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Abstract A singularly perturbed phase field model used to model lithium-ion
batteries including chemical and elastic effects is considered. The underlying
energy is given by

Iε[u, c] :=

∫
Ω

(
1

ε
f(c) + ε‖∇c‖2 +

1

ε
C(e(u)− ce0) : (e(u)− ce0)

)
dx,

where f is a double well potential, C is a symmetric positive definite fourth
order tensor, c is the normalized lithium-ion density, and u is the material
displacement. The integrand contains elements close to those in energy func-
tionals arising in both the theory of fluid-fluid and solid-solid phase transi-
tions. For a strictly star-shaped, Lipschitz domain Ω ⊂ R2, it is proven that
Γ − limε→0 Iε = I0, where I0 is finite only for pairs (u, c) such that f(c) = 0
and the symmetrized gradient e(u) = ce0 almost everywhere. Furthermore, I0
is characterized as the integral of an anisotropic interfacial energy density over
sharp interfaces given by the jumpset of c.
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1 Introduction

The lithium-ion battery is a fundamental tool in modern technology and the
intertwined challenge of harnessing renewable energy, with applications ex-
tending from mobile phones to hybrid cars. In recognition of this importance,
the 2019 Nobel Prize in Chemistry was awarded to Goodenough, Whitting-
ham, and Yoshino for their pioneering works in the development of lithium-ion
batteries [1]. Motivated by the eminence of lithium-ion batteries, we study a
mathematical model that underlies their capacity. A prominent performance
limitation of lithium-ion batteries is their short life-cycle resulting from the
electrochemical processes governing the battery which induce phase transi-
tions. Elaborating on this, during the process of charging, lithium-ions inter-
calate into the host structure of the cathode. This intercalation is not homoge-
neous and undergoes phase separation, that is, lithium-ions form areas of high
concentration and low concentration with sharp phase transitions between
these regions. These phase transitions induce a strain on the host material
which, ultimately, leads to its degradation. Damage of the cathode’s host ma-
terial leads to a decrease in battery performance and limited life-cycle (see [9],
[22], and references therein).

Understanding the onset of phase transitions is, therefore, imperative to
improving battery performance, and much work has been done in this direc-
tion. Contemporary paradigms for modeling lithium-ion batteries are moving
towards the incorporation of phase field models, also known as diffuse inter-
face models (see, e.g., [43], [18], [5], [7], [41]). These phase field models are
governed by global energy functionals, which have regular inputs (e.g. Sobolev
functions). As noted in [9], the phase field field model is robust, allowing for
electrochemically consistent models for the time evolution of lithium-ion bat-
teries. Competing models include the shrinking core model and the sharp in-
terface model; however, as noted in Burch et al. [14], the shrinking core model
fails to capture fundamental qualitative behavior. Furthermore, in [33] it is
proposed that the phase field model may provide a more accurate numerical
analysis of the problem than the sharp interface model, which seeks to model
the evolution of the phase boundary as a free boundary problem (see [15]; see
also [2], and references therein, for benefits of the phase field model).

In this paper we study a variational model introduced by Cogswell and
Bazant in [18] (see also [9], [44], [43], [13]). For a fixed domain Ω ⊂ R2, we
consider a phase field model for which the free energy functional is given by

I[u, c,Ω] :=

∫
Ω

(
f̄(c) + ρ‖∇c‖2 + C(e(u)− ce0) : (e(u)− ce0)

)
dz

with

f̄(s) := ωs(1− s) +KT (s log(s) + (1− s) log(1− s)), s ∈ [0, 1]. (1.1)

Here c : Ω → [0, 1] stands for the normalized density of lithium-ions, and
u : Ω → R2 represents the material displacement with symmetrized gradient
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e(u) := ∇u+∇uT
2 , ω ∈ R is a regular solution parameter (enthalpy of mixing),

e0 ∈ R2×2 is the lattice misfit, K > 0 is the Boltzman constant, T > 0 is
the absolute temperature, 0 < ρ� 1 is a constant associated with interfacial
energy scaling with interface width (see [6], [34], [39], [12], and references
therein), and C is a symmetric, positive definite, fourth order tensor, that
captures the material constants (stiffness). Note the tensor C is defined to be
positive definite as follows

C : R2×2 → R2×2
sym, C(ξ) : ξ > 0 for all ξ ∈ R2×2

sym with ξ 6= 0. (1.2)

To briefly illustrate the physics encoded in the energy I, we remark that the
first two terms of the integrand account for chemical diffusion, and the function
(1.1) specifically captures the chemical cost of mixing high-density and low-
density lithium-ion phases. The final term of the integrand captures elastic
strain; herein, ce0 represents the “ideal strain” in the solid host material for a
given density of lithium-ions, and the strain energy accounts for how far away
the material displacement u is from the ideal strain.

Adding a constant and letting ρ := ε2, we rescale the functional by 1/ε
to consider the collection of functionals {Iε}ε>0 on H1(Ω,R2) × L2(Ω, [0, 1])
defined as

Iε[u, c,Ω] :={∫
Ω

(
1
ε f(c) + ε‖∇c‖2 + 1

εC(e(u)− ce0) : (e(u)− ce0)
)
dz (u, c) ∈ X ,

∞ otherwise,

(1.3)

where

f(s) := f̄(s)− min
t∈[0,1]

f̄(t), s ∈ [0, 1] (1.4)

is a double-well function and X := H1(Ω,R2) × H1(Ω, [0, 1]). We wish to
consider the asymptotic behavior of this collection of energies as ε → 0 (i.e.,
when the interfacial width goes to 0). This analysis will, in some capacity,
mathematically validate the numerical solutions witnessing phase separation
for small interfacial widths as seen by Bazant and Cogswell in [18].

To study the asymptotic behavior, we will use the notion of Γ−convergence,
as introduced by De Giorgi in [32]. Γ−convergence was first used by Modica
and Mortola in [38] to study the class of functionals arising in the Cahn-Hilliard
theory of fluid-fluid transitions given by

Eε[c,Ω] :=

∫
Ω

(
1

ε
W (c) + ε‖∇c‖2

)
dz, c ∈ H1(Ω,R),

where W is a double well function and Ω ⊂ RN (see also the foundational work
by Cahn and Hilliard [16]). Herein, they showed that Γ − limε→0Eε = E0,
where E0(c) := CPerΩ(c), with PerΩ(c), the perimeter in Ω of one of the
phases of c, taken to be ∞ if c is not of finite perimeter. See also [31], [8], [3],
and references therein.
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More recently, a variety of work has been directed at analyzing classes of
functionals given by

Fε[u,Ω] :=

∫
Ω

(
1

ε
W (∇u) + ε‖∇2u‖2

)
dz, u ∈ H2(Ω,RN ), (1.5)

with Ω ⊂ RN , which arise in the theory of solid-solid phase transitions [12].
Accounting for frame indifference in a geometrically nonlinear framework, it
is necessary to consider W satisfying the well condition W (G) = 0 if and
only if G ∈ SO(N)A ∪ SO(N)B for matrices A,B ∈ RN×N , where SO(N) is
the special orthogonal group. To guarantee existence of nonaffine functions for
which the limiting energy is finite, the wells must satisfy Hadamard’s rank-one
compatibility condition given by QA − B = a ⊗ ν for some Q ∈ SO(N), and
a, ν ∈ RN (see [6], [26]). As an initial step in [19], Conti et al. treat the case of
a double well function W disregarding frame indifference, meaning W (G) = 0
if and only if G = A or G = B, concluding that {Fε}ε>0 Γ−converges to
a functional reminiscent of F0 defined in (1.6). Convergence of a case inter-
mediate to Eε and Fε is considered by Fonseca and Mantegazza [29] wherein
the nonconvex integrand of Fε is replaced by 1

εW (u). Many promising re-
sults regarding convergence of Fε when it is the Eikonal functional, that is
W (G) := (1 − ‖G‖2)2, have been obtained, although the Γ−limit is still yet
to be identified (see [24], [25]).

Restricted to a strictly star-shaped Lipschitz domain Ω ⊂ R2, Conti and
Schweizer in [21] address the problem of frame indifference in a geometrically
linear framework, that is when W is invariant under the tangent space of
SO(2) or, equivalently, satisfies the well condition W (G) = 0 if and only if
G+GT

2 ∈ {A}∪{B}. Conti and Schweizer conclude that the functionals {Fε}ε>0

Γ−converge to

F0[u,Ω] :=

{∫
Je(u)

k(ν) dH1 if e(u) ∈ BV (Ω, {A,B}),
∞ otherwise,

(1.6)

where Je(u) is the associated jumpset with normal ν, and k(ν) is the effective
anisotropic interfacial energy density. Again, the existence of displacement
with non-constant symmetrized gradient exactly on the two wells requires a
rank-one connectivity property. To be precise, there is some skew-symmetric
matrix S such that A−B+S is rank one (see Proposition 2.2). Furthermore,
the condition that e(u) ∈ BV (Ω, {A,B}) forces considerable restriction on the
functions for which F0[u] <∞. Specifically, each interface of Je(u) has a single
normal (out of two choices) and extends to the boundary of Ω. Consequently
u behaves like a laminate (see Theorem 3.2).

Furthermore in [20], with N = 2, Conti and Schweizer analyze the case
of a geometrically nonlinear framework with a result analogous to the linear
case. Working to understand Γ -convergence of the nonlinear, frame-invariant
problem in higher dimensions, Davoli and Friedrich [23] analyze the energy∫

Ω

(
1

ε
W (∇u) + ε‖∇2u‖2 + η(ε)(‖∇2u‖2 − |∂2

Nu|2)

)
dz, u ∈ H2(Ω,RN )
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utilizing sophisticated rigidity results for incompatible vector fields (see [40],
[17], [35]). Here, it is assumed that the two wells of W , given by SO(N)A and
SO(N)B, are connected by a single rank-one connection, i.e., B−A = δeN⊗eN
for some δ > 0. Furthermore, the last term in the energy specifically penalizes
change in the displacement orthogonal to eN . These restrictions allow for con-
struction of recovery sequences that converge to functions with all interfaces
normal to eN . This result can be considered a special case of the analysis of
Fε when there is only one interface normal (see Theorem 3.2). Here η(ε)→∞
as ε → 0, leaving the identification of the Γ−limit of {Fε}ε>0 in arbitrary
dimensions an open problem.

Looking towards applications to fracture mechanics, Bellettini et al. [11]
analyze Γ−convergence of the energy functionals∫

Ω

(
1

εφ(1/ε)
φ(‖∇u‖) + ε3‖∇2u‖2

)
dz, u ∈ H2(Ω,RN )

where φ : [0,∞) → [0,∞) is continuous, nondecreasing, has sublinear growth
at infinity, and satisfies φ−1({0}) = {0}. As noted by the authors, this energy
may viewed as a special case of (1.5) where the wells of W are at 0 and ∞.

The integrand in the energy Iε bears clear similarities to the integrands
of both functionals Eε and Fε. In our analysis of the Γ−convergence of the
functionals Iε, we will use many of the ideas put forth in the Γ−convergence
analyses of both Eε by Modica and Mortola in [38] and Fε by Conti and
Schweizer in [21].

We now introduce some terminology allowing us to state the main results
of this paper. Let µ0 ∈ (0, 1) and µ1 = 1−µ0 ∈ (0, 1) be the two wells of f (see
Proposition 2.1). Heuristically, as ε → 0 in Iε, the density c will take on the
values µ0 and µ1, so that e(u) belongs to {µ0e0, µ1e0}, an exact double-well
problem. Given grounding in the works [6] and [26], we then expect e0 must
satisfy a rank-one type compatibility condition in order to guarantee existence
of nontrivial functions for which the limiting energy is finite. Precisely (see also
Remark 1 and Proposition 2.2), we assume that

det(e0) ≤ 0, e0 ∈ R2×2
sym, (1.7)

and consequently there are one or two choices (up to sign) of ν ∈ S1 such that

Sν := a⊗ ν − (µ1 − µ0)e0 (1.8)

is skew symmetric for some a ∈ R2 (see Section 2). Letting Qν be a unit square
in R2 centered at the origin with two sides parallel to ν, we define the following
interfacial energy density

K(ν) := inf{lim inf
i→∞

Iεi [ui, ci,Qν ] : εi → 0,

ui ∈ H1(Qν ,R2), ui → ūν in H1(Qν ,R2),

ci ∈ H1(Qν , [0, 1]), ci → c̄ν in L2(Qν)},

(1.9)



6 Kerrek Stinson

with

ūν(x, y) :=

{
µ0e0(x, y)T if (x, y) · ν < 0,

(µ1e0 + Sν)(x, y)T if (x, y) · ν > 0,

c̄ν(x, y) :=

{
µ0 if (x, y) · ν < 0,

µ1 if (x, y) · ν > 0.

(1.10)

Note that ūν is Lipschitz by virtue of (1.8). With these definitions in hand,
we now state the main results of this paper:

Theorem 1.1. Let Ω ⊂ R2 be an open, bounded, strictly star-shaped domain
with Lipschitz continuous boundary, and assume that (1.2) and (1.7) hold.
Considering the strong topology of H1(Ω,R2)× L2(Ω, [0, 1]), we have

Γ − lim
ε→0

Iε = I0,

where Iε is defined in (1.3), and

I0[u, c,Ω] :={∫
Jc
K(ν) dH1 c ∈ BV (Ω; {µ0, µ1}), u ∈ H1(Ω;R2), e(u) = ce0,

∞ otherwise,

(1.11)

where Jc is the jumpset for c with normal ν, and µ0 and µ1 are the wells of f
(see (1.4)).

We note that in the above theorem, the domain of Iε is restricted to func-
tions c that map into [0, 1], a physically meaningful constraint as c is the
normalized lithium-ion density.

Furthermore, it is natural to consider specific mass constraints imposed on
the admissible lithium-ion densities. We then have:

Theorem 1.2. The results of Theorem 1.1 still hold under the additional
assumption that Γ−convergence occurs with the domain of Iε restricted to be

H1(Ω,R2)×
(
L2(Ω, [0, 1]) ∩

{
−
∫
Ω

c dz = mε

})
,

for {mε}ε>0 ⊂ [0, 1] converging to m0 ∈ [µ0, µ1] as ε→ 0.

We comment that this Γ−convergence result specifically depends on the
coupled structure of Iε wherein u and c may be perturbed independently.
The analogous constraint in the case of energies such as Fε would be a mass
constraint imposed on the gradient, but such gradient restrictions impose more
difficulties in the explicit construction of low energy sequences.

