler, and therefore we omit it. O

4 Existence of nontrivial minimizers

In this section we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let y be as in (1.13). In view of (3.3), (3.4), and Remark 3.2 (ii), it is enough to exhibit
a function w € X, with the property that

In(w) < AN 1gu(y). (4.1)

Let 6 be a positive real number, which we choose later, and define § to be the convex hull of R x {y} with the
point {(0, y + 8)}, that is, the pyramid with base R x {y} and vertex {(0, y + 6)}. Define f: R — R via

f(x') =supit: (x', ) €8},
and let f be the periodic extension of f to R¥~1. We can then define

w(x) = m(l x=x',xy)eRY.

_ X_N)

fx)/+
The function w defined as above belongs to the class X, ; furthermore, we claim that if § is chosen sufficiently
small, then w satisfies (4.1). The proof of the claim is divided into several steps.

Step 1: In this step we study the asymptotic behavior of J(w) as § — 0* with first-order accuracy. We do so
by first noticing that if x € Q is such that

|xil > |x;| forsomeie{l,...,N-1}andeveryj<N-1, (4.2)

then w can be rewritten as follows:

XN/\ ) )
+

w0 =m(1-

In turn, if we denote by Q the subset of Q such that x; > 0 for every j and condition (4.2) is satisfied fori = 1,
we find that

/ IVw(x)|? dx = 2N (N - 1)/ IVw(x)|? dx. (4.3)
Q Q4
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Notice that w restricted to Q1 depends only on the variables x; and xy. Moreover, for £L¥-a.e. x € Q1, we have
that

—2mAdxy ifxy<y+6- z(SX

W= L yror-26) W AT (4.4)
aX1 .

0 otherwise,

-mA 2

— ifxy<y+8->6xq,
W =l yror-260 "N 201 %.5)
aXN .

0 otherwise.

In view of (4.4) and (4.5), and by means of a direct direction computation, we see that

2

46 2
/ IVw(x)[? dx = mz(— + /\)/ F(x1, 6) dx1, (4.6)
o 31 0

where
X2
(y+6)A-26x1"
Notice that F(x1, - ) is a smooth function in a neighborhood of the origin, and that its first-order Taylor approx-
imation centered at zero is given by

F(Xl, 6) =

xN-2 “2(A-2x1)
F _x T 2
(X15 5) y/l yz/\ 6+ O((S )

Substituting the previous expansion into (4.6) and combining the result with (4.3), we obtain that

N2, (N-2 W N-20)_ o
/wa(xn2 dx=zN-1(N—1)m2A/O (X;A S )(/2/12 X5 dxy + 06
N-1,,2 N-1,,2
AT AT s o). (4.7)

y Ny?
To compute the contribution coming from the area-term we distinguish between two cases. Indeed, if we
assume that h < y, we have that

h2b+1

2b+1° (4.8)

/ Xiws0) 0O (h = x)2? dx = AN / (h—xw)? dxy = AN

On the other hand, if y < h, we take & so small that y + § < h. Then, reasoning as in (4.3), we have that

/Q Xiws0; 0O (h = xy)2P dx = 2N "1(N - 1) /Q Xiws0y () (h — xx)2P dx

AN L h2b+1 2N—1(N_ 1) Al2

2b+1  2b+1 G(x1, 6) dxa, (4.9)

where
)2b+1

G(x1,8) = xy 2 (h-y -6+ 2 5x,

A
Similarly to above, we consider the first-order Taylor approximation centered at zero for G(x1, - ), i.e.,

G(x1, 8) = xN"2(h - y)?"*1 + 2b + 1)xN2(h - y)Zb( Zxq - )5+0(52),

and we substitute this expression into (4.9); by doing so, we obtain

h2b+1 (h _ y)2b+1 (h _ y)zb
2b+1  2b+1 N

[ X0 = x0020 ax = A 5) + 082,
Q
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/(b +1)

h*/(2b + 2) th

Figure 5: NN

Step 2: In this step we show that (4.1) is satisfied when h < y. Indeed, recalling that gy, is the function defined wotes:

Please provide

in (3.5), by (3.7), (1.13), and Remark 3.2 (ii), we see that (4.1) is equivalent to here o cer o
igure 5.
2 2b+1
N-1 _N-1(IM h
In(w) < A" 1g(y) = 4 (—y t o)

To conclude, it is enough to notice that by (4.7) and (4.8) the previous condition reduces to

AN—I m2
Ny?2

+0(6) <0,

which is satisfied provided § is sufficiently small.

Step 3: In this final step we deal with the more delicate case in which y < h. Reasoning as above, we use
(3.5), (4.7), and (4.9) to rewrite (4.1). By (1.13), (3.7), and Remark 3.2 (ii) we have that (4.10) reduces to

2 2b+1 2b+1
N-1 _an(mt  hT - (h-y)
Inw) < A gn(y) = AT+ T m ).