In Section 2 we introduce basic definitions and present some results about
the functional Iε. With these in hand, in Section 3 we consider the compactness
of the energy functionals, i.e., if Iεi [ui, ci, Ω] ≤ C <∞ for all i ∈ N, for which
topologies do {ui} and {ci} converge? We conclude that, up to subsequences,
{ui} and {ci} strongly converge in H1 and L2, respectively. This naturally
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motivates us to consider Γ−convergence for the energy functionals with strong
convergence of (ui, ci) in H1(Ω,R2)×L2(Ω, [0, 1]). In Section 4, using a scaling
argument of Fonseca and Tartar’s [31], we prove the associated limit inferior
bound showing that for any sequence εi → 0, for all (ui, ci)→ (u, c) in H1×L2,
we have

lim inf
i→∞

Iεi [ui, ci, Ω] ≥ I0[u, c,Ω].

To conclude Theorem 1.1, it remains to prove that there is a recovery sequence
for any pair (u, c) ∈ H1(Ω,R2) × L2(Ω, [0, 1]) such that I0[u, c,Ω] < ∞. To
do this, the primary challenge is obtaining a precise characterization of the
interfacial energy (1.9) in terms of sequences which are affine away from the
interface. To develop this characterization, we prove an H1/2-rigidity estimate
for the functional Iε, which adapts technical geometric constructions used by
Conti and Schweizer in [21]. The rigidity estimate and subsequent character-
ization of interfacial energy are proven in Section 5. In Section 6 we prove
that for any (u, c) ∈ H1(Ω,R2) × L2(Ω, [0, 1]) there is a recovery sequence
(ui, ci) ∈ H1(Ω,R2)× L2(Ω, [0, 1]) strongly converging to (u, c) with

lim
i→∞

Iεi [ui, ci, Ω] = I0[u, c,Ω].

Herein, the strictly star-shaped assumption on Ω reduces the crux of the proof
to the already proven characterization of the interfacial energy (see [19] for an
example of the difficulties encountered on more general domains). Lastly, in
Section 7 we extend Theorem 1.1 to the case of mass constraints (see Theorem
1.2).

The primary contribution of this paper to the existing literature on phase
field models for lithium-ion batteries is the mathematical validation of the
numerical solutions witnessing phase separation for small interfacial widths as
seen by Bazant and Cogswell [18]. The primary mathematical contribution of
this paper is in connecting analysis of the functional Iε to the treatment of the
functional Fε. Apriori, the latter connection is not clear as no second order
terms appear in Iε and Iε[u, c,Ω] possesses the integrand term

‖e(u)− ce0‖2

which is not a well function. However this term is similar to the well function
W (∇u) := min{‖e(u)−µ0e0‖2, ‖e(u)−µ1e0‖2}, and this similarity is exploited
to crucially apply the rigidity analysis of Conti and Schweizer in [21].

Finally, we remark that the results of this paper are restricted to dimension
N = 2. The question of Γ -convergence of energies (1.3) in dimension N = 3
remains an open problem and appears intimately tied to the difficult open
problem in solid-solid phase transitions (see, e.g., [19], [20], [21], [23]).

2 Preliminaries

We first introduce some notation that will be used throughout the paper. We
write z = (x, y) ∈ R2, and we denote by ex and ey the standard basis vectors
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in R2. For a set D ⊂ R2, we define χD : R2 → {0, 1} to be the indicator
function of D. We denote the convex hull of a set D ⊂ R2 by conv(D). Given
φ ∈ R, we further define the skew symmetric matrix

Rφ :=

[
0 −φ
φ 0

]
. (2.1)

For u ∈ H1(Ω,R2), we define the symmetrized gradient e(u) := ∇u+(∇u)T

2 .
For a function c ∈ BV (Ω,R), we let Jc denote the jumpset of c (see [4],[27]).
We will occasionally drop reference to the domain or range in a function norm,
e.g., ‖u‖H1(Ω,R2) = ‖u‖H1(Ω) = ‖u‖H1 . If a norm is written without a function
space subscript, it refers to the euclidean norm of the vector or matrix.

We note throughout the following that we will consider the class of func-
tionals {Iε}ε>0 (defined by (1.3)) as defined on H1(Ω,R2) × L2(Ω, [0, 1]) ×
A(R2), where A(R2) is the collection of all open subsets of R2.

We will make use of the exact structure of the well function f (see (1.1)
and (1.4)).

Proposition 2.1. Let f be defined as in (1.1). The following holds:

i) If ω ≤ 2KT, then f is a single-well function.
ii) If ω > 2KT , then f is a double-well function with super-quadratic wells

at µ0 ∈ (0, 1/2) and µ1 = 1 − µ0 ∈ (1/2, 1). Furthermore, [0, 1] can be
written as the union of [0, µ0], [µ0, 1/2], [1/2, µ1], and [µ1, 1], where f is
decreasing on [0, µ0] and [1/2, µ1] and increasing on [µ0, 1/2] and [µ1, 1].

Proof. By definition of absolute temperature and the Boltzmann constant, we
note that it always holds that KT ≥ 0. However, there are no restrictions
on the sign of ω. In the case ω ≤ 0, we note that f is decreasing on the
interval [0, 1/2] and increasing on the interval [1/2, 1], as observed by a direct
inspection of the derivative

d

ds
f(s) = ω(1− 2s) +KT log

( s

1− s

)
.

Consequently f is a single-well function.
For the case of ω > 0, we note that

d2

ds2
f(s) = −2ω +

KT

s(1− s)
, (2.2)

which has at most 2 zeros. Hence, f necessarily has zero, one, or two inflection
points.

In the case of zero inflection points, that is when ω < 2KT , f has a single
well (minimum) at 1/2, as the derivative blows up to negative infinity at the
0 boundary point.

In the case of one inflection point, that is when ω = 2KT , symmetry
implies it occurs at 1/2, and this is the minimizer. We note the well is not
super-quadratic.
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In the case of two inflection points, that is when ω > 2KT , a straight-
forward argument shows that f is a double well function with superquadratic
wells, and related considerations show that we may decompose the interval
[0, 1] as claimed.

In the case in which f is a single-well function, phase separation will not
be witnessed (see [44]). The analysis of this case is simple as the functions for
which I0 is finite still belong to Sobolev spaces, and we do not focus on it.
Consequently, in what follows we assume f is a double well, with wells µ0 and
µ1 satisfying

0 < µ0 < 1/2 < µ1 < 1, (2.3)

and
ω > 2KT. (2.4)

Before invoking (1.7) to simplify the functional Iε, we provide a justification
of this assumption (see also [6], [26]).

Remark 1 We note that by property (1.2), C(R2×2
skew) = {0}. Furthermore we

recall that symmetric and skew-symmetric matrices are orthogonal with re-
spect to the Frobenius inner product. Uniquely decomposing the lattice misfit
matrix as e0 = esym

0 + eskew
0 , with esym

0 ∈ R2×2
sym and eskew

0 ∈ R2×2
skew, it follows

C(e(u)− ce0) : (e(u)− ce0) = C(e(u)− cesym
0 ) : (e(u)− cesym

0 ).

Consequently, the assumption e0 ∈ R2×2
sym in (1.7) occurs without loss of gen-

erality.

Proposition 2.2. Suppose there is non-affine u ∈ C(Ω,R2) which is piecewise
C1 with the jumpset of ∇u given by a disjoint union of C1 manifolds, and
e(u) ∈ {µ0, µ1}e0 where µ0, µ1 satisfy (2.3) and e0 ∈ R2×2

sym. Then (1.7) holds.

Proof. We may consider the tangent derivative of u at a point z0 on interface
separating regions where e(u) = µ0e0 and e(u) = µ1e0. Computing the tangent
derivative in the direction t ∈ R2 from both sides of the interface, we find

(µ0e0 + S)t = ∇u(z0)t = (µ1e0 + S′)t

for some skew-symmetric matrices S and S′. Rearranging, we have

((µ1 − µ0)e0 + Sν)t = 0

with Sν =

[
0 s
−s 0

]
:= S′ − S. It follows that

(µ1 − µ0)e0 + Sν = a⊗ ν (2.5)

for some vector a ∈ R2 and ν ∈ S1 normal to the interface (i.e., normal to t).
As e0 is symmetric, taking the determinant of the previous equation implies

(µ1 − µ0)2det(e0) + s2 = 0. (2.6)
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In order for equation (2.6) to have solutions in the variable s, we must have

det(e0) ≤ 0.

Remark 2 For functions u and c such that the Γ−limit of Iε (assuming it
exists) is finite, we would expect e(u) ∈ {µ0, µ1}e0. A lenient approximation
of this relation is given by the hypothesis of the above proposition. A more
rigorous qualification of the assumption (1.7)–in the spirit of Ball and James
[6] or Dolzmann and Müller [26]–is beyond our scope of interest.

For a 2 × 2 matrix, having rank-one is equivalent to having zero determi-
nant, and thus for symmetric e0, det(e0) ≤ 0 holds if and only if the rank-one
decompositon (2.5) holds for some ν. Equation (2.6) clearly implies there are
at most two possible choices of s, and up to sign, two choices of ν. In the
following, we assume that

det(e0) < 0, e0 ∈ R2×2
sym (2.7)

with the simpler case being that det(e0) = 0 for which there is a single interface
normal (see (2.5) and (2.6)).

Remark 3 We claim that under a change of variables, we may consider the
case in which

e0 = ex ⊗ ey + ey ⊗ ex =

[
0 1
1 0

]
,

where we recall that ex and ey are the standard basis vectors. Note as ex ⊗
ey − ey ⊗ ex is skew-symmetric, in this case, the normal ν in (2.5) can be ±ex
or ±ey. We justify the claim: As e0 ∈ R2×2

sym and det(e0) < 0, up to scaling by

a diagonal matrix, there is an orthogonal matrix R̄ such that

R̄T e0R̄ =

[
−1 0
0 1

]
. (2.8)

In turn, direct computation shows that there is an orthogonal matrix Q̄ such
that

Q̄T
[
−1 0
0 1

]
Q̄ =

[
0 1
1 0

]
=: ẽ0. (2.9)

We detail how to change the energy functional Iε (see (1.3)) assuming e0 is
given by the right hand side of (2.8) to the form (2.9); the other case, changing
e0 from the original matrix to the right-hand side of (2.8), is similar. Define
the symmetric, positive definite, fourth order tensor C̃ by

C̃(v) : w = C(Q̄vQ̄T ) : (Q̄wQ̄T ), v, w ∈ R2×2
sym.

For an admissible pair (u, c) ∈ H1(Ω)×L2(Ω) for the functional Iε, we consider
the transform u 7→ ũ := Q̄Tu(Q̄·) and c 7→ c̃ := c(Q̄·). We then define Ĩε by
(1.3) with C and e0 replaced by C̃ and ẽ0, respectively. It follows by a change
of variables that

det(QT )Iε[u, c,Ω] = Ĩε[ũ, c̃, Q̄
TΩ],

which justifies the claim.
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3 Compactness

To motivate the topological convergence that we will consider for Γ - conver-
gence, we look for appropriate function spaces where compactness holds for
sequences of bounded energy.

Theorem 3.1. Let Ω ⊂ R2 be an open, bounded set with Lipschitz continuous
boundary. Assume that (1.2) and (2.4) hold. Let εi → 0, {ui}i ⊂ H1(Ω,R2),
and {ci}i ⊂ H1(Ω, [0, 1]) be such that supi Iεi [ui, ci, Ω] < ∞, where Iε is the
functional defined in (1.3). Then up to skew-affine shifts of the functions ui,
we may find subsequences {uik}k and {cik}k with uik → u in H1(Ω,R2) and
cik → c in L2(Ω) for some u ∈ H1(Ω,R2) and c ∈ BV (Ω, {µ0, µ1}), such that
e(u) = ce0.

Proof. By standard results on the Modica-Mortola (Cahn-Hilliard) functional
[38], up to a subsequence (not relabeled), we may assume that ci → c in L2(Ω)
for some c ∈ BV (Ω, {µ0, µ1}). By the coercivity of the bilinear form C (1.2),
we have ∫

Ω

‖e(ui)− cie0‖2 dz ≤ Cεi.

By the triangle inequality,

‖e(ui)− ce0‖L2 ≤ ‖e(ui)− cie0‖L2 + ‖cie0 − ce0‖L2 → 0.

Define

vi(x, y) := ui(x, y)−
(
−
∫
Ω

e(ui(z)) dz

)
(x, y)T + αi,

where αi ensures
∫
Ω
vi dz = 0. By Korn’s inequality (see [42]), we have

‖vi‖H1 ≤ C‖e(vi)‖L2 = C‖e(ui)‖L2 ≤ C.

It follows that, up to a subsequence (not relabeled), vi ⇀ u in H1(Ω,R2)
for some u ∈ H1(Ω,R2). By necessity, e(u) = ce0. Thus we apply Korn’s
inequality a second time to find

‖vi − u‖H1 ≤ C‖e(vi − u)‖L2 = C‖e(ui)− ce0‖L2 → 0,

which proves the theorem.

The above result is analogous to Theorem 2.1 in [21]. We note the above
method of proof may be adapted to obtain the aforementioned theorem of
Conti and Schweizer without the use of Young measures. The relation derived
in the above compactness result, e(u) = ce0, is further characterized by the
following result due to Conti and Schweizer (Proposition 2.2 in [21]).
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Theorem 3.2. Let Ω ⊂ R2 be an open, bounded set with Lipschitz continuous
boundary. Let u ∈ H1(Ω,R2) be such that e(u) ∈ BV (Ω, {µ0e0, µ1e0}), where
e0 ∈ R2×2

sym satisfies (2.7). Then the jumpset of e(u), Je(u), is the union of
countably many disjoint segments with constant normal and endpoints in ∂Ω.
Furthermore, the normal of Je(u) must be ν for some ν satisfying the skew
symmetric rank one connection (1.8). Lastly, ∇u is constant in each connected
component of Ω \ Je(u).

4 Liminf bound

This argument is a slight variant of the one in Section 3 of [21]. We define the
functional

Fey (d, l) := inf{lim inf
i→∞

Iεi [ui, ci,(−d, d)× (−l, l)] : εi → 0,

ui → ūey in H1((−d, d)× (−l, l),R2),

ci → c̄ey in L2((−d, d)× (−l, l))}

which captures the energy for a single interface in a box. Here ūey and c̄ey are
defined as in (1.10). The proof of the following proposition is due to Fonseca
and Tartar (see [31], see also [19], [21]).

Proposition 4.1. Assume (1.2), (2.7), and (2.4). Then for d, l > 0,

Fey (d, l) = 2dK(ey), (4.1)

where K is the interfacial energy defined in (1.9).

Proof. For simplicity, we drop the subscript ey. To see that (4.1) holds, we note
that F(d, l) is a nondecreasing function of l. Considering sequences ūi(x) =
αui(x/α), c̄i(x) = ci(x/α), and ε̄i = αεi, we see that

F(αd, αl) = αF(d, l). (4.2)

By a diagonalization argument, we may find sequences εi, ui, and ci such that

F(d, l) = lim
i→∞

Iεi [ui, ci, (−d, d)× (−l, l)].

We divide (−d, d) into intervals Ij of size 2d/n for any n ∈ N. For one such
interval Ij , we must have lim inf

i→∞
Iεi [ui, ci, Ij × (−l, l)] ≤ 1

nF(d, l). Translating

the sequence, this implies

F
(

1

n
d, l

)
≤ 1

n
F(d, l).

Using this inequality, letting α = 1/n in (4.2), and by the monotonicity with
respect to l, we conclude that

1

n
F(d, l) = F

(
1

n
d, l

)
= F

(
1

n
d,

1

n
l

)
.
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This implies that F is independent of l, and further we have

F(d, l) = 2dF(1/2, l/2d) = 2dF(1/2, 1/2) = 2dK(ey),

as desired.

Remark 4 Let ui ∈ H1((−d, d)× (−l, l),R2) and ci ∈ L2((−d, d)× (−l, l)) be
such that ui → ūey in H1, ci → c̄ey in L2, and

lim
i→∞

Iεi [ui, ci, (−d, d)× (−l, l)] = 2dK(ey).

Then for each 0 < h < l we have

lim
i→∞

Iεi [ui, ci, (−d, d)× ((−l, l) \ (−h, h))] = 0. (4.3)

To see this, we apply Proposition 4.1 with l and h to find

lim
i→∞

Iεi [ui, ci, (−d, d)× (−l, l)] = 2dK(ey) = Fey (d, h)

≤ lim inf
i→∞

Iεi [ui, ci, (−d, d)× (−h, h)],

which implies (4.3).

Remark 5 The previous proposition continues to hold if ey is replaced by a
different choice of normal ν of the jumpset so that

Fν(d, l) = 2dK(ν).

With this calculation in hand, we have the following theorem (see the proof
of Proposition 3.1 in [21]). We note these results may be extended to higher
dimensions relatively easily with the aid of the blow-up method (see [23], [30],
[28]).

Theorem 4.2. Let Ω ⊂ R2 be an open bounded set with Lipschitz continuous
boundary. Assume (1.2), (2.7), and (2.4). Then for every u ∈ H1(Ω,R2) and
c ∈ L2(Ω), every εi → 0, and all {ui}i in H1(Ω,R2) and {ci}i in L2(Ω) with
ui → u in H1 and ci → c in L2, it holds

lim inf
i→∞

Iεi [ui, ci, Ω] ≥ I0[u, c,Ω],

where Iε and I0 are defined in (1.3) and (1.11), respectively.

Proof. If

lim inf
i→∞

Iεi [ui, ci, Ω] =∞,

then there is nothing to prove. Thus we assume the limit inferior is finite and
extracting a subsequence if necessary, we may suppose that the limit inferior
is a limit and supi Iεi [ui, ci, Ω] < ∞. Hence, we are in a position to apply
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Theorem 3.1 and 3.2 to obtain that c ∈ BV (Ω, {µ0, µ1}) and e(u) = ce0 and
that the jumpset of c, Jc, can be written as

Jc =
⊔
j

(Xj × {yj}) t
⊔
j

({xj} × Yj),

for some Xj , Yj intervals in R, where
⊔

denotes a disjoint union. As H1(Jc) <
∞, for any θ ∈ (0, 1) we may find n ∈ N such that

H1
( n⊔
j=1

(Xj × {yj})
)
≥ θH1

(⊔
j

(Xj × {yj})
)
.

Scaling the intervals Xj , we find intervals X ′j such that for all j ≤ n, X ′j×{yj}
are compactly contained in Ω and

H1
( n⊔
j=1

(X ′j × {yj})
)
≥ θ2H1

(⊔
j

(Xj × {yj})
)
.

Likewise we find Y ′j .
By Theorem 3.2, the compactly contained intervals are disjoint. Further-

more, we claim there is h > 0 such that each box X ′j × (yj − h, yj + h) and
(xj − h, xj + h)× Y ′j , with j ≤ n, intersects only one interface. Let

K :=

n⊔
j=1

(X ′j×{yj})t
n⊔
j=1

({xj}×Y ′j ), H :=

∞⊔
j=n+1

(X̄j×{yj})t
∞⊔

j=n+1

({xj}×Ȳj).

By Theorem 3.2, we have that K̄ and H are disjoint. Furthermore, there
cannot be x ∈ K̄ ∩ (H̄ \H) as H̄ \H ⊂ ∂Ω. To see this last claim, suppose
x ∈ H̄ \H. Thus there must be a subsequence of distinct interfaces {Ijk}k∈N
such that Ijk = Xjk × {yjk} or Ijk = {xjk} × Yjk with jk > n such that
B(x, 1/jk)∩Ijk 6= ∅. As the interfaces are distinct and H1(Jc) <∞, it follows
H1(Ijk)→ 0. Consequently,

dist(x, ∂Ω) ≤ 1/jk +H1(Ijk)→ 0

proving the claim. Hence the sets K̄ and H̄ are disjoint, which shows that such
an h exists.

Using Proposition 4.1, we find

lim inf
i→∞

Iεi [ui, ci, Ω] ≥
n∑
i=1

lim inf
i→∞

(
Iεi [ui, ci, X

′
j × (yj − h, yj + h)]

+ Iεi [ui, ci, (xj − h, xj + h)× Y ′j ]
)

≥
n∑
i=1

(L1(X ′j)K(ey) + L1(Y ′j )K(ex)) ≥ θ2

∫
Jc

K(ν) dH1.

Letting θ → 1, we complete the proof.
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5 Characterization of interfacial energy

In this section, we characterize the interfacial energy on a box in terms of
K(ey), defined in (1.9), via the following theorem.

Theorem 5.1. Let εi → 0, l > 0, and d > 0. There exists sequences ui → ūey
in H1((−d/2, d/2)× (−l, l),R2) and ci → c̄ey in L2((−d/2, d/2)× (−l, l)) such
that

lim
i→∞

Iεi [ui, ci, (−d/2, d/2)× (−l, l)] = dK(ey). (5.1)

Furthermore, c̄i = c̄ and ūi = ū+χy<0(Rφi(x, y)T + ai) in some neighborhood
of the upper and lower boundaries {(x, y) ∈ (−d/2, d/2)× R : y = ±l}, where
|φi|+ |ai| → 0, and Rφ is defined in (2.1).

To motivate the criticality of the above theorem, when proving the lim sup
bound, we will need to construct a minimizing sequence of functions for a rel-
atively generic domain. To construct such a sequence, we will interpolate be-
tween minimizing sequences for boxes containing a single interface. Accepting
that this will be the applied methodology, a theorem like the above is crucial
to interpolation. We note however that there are other possible methods in-
cluding proof of an H1/2 bound for a general domain or box (see Theorem 5.3
and [23]).

As the proof of Theorem 5.1 is involved, we decompose it into three steps.

Step I Suppose

lim
i
Iεi [ui, ci, (−2d, 2d)× (−l, l)] = 4dK(ey),

with ui → ūey and ci → c̄ey . We will find new sequences ūi → ūey
and c̄i → c̄ey such that

lim sup
i

Iεi [ūi, c̄i, (−d/2, d/2)× (−l, l)] ≤ dK(ey).

Furthermore both c̄i = c̄ey and ūi = ūey + (Rφi(x, y)T + ai)χy<0

in some neighborhood of the upper and lower boundaries {(x, y) ∈
(−d/2, d/2)×R : y = ±l}, where |φi|+ |ai| → 0. See Theorem 5.2.

Step II Let εi → 0, l > 0, and d > 0. There exists sequences ui → ūey and
ci → c̄ey such that

lim
i→∞

Iεi [ui, ci, (−d, d)× (−l, l)] = 2dK(ey).

See Theorem 5.11.
Step III We bring together the previous two steps to complete the proof of

Theorem 5.1.
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5.1 Proof of Step I

In the following we fix l > 0, and for d > 0, εi > 0, and yi ∈ (−l, l), let

Dd := (−d, d)× (−l, l), Dd,εi := {(x, y) ∈ Dd : yi ≤ y ≤ yi + εi},
D−d,εi := {(x, y) ∈ Dd : y < yi}, D+

d,εi
:= {(x, y) ∈ Dd : yi + εi < y}.

(5.2)

In the proofs, Dd,εi will represent a transition layer in the y-direction starting
at yi and of width εi. The main result of this subsection is the following:

Theorem 5.2. Let d > 0. Assume that (1.2), (2.7), and (2.4) hold, and
suppose

lim
i
Iεi [ui, ci, D2d] = 4dK(ey), (5.3)

with ui → ūey in H1(D2d,R2) and ci → c̄ey in L2(D2d), where K(ey) and
ūey are defined in (1.9) and (1.10) respectively. We may find new sequences
ūi → ūey in H1(Dd/2,R2) and c̄i → c̄ey in L2(Dd/2) such that

lim
i
Iεi [ūi, c̄i, Dd/2] = dK(ey).

Furthermore both c̄i = c̄ey and ūi = ūey + (Rφi(x, y)T + ai)χ{y<0} in some
neighborhood of the upper and lower boundaries of Dd/2, where |φi|+ |ai| → 0.

Remark 6 A standard approach to proving this type of theorem (for the top
boundary) for first order Cahn-Hilliard functionals would involve sequences as
given by the following: Let ψ : R → [0, 1] be a smooth cutoff function with
ψ(x) = 1 for x < 0 and ψ(x) = 0 for x > 1. For some yi ∈ (l/4, 3l/4) to be
determined, let ψi(x, y) := ψ((y − yi)/εi) and define

ūi := ψi

(
ui −−

∫
D2d,εi

(ui − ūey ) dz
)

+ (1− ψi)ūey ,

c̄i := ψici + (1− ψi)c̄ey .

Analyzing the energy, it turns out that the elastic energy presents the main
difficulty, wherein we have an energy term of the form∫

D2d,εi

1

εi

∥∥∥∥∥
(
ui − ūey −−

∫
D2d,εi

(ui − ūey ) dw

)
⊗∇ψi

∥∥∥∥∥
2

dz

≈
∫
D2d,εi

1

ε3i

∥∥∥∥∥ui − ūey −−
∫
D2d,εi

(ui − ūey ) dw

∥∥∥∥∥
2

dz.

Here we see that the mean subtraction was introduced in hopes that the
Poincaré inequality (see [37]) might suffice to bound the term. However, with
this we have ∫

D2d,εi

1

ε3i

∥∥∥∥∥ui − ūey −−
∫
D2d,εi

(ui − ūey ) dw

∥∥∥∥∥
2

dz

≤
∫
D2d,εi

max{εi, d}2

ε3i
‖∇(ui − ūey )‖2 dz,
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which cannot be controlled via averages as εi < d for large i. Consequently, it
is crucial that we apply the Poincaré inequality for H1

0 , in some sense, which
will replace the maximum in the above inequality with εi itself.

To prove Theorem 5.2 and overcome the challenges posed by Remark 6,
we derive an H1/2 bound in Theorem 5.3 for low energy functions which will
help to control the trace of u on D2d,εi . The proof relies on ideas of Conti and
Schweizer (see Section 4 of [21]) who derive an analogous bound for functionals
of the form Fε (see (1.5)), as mentioned in the introduction.

Theorem 5.3. Assume (1.2), (2.7), and (2.4) hold. Given d > 0, l1 > l0,
c ∈ H1((−d, d)×(l0, l1)), and u ∈ C2((−d, d)×(l0, l1),R2), there are constants
η0, C > 0 such that if (ζu, ζc) ∈ {(µ0e0, µ0), (µ1e0, µ1)},

Iε[u, c, (−d, d)× (l0, l1)] ≤ η ≤ η0,

and
‖e(u)− ζu‖2L2((−d,d)×(l0,l1)) + ‖c− ζc‖2L2((−d,d)×(l0,l1)) ≤ η,

then for some set E ⊂ (l0, l1) with L1(E) > l1−l0
2 , we have the following: For

all y ∈ E there is an affine function wy : R2 → R2 with e(wy) = ζu such that

‖u− wy‖2H1/2((−d/2,d/2)×{y}) ≤ Cηε.

To prove this, H1/2 bound, we are immediately drawn to looking at the
elastic energy which heuristically looks like∫

Dd

1

ε
min{‖e(u)− µ0e0‖, ‖e(u)− µ1e0‖}2 dz.

If we could simply conclude that ‖e(u)−µ1e0‖ ≤ ‖e(u)−µ0e0‖ in Dd, we could
then apply Korn’s inequality to conclude ‖u−w‖2H1 ≤ Cηε, where e(w) = µ1e0.
From which we could apply standard trace bounds to conclude the theorem.
But to conclude the pointwise estimate ‖e(u)−µ1e0‖ ≤ ‖e(u)−µ0e0‖ appears
infeasible. Thus we proceed via the methods of Conti and Schweizer (Section 4
of [21]), wherein we find a large set E ⊂ (−l, l) for which we may define some
function ūy associated to each y ∈ E which satisfies ūy(·, y) = u(·, y) and has
energy estimates representative of ‖e(ūy) − µ1e0‖ ≤ ‖e(ūy) − µ0e0‖, conse-
quently reducing the problem to an application of Korn’s inequality. Finding
the function ūy involves nontrivial constructions, and will be constructed via
linear interpolations of averages of u on a grid which refines towards the line
(−d, d)×{y}. Before embarking on the constructive journey necessary to prove
Theorem 5.3, we take the result for granted and prove Theorem 5.2.

First, we prove a simple lemma which allows us to control some energies
via averages.

Lemma 5.4. Let η > 0. Supposing r : [a, b]→ [0,∞) is an integrable function

with
∫ b
a
r dx ≤ η, then for any θ ∈ (0, 1) there exists a measurable set Eθ ⊂

[a, b] with measure at least θ(b− a) such that

r ≤ η

(1− θ)(b− a)
on Eθ.
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Proof. Proceeding by contradiction, we have L1({r ≤ η
(1−θ)(b−a)}) < θ(b− a).