Simplifying the terms that appear on both sides, we are left to verify the following inequality:

N-1,,2 _\2b
ANy’Z" 6+AN’1(hTy)6+O(62) <0. (4.10)

Notice that the left-hand side of (4.10) can be rewritten as

AN-16
N

AN—la 2
< (-')’f—z +(h=y)?)+0(6) =

g (y) +0(8%).
The desired inequality (4.10), and therefore (4.1), follows from Remark 3.2 (i), provided 6 is sufficiently small.
This concludes the proof. O

Remark 4.1. The result of Theorem 1.1 is optimal for h < h* and h > h*. However, it is still unclear whether
the result could be improved for h* < h < h*.

Remark 4.2. We report here the explicit values of t, and T}, for the case b = % As previously mentioned in
Section 1, this case is of particular interest when N = 2 since it corresponds to Bernoulli-type free boundary
problems related to water waves. For O < t < h,

2
m
g;l(t) =—t—2 +h-t.
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If h > h*, the cubic equation t> — ht? + m? = 0 has three real solutions, two of which are positive. By setting

33 m2
0 := arccos(l - TF)
so that O < 8 < «, the two positive solutions are given by

2h O+4m h 2h
ty := ?COS 3 + § € (O, ?)5
2h 6 h 2h
Th = ?COS§+§ E(?,h).

We also know that
th < 2Y3m23 < T),.

Indeed, for every n € (0, h — h*) Corollary 3.3 implies that
th <thy < %(h—n) < Tpy < Th.
To conclude, let 1 — h — h*.

Notice that Theorem 1.1 does not a priori exclude the existence of minimizers with a flat free boundary,
i.e., minimizers whose free boundaries coincide with a horizontal hyperplane. The issue is addressed by the
following corollary.

Corollary 4.3. Fory givenasin(1.13), let u € X, be a global minimizer of Jy. Then the free boundary o{u > 0}
does not coincide with a hyperplane of the form {xy = k} for some k > 0.

Proof. Assume for the sake of contradiction that this is not the case; then k < h. Assume first that 0 < k < y.
We claim that

v(x', xy) = m(l - %)Jr

satisfies Jp(v) = Jx(u). Notice that since by assumption k < y, we have that v € X,. Hence, the claim would
imply that v is a global minimizer of Jj, a contradiction to our choice of y. To prove the claim it is enough to
observe that Tonelli’s theorem, Jensen’s inequality, and the fundamental theorem of calculus yield

k k 2
/qul2 dxz/ / (aXNu)deNdx’z/ 1(/ aXNude) dx’
0 %= Jo = k\' Jo

=/ l(u(x',k)—u(x’,O))2 dx’
x k

AN—lmZ

- k
:/ |Vv|? dx,
Q

and that the functions u and v have the same support. On the other hand, since the free boundary detaches
tangentially from a smooth portion of the Dirichlet fixed boundary (see [15, Theorem 1.1]), we see also that
it is not possible for k to be larger than y, and the result is thus proved. O

5 Properties of global minimizers

The aim of this section is to study qualitative properties of global minimizers of the functional J; defined
in (1.9). In particular, our main interest lies in understanding how the shape of global minimizers is influ-
enced by the parameter h. To this end, throughout the rest of this section, for every h > 0 we make the
following choice for the parameter y:

yn = 06(h), 0: R, — R, non-increasing.

We then denote by uy, solutions to the minimization problem for Jp, in X, .
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5.1 Existence of a critical height

To prove Theorem 1.3 we begin by showing that h¢, < co.

Theorem 5.1 (Existence of solutions with bounded support). Under the assumptions of Theorem 1.3, for every
Xy > O such that

XN # hlim Vh
there exists hg = ho(b, m, Xy, A, 0) such that if h > ho, then the support of every global minimizer of Jp in Xy,
is contained in the set {xy < h}.

Proof. Let xy > 0 be given and define

Xy = limp_co Yl }

ri= min{/\, 3

Assume first that Xy > limp_,, V1, let hy be such that y;, < limy, yp, + r for every h > hy, and notice that

By(x', xn) < {xn > yn}

forevery x' € Rand every h > hy.Then,ifh > Xy — 5 and uy € X, is a global minimizer of Jy, it follows from

[1, Lemma 2.3] that
1 m

_ updiN-te —  — |
r(th—xy -r/2)P ][aB,(x’,)?N) " r(h—xy —r/2)b

Let hg > hy be such that
m

1
rho —Xn—1/2)0 - o(N. 5):

where C(N, %) is the constant in Proposition 2.3. Then, for every h > ho, we are in a position to apply Propo-
sition 2.3 to conclude that uy, is identically equal to zero in the set R x (xy — 5, Xy + 5). Since by minimality
the support of uy is connected, it follows that uy must also vanish in R x (X, 00). This concludes the proof
in this case.

On the other hand, if limy ., yn > Xy, then it must be the case that

By (X', xn) € {Xn < yn}
for every h > 0, and thus we can proceed as above. O

The following result is inspired by [27, Theorem 10.1] (see also [2, Section 5] and [10, Theorem 5.5]).

Theorem 5.2 (Monotonicity). Under the assumptions of Theorem 1.3, consider O < d < hand let ug € X, and
up € Xy, be global minimizers of 4 and J, respectively. Then

{xeQ:upx)>0}cixeQ:uqx) >0} (5.1)

and
Up < Uq. (5-2)

Moreover, if there exists xo € o{up > 0} N Q such that the free boundary is regular in a neighborhood of x, then
Up <ugin{x e Q: uq(x) > 0}.