Thus L1({r > η
(1−θ)(b−a)}) ≥ (1− θ)(b− a), which implies that

∫ b
a
r dx > η, a

contradiction.

Proof of Theorem 5.2. We construct the desired sequence by forming a transi-
tional layer of thickness εi on the upper and lower halves of the box. We treat
the upper half; the lower half is analogous. Let ψ : R → [0, 1] be a smooth
cutoff function with ψ(x) = 1 for x < 0 and ψ(x) = 0 for x > 1. For some
yi ∈ (l/2, 3l/4) to be determined, let ψi(x, y) := ψ((y − yi)/εi). We define

c̄i := ψici + (1− ψi)c̄. (5.4)

We must be more cautious in defining ūi as previously noted.
By Proposition 4.1,

lim inf
i→∞

Iεi [ui, ci, (−2d, 2d)× (−l/8, l/8)] ≥ 4dK(ey),

and therefore by (5.3),

lim
i→∞

Iεi [ui, ci, (−2d, 2d)× (l/4, l)] = 0.

For computational simplicity, we perturb the hypotheses of the theorem to
consider

ui → ū =: ūey (x, y)− Sey (x, y)T in H1(D2d,R2) (5.5)

and

ci → c̄ =: c̄ey in L2(D2d)

(see (1.10) and (5.2) for relevant definitions). Hence

ηi := ‖ci − c̄‖2L2 + ‖ui − ū‖2H1 + L2({|ci − c̄| ≥ 1/2− µ0})
+ Iεi [ui, ci, (−2d, 2d)× (l/4, l)]→ 0.

(5.6)

By Theorem 5.3 for each i sufficiently large, there is a set Ei ⊂ (l/2, 3l/4) such
that L1(Ei) > l/8 and for all y0 ∈ Ei there is an affine function

wy0(x, y) := (µ1e0 +Rφy0 )(x, y)T + ay0 (5.7)

(depending on i) such that

‖ui − wy0‖2H1/2((−d,d)×{y0}) ≤ Cηiεi. (5.8)

Modifying a proof of Gagliardo’s (see Lemma 5.6 below this proof), we
may construct vy0 ∈ H1((d/2, d/2)× (y0, l),R2) satisfying

vy0 = ui − wy0 on (−d/2, d/2)× {y0}
vy0 = 0 on some neighborhood of {(x, y) : y = l}
‖vy0‖2H1((d/2,d/2)×(y0,l))

≤ Cηiεi.
(5.9)
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Define

ūi := ψiui + (1− ψi)(vi + wi), (5.10)

where vi = vyi , wi = wyi , and yi ∈ Ei is to be determined. We compute the
energy for the constructed sequence (recall (5.2)):

Iεi [ūi, c̄i, Dd/2] =Iεi [ui, ci, D
−
d/2,εi

] +

∫
Dd/2,εi

1

εi
f(c̄i) dz +

∫
Dd/2,εi

εi‖∇c̄i‖2 dz

+

∫
Dd/2,εi

1

εi
C(e(ūi)− c̄ie0) : (e(ūi)− c̄ie0) dz

+

∫
D+
d/2,εi

1

εi
C(e(vi)) : e(vi) dz

=:A1 +A2 +A3 +A4 +A5.

We will bound terms A2, A3, A4, and A5 by ηi for appropriate choices of
yi and explicitly compute the limit of energy A1.
Term A2: By (5.4),

A2 =

∫
Dd/2,εi

1

εi
f(ψici + (1− ψi)c̄) dz

=

∫
Dd/2,εi∩{|ci−c̄|<1/2−µ0}

1

εi
f(ψici + (1− ψi)c̄) dz

+

∫
Dd/2,εi∩{|ci−c̄|≥1/2−µ0}

1

εi
f(ψici + (1− ψi)c̄) dz

=:A21 +A22.

(5.11)

To bound A22, we integrate yi over (l/2, 3l/4) and apply Fubini’s Theorem to
find ∫ 3l/4

l/2

1

εi

∫
Dd/2,εi

χ{|ci−c̄|≥1/2−µ0}(x, y) d(x, y) dyi

=

∫ 3l/4

l/2

1

εi

∫ yi+εi

yi

∫ d/2

−d/2
χ{|ci−c̄|≥1/2−µ0}(x, y) dx dy dyi

=
1

εi

∫ εi

0

∫ 3l/4

l/2

∫ d/2

−d/2
χ{|ci−c̄|≥1/2−µ0}(x, yi + y) dx dy dyi

≤
∫ l

l/4

∫ d/2

−d/2
χ{|ci−c̄|≥1/2−µ0}(x, t) dx dt ≤ ηi.

(5.12)

By Lemma 5.4, for θ ∈ (0, 1) there exists E1,θ ⊂ (l/2, 3l/4) with L1(E1,θ) >
θl/4 such that

1

εi

∫
Dd/2,εi

χ{|ci−c̄|≥1/2−µ0}(x, y) d(x, y) ≤ Cθηi
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for all yi ∈ E1,θ. Hence

A22 ≤ Cθ‖f‖∞ηi. (5.13)

To estimate A21, we use that f is decreasing on the interval [1/2, µ1] and
increasing on [µ1, 1] (see Proposition 2.1), and that in D2d,εi , we have c̄ = µ1.
Supposing ci ∈ [1/2, µ1], we find ψici+(1−ψi)c̄ ≥ ci ≥ 1/2, and consequently
f(ψici + (1− ψi)c̄) ≤ f(ci), implying

A21 ≤
∫
Dd/2,ε

1

εi
f(ci) dz. (5.14)

Combining (5.13) and (5.14), we have

A2 ≤ Cθηi. (5.15)

Term A3: By (5.4), we have∫
Ω̃εi

εi‖∇c̄i‖2 dz =

∫
Ω̃εi

εi‖ψi∇ci + (ci − c̄)∇ψi‖2 dz

≤C
∫
Ω̃εi

εi‖∇ci‖2 dz + C‖∇ψ‖∞
1

εi

∫
Ω̃εi

|ci − c̄|2 dz.

As in (5.12), by integrating in yi over (l/2, 3l/4) and applying Fubini’s Theo-
rem and a change of variables,

∫ 3l/4

l/2

1

εi

∫
Dd/2,εi

|ci(x, y)− c̄(x, y)| d(x, y) dyi

=

∫ 3l/4

l/2

1

εi

∫ yi+εi

yi

∫ d/2

−d/2
|ci(x, y)− c̄(x, y)| dx dy dyi

=
1

εi

∫ εi

0

∫ 3l/4

l/2

∫ d/2

−d/2
|ci(x, yi + y)− c̄(x, yi + y)| dx dy dyi

≤
∫ l

l/4

∫ d/2

−d/2
|ci(x, t)− c̄(x, t)| dx dt ≤ Cηi.

(5.16)

By Lemma 5.4, for θ ∈ (0, 1) there exists E2,θ ⊂ (l/2, 3l/4) with L1(E2,θ) >
θl/4 such that

1

εi

∫
Dd/2,εi

|ci − c̄| dz ≤ Cθηi

for all yi ∈ E2,θ. Hence

A3 ≤ Cθηi. (5.17)
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Term A4: We now estimate the elastic energy on the transition layer: By
(5.4) and (5.10) we have

A4

≤C
εi

∫
Dd/2,εi

(
‖ψi(e(ui)− cie0) + (1− ψi)(e(vi + wi)− c̄e0)

+ ((ui − wi − vi)⊗∇ψi)sym‖2
)
dz

≤C
εi

∫
Dd/2,εi

(
‖e(ui)− cie0‖2 + ‖∇vi‖2

)
dz +

C

ε3i

∫
Dd/2,εi

‖ui − wi − vi‖2 dz

=:A41 +A42, (5.18)

where we have used that in D2d,εi , c̄ = µ1 by definition (1.10) and that e(wi) =
µ1e0 by (5.7). By (1.2) and (5.9), A41 is controlled by Cηi. To bound A42,
we utilize the Poincaré inequality in Dd/2,ε as ui − wi − vi = 0 on the lower
boundary of this domain by (5.9) (see proof of the Poincaré inequality in [37]).
Explicitly,

A42 ≤
C

εi

∫
Dd/2,εi

‖∇(ui − wi − v)‖2 dz

≤C
εi

∫
Dd/2,εi

‖∇ui − µ1e0‖2 + ‖φyi‖2 + ‖∇vi‖2 dz,
(5.19)

where in the last inequality we have used (2.1) and (5.7).
Reasoning as in the proof of (5.12) and (5.16), we may apply Lemma 5.2

to find a set E3,θ ⊂ (l/2, 3l/4) with L1(E3,θ) > θl/4 such that

C

εi

∫
Dd/2,εi

‖∇ui − µ1e0‖2 dz ≤ Cθηi. (5.20)

The last term in the integrand on the right side of (5.19) is controlled
by (5.9). Thus, it remains to control φi := φyi by ηi; to do this, we must
first bound the constant ai := ayi in (5.7). Applying Lemma 5.4 to ‖ui −
ū‖2L2(Dd/2,εi )

, there is a set E4,θ ⊂ (l/2, 3l/4), with L1(E4,θ) > θl/4, such that

for all yi ∈ E4,θ ⊂ (l/2, 3l/4),∫ d/2

−d/2
‖ui(x, yi)− µ1e0(x, yi)

T ‖2 dH1 ≤ Cθηi,

where we have used (5.5). Consequently, supposing yi ∈ E0∩E4,θ, we are able
to compute

|a(2)
i |

2 ≤

∣∣∣∣∣−
∫ d/2

−d/2
ui(x, yi)− µ1e0(x, yi)

T )(2) dx

∣∣∣∣∣
2

+

∣∣∣∣∣−
∫ d/2

−d/2
ui(x, yi)− wi(x, yi))(2) dx

∣∣∣∣∣
2

≤Cηi + Cηiεi ≤ Cηi.

(5.21)
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where we have used (2.1), (5.8), the fact that −
∫ d/2
−d/2 φix dx = 0, and the

notation z = (z(1), z(2)) for a vector z ∈ R2. With this in hand, we may
estimate

d3

12
‖φi‖2 =

∫ d/2

−d/2
‖φi‖2x2 dx

≤C
(
|(ai)(2)|2 dx+

∫ d/2

−d/2
|(ui(x, yi)− µ1e0(x, yi)

T )(2)|2 dx

+

∫ d/2

−d/2
|(ui − wi)(2)|2 dx

)
≤Cηi.

By a similar argument, one can conclude |(ai)(1)|2 ≤ Cηi too. Combining
(5.19), (5.20), (5.21), and the previous inequalities, we conclude

C

ε3i

∫
Dd/2,εi

‖ui − wi − vi‖2 ≤ Cηi.

By (5.18) this implies
A4 ≤ Cθηi. (5.22)

Term A5: By construction of vi (see (5.9)), we have that

A5 =

∫
D+
d/2,εi

1

εi
C(e(vi)) : e(vi) dz ≤ C

∫
D+
d/2,εi

1

εi
‖∇vi‖2 dz ≤ Cηi. (5.23)

Term A1: We may apply Proposition 4.1 and Theorem 4.2 to see

lim inf
i→∞

Iεi [ui, ci, D
−
d/2,εi

] ≥ lim inf
i→∞

Iεi [ui, ci, (−d/2, d/2)× (−l, l/4)]

≥dK(ey).

The upper bound follows by contradiction. Suppose that

lim sup
i→∞

Iεi [ui, ci, D
−
d/2,εi

] > dK(ey).

It follows from Remark 4 and (4.3) that

4dK(ey) = lim
i→∞

Iεi [ui, ci, (−2d, 2d)× (−l, 3l/4)]

≥ lim inf
i→∞

Iεi [ui, ci, ((−2d,−d/2) ∪ (d/2, 2d))× (−l, 3l/4)]

+ lim sup
i→∞

Iεi [ui, ci, (−d/2, d/2)× (−l, 3l/4)]

>3dK(ey) + dK(ey) = 4dK(ey),

where in the second inequality we used Proposition 4.1 and horizontal trans-
lation. This contradiction proves

lim
i→∞

Iεi [ui, ci, D
−
d/2,εi

] = dK(ey). (5.24)
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Choosing θ sufficiently close to 1, by Lemma 5.5 below, we find that
Ei ∩ (∩jEj,θ) 6= ∅, and thus there is yi such that all previous bounds are
simultaneously satisfied. It follows that ūi → ū in H1(Dd/2,R2) (unknown till
now as we needed estimates for ai and φi) and c̄i → c̄ in L2(Dd/2). Utiliz-
ing energy bounds (5.15), (5.17), (5.22), (5.23), convergence of ηi (5.6), and
convergence of A1 (5.24), we find that

lim
i→∞

Iεi [ui, ci, Dd/2] = dK(ey),

concluding the theorem.

Lemma 5.5. Suppose Ei, i = 0, . . . , k, are measurable subsets of [0, 1], and
λ ∈ (0, 1). Then there is ε0 = ε0(λ, k) such that if L1(E0) > λ and L1(Ei) >
1− ε for some 0 < ε < ε0 for all i = 1, . . . , k, then

k⋂
i=0

Ei 6= ∅. (5.25)

Proof. Using subadditivity, we have

L1(∩i>0Ei) = 1− L1(∪i>0E
C
i ) ≥ 1− kε.

Take ε0 < λ/k. If (5.25) does not hold,

L1(∩i≥0Ei) = L1(E0) + L1(∩i>0Ei) > λ+ (1− λ) = 1,

a contradiction.

Lemma 5.6. (see [37]) Given d, l > 0 and g ∈ H1/2((−d, d) × {0}), we may
construct v ∈ H1((−d/2, d/2)× (0, l)) satisfying

v = g on (−d/2, d/2)× {0}
v = 0 on some neighborhood of {(x, y) : y = l}
‖v‖2H1((d/2,d/2)×(0,l)) ≤ C‖g‖H1/2((−d,d)×{0}),

for some constant C > 0 independent of g.

Proof. With an abuse of notation we treat g as a function of t ∈ (−d, d).
Let η := min{d, l} > 0. Let φ ∈ C∞c ((−1, 1)) be a standard mollifier. For
(x, y) ∈ (−d/2, d/2)× (0, η/2) we define

v̄(x, y) :=
1

y

∫ d

−d
φ((x− t)/y)g(t) dt.

Since φ is even,
∫ d
−d φ

′((x− t)/y) dt = 0, so

∂v̄

∂x
(x, y) =

1

(y)2

∫ d

−d
φ′((x− t)/y)g(t) dt

=
1

(y)2

∫ d

−d
φ′((x− t)/y)[g(t)− g(x)] dt.
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Consequently, ∣∣∣∂v̄
∂x

(x, y)
∣∣∣ ≤ C

(y)2

∫
B(x,y)

|g(t)− g(x)| dt.

By Hölder’s inequality and Fubini’s Theorem∫
(−d/2,d/2)×(0,η/2)

∣∣∣∂v̄
∂x

(x, y)
∣∣∣2 d(x, y)

≤C
∫

(−d/2,d/2)×(0,d/2)

1

(y)4

(∫
B(x,y)

|g(t)− g(x)| dt
)2

d(x, y)

≤C
∫

(−d/2,d/2)×(0,d/2)

1

(y)3

∫
B(x,y)

|g(t)− g(x)|2 dt d(x, y)

≤C
∫

(−d/2,d/2)

∫
(−d,d)

|g(t)− g(x)|2
(∫ ∞
|t−x|

1

(y)3
dy
)
dt dx

=C

∫
(−d/2,d/2)

∫
(−d,d)

( |g(t)− g(x)|
|t− x|

)2

dt dx

≤C|g|H1/2((−d,d)×{0}).

Similarly, we compute

∂v̄

∂y
(x, y) =

∫ d

−d

∂

∂y

(1

y
φ((x− t)/y)

)
g(t) dt

=

∫ d

−d

∂

∂y

(1

y
φ((x− t)/y)

)
[g(t)− g(x)] dt,

where in the last inequality we have used that for (x, y) ∈ (−d/2, d/2) ×
(0, η/2),

0 =
∂

∂y
(1) =

∂

∂y

(∫ d

−d

1

y
φ((x− t)/y) dt

)
=

∫ d

−d

∂

∂y

(1

y
φ((x− t)/y)

)
dt.

We bound∣∣∣ ∂
∂y

(1

y
φ((x− t)/y)

)∣∣∣ =
∣∣∣− 1

(y)2
φ((x− t)/y) +

(x− t)
(y)3

φ′((x− t)/y)
∣∣∣

≤ C

(y)2
,

where we have used the fact that |x − t| ≤ y in the domain of integration.
Thus we have ∣∣∣∂v̄

∂y
(x, y)

∣∣∣ ≤ C

(y)2

∫
B(x,y)

‖g(t)− g(x)‖ dt,
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and we may proceed as before. We conclude that∫
(−d/2,d/2)×(0,η/2)

∥∥∥∇v̄(z)
∥∥∥2

dz ≤ C|g|H1/2((−d,d)×{0}).

Lastly, it remains to truncate the function, while preserving bounds. Let
ψ : R → [0, 1] be a smooth function such that ψ(t) = χ(−∞,1/2](t) for all
t 6∈ [1/4, 1]. For any α > 0, we define vα(x, y) := ψ(y/α)v̄(x, y). It is clear that∫

(−d/2,d/2)×(0,η/2)

∣∣∣ ∂
∂x
vα(z)

∣∣∣2 dz ≤ C|g|H1/2((−d,d)×{0})

still holds.
We compute∫

(−d/2,d/2)×(0,η/2)

∥∥∥ ∂
∂y
vα(z)

∥∥∥2

dz ≤C
∫

(−d/2,d/2)×(0,η/2)

∥∥∥ ∂
∂y
v̄(z)

∥∥∥2

dz

+
C

α2

∫
(−d/2,d/2)×(0,η/2)

∣∣∣v̄(z)
∣∣∣2 dz.

Using Fubini’s/Tonelli’s Theorem, it is straightforward to show that∫
(−d/2,d/2)×(0,η/2)

∣∣∣v̄(z)
∣∣∣2 dz ≤ C‖g‖2L2(−d,d)×{0}. (5.26)

Consequently, for any α > 0, we have∫
(−d/2,d/2)×(0,η/2)

∥∥∥∇vα(z)
∥∥∥2

dz ≤ Cα‖g‖2H1/2((−d,d)×{0}).

Choosing α sufficiently small based on the geometry of the domain, we con-
clude the lemma by setting v = vα. Note the desired L2 bound follows from
inequality (5.26).

Proving the rigidity estimate of Theorem 5.3

The rest of this section is dedicated to the proof of Theorem 5.3. Our argument
relies the construction of a grid with fine properties. We define

G1 := {(x, y) : (x, y) ∈ ∂(0, 1)2 or x = y or x = 1− y}. (5.27)

For some fixed n ∈ N, we then set

Gn :=

n−1⋃
i,j=0

(
(i/n, j/n) +

1

n
G1
)
. (5.28)

For some fixed k ∈ N, we define dk := 2−k and suppose z = (x, y), z′ =
(x′, y′) ∈ R2 (with y < y′) are the left vertices of a parallelogram P with a base
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(a) G1, see (5.27) (b) G2, see (5.28)

Fig. 1 Basic elements of the grid.

of length dk parallel to the x-axis; consider the affine map Lk(z, z′) : R2 → R2

which maps (0, 1)2 onto P with Lk(z, z′)(0, 0) = z and Lk(z, z′)(0, 1) = z′.
We define

Gnk (z, z′) := Lk(z, z′)
[∆2k−1⋃

i=0

((i, 0) +Gn)
]
, (5.29)

where ∆ > 0 is such that ∆2k is an integer.

Fig. 2 G1
2(z, z′) for ∆ = 1, z = (0, 0), z′ = (1/4, 1), see (5.29)

Recalling (1.4), let

gε(x, y) :=
1

ε
f(c(x, y)) + ε‖∇c(x, y)‖2 +

1

ε
‖e(u(x, y))− c(x, y)e0‖2. (5.30)

Up to modification of a few constants, the proof of the following theorem
follows closely the one of Lemma 4.3 in [21], and hence we refer the reader to
this for a proof.

Theorem 5.7. Assume (1.2), (2.7), and (2.4) hold. Given θ ∈ (0, 1), δ ∈
(0, 1/4), d > 0, l1 > l0, and (ζu, ζc) ∈ {(µ0e0, µ0), (µ1e0, µ1)}, there are con-
stants η0, ε0, C, k0, ∆,Cd,l > 0 such that for all ε ∈ (0, ε0), u ∈ C2((−d, d) ×
(l0, l1),R2), c ∈ C1((−d, d)× (l0, l1), [0, 1]) satisfying

Iε[u, c, (−d, d)× (l0, l1)] ≤ η ≤ η0
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and
‖e(u)− ζu‖2L2((−d,d)×(l0,l1)) + ‖c− ζc‖2L2((−d,d)×(l0,l1)) ≤ η,

we may find a set E ⊂ (l0, l1) with L1(E) > l1−l0
2 for which we have the

following: For each y0 ∈ E and all k > k0, there are zk = (xk, yk) such that:

i) yk ∈ [y0 − dk−1, y0 − dk−1 + δdk−1] and |xk − xk+1| ≤ δdk, and −xk ∈
(−d,−d+ 3δ).

ii) Iε[u, c, (−d, d)× (yk, y0)] ≤ Cη|y0 − yk|.
iii) For all points z in the grid Gnk (zk, zk+1) defined in (5.29), |c(z)− ζc| ≤ δ.
iv) We have the energetic bound∫

Gnk (zk,zk+1)

gε dH1 ≤ Cη,

where gε is defined in (5.30).
v) ∆2k0 ∈ N and (−d/2, d/2)× (y0 − Cd,l, y0) is contained in⋃

k>k0

conv(Gnk (zk, zk+1)).

zk

G1
k(zk, zk+1)

zk+1

G1
k+1(zk+1, zk+2)

zk+2

zk+3

G1
k+2(zk+2, zk+3)

Fig. 3 This figure illustrates the collection of grids constructed in Theorem 5.7

in the case that n = 1

Without loss of generality, suppose (ζu, ζc) = (µ0e0, µ0). Utilizing proper-
ties iii and iv in Theorem 5.7 and that f is super-quadratic at the wells (see
Proposition 2.1), we find that∫

Gnk (zk,zk+1)

|c− µ0|2 dH1 ≤ Cηε,
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γ−0

•

z−2

γ+1

•
z+3

Fig. 4 Grid L(dG4) with segments γ±i , see (5.33), and points z±i , see (5.34)

which by Minkowski’s inequality (see [28]) and property iv in Theorem 5.7
allows us to further conclude∫

Gnk (zk,zk+1)

‖e(u)− µ0e0‖2 dH1 ≤ Cηε. (5.31)

We include a lemma of Conti and Schweizer [21] relating energy bounds on
one element of the grid to an affine approximation of the function u. Let

L :=

[
1/l s
0 l

]
(5.32)

be the matrix mapping the unit square onto the parallelogram with vertices
(0, 0), (1/l, 0), (s, l), and (s + 1/l, l). For all s, l with |s| + |l − 1| sufficiently
small, the parallelogram is “close” to the square.

Letting a ∈ R2, s− := 0, s+ := s, l− := 0, and l+ := l, we define (see
Figure 4) the segments γ±i on the grid given by a+ L(dGn) as

γ±i := a+
(

(s±d+
i

n
(d/l), s±d+

i+ 1

n
(d/l))× {dl±}

)
, (5.33)

with left endpoints z±i given by

z±i := a+ (s±d+
i

n
(d/l), dl±). (5.34)

Across all parallelograms sufficiently close to the square, we have the fol-
lowing affine approximation result:
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Lemma 5.8. (Lemma 4.4, Remark 4.5 in [21]) Suppose a ∈ R2, d > 0, and
ζu ∈ {µ0e0, µ1e0}. There exist constants δ, t0, C > 0 such that for all s, l, with

|s|+ |l − 1| < δ, (5.35)

and u ∈ H1(a+ L(0, d)2,R2), with

1

d2

∫
a+L(0,d)2

min{‖e(u)− µ0e0‖2, ‖e(u)− µ1e0‖2} dz ≤ σ

and
1

d

∫
a+L(dGn)

‖e(u)− ζu‖2 dH1 ≤ σ,

we may find φ ∈ R and w0 ∈ R2 such that for i = 0, . . . , n− 1,

u±i := −
∫
γ±i

u dH1

and
w±i := w0 + ζu(z±i ) +Rφ(z±i ),

we have
‖u±i − w

±
i ‖

2 ≤ Cσd2.

We recall that Rφ, Gn, and L are defined in (2.1), (5.28), and (5.32) respec-
tively. Furthermore, γ±i and z±i are depicted in Figure 4.

To obtain the H1/2 bound in Theorem 5.3, it is essential that we estimate
how φ changes between neighboring parallelograms. We collect these estimates
in the following lemma.

Lemma 5.9. Suppose n = 4, a ∈ R2, Q0 = L0[a + (0, d)2], and one of the
following cases

Case 1: Q1 = L1[a+ (0, d) + (0, 1
2d)× (0, 1

2d)],
Case 2: Q1 = L0[a+ (d, 0) + (0, d)× (0, d)],
Case 3: Q1 = L0[a+ ( 1

2d, 0) + (0, d)× (0, d)],
where L0 and L1 are affine maps with linear part of the form (5.32) with
parameters li, si, subindexed by 0 and 1 respectively, satisfying condition (5.35)
of Lemma 5.8. We further assume that L0(0, d) = L1(0, d) and L0(d, d) =
L1(d, d). Then if u ∈ H1((Q0 ∪Q1)o,R2), we have that parameters φ0 and
w0,0 associated to the grid P0 = L0(a + dG4) and parameters φ1 and w0,1

associated to the grid
Case 1: P1 = L1(a+ (0, d) + 1

2dG
4),

Case 2: P1 = L0(a+ (d, 0) + dG4),
Case 3: P1 = L0(a+ (0, 1

2d) + dG4),
by applications of Lemma 5.8 satisfy the bounds

‖w0,0 − w0,1‖ ≤ C
√
σd

and
|φ0 − φ1‖ ≤ C

√
σ,
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Q0

Q1

(a) Case 1

Q0 Q1

(b) Case 2

Q0 Q1

(c) Case 3

Fig. 5 Cases of Lemma 5.9 when L = I

where

σ :=
1

d2

∫
Q0∪Q1

min{‖e(u)‖2, ‖e(u)− e0‖2} dz +
1

d

∫
P0∪P1

‖e(u)‖2 dH1.

Proof. We prove Case 1, the others being similar. For notational simplicity,
we perform the following calculation when a = 0, L = I (i.e. si = 0, li = 1)
and ζu = 0 (which cannot be the case, but the calculation is the same as this

amounts to an affine shift). We note that up to a shift in w0 by −Rφ( 1/2
n , 0)T ,

we may replace i
nd by i+1/2

n d in the definition of z±i (5.34), which allows us
to use midpoints of segments versus left end-points. This allows us to perform
slightly cleaner estimates on φ and w0.

We use an additional subscript to denote whether a quantity relates to Q0

or Q1. We apply Lemma 5.8 in Q0 and Q1 with grids P0 and P1, respectively,
to find w0,j and φj for j = 0, 1. It follows that

‖u+
0,0 − w

+
0,0‖ ≤ C

√
σd (5.36)

and
‖u−0,1 + u−1,1 − (w−0,1 + w−1,1)‖ ≤ 2C

√
σd. (5.37)

Furthermore, as Q0 and Q1 overlap at their top and bottom boundary respec-
tively, we have

u+
0,0 =

1

2
(u−0,1 + u−1,1). (5.38)

Consequently, using the definition of w±i,j , equation (5.38), the triangle inequal-
ity, followed by application of the bounds (5.36) and (5.37), we find

‖w0,0 − w0,1 +Rφ0−φ1
((1/2)d/n, d)T ‖ = ‖w+

0,0 −
1

2
(w−0,1 + w−1,1)‖ ≤ C

√
σd.
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By a similar argument, since u+
1,0 = 1

2 (u−2,1 + u−3,1), we find

‖w0,0 − w0,1 +Rφ0−φ1((3/2)d/n, d)T ‖ ≤ C
√
σd.

We note that to obtain both of these estimates is where we needed n = 4.
Taking the difference of the terms, we find

(d/n)|φ0 − φ1| = ‖Rφ0−φ1
(d/n, 0)T ‖ ≤ C

√
σd,

which implies |φ0−φ1| ≤ C
√
σ. From this, it also follows that ‖w0,0−w0,1‖ ≤

C
√
σd.

With this in hand, we have enough tools to prove Theorem 5.3.