Proof. We divide the proof into several steps.

Step 1: Define v; = min{ug, up} and v, := max{ug, up}. Since by assumption yj, is non-increasing as a func-
tion of h, we have that v, € X, and v, € X,,, and so

Ja(ua) + In(un) < Ja(v2) + In(v1). (5.3)
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Notice that

/(|Vv1|2+|w2|2)dx:/ (|Vv1|2+|sz|2)dx+/ (Vv + Vv l?) dx
Q {un>uq}

{un<uq}

=/ (|Vud|2+|Vuh|2)dx+/ (Vunl® + [Vugl?) dx
{up>uq}

{un<uq}

:/(IVud|2+|Vuh|2)dx.
Q

Therefore, we can rewrite (5.3) canceling out the gradient terms, and by rearranging the remaining terms we
obtain

2b 2b
Un - - — - S . .
/{ }()({ >0} X{ud>0})((h XN); (d XN)+)dX 0 (5.4)
Up>Uq

Since Xju,>0} — Xiug>0p = 0 on {up > ug} and h > d, the integrand in (5.4) is nonnegative and so the integral
must be zero. Recalling that us and uy are continuous in Q, we see that

({un > 0} n{xy < h}) N {up > ugt ¢ ({ug > 0} N {xy < h}) N {up > ug},
which together with the fact that
{up > 0} n{up < ugt c {ug > 0} N {up < ug}

yields

{up >0} n{xy < h} c {ug >0} n{xy < h}. (5.5)
Notice that if the set {x € Q : uy(x) > 0} is contained in R x (0, d), then (5.1) follows from (5.5). On the other
hand, if this is not the case, again by (5.5) we deduce the existence of a point x € R x [d, co) with the prop-
erty that ug(x) > 0. Since ug4 is harmonic in R x {xy > d}, it must be the case that uy > 0 in R x (d, co0). This
concludes the proof of (5.1).

Step 2: We observed in the previous step that (5.4) is actually an equality. Therefore, (5.3) must be an equality
as well, and so v; and v, are global minimizers of J; and J4 in X, and X,,, respectively. We now claim that
if there is xo € Q such that ug(xo) = up(xo) > 0, then uy = uy everywhere in Q. To see this, we notice that in
a neighborhood of x the functions u; — v, and uy — v, are harmonic, nonpositive and attain a maximum at
an interior point. Then, by the maximum principle, both ug — v, and uy — v, must vanish in the connected
component of {up > 0} which contains x¢; the claim follows upon recalling that the set {u > 0} is connected
as a consequence of the minimality of ujy.

To prove (5.2), assume by contradiction that there is x € Q such that up(x) > ugy(x). Ifthereisy € {u, > 0}
such that ugy(y) > up(y), then by the connectedness of {u, > 0}, together with the fact that u, and uy are
continuous, we have that there is z € Q such that uy(2z) = ug(z) > 0. By the claim we just proved, this would
imply that up = ug, a contradiction. Hence u4 < up, in {u > 0}, which together with (5.1) implies that

{up > 0} = {ug > O}. (5.6)

In turn,

/ Xtupsoy(h = XN)ib dx = / Xiug>oy(h — XN)ib dx,
o o (5.7)
/QX{upO}(d - XN)ib dx = /Q)({uh>0}(d - XN)ib dx.

In view of (5.6) and since ug < up on {up > 0}, we also see that ug € X,,. Consequently, we have that
In(up) < Jn(ug) and J4(ug) < Jq(up), which together with (5.7) imply that

/IVuhlzdx=/|Vud|2dx.
Q Q

Consider v := %u n+ %ud € Xy,. By the strict convexity of the Dirichlet energy, we have

1 1
D) < [ (S0P 4 5190l + oo =32 dx = (),
Q

a contradiction to the minimality of up, and (5.2) is hence proved.
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Step 3: Finally, assume by contradiction that there is x; € {ug > 0} such that uy(x1) = ug(x1) > 0, so that
up = uq in Q. Then, by Theorem 2.1, for xo = (x(’), xn) as in the statement we have that

(h=xn)" = 0_yun(Xo) = d—yua(xo) = (d - xn)".
This is in contradiction to the assumption d # h. Hence uy < ug in {ug > 0}, as claimed. O
Proof of Theorem 1.3. Let
her :=inf{h > 0 : there exists a global minimizer up € Xy, of g, such that supp up ¢ {xy < h}}. (5.8)

By Theorem 5.1, we have that he; < co. Assume for the sake of contradiction that he = 0. Then for every
h > O there exists a global minimizer uj € X,, with the property that the support of uy, is contained in the set
{xny < h}. Reasoning as in the proof of Corollary 4.3, we see that

N-1,,2

m (5.9)

Inun) > / Vunl? dx > A
Q

Since by assumption the function  is non-increasing, there exists h such that if h < h, then
h < 0(h) = yp.

For every such h we let w be the function defined in the proof of Theorem 1.1. Then it follows from (4.7)
and (4.8) that

AN—l mz No1 h2b+1
A 2b+1

In(w) < +O(6).