Proof of Theorem 5.3. Given that the energy bounds of Lemma 5.8 and equa-
tion (5.31) are independent of c, we do not concern ourselves with the function.
We assume that ζu = µ0e0. Shifting u by the affine function −µ0e0(x, y)T , we
can assume that one well is ζu = 0 and, rescaling u and the energies by the
fixed constant µ1 − µ0 > 0, the other well is e0.

Fix the grid parameter n = 4. Let ∪kG4
k be the grid as constructed in

Theorem 5.7 with parameter δ > 0 for some ȳ ∈ E. We write

G4
k =

iend⋃
i=1

Pi,k

where each parallelogram grid element Pi,k is a translation of Lk(zk, zk+1)G4

and Piend,k is the rightmost grid element. Choosing δ sufficiently small, each
Pi,k may be written as a translation of (1 +O(δ))L(0, dk)2, with |s|+ |l− 1| =
O(δ). Thus the results of Lemma 5.8 still apply, and we find an associated pair
(wi,k, φi,k) satisfying the estimates of the lemma on the slightly rescaled grid
Pi,k.

We now work to define our function ūy. For each Pi,k, we let γi,k be the
bottom left segment of the grid (in Lemma 5.8 this would be on the interval
(0, d/n)× {0}). We denote the line average associated to this segment by

ui,k := −
∫
γi,k

u dH1. (5.39)

Note, for the last index iend for a fixed level k, we define uiend+1,k to be the line
average over the bottom right segment for the rightmost grid element Piend,k.

For each i, k, we let zi,k be the bottom left vertex of Pi,k (ziend+1,k being the
bottom right of the rightmost grid element). As such, we may divide Pi,k into
two parallelograms P−i,k and P+

i,k, which each have a base of length dk/2 = dk+1,
and have the vertex z2i+1,k+1 in common.



32 Kerrek Stinson

z1,k
•

P−1,k P+
1,k

γ1,k

z2,k z3,k
• •

P−2,k P+
2,k

γ2,k γ3,k

G4
k(z1,k, z1,k+1) level

z1,k+1

z1,k+2

•

•

P1,k+1 P2,k+1 P3,k+1 P4,k+1 G4
k+1(z1,k+1, z1,k+2) level

Fig. 6 Geometric quantities involved in the proof of Theorem 5.3

We define ūy on conv(Pi,k) as follows:

– Along the lower boundary,

ūy(θzi,k + (1− θ)zi+1,k) := θui,k + (1− θ)ui+1,k, (5.40)

for θ ∈ [0, 1].
– Along the upper boundary,

ūy(θz2i+l,k+1+(1−θ)z2i+l+1,k+1) := θu2i+l,k+1+(1−θ)u2i+l+1,k+1, (5.41)

for θ ∈ [0, 1], l = 0, 1, where l designates whether we are considering the
first (left) or second (right) half of the upper boundary.

– Throughout the convex hull of Pi,k,

ūy(θz+(1−θ)(z+(z2i,k+1−zi,k))) := θūy(z)+(1−θ)ūy(z+(z2i,k+1−zi,k)),
(5.42)

for all z on the lower boundary of Pi,k, θ ∈ [0, 1].

In words, we define ūy on the vertices of conv(Pi,k) in terms of the associated
averages of u. Then we use linear interpolation to define the values on the upper
and lower boundaries of conv(Pi,k). Lastly, we interpolate between the lower
and upper boundaries by moving in lines parallel to the sides of conv(Pi,k).

Given this construction of ūy, we now wish to show that in each parallelo-
gram conv(Pi,k), ∇ūy is close to the skew symmetric matrix Rφi,k . We restrict
our attention to grid elements which are not the rightmost, a simpler case.
We introduce the parallelogram grid P ′i,k = P+

i,k ∪P
−
i+1,k for which Lemma 5.8

applies (associated terms have apostrophe, i.e. φ′i,k). Define

ν1 := (1, 0) =
zi+1,k − zi,k
‖zi+1,k − zi,k‖

, ν2 :=
z2i,k+1 − zi,k
‖z2i,k+1 − zi,k‖

.
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As ν1 and ν2 are linearly independent, we have

‖∇ūy −Rφi,k‖L∞(conv(Pi,k)) ≤
∥∥∥∥ ∂

∂ν1
ūy −Rφi,k(ν1)

∥∥∥∥
L∞(conv(Pi,k))

+

∥∥∥∥ ∂

∂ν2
ūy −Rφi,k(ν2)

∥∥∥∥
L∞(conv(Pi,k))

.

(5.43)

As ūy is constructed via linear interpolations (5.40), (5.41), (5.42), we bound
‖ ∂
∂ν1

ūy − Rφi,k(ν1)‖L∞(conv(P−i,k)) via difference quotients along the top and

bottom boundary of P−i,k:

‖ ∂

∂ν1
ūy −Rφi,k(ν1)

∥∥∥∥
L∞(conv(P−i,k))

≤C

(∥∥∥∥∥ (ūy −Rφi,k)(z′i,k)− (ūy −Rφi,k)(zi,k)

‖z′i,k − zi,k‖

∥∥∥∥∥
+

∥∥∥∥ (ūy −Rφi,k)(z2i+1,k+1)− (ūy −Rφi,k)(z2i,k+1)

‖z2i+1,k+1 − z2i,k+1‖

∥∥∥∥)
=C

(∥∥∥∥ui+1,k − ui,k
dk

−Rφi,k(1, 0)T
∥∥∥∥

+

∥∥∥∥u2i+1,k+1 − u2i,k+1

dk+1
−Rφi,k(1, 0)T

∥∥∥∥) .

(5.44)

Similarly, ∥∥∥∥ ∂

∂ν2
ūy −Rφi,k(ν2)

∥∥∥∥
L∞(conv(P−i,k))

≤C
(∥∥∥∥ u2i,k+1 − ui,k
‖z2i,k+1 − zi,k‖

−Rφi,k
(

z2i,k+1 − zi,k
‖z2i,k+1 − zi,k‖

)∥∥∥∥
+

∥∥∥∥ u2i+1,k+1 − 1
2 (ui,k + ui+1,k)

‖z2i+1,k+1 − 1
2 (zi,k + zi+1,k)‖

−Rφi,k
(

z2i+1,k+1 − 1
2 (zi,k + zi+1,k)

‖z2i+1,k+1 − 1
2 (zi,k + zi+1,k)‖

)∥∥∥∥)
(5.45)

The bounds over P+
i,k are once again similar and we do not state them.

We bound the horizontal finite difference along the lower boundary of Pi,k,
which will account for both terms on the right hand side of (5.44) up to an
application of Lemma 5.9. Define

σ′i,k :=

−
∫

conv(Pi,k∪Pi+1,k)

min{‖e(u)‖2, ‖e(u)− e0‖2} dz +
1

dk

∫
Pi,k∪Pi+1,k

‖e(u)‖2 dH1,
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where the integral is performed over Pi+1,k versus P ′i,k for convenience, not
necessity. We compute∥∥∥∥ui+1,k − ui,k

dk
−Rφi,k(1, 0)T

∥∥∥∥2

≤ 1

d2
k

(
‖ui+1,k − u′i,k −Rφi,k(dk/2, 0)T ‖2 + ‖u′i,k − ui,k −Rφi,k(dk/2, 0)T ‖2

)
≤ C
d2
k

(
‖ui+1,k − u′i,k −Rφ′i,k(dk/2, 0)T ‖2 + ‖Rφ′i,k−φi,k(dk/2, 0)T ‖2

+ ‖u′i,k − wi,k −Rφi,k(z′i,k)‖2 + ‖ui,k − wi,k −Rφi,k(zi,k)‖2
)

≤ C
d2
k

(
‖ui+1,k − w′i,k −Rφ′i,k(zi+1,k)‖2 + ‖u′i,k − w′i,k −Rφ′i,k(z′i,k)‖2

+ d2
k|φ′i,k − φi,k|2 + Cσ′i,kd

2
k

)
≤C(σ′i,k + |φ′i,k − φi,k|2) ≤ Cσ′i,k,

(5.46)
where we have used that

z′i,k − zi,k = zi+1,k − z′i,k = (dk/2, 0)

and
|φ′i,k − φi,k|2 ≤ Cσ′i,k, (5.47)

by Lemma 5.9, and

‖u′i,k − wi,k −Rφi,k(z′i,k)‖ ≤ C
√
σ′i,kdk

along with

‖u′i,k − w′i,k −Rφ′i,k(z′i,k)‖ ≤ C
√
σ′i,kdk,

which are consequences of Lemma 5.8 with ζu = 0 applied to Pi,k and P ′i,k,

respectively (note that in the notation of Lemma 5.8, u′i,k is u−2 associated
with the grid Pi,k).

We define

σi,k :=

−
∫

conv(Pi,k)

min{‖e(u)‖2, ‖e(u)− e0‖2}+
1

dk

∫
Pi,k

‖e(u)‖2 dH1

+−
∫

conv(P2i,k+1)

min{‖e(u)‖2, ‖e(u)− e0‖2}+
1

dk+1

∫
P2i,k+1

‖e(u)‖2 dH1

+−
∫

conv(P2i+1,k+1)

min{‖e(u)‖2, ‖e(u)− e0‖2}+
1

dk+1

∫
P2i+1,k+1

‖e(u)‖2 dH1.

We note that ‖z2i,k+1 − zi,k‖ = (1 + O(δ))dk by construction. Furthermore,
up to translation, we have that zi,k = 0, and ‖z2i,k+1‖ = (1 +O(δ))dk. Using
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Lemma 5.8 and Lemma 5.9, we compute a finite difference in the direction of
ν2 =

z2i,k+1−zi,k
‖z2i,k+1−zi,k‖ on the left boundary of conv(Pi,k). This estimate will be

used to bound the first term of the right hand side of (5.45).∥∥∥∥ u2i,k+1 − ui,k
‖z2i,k+1 − zi,k‖

−Rφi,k
(

z2i,k+1 − zi,k
‖z2i,k+1 − zi,k‖

)∥∥∥∥2

≤ C

‖z2i,k+1 − zi,k‖2
(
‖u2i,k+1 − (w2i,k+1 +Rφ2i,k+1

(z2i,k+1))‖2

+ ‖ui,k − (wi,k +Rφi,k(zi,k))‖2

+ ‖w2i,k+1 − wi,k‖2 + ‖Rφ2i,k+1−φi,k(z2i,k+1)‖2
)
≤ Cσi,k.

(5.48)

Note that the integrals in the definition of σi,k associated with P2i+1,k+1 are
not needed for the above inequality, but will be necessary for the next bound.

We perform a similar calculation for near vertical finite differences along
the common boundary of conv(P−i,k) and conv(P+

i,k). This estimate bounds the

second term of the right hand side of (5.45). Using that z2i+1,k+1 = 1
2 (z2i,k+1+

z2i+2,k+1) and adding and subtracting the term 1
2 (u2i,k+1 + u2i+2,k+1), we

estimate∥∥∥∥ u2i+1,k+1 − 1
2 (ui,k + ui+1,k)

‖z2i+1,k+1 − 1
2 (zi,k + zi+1,k)‖

−Rφi,k
(

z2i+1,k+1 − 1
2 (zi,k + zi+1,k)

‖z2i+1,k+1 − 1
2 (zi,k + zi+1,k)‖

)∥∥∥∥2

≤ C
d2
k

(
1

4
‖u2i,k+1 − ui,k −Rφi,k(z2i,k+1 − zi,k)‖2

+
1

4
‖u2i+2,k+1 − ui+1,k −Rφi,k(z2i+2,k+1 − zi+1,k)‖2

+

∥∥∥∥1

2
(u2i+2,k+1 + u2i,k+1)− u2i+1,k+1

∥∥∥∥2)
≤C
(
σi,k + σi+1,k +

1

d2
k

∥∥∥∥1

2
(u2i+2,k+1 + u2i,k+1)− u2i+1,k+1

∥∥∥∥2)
≤C(σi,k + σi+1,k + σ′2i,k+1 + σ′2i+2,k+1),

(5.49)
where in the second inequality we have applied the analysis of finite differences
along the left boundaries and the bound |φi+1,k − φi,k|2 ≤ Cσ′i,k provided by
Lemma 5.9. To see the last inequality, we note∥∥∥∥1

2
(u2i+2,k+1 + u2i,k+1)− u2i+1,k+1

∥∥∥∥
≤‖u2i+2,k+1 − u2i+1,k+1 −Rφ2i+1,k+1

(dk+1, 0)T ‖
+ ‖u2i+1,k+1 − u2i,k+1 −Rφ2i+1,k+1

(dk+1, 0)T ‖,

which are the horizontal finite differences, modulo a term like (5.47) for the
second term, which have already been analyzed, thus concluding the bound.
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We define

Rφ :=
∑
i,k

χconv(Pi,k)Rφi,k ,

noting that by (2.1), (Rφ)sym = 0 almost everywhere. Let G :=
⋃
k conv(Gnk ).

Applying (5.43), (5.44), (5.45), and the subsequent finite difference estimates
(5.46), (5.48), (5.49), we have

‖∇ūy −Rφ‖2L2(G)

≤C
∑
i,k

L2(conv(Pi,k))

(∥∥∥∥ui+1,k − ui,k
dk

−Rφi,k(1, 0)T
∥∥∥∥2

+

∥∥∥∥ u2i,k+1 − ui,k
‖z2i,k+1 − zi,k‖

−Rφi,k
(

z2i,k+1 − zi,k
‖z2i,k+1 − zi,k‖

)∥∥∥∥2

+

∥∥∥∥u2i+1,k+1 − 1
2 (ui,k + ui+1,k)

‖z2i,k+1 − zi,k‖

−Rφi,k
(

z2i+1,k+1 − 1
2 (zi,k + zi+1,k)

‖z2i+1,k+1 − 1
2 (zi,k + zi+1,k)‖

)∥∥∥∥2)
≤C

∑
i,k

L2(conv(Pi,k))(σi,k + σi+1,k + σ′2i,k+1 + σ′2i+2,k+1)

≤C
∑
i,k

L2(conv(Pi,k))

(
−
∫

conv(Pi,k)

min{‖e(u)‖, ‖e(u)− e0‖}2

+
1

dk

∫
Pi,k

‖e(u)‖2 dH1

)
≤C
(∫

G

min{‖e(u)‖2, ‖e(u)− e0‖2} dz +
∑
k

dk
∑
i

∫
Pi,k

‖e(u)‖2 dH1

)
≤Cηε+ C(

∑
k

dk)

∫
Gnk

‖e(u)‖2 dH1 ≤ Cηε,

where in the last line we have applied the energy bounds from Theorem 5.7,
and the bound in the second to last line follows by undoing the affine shift
of u and using Iε[u, c, (−d, d) × (l0, l1)] ≤ η in conjunction with f being a
super-quadratic well. As (−d/2, d/2)× (y − Cd,l, y) ⊂ G, we have

‖e(ūy)‖2L2((−d/2,d/2)×(y−1/2,y)) ≤C‖∇ūy −Rφ‖
2
L2(G) ≤ Cηε.

Applying Korn’s inequality (see [42]), subsequently the trace theorem (see
[37]), and noting by continuity that ūy(·, y) = u(·, y), we conclude the proof.
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5.2 Proof of Step II

In this subsection, we use similar methods of proof as in the paper of Conti
and Schweizer (Proposition 5.5 of [21]). We first prove a lemma relating ener-
gies to a geodesic distance similar to that of the Modica-Mortola functional.
In what follows, given a curve γ, we interchangeably use γ as the set and
parameterization representing the curve.

Lemma 5.10. Let gε be defined as in (5.30). For any δ > 0 there is h(δ) > 0
such that if γ is a C1-curve with length at least ε, range in (−d, d) × (−l, l),
and

∫
γ
gε dH1 ≤ h(δ), then either |c(x, y) − µ1| ≤ δ or |c(x, y) − µ0| ≤ δ for

all (x, y) ∈ γ.

Proof. Consider the geodesic distance between points on the interval I := [0, 1]
defined by

dI(s, s
′) := inf

{∫ 1

0

√
f(ψ(t))‖∇ψ(t)‖ dt : ψ ∈ C1(I, I), ψ(0) = s, ψ(1) = s′

}
.

(5.50)
Let

h0 := inf{dI(s, s′) : s, s′ ∈ I, |s− µ0| ≤ δ/2, |s′ − µ0| ≥ δ},

and similarly,

h1 := inf{dI(s, s′) : s, s′ ∈ I, |s− µ1| ≤ δ/2, |s′ − µ1| ≥ δ}.

Lastly, we define

h2 := inf{f(s) : x ∈ I, |s− µ1| ≥ δ/2, |s− µ0| ≥ δ/2}.

Let h(δ) := 1
2 min{h0, h1, h2}.

Assuming now that
∫
γ
gε dH1 < h(δ) and H1(γ) > ε, we have

h2 >

∫
γ

gε dH1 ≥1

ε
inf{f(c(x, y)) : (x, y) ∈ γ}H1(γ)

≥ inf{f(c(x, y)) : (x, y) ∈ γ},
(5.51)

which implies there must be a point (x̄, ȳ) ∈ γ such that either |c(x̄, ȳ)−µ1| ≤
δ/2 or |c(x̄, ȳ)− µ0| ≤ δ/2. Without loss of generality, assume that the latter
holds.

By (5.30), we compute

h0 >

∫
γ

gε dH1 ≥
∫
γ

√
f(c)‖∇c‖ dH1 ≥

∫ 1

0

√
f(c ◦ γ̄)‖∇(c ◦ γ̄)‖ dt

≥dI(c(x, y), c(x̄, ȳ)),

(5.52)

where (x, y) ∈ γ and γ̄ is a curve contained in γ connecting (x, y) and (x̄, ȳ).
By definition of h0, this implies |c(x, y)− µ0| ≤ δ for all (x, y) ∈ γ as desired.
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As in the proof of Proposition 4.1, via a diagonalization argument, for
any domain (−d, d) × (−l, l), we may find sequences ε̄i ↘ 0, ūi → ūey in
H1((−d, d)× (−l, l),R2), and c̄i → c̄ey in L2((−d, d)× (−l, l)) such that

lim
i→∞

Iε̄i [ūi, c̄i, (−d, d)× (−l, l)] = 2dK(ey). (5.53)

However with respect to gamma convergence, the sequence εi is given a priori.
Hence the critical result is the following:

Theorem 5.11. Assume (1.2), (2.7), and (2.4) hold. Let εi → 0, l > 0, and
d > 0. There exist sequences ui → ūey and ci → c̄ey such that

lim
i→∞

Iεi [ui, ci, (−d/2, d/2)× (−l, l)] = dK(ey). (5.54)

Proof. For notational convenience, we drop the subscript ey. Let ε̄i ↘ 0, ūi →
ū, and c̄i → c̄ be the sequences prior to the theorem statement for the domain
(−4d, 4d)× (−l, l). By Theorem 5.2, we find sequences (not relabeled) {c̄i} ⊂
L2((−d, d) × (−l, l)) and {ūi} ⊂ H1((−d, d) × (−l, l),R2) such that on the
upper and lower boundaries of (−d, d) × (−l, l), c̄i = c̄ and ūi = ū + χy>0wi,
where wi is a skew affine function, with

lim
i→∞

Iε̄i [ūi, c̄i, (−d, d)× (−l, l)] = 2dK(ey).

Thus we extend c̄i and ūi to (−d, d)× R via constants or affine functions.
For each i ∈ N, we let j(i) ∈ N be the smallest number such that j(i) > i

and ε̄j(i) < εi/i. We then rescale our sequences as follows:

v̄i(x, y) :=
εi
ε̄j(i)

ūi

( ε̄j(i)
εi

(x, y)
)
, b̄i(x, y) := c̄i

( ε̄j(i)
εi

(x, y)
)
.

Letting αi := εi
ε̄j(i)

and using a change of variables, we find

Iεi [v̄i, b̄i, (−αid, αid)× R] = 2αidK(ey) + αiηj(i),

where ηi := Iε̄i [ūi, c̄i, (−d, d)× (−l, l)]− 2dK(ey). Thus

bαic−1∑
k=0

Iεi [v̄i, b̄i, (2k − bαic)d, (2(k + 1)− bαic)d)× R]

=Iεi [v̄i, b̄i, (−bαicd, bαicd)× R]

≤2αidK(ey) + αiηj(i),

which implies there is some k0 ∈ {−bαic,−bαic+ 2, . . . , bαic − 2} such that

Iεi [v̄i, b̄i, (k0d, (k0 + 2)d)× R] ≤ 2
αi
bαic

dK(ey) +
αi
bαic

ηj(i).

Translating the sequences, we assume k0 = −1. Taking the lim sup of the
previous inequality, we find

lim sup
i→∞

Iεi [v̄i, b̄i, (−d, d)× R] ≤ 2dK(ey), (5.55)
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as αi
bαic → 1. Note further that associated to each sequence {v̄i, b̄i} is some

Li > 0 such that v̄i is affine and b̄i is constant in each of the connected regions
specified by the inequality |y| > Li. From this last fact, we are able to conclude
that for each i ∈ N, Iεi [v̄i, b̄i, (−d, d)× R] ≥ Cd (see (5.61)).

We now work to truncate the domain under consideration from (−d, d)×R
to (−d, d)× (−L,L) for some L > 0 such that

Cd ≤ lim inf
i→∞

Iεi [ui, ci, (−d, d)× (−L,L)] (5.56)

≤ lim sup
i→∞

Iεi [ui, ci, (−d, d)× (−L,L)] ≤ 2dK(ey),

where ui and ci are constructed from modifications of v̄i and b̄i and ui → ū in
H1((−d, d)× (−L,L),R2), and ci → c̄ in L2((−d, d)× (−L,L)).

In this direction, we let δ := ( 1
2 − µ0)/2 and define the functions

f0(y) := L1({x ∈ (−d, d) : |b̄i(x, y)− µ0| ≤ δ}) (5.57)

and
f1(y) := L1({x ∈ (−d, d) : |b̄i(x, y)− µ1| ≤ δ}). (5.58)

For large y, f0(y) = 0 and f1(y) = 2d. An analogous situation holds for y << 0.
We utilize these functions to isolate an interval where (5.56) will hold up to
translation.

Note that the set of y satisfying f0(y)+f1(y) < 3d/2 has Lebesgue measure
less than C1εi ≤ C1. To see this, note that if f0(y) + f1(y) < 3d/2, then

L1({x ∈ (−d, d) : |b̄i(x, y)− µ1| > δ and |b̄i(x, y)− µ0| > δ}) > d/2. (5.59)

This implies

d

2
L1({y : inequality (5.59) holds})

≤
∫
R
L1({x ∈ (−d, d) : |b̄i(x, y)− µ1| > δ and |b̄i(x, y)− µ0| > δ}) dy

≤C
∫

(−d,d)×R
f(b̄i) dz ≤ C1εi,

where we have used that f ≥ 0 with f(c) = 0 if and only if c = µ0 or c = µ1.
We further note that the set on which both f0 > 0 and f1 > 0 is bounded

in measure by a constant C2. To see this, we use (5.30) to write

C1 ≥ Iεi [v̄i, b̄i, (−d, d)× R] =

∫
R

∫
(−d,d)

gεi(x, y) dx dy. (5.60)

By Lemma 5.10, if
∫

(−d,d)
gεi(x, y) dx ≤ h(δ), then either f0(y) or f1(y) is

0. Thus, we are concerned in bounding

L1

({
y ∈ R :

∫
(−d,d)

gεi(x, y) dx > h(δ)

})
.
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But by Markov’s Inequality and (5.60),

L1

({
y ∈ R :

∫
(−d,d)

gεi(x, y) dx > h(δ)

})
≤ C1/h(δ).

Thus

L1({y : f0(y) + f1(y) < 3d/2} ∪ {y : f0(y) > 0, f1(y) > 0}) ≤ C1 + C1/h(δ).

It follows that we may write R as the disjoint union of the three sets M , N ,
and O, where

– f0 = 0 and f1 > 3d/2 on M .
– f0 > 3d/2 and f1 = 0 on N .
– The remaining portion of R is O with L1(O) ≤ C1 + C1/h(δ).

Suppose y0 and y1 are such that f0(y0) > 3d/2 and f1(y1) > 3d/2. Then by
(5.57) and (5.58), the set

E := {x ∈ (−d, d) : |b̄i(x, y0)− µ0| ≤ δ} ∩ {x ∈ (−d, d) : |b̄i(x, y1)− µ1| ≤ δ}

satisfies

L1(E) > d.

Assuming without loss of generality y0 < y1, we compute

Iεi [v̄i, b̄i, (−d, d)× (y0, y1)] ≥
∫
E

∫ y1

y0

gεi dy dx

≥ inf{dI(c, c′) : |c− µ0| ≤ δ, |c′ − µ1| ≤ δ}d = Cδd,

(5.61)

where dI is the geodesic distance from Lemma 5.10 (see (5.50)) and Cδ > 0.
If we refer to an interval (y0, y1) as above as a transition, the energy

bound (5.55) implies there are at most J (independent of i) transitions.
Note that (−∞,−Li) ⊂ N ⊂ (−∞, Li] by (5.57) and (5.58) and the

comment following these definitions. Hence we can define

ȳ := inf{y : (y − ζ, y) ∩N = ∅} ≥ −Li > −∞,

where ζ > 2(C1+C1/h(δ)) (the constant makes sure at most half the interval is
in O). For some L > 0, we consider the interval (ȳ−2L, ȳ−2ζ), and divide the
interval into segments of length ζ (assuming 2L is divisible by ζ). Each interval
intersects N by definition of ȳ. If an interval also intersects M , it contains a
transition. Thus for 2L > (J + 2)ζ, there must be at least one such interval,
(z̄, z̄ + ζ), which does not intersect M , as the number of transitions must be
less than J . Consequently, in this interval, for at least half the y ∈ (z̄, z̄ + ζ),
f1(y) = 0. We note this implies

ess inf
x∈(−d,d)

|b̄i(x, y)− µ1| ≥ δ (5.62)
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for at least half the y ∈ (z̄, z̄ + ζ). Similarly, we have

ess inf
x∈(−d,d)

|b̄i(x, y)− µ0| ≥ δ (5.63)

for at least half the y ∈ (ȳ − ζ, ȳ).
We consequently define

vi(x, y) := v̄i(x, y − L+ ȳ), bi(x, y) := b̄i(x, y − L+ ȳ),

for (x, y) ∈ (−d, d)×(−L,L) =: UL. By construction, there must be at least one
transition on the interval (−L,L), and consequently, these sequences satisfy
(5.56). It remains to prove convergence.

We define

ηi := inf{‖vi − u0‖H1(UL) + ‖bi − c0‖L2(UL) : (u0, c0) ∈ G},

where

G := {(u0, c0) ∈ H1(UL,R2)× L2(UL) : u0(x, y) = ū(x, y − a) + S(x, y)T + r,

c0(x, y) = c̄(x, y − a), for all (x, y) ∈ UL, and

a ∈ (−L+ ζ/2, L− ζ/2), S ∈ R2×2
skew, r ∈ R2}.

We claim ηi → 0. If not, there is a subsequence {ηik} bounded away from
0. Considering the compactness Theorem 3.1, we have that vik → v in ∈
H1(UL,R2) and bik → b ∈ BV (UL, {µ0, µ1}) in L2(UL), with e(v) = be0.
Without loss of generality, we may assume that bik → b pointwise a.e., and
consequently, b satisfies (5.62) and (5.63). By Theorem 3.2, we have that v
only has horizontal or vertical interfaces. By the essential infimum estimates
(5.62) and (5.63), there are no vertical interfaces. By the energy bounds (5.56),
v can have at most one horizontal interface transition. Once again by the
essential infimum estimates, b(x, y) = µ1 for y > L− ζ/2 and b(x, y) = µ0 for
y < −L + ζ/2, else we contradict L2 convergence results. We conclude that
b = c̄(x, · − a) for some a ∈ (−L + ζ/2, L − ζ/2). It follows (v, b) ∈ G, which
then contradicts the assumption lim infk ηik > 0.

We conclude that ηi → 0. Translating functions and shifting by affine
functions with skew gradient, we find ui : (−d, d) × (−ζ/2, ζ/2) → R2 and
ci : (−d, d) × (−ζ/2, ζ/2) → [0, 1] satisfying the conclusion of the theorem
with l = ζ/2. Applying Theorem 5.2, we obtain the theorem’s conclusion for
l = ζ/2 where ui and ci are affine or constant (respectively) on the upper
and lower boundaries. Extending these functions to be affine or constant, the
theorem’s conclusion holds on (−d/2, d/2)×R, which may then be truncated
to the desired domain (−d/2, d/2)× (−l, l).