Notice that if h is chosen sufficiently small, then

AN—lmZ No1 h2b+1 . AN—lmZ
Vh 2b+1 h

In turn, by (5.9), for every 6 small enough we see that
In(w) < Jn(up).

Since by definition w € X, this contradicts the minimality of uj,. Consequently, we have shown that h¢, > 0.

Fix h > he; and assume for the sake of contradiction that there exists a global minimizer of J; in X,,,
namely uj, with the property that the support of uy crosses the hyperplane {xy = h}. By (5.8), we can find
d € [hey, h) and a global minimizer ug € Xy, for the functional J4 such that the support of ug in Q is con-
tained in {xy < d}. Since by assumption O < d < h, we are in a position to apply Theorem 5.2 to conclude
that {up > 0} ¢ {ug > 0}; this leads to a contradiction and thus concludes the proof of (ii). Property (iii)
is a straightforward consequence of (5.8). In particular, observe that since uy is harmonic in {xy > h}, if
{xy > h} n {up, > 0} is nonempty, then u must be positive in {xy > h}. O

Remark 5.3. By Theorem 2.1, it follows that if u € Xy, is a global minimizer of g, for h > h, then for every K
compactly contained in Q the free boundary o{u > 0} n Kis a smooth hypersurface except possibly on a closed
singular of Hausdorff dimension N - 5.

5.2 Scaling of the critical height

Theorem 5.4 (Comparison principle). Given b, m, h, 8,y,A > 0, let u be a global minimizer of J in Xs and
let w be a global minimizer of Jp, in X, where J, is the functional in (1.9) and X5, K, are defined as in (1.10).
Then either

{u>0tc{w>0} and u<w,

or
fw>0}c{u>0} and w<u.
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Proof. Assume, without loss of generality, that § < y. As in the proof of Theorem 5.2, we now consider
vy == min{u, w} and v, := max{u, w}. Then v, € Ks, v, € X, and in particular we have

In() + Jp(w) = Jn(v1) + Jn(v2).

Therefore, v, and v, are global minimizers of J, in Xs and in X, respectively. Reasoning as in the proof
of Theorem 5.2, we recall that if there exists a point xo such that u(xg) = w(xp) > 0, then u = w everywhere
in Q. Next, we assume by contradiction that the supports of u and w do not satisfy the inclusions as in the
statement, i.e., there exist x, y € Q such that u(x) > 0, w(y) > 0 and u(y) = w(x) = 0. Let z € Q be such that
u(z) > 0 and w(z) > 0 (such a point z exists since by minimality we have that J; (u) and J,(w) are both finite).
We assume first that w(z) > u(z). Then, since by minimality {u > 0} is open and connected and thus path-wise
connected, we can find a continuous curve ¢: [0, 1] — Q joining 2 to x, with support contained in {u > 0}.
Define

v(t) == w(g(t)) — u(e(t)).

Notice that by construction v(0) = w(z) — u(z) > 0 and v(1) = w(x) — u(x) < 0, and so there exists tq € (0, 1)
such thatv(tp) = 0. Thus 0 < u(¢(t)) = w(g(t)), whichin turnimplies that u = w, a contradiction. Similarly, if
u(z) > w(z), we arrive at a contradiction by considering a continuous curve ¢ : [0, 1] — Q that joins z with y
and with support contained in {w > 0}. The rest of the proof is analogous to the proof of (5.2). O

Lemma 5.5. Under the assumptions of Theorem 1.3, we have that

2b +2 1/(b+1)

hge <h™ = —(Zb n 1)b/(b+1)

Proof. Assume by contradiction that he, > h*, and let h* < h < h¢;. By Tonelli’s theorem and Theorem 3.1 (iii),
we have that the function w: RY — R defined by

w(X) = vg, (XN)

is the unique global minimizer of Jj, in K, forevery y > t5,. Notice that by (1.13) it must be the case that y, < tp.
Let up € Xy, be a global minimizer of . Since by assumption u(x) = 0 for x = (X', xy) € OR x (yp, c0), by
continuity we can find xg € R close to 0R such that

u(xq, yn) < m(l - )t'—:) = W(X(, V)

Then it follows from Theorem 5.4 that up < w, and in particular
{up > 0} c {w > 0} = {xy < tn}.

Hence up has bounded support in Q, and so we have reached a contradiction to the definition of h., (see
Theorem 1.3). O

Lemma 5.6. Under the assumptions of Theorem 1.3, the following hold:
(i) Leta, c € R, be such that
a _ (2b+2)?b+2
0< W <, WheTeB(b) = W,
and define h := ah*. Then h > h provided that y, > ch*.
(i) Ifyt,. = tn-, then

(5.10)

ml/(b+1)
a2 T o
(2b + 1)b/(0+1)
Proof. Let a, c, h, yp be as in statement (i) and assume for the sake of contradiction that he < h. Then it

follows from the definition of h, that there is a global minimizer uy, € X, of gy with supp u, ¢ {xy < h}. As
in the proof of Corollary 4.3,

h

N—1m2

A (5.11)

In(up) >

Note 9:

Do you agree with
the new phrasing
which improves the
line breaks?

Note 10:

Please check that

we did not change
the meaning here.
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Let w(x) := vy, (xn), where vy, is defined in (3.6). We claim that J,(w) < Jx(un). Since this would clearly be
a contradiction to the minimality of up, the claim implies the desired result, i.e., h¢y > h. In view of the fact

that by (3.3) and (3.7) we have
N-1

mz . AN—I h2b+1
2b+1°
and by recalling (5.11), to prove the claim it is enough to show that

m?2 h2b+1 m?2

TS

In(w) <

which in turn is implied by (5.10).
To prove the second statement, we begin by showing that for every h < ty-,

{y <tp-} < {up >0}, (5.12)

where, as usual, uy, refers to a global minimizer of Jj, in X,,. This fact follows from the simple observation
that, for h < tp+, minimizers of Jj in X, are independent of the values of y, for h > t,-. Consequently, we
can assume without loss of generality that yy > t;,» for every h > ty-. In particular, this implies that yp« > tp-,
and therefore up- (-, xy) := v¢,. (xn) is the unique global minimizer of J;- (see Theorem 3.1). The rest follows
from Theorem 5.2. Assume for the sake of contradiction that
m1/(b+1) h*
Qb+ 1P) T 2b12

her th+.

Notice that (5.12) allows us to obtain the following refined version of (5.11):
N-lpg2 p2b+1
Jnlun) 2 h A 2b+1

Reasoning as above, by letting w(-, xy) := v}, (xy), using the fact that y;,. > ty-, and (5.13), we see that

for h < ty-. (5.13)

NMm?2 oy ti?ﬂ AN tm2 ﬁ?ﬂ
L(w) = + AT < + AT <min{ds,. (W) :ueX .
ch ( ) Verr 2b+1 th* b+ 1 {3th ( ) )’th*}

In particular, since w € KYW , it must be the case that w is a global minimizer of Jj, a contradiction to
Theorem 1.1. This concludes the proof. O
Remark 5.7. Inequality (5.10) holds for

1 - 2
(2B(b))1/(2b+2) » €2 (2B(b))1/(2b+2) .

Theorem 1.5 is then an immediate corollary of Lemma 5.5 and Lemma 5.6.

O<ac<

5.3 Structural properties of global minimizers

In this subsection we present the proof of Theorem 1.6. For the clarity of presentation, the proof is divided
into a number of separate results.

Theorem 5.8. Under the assumptions of Theorem 1.3, if 8 is right-continuous at h > 0, there exists u, € Xy,,
a global minimizer of the functional Jy, with the property that for every strictly decreasing sequence {h,}, with
hn N h and for every sequence {un}, such that un € X, is a global minimizer of gp, for every n € N,

Vuy — Vi, in L2(Q; RY),
(Q),

up, — u,  uniformly on compact subsets of Q.

Up > u,  inHy,

Similarly, if 0 is left-continuous at h, there exists a global minimizer of Jp, in Xy,, denoted by u;, which enjoys
analogous properties for strictly increasing sequences converging to h.
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We begin by proving a preliminary lemma.

Lemma 5.9. Under the assumptions of Theorem 1.3, let w € K, be such that Jn(w) < co. Then, if 6 is right-
continuous at h > 0, for every sequence hy \ h there is a corresponding sequence {wn}, such that wy € X,
foreveryn € N and Jpn,(wyn) — Jn(w) as n — oo.

Proof. Set

Yn

Vhy

and define the rescaled functions w,(x’, xy) = w(x', o,xy). Notice that w, € Xy,, and that by a change of
variables,

Oy =

/Q VW, |? dx = /Q(lvxrw(x’, TnxXN)|% + 0205, WX, 0nxN)?) dx
= /Q(lvxrw(x’, 2)1> + 0205, w(X', 2)?)0,! dx'dz
- /Q IVw(x', z)|* dx' dz,
where in the last step we have used the fact that by assumption o, \, 1. Similarly, one can show that

/Q)({wn>0}(hn—XN)+ dx—’/g)({w>0}(h—XN)+dx»

and the result follows. O
Proof of Theorem 5.8. We divide the proof into several steps.

Step 1: Assume first that 6 is right-continuous at h and let {h,}, and {u,}, be given as in the statement. We
begin by showing that there exists a subsequence of {un}, that converges to a function u, € X,,. To this end,
let v: RY — R be defined by
v(-, XN) = m(l - X—N> .
Vhy 7+

Then v € Xy, foreveryn ¢ Nand in particular we have the following chain of inequalities:
[l dx < 9, 1) < 90,0) < 3, 0) < 0.
Q

Hence {Vuy}n is bounded in L2(Q; RN). Moreover, since u, — v = 0 on R x {0}, by Poincaré’s inequality we
obtain

/ lup — v|? dx < C(Qr)/ |Vu, — Vv|? dx,
r Qr

where Q, := Q n {xy < r} withr > 0. This shows that {u,}, is bounded in H'(Q,) and thus, up to the extraction
of a subsequence, u, — u’ in H'(Q,). If we now let s > r, eventually extracting a further subsequence, we
have that u, — u” in H(Q,) and u,, — u® in H*(Qs). By the uniqueness of the weak limit, we conclude that

W(x) =us(x) forLN-ae.xeQ,.