5.3 Proof of Step III

Proof of Theorem 5.1. Apply Theorem 5.11 to the domain (−2d, 2d)× (−l, l).
Subsequently, apply Theorem 5.2 to conclude the result.
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6 Limsup bound

We outline our plan to prove the lim sup bound on a strictly star-shaped
Lipschitz domain Ω. In essence, we wish to put boxes around the interfaces,
and interpolate between the sides of the boxes parallel to the interface by low
energy sequences while maintaining regularity of the functions. More explicitly:

– Given u and c for which I0[u, c,Ω] is finite, we rescale the functions utilizing
the fact that the domain is strictly star-shaped. This reduces the problem
to the case of finitely many interfaces.

– Suppose without loss of generality that some interface has normal ey.
Around this interface, we intersect the domain with a box of small width
in the normal direction. For a given sequence εi, in each box, we use the
characterization of the interfacial energy to construct a sequence of func-
tions such that Iεi [ui, ci, (−d, d)× (−l, l)]→ 2dK(ey), and both ui is affine
and ci is constant on the boundaries of the box parallel to the interface.

– We use the previous step to construct a low energy sequence which is equal
to u plus a “small” skew affine function outside of the boxes and in the
box is equal to the low energy sequence with affine boundary conditions.

Theorem 6.1. (see also Proposition 5.1 of [21]) Assume (1.2), (2.7), and
(2.4) hold. Suppose εi → 0 and that Ω is an open, strictly star-shaped domain
with Lipschitz continuous boundary. For (u, c) ∈ H1(Ω,R2)×BV (Ω, {µ0, µ1})
with I0[u, c,Ω] < ∞, there are sequences ui → u in H1(Ω,R2) and ci → c in
L2(Ω) such that

lim sup
i→∞

Iεi [ui, ci, Ω] ≤ I0[u, c,Ω].

Proof. Assume without loss of generality that Ω is star-shaped about 0. Given
θ ∈ (0, 1), we rescale u and c to define

uθ(x, y) :=
1

θ
u(θ(x, y)), cθ(x, y) := c(θ(x, y)), for (x, y) ∈ Ω.

We prove

lim sup
i→∞

Iεi [ui, ci, Ω] ≤ 1

θ
I0[u, c,Ω], (6.1)

for sequences ui → uθ in H1(Ω,R2) and ci → cθ in L2(Ω).
Supposing we prove this for uθ and cθ, we may consider a sequence θk → 1

and find subsequences {ui,k}i and {ci,k}i satisfying inequality (6.1). Taking
the lim sup with respect to k of the above inequality, we may apply a diago-
nalization argument to conclude the theorem.

Thus it remains to prove (6.1) for fixed θ. By Theorem 3.2, Jc = ∪jSj ,
where each Si is a connected segment parallel to one of the axes. Thus Jcθ =
∪j(Ω ∩ 1

θSj) =: ∪jSj,θ. We note that dist(Sj,θ, Sm,θ) > 0 for j 6= m as S̄j
and S̄m can only intersect at endpoints, and thus the strict star-shapedness
implies, S̄j,θ ∩ S̄m,θ = ∅.

Furthermore, we have that Sj,θ = ∅ for all but finitely many of the j.
Supposing not, we may find a sequence zk such that zk ∈ Sjk ∩ θΩ for a



On Γ−Convergence of a Variational Model for Lithium-Ion Batteries 43

Ω1 = Ωk1

Ωk2

Ωk3

Ωk4

Ωk = Ωk5

Fig. 7 The POS (≺) induced on {Ωk} is illustrated in an example domain Ω,

where the direction of the arrows indicates movement up the order.

strictly increasing sequence {jk}k. As H1(Jc) < ∞, H1(Sjk) → 0. It follows
that up to a subsequence zk → z0 ∈ ∂Ω. But by choice of zk, we have z0 ∈ θΩ̄.
This is a contradiction as ∂Ω ∩ θΩ̄ = ∅ by strict star-shapedness.

From here on we only consider j for which Sj,θ is nonempty. Consider a
horizontal segment, Sj = (x−j , x

+
j ) × {yj}. By strict star-shapedness 1

θ (x±j ×
{yj}) 6∈ Ω̄. Thus we may find σ > 0 such that { 1

θx
±
j }×( 1

θyj−σ,
1
θyj+σ)∩Ω̄ = ∅.

We let Rj := ( 1
θx
−
j ,

1
θx

+
j )×( 1

θyj−σ,
1
θyj+σ). Similarly, we define Rj for vertical

interfaces. For σ sufficiently small, the sets Rj ∩Ω are disjoint.

Associated to each Rj is unit normal νj and, as given by Theorem 5.1,

there is a sequence with {uji , c
j
i}i with uji = u + χνj ·(x,y)>0(Rφji

(x, y)T + ai)

and cji = c on the boundaries of the box parallel to the interface and energy
bounds as given by (5.54). We now seek to define sequences ui and ci.

We divide Ω \ (∪jSj,θ) into connected components {Ωk}. We induce a
partially ordered system (≺) on {Ωk} to make it into a downward directed
set (see Figure 7). Up to reordering, let Ω1 be a connected component with
boundary touching at most one interface, which exists as there are finitely
many interfaces and ∪jSj,θ ⊂ Ω. Ω1 is defined to be the minimal element in
the POS (≺). By star-shapedness, between every point of Ω1 and Ωk, there
is a unique minimal sequence of connected components, {Ωki}ni=1, k1 = 1 and
kn = k, through which a continuous path in Ω must travel to move between
the points. We say Ωki ≺ Ωki+1 . Looking at all paths induces the desired POS
(≺). Note, we have that each Ωk has a unique element Ωk′ which is the greatest
element less than it. Letting Sj,θ be the interface separating the domains Ωk
and Ωk′ . We define φki := φji and likewise for aji . Without loss of generality, we
have that νj points from Ωk′ towards Ωk. Note we also treat (≺) as a partial
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order on {k}. With this, we define

ui(x, y) :=
uji (x, y) +

∑
n≺k(Rφni (x, y)T + ani ) (x, y) ∈ Rj ∩Ω,Ωk ∩Rj 6= ∅,

Ωk′ ∩Rj 6= ∅,
u(x, y) +

∑
n�k(Rφni (x, y)T + ani ) not in the previous case

and (x, y) ∈ Ωk,

ci :=

{
cji (x, y) (x, y) ∈ Rj ∩Ω,
c otherwise.

It follows that

lim sup
i→∞

Iεi [ui, ci, Ω] ≤
∑
j

lim sup
i→∞

Iεi [u
j
i , c

j
i , Rj ]

≤1

θ

∑
j

K(νi)H1(Si) ≤
1

θ
I0[u, c,Ω],

proving the desired inequality (6.1). Convergence of the subsequences to uθ
and cθ follows from convergence on the boxes and decay of φji and aji to 0 (see
Theorem 5.2).

7 Mass Constraint

We now treat the case of Γ -convergence under the restriction of a mass con-
straint. Recall that we let {mε}ε>0 ⊂ [0, 1] converge to m0 ∈ [µ0, µ1] as ε→ 0,
and we wish to consider Γ -convergence restricting the domain of Iε to densities
c such that −

∫
Ω
c dz = mε. Obviously, the lim inf bound still holds, and thus for

given εi → 0, it remains to show that we may construct a sequence obtaining
the limit. We write mi for mεi . We break this into cases depending on whether
m0 = µ0, m0 = µ1, or m0 ∈ (µ0, µ1). In each case, we need to find a low-energy
method for varying the mass of the functions ci as previously constructed in
Theorem 6.1. To do this, we will emulate the proof of the lim sup bound for
the Modica-Mortola functional (see [36], [38]).

Proof of Theorem 1.2. Consider (u, c) such that I0[u, c,Ω] <∞ and −
∫
Ω
c dz =

m0. We construct minimizing sequences for different cases.
Case 1, m0 = µ0 or m0 = µ1: Without loss of generality, we treat the case
that m0 = µ0. Note that in this case, the function c = µ0 and e(u) = µ0e0.
Thus if mi = µ0, we may simply choose ci = c. Consequently, in the following
construction, we assume that mi 6= µ0 for all i.

We consider the energy functionals given by

Īεi [c
′, Ω] := Iεi [u, c

′, Ω] =

∫
Ω

1

ε

(
f(c′) + ‖(c′ − µ0)e0‖2

)
+ ε‖∇c′‖2 dz.
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We condense notation by defining W (s) := f(s) + ‖(s− µ0)e0‖2. Note this is
a single-well potential.

Subcase 1, µ0 < mi < µ1: We define the sequence {Eη}εz0>η>0 by Eη :=

B(z0, η)C , for any fixed z0 ∈ Ω such that B(z0, 2εz0) ⊂ Ω. Define Ei := Eηi =
B(z0, ηi)

C , where ηi > 0 is such that

µ0L2(Eηi ∩Ω) + µ1L2(ECηi ∩Ω) = miL2(Ω). (7.1)

This assumes that mi is sufficiently close to µ0 (as given by some relation to
εz0), which we do.

Define

φi(s) :=

∫ s

µ0

εi√
εi +W (r)

dr.

Then, |φi(µ1)| ≤ ε1/2i . We note that φi is strictly increasing with differentiable
inverse φ−1

i : [0, φi(µ1)]→ [µ0, µ1] satisfying

d

dt
φ−1
i (t) =

√
εi +W (φ−1

i (t))

εi
,

by the inverse function theorem. Extend φ−1
i by constants at the boundary of

[0, φi(µ1)]. We define

g0(t) :=

{
µ0, t ≤ 0,

µ1, t > 0,
(7.2)

and

vs(z) := φ−1
i (dEi(z) + s),

where

dEi(z) :=

{
−d(z, ∂Ei) if z ∈ Ei,
d(z, ∂Ei) otherwise,

is the signed distance function of Ei (negative in Ei).

We now wish to choose s such that the −
∫
Ω
vsi dz = mi. To do this, we

apply the Mean Value theorem to the function s 7→ −
∫
Ω
vs dz. We compute

−
∫
Ω

φ−1
i (dEi(z)) dz ≤−

∫
Ω

g0(dEi(z)) dz = mi,

−
∫
Ω

φ−1
i (dEi(z) + φi(µ1)) dz ≥−

∫
Ω

g0(dEi(z)) dz = mi.

Thus, for some si ∈ [0, φi(µ1)], we have −
∫
Ω
vsi dz = mi. Define ci := vsi . We

now wish to perform a precise estimate on ci. Since dEi is Lipschitz continuous
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and ‖∇dEi(z)‖ = 1 for a.e. z ∈ R2 \ ∂Ei, (see [27], [36], [10]) we can apply the
coarea formula (see [27],[37]) to obtain

Īεi [ci, Ω]

=

∫
Ω

1

εi
W (φ−1

i (dEi(z) + si)) + εi‖∇(φ−1
i (dEi(z) + si))‖2

=

∫ ηi

−si

( 1

εi
W (φ−1

i (r + si)) + εi|(φ−1
i )′(r + si)|2

)
H1({z ∈ Ω : dEi(z) = r}) dr

≤ sup
−si<t<ηi

H1({z ∈ Ω : dEi(z) = t})
∫ ηi+si

0

1

εi
W (φ−1

i (r)) + εi|(φ−1
i )′(r)|2 dr

≤ sup
−si<t<ηi

H1({z ∈ Ω : dEi(z) = t})
ηi+si∫
0

εi +W (φ−1
i (r))

εi
+ εi|(φ−1

i )′(r)|2 dr

= sup
−si<t<ηi

H1({z ∈ Ω : dEi(z) = t})
∫ ηi+si

0

2

√
εi +W (φ−1

i (r))|(φ−1
i )′(r)| dr

≤ sup
−si<t<ηi

H1({z ∈ R2 : dEi(z) = t})
∫ 1

0

2
√
εi +W (s) ds

≤C(ε
1/2
i + ηi)

∫ 1

0

2
√
εi +W (s) ds→ 0

as i→∞. We now check convergence in L2(Ω) by the same means:∫
Ω

|ci − µ0|2 =

∫
Ω

|φ−1
i (dEi(z) + si)− µ0|2

=

∫ ηi

−si
|φ−1
i (r + si)− µ0|2 H1({z ∈ Ω : dEi(z) = r}) dr

≤(|si|+ |ηi|) sup
−si<t<ηi

H1({z ∈ R2 : dEi(z) = t})→ 0

With this, we have proven Γ -convergence.
Subcase 2, mi < µ0: The proof is predominantly the same as the previous
subcase. We comment on the changes. To define ηi, consider µ0L2(Eη ∩Ω) =
mi in place of (7.1). We use 0 in place of µ1 in the definition of (7.2).
Case 2, m0 ∈ (µ0, µ1): In this case, we know that Jc 6= ∅, and further,
there must be a point z0 ∈ Ω such that B(z0, 2εz0) ⊂ Ω and B(z0, 2εz0)∩Jc =
∅. Thus by the construction in Theorem 6.1, we can find a low energy se-
quence {(ui, ci)}i converging to (u, c) such that ci|B(z0,εz0 )e0 = e(u)|B(z0,εz0 ) =
µ0e0 for all i. Likewise, we can find z1 ∈ ∂Ω such that ci|B(z1,εz1 )e0 =
e(u)|B(z1,εz1 ) = µ1e0 with B(z1, 2εz1) ⊂ Ω and B(z1, 2εz1) ∩ Jc = ∅.

We note that mi → m0, and −
∫
Ω
ci dz → m0. Supposing −

∫
Ω
ci dz < mi,

we perform the same procedure from the preceding section on B(z0, εz0) to
construct cφ,i : B(z0, εz0) ∩Ω → [0, 1] (utilizing Eη = B(z0, η)C) with mass

−
∫
B(z0,εz0 )

cφ,i dz =
miL2(Ω)−

∫
Ω
ci dz

L2(B(z0, εz0))
+ µ0,
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(which makes sense for sufficiently large i) and

lim
i
Iεi [cφ,i, ui, B(z0, εz0)] = 0.

We define

c̄i(z) :=

{
ci if z ∈ Ω \B(z0, εz0),

cφ,i if z ∈ Ω ∩B(z0, εz0),

which satisfies c̄i → c in L2(Ω) and is directly shown to satisfy −
∫
Ω
c̄i dz = mi.

We note by Theorem 4.2 the sequence (ui, ci) is of minimal energy on every
Lipschitz subset of Ω, and it follows Iεi [ui, ci, B(z0, εz0) ∩Ω]→ 0. Thus,

lim
i→∞

Iεi [ui, ci, Ω] = lim
i→∞

Iεi [ui, c̄i, Ω].

Similarly, if −
∫
Ω
ci dz > mi, we would perform the analogous calculation

about z1 to decrease the mass of ci. Consequently, we have shown the desired
Γ -convergence result.
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