By letting r . co and by a diagonal argument, up to the extraction of consecutive subsequences, this defines
a function u, such that for some {ng}y ¢ N,

Vin, — Vi, in L2(Q; RY),
Uy, —u, inLZ (Q),
N h ) loc ) ) (5.14)
Un, — Uy pointwise a.e. in Q,

Up, > U, inLp (0Q).

In particular, this shows that u;, can be extended to a function in X, .
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Step 2: Next, we show that u, is a global minimizer of J,. We do so by first showing that up to the extraction
of a subsequence which we do not relabel,

Xtun 500 — & in L®(Q),
where the function ¢ satisfies
00 = X0 (x)  for LNae. xeQ. (5.15)
Indeed, arguing as in the proof of [1, Theorem 1.3], we observe that for every K compactly contained in
{u >0},

0= /()({unk>o} - 1Dup, dx - /(f— Du,, dx.
K K

Since u; > 0in K, then necessarily é(x) = 1 for LVN-a.e. x € K and hence, by exhaustion, in {u > 0}. To prove
that u, is a global minimizer of J, in Xy,, we fix r > 0 and let w € Xy, . If Jn(w) = co, there is nothing to do.
Hence we assume without loss of generality that J,(w) < co and consider {wy}, as in Lemma 5.9. Then we
have
/ (V12 + Xm0y (h = xn) ) dx < / (IVuy* + &h - xn)4) dx

Q Q

r

< liminf gp, (un,)

k—00

< lim gy, (wn,)
= Jn(w). (5.16)
We then conclude that J,(u) < Jp(w) for every w € X, by letting r / oo.

Step 3: Notice that taking w = u,, in (5.16) yields

/ (IVat, 12 + X0y (h = X)) dx < li}gg}fﬁhnk(unk) < limsup Jn,, (un,) < In(uy).

k—o00
In turn, by letting r ./ co, we obtain
In(uy) = lim gy, (un,). (5.17)
k—00

On the other hand, by the lower semicontinuity of the L2-norm and (5.15), we see that

/ [Vuy|? dx < liminf/ [Vup,|? dx
Q k—oco Jq
and
/ X{u;>0}(h - XN)+ dx < lim inf/ X{unk>0}(h - XN)+ dx.

Q k—o0 Q

In view of (5.17), we notice that the previous two inequalities are necessarily equalities, and therefore
Vup, — Vu, inL*(Q;RY).

We recall that, by Theorem 5.2, {uy, } is an increasing sequence of continuous functions with a continuous
pointwise limit (see (5.14)). Hence, by Dini’s convergence theorem, the convergence is uniform on compact

subsets of Q. This shows that, by eventually extracting a subsequence, the sequence {u,}, converges in the
desired fashion to a minimizer of Jj.

Step 4: Suppose by contradiction that the entire sequence {un}, does not converge to u, as in the statement
of the theorem, and let {uy,}; be a subsequence for which this fails. Applying the results of the previous steps
to {un,}, we can extract a further subsequence (which we do not relabel) that converges uniformly on compact
subsets of Q to a function w € X,,. Notice that w is also a global minimizer of the functional g, and that by
assumption it does not coincide with u, . Consequently, it follows from Theorem 5.2 that up, < wand up; < u,.
Let x and r be such that B,(x) is compactly contained in the support of u, . Then, passing to the limitas k — co
and j — oo in the previous inequalities, we obtain u, = w in B,(x) and in particular that 0 < u(x) = w(x).
Reasoning as in the proof of Theorem 5.2, we obtain that u = win Q.

Notice that the same technique can be used to show that u, is independent of the sequences {hu},
and {u,}n, i.e., it only depends on the type of monotonicity. This concludes the proof of the first part.
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Step 5: Assume that 6 is left-continuous at h. Notice that the analogous result to Lemma 5.9 is trivial in
this case since the monotonicity assumption on 6 guarantees that X, c X, for every n. Indeed, for every
w ¢ X,, we can set w, := w and obtain immediately that J,(w,) — Jxr(w). On the other hand, the additional
assumption on 6 is required to conclude from (5.14) that u; belongs to the class Xy, . The rest follows essen-
tially without changes, and therefore we omit the details. O

The following result is an immediate corollary of Theorem 5.2 and Theorem 5.8.

Corollary 5.10. Under the assumptions of Theorem 1.3, if 6 is continuous at h > 0, there are two (possibly
equal) global minimizers of Jy in Xy,, namely Uy, u;, such that uy < u; and if w is another global minimizer,
thenu, <w <u,.

Theorem 5.11 (Uniqueness). Under the assumptions of Theorem 1.3, if in addition 6 is continuous, the func-
tional 3y admits a unique global minimizer in X,, for all but countably many values of h.

Proof. Let
A := {h € R, : the minimization problem for Jj, in X,, has at least two distinct solutions},

for every integer j > 2 let u; € Xy, be a global minimizer of j;, and denote by B; a ball compactly contained in
the set {x € Q : u;j(x) > 0}. Furthermore, for every n € N define the sets

Ajp = {h € (71_,j) s sup{luy (x) — up, (x)| : x € Bj} > %},

where the functions Uy, u; are given as in Theorem 5.8. We claim that

s
s

A= Ajn.

1

~
Il

N

=
I

Indeed, if h € A and j is such that ]1 < h < j, to prove the claim it is enough to show that h € A; , for some n.
Assume by contradiction that this is not the case. Then it follows from Theorem 5.2 that for every x € B;j,

uy (x) = up (x) = uj(x) > 0,

and in turn, reasoning as in the proof of Theorem 5.2, we obtain that up, and u; must coincide in Q. In view
of Corollary 5.10, this contradicts the assumption that h € A.

Assume that A;, has a countable subset. Then we can find a sequence {h;}; ¢ Aj, and h € [71, j] such
that {h;}; converges strictly monotonically to h. By Theorem 5.8, there exists a function u € X, such that
U, » u;i — u uniformly in the compact set B_, In turn, for i large enough we have that

|, () = u (O] < Juy, (X) = u@O] + [u(x) - uy (X)) < %

for all x € Bj, a contradiction to the definition of A; ,. Hence, we have shown that the sets A; , are finite for
every j > 2 and n € IN. This concludes the proof. O

Having established the convergence of monotone sequences of minimizers in Theorem 5.8, we now investi-
gate the convergence of the associated free boundaries. Our proof is inspired by standard techniques which
are more commonly used in the study of blow-up limits (see, for example, [1, Section 4.7]).

Theorem 5.12. Under the assumptions of Theorem 1.3, if 0 is continuous at h > 0, let {h,},, < (0, co) be a mono-
tone sequence that converges to h. For every n € NN, let u, be a global minimizer of Jn, in X, and consider
uy, u,, as in Corollary 5.10. Then the following statements hold:

(i) Ifh, \ h, then o{u, > 0} — o{u, > 0} in Hausdorff distance locally in Q.

(ii) If hn ~ h, then o{u, > 0} — o{u; > O} in Hausdorff distance locally in R x (0, h).

(iii) If hn ~ h, then Xqu,>0 = Xpu: >0} iN Ly (R x (0, h)).

(iv) If hn 7 h, then Xqu,>0) — X} >0} in L1 (R x (0, h)).

loc
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Proof. (i) Let h, \v h > 0 and consider a ball B,(x) ¢ Q such that B,(x) n o{u;, > 0} = 0. Then either u, =0
in B,(x) or u, > 0 in B,(x). By Theorem 5.2, we have that {u, > 0} ¢ {u; > 0} for every n € N. Thus ifu, =0
in By(x), so does u, = 0 hold for every n € IN. In particular, this implies that

By2(x) N ofu, > 0} = 0. (5.18)

On the other hand, if u, > 01in B,(x), since by Theorem 5.8 we have that {u,}, converges uniformly to uj in
B,/ (x), then for n sufficiently large we have

1 -
Un(x) > 5 min{u, (y) : y € By2(x)} >0

for every x € B;/»(x), and hence (5.18) is satisfied.

Conversely, if B,(x) N o{u, > 0} = 0, then for all n sufficiently large we have that either u, > 0 in B,(x) or
U, =0 in By(x). Assume first that u;; > 0 in B,(x) for some m € IN. Then, by Theorem 5.2, u, > 0 in B,(x)
for every n > m, and therefore u, is harmonic in By/>(x) being the uniform limit of harmonic functions.
Consequently, either u, > 0in By/2(x) or u, = 0 in By2(x). In both cases,

By>(x) n d{uj, > 0} = 0. (5.19)

On the other hand, if u, = 0 in B,/>(x) for every n € N, then also u), = 0 in B;/>(x). This shows that (5.19) is
also satisfied in this case. By a standard compactness argument, one can show that o{u, > 0} — o{u; > O}in
Hausdorff distance locally in Q.

(ii) Let h, .~ h and consider a ball B,(x) ¢ R x (0, h) such that B,(x) n o{u; > 0} = 0. As before, either
u, = 0in B,(x) or u; > 0in B,(x). If u; > 0 in B,(x), by Theorem 5.2, u, > 0 in B,(x) for every n € N. There-
fore, (5.19) holds. On the other hand, if u* = 0, for every § > 0 we can find m such that u, < 6§ in B3,/4(x) for
every n > m. Hence, for § = §(r) sufficiently small and n > m,

4

_ 46 2 ) 3 b
3r Bsr/z.(X)und%N 1$§SC(N’§)(h_XN_*'*7’> .

3 4
Then we can conclude from Proposition 2.3 that u, = 0 in B,/>(x), proving that (5.18) holds. The rest of the
proof follows as in the previous case, and therefore we omit the details.

(iii) Let hy, N h > 0 and let K be a compact subset of R x (0, h). If dist(K, o{u,, > O}) > O, then either u, =0
in K or u, > 0 in K. Reasoning as in the proof of (i), we can conclude that either u, = 0 in K for every n or
u, > 0 in K for n sufficiently large; hence in this case there is nothing to prove. Therefore, we can assume
that K n o{u,, > O} # @. By (i), for every 0 < n < dg := dist(K, o(R x (0, h))) we can find m = m(n, K) such that
if n > m, then
o{un > 0} N K ¢ Ny(ofu,, > 0}),

where N (4), for any set A ¢ (, represents the tubular neighborhood of A of width 7, i.e.,
Ny(A) = {x € Q : dist(x, A) < n}.
Observe that by Proposition 2.3, for every ball B,(x) ¢ K with center on o{u;, > 0},

%][aB,(x) uy dHN-1 > C(N, %)(h - XN — g)b > C(N, %)(d[()b.

Similarly, by [1, Lemma 3.2] (see also [10, Theorem 3.1]), there is a constant Cpax = Cmax(N) > 0 such that

1
- ][ uy dFN < Coax(h - xy +1)P < Cmax(2h)P.
I JoBx)

Hence we are in a position to apply [1, Theorem 4.5] to conclude that

3N (0{u;, > 0} NK) < co.

Note 11:

Please check that

we did not change
the meaning here.
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Since X{u,>0} = Xu; >0} in L*(K\ Ny(o{uj, > 0})) and since
LN Ny (0{u;, > 0}) n K) < 2nHN"1(9{u;, > 0} n K),

letting n — 0" in the previous estimate concludes the proof.
The proof of (iv) is almost identical, thus we omit the details. O

The following result is adapted from [10, Theorem 5.10].
Theorem 5.13. Let u;, u, be as in Corollary 5.10. Then u;, u, are symmetric with respect to the coordinate
hyperplanes {x; = 0} and the maps
Xj € [0, %] > Uup(x), Xi€ [O, g] = Uy (X)
are decreasing fori=1,...,N - 1.
Proof. We prove this theorem in two steps.

Step 1: Let h € R*\ A, where A is defined as in Theorem 5.11, and let uy be the unique global minimizer
of JpinX,,.Fori=1,...,N -1, let w; be the function obtained by applying to uy an even reflection about
the hyperplane {x; = 0}, i.e.,

Up(=X1,X2, ..., XN) ifi=1,
wi(x) =

Un(X1y e vy —Xiyeo.,xy) ifi>2.

Notice that w; € Xy, and Jn(w) = Jn(up). Thus, since by assumption J; has exactly one global minimizer
in X,, it must be the case that uy = w; for every i. This proves that uj, is symmetric with respect to the
hyperplanes {x; =0} fori =1, ..., N — 1, and in particular the support of uy in Q coincides with its Steiner
symmetrizations with respect to the same hyperplanes. Let u, be the symmetric decreasing rearrangement
of up with respect to the variables xq, ..., xy_1 (see [31, Chapter 2], see also [27, Definition 7.1]). Then
uy € Xy, and by the Polya-Szegd inequality (see [31, Corollary 2.14], see also [27, Theorem 7.1]), together
with Tonelli’s theorem and Lebesgue’s monotone convergence theorem, we obtain

/|Vu;;|2dxs/|wh|2dx.
Q Q

Furthermore, the definition of u; implies that for £1-a.e. xy € R,

/X{u;>0}(X',XN) dx,:/X{upO}(leXN)dxl,
R R

and thus, again by Tonelli’s theorem,
h
/Q Xtu;>03(h = xy)2P dx = / (h—xn)?* /:R Xt >01 (X', Xn) dX' dxy
0

h
=/ (h—XN)ib/yX{uPo}(X’,Xn)dX, dXN
0

= /Q)({uh>0}(h - xn)2b dx.

Consequently, Jn(uy) < Jn(un), which in turn gives that up = u;.

Step 2: If h € A, consider a sequence {hy}, ¢ R\ A such that h, .~ h and let uj, be the unique minimizer
of Jn, in Ky, . Then up, = u, and by Theorem 5.8 it follows that u, has all the desired properties. The
analogous result for u, follows by considering a sequence {hy}, ¢ R\ A such that h, \ h. O

Remark 5.14. Letuy € X, be a global minimizer of J, and assume that the map

X € [0, %] = Up(x)
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is decreasing for somei € {1, ..., N — 1}. Then the free boundary of u in (0, %)N ~1 x R, can be described by
the graph of a function
xi = gi(Xi),
where the vector X; is obtained from x by removing the entry corresponding to x;. Indeed, it is enough to
define
gi(X;) = sup{x; : up(x) > 0}.

Notice that Theorem 1.6 follows directly from Theorem 5.8, Corollary 5.10, Theorem 5.11, and Theorem 5.13.

6 Comments

It is important to observe that Theorem 1.3 implies that the critical height h, is the only value of h for
which the free boundaries of global minimizers of J, can touch the hyperplane {xy = h} while having sup-
port contained in {xy < h}. As previously observed in [10] in dimension N = 2, it follows from Theorem 5.8
and Proposition 2.3 that the support of u;c[ cannot be strictly contained in {y < h}, while the support of up
cannot cross the line {y = h}. In turn, a necessary condition for the existence of a minimizer with the desired
properties is that u;a =uy .As previously remarked in Section 1, our interest in the matter is due to the fact
that in view of the results of [10, Theorem 5.11] such a minimizer would behave as a Stokes wave locally in Q.
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