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energy is given by
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where f is a double well potential, C is a symmetric positive definite fourth
order tensor, c¢ is the normalized lithium-ion density, and u is the material
displacement. The integrand contains elements close to those in energy func-
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tions. For a strictly star-shaped, Lipschitz domain 2 C R?, it is proven that
I' — lim.,0 I. = Iy, where Iy is finite only for pairs (u,c) such that f(c) =0
and the symmetrized gradient e(u) = ceg almost everywhere. Furthermore, I
is characterized as the integral of an anisotropic interfacial energy density over
sharp interfaces given by the jumpset of c.

Keywords Gamma convergence - Lithium-ion batteries - Linear elasticity

Mathematics Subject Classification (2010) MSC 74G65 - MSC 49J45 -

MSC 74N99

Acknowledgments This paper is part of the author’s Ph.D. thesis at Carnegie
Mellon University under the direction of Irene Fonseca and Giovanni Leoni.

The author is deeply indebted to these two for their many hours spent watching

the author scribble at a board and for expert guidance on many mathematical

topics. Furthermore, the author is thankful for their many suggestions as to

the organization of the paper and spotting a plethora of typos, which greatly

improved the paper. The author was partially supported by National Science

Foundation Grants DMS 1906238 and DMS 1714098.

K. Stinson

Carnegie Mellon University
Pittsburgh, PA

E-mail: kstinson@andrew.cmu.edu




2 Kerrek Stinson

1 Introduction

The lithium-ion battery is a fundamental tool in modern technology and the
intertwined challenge of harnessing renewable energy, with applications ex-
tending from mobile phones to hybrid cars. In recognition of this importance,
the 2019 Nobel Prize in Chemistry was awarded to Goodenough, Whitting-
ham, and Yoshino for their pioneering works in the development of lithium-ion
batteries [I]. Motivated by the eminence of lithium-ion batteries, we study a
mathematical model that underlies their capacity. A prominent performance
limitation of lithium-ion batteries is their short life-cycle resulting from the
electrochemical processes governing the battery which induce phase transi-
tions. Elaborating on this, during the process of charging, lithium-ions inter-
calate into the host structure of the cathode. This intercalation is not homoge-
neous and undergoes phase separation, that is, lithium-ions form areas of high
concentration and low concentration with sharp phase transitions between
these regions. These phase transitions induce a strain on the host material
which, ultimately, leads to its degradation. Damage of the cathode’s host ma-
terial leads to a decrease in battery performance and limited life-cycle (see [9],
[22], and references therein).

Understanding the onset of phase transitions is, therefore, imperative to
improving battery performance, and much work has been done in this direc-
tion. Contemporary paradigms for modeling lithium-ion batteries are moving
towards the incorporation of phase field models, also known as diffuse inter-
face models (see, e.g., [43], [18], [6], [7], [41]). These phase field models are
governed by global energy functionals, which have regular inputs (e.g. Sobolev
functions). As noted in [9], the phase field field model is robust, allowing for
electrochemically consistent models for the time evolution of lithium-ion bat-
teries. Competing models include the shrinking core model and the sharp in-
terface model; however, as noted in Burch et al. [I4], the shrinking core model
fails to capture fundamental qualitative behavior. Furthermore, in [33] it is
proposed that the phase field model may provide a more accurate numerical
analysis of the problem than the sharp interface model, which seeks to model
the evolution of the phase boundary as a free boundary problem (see [I5]; see
also [2], and references therein, for benefits of the phase field model).

In this paper we study a variational model introduced by Cogswell and
Bazant in [I8] (see also [9], [44], [43], [13]). For a fixed domain 2 C R?, we
consider a phase field model for which the free energy functional is given by

Ifu,c, 2] := /Q (f(e) + plIVel* + Cle(u) — ceo) : (e(u) — cep)) dz
with
f(s) :=ws(l—s)+ KT(slog(s) + (1 —s)log(l —s)), se€[0,1]. (1.1)

Here ¢ : 2 — [0,1] stands for the normalized density of lithium-ions, and
u : £2 — R? represents the material displacement with symmetrized gradient
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e(u) := M, w € R is a regular solution parameter (enthalpy of mixing),

ep € R?*? is the lattice misfit, K > 0 is the Boltzman constant, 7" > 0 is
the absolute temperature, 0 < p < 1 is a constant associated with interfacial
energy scaling with interface width (see [6], [34], [39], [12], and references
therein), and C is a symmetric, positive definite, fourth order tensor, that
captures the material constants (stiffness). Note the tensor C is defined to be
positive definite as follows
C:R¥? 5 RZ52, C(¢): € >0 forall £ € RES2 with & # 0. (1.2)

To briefly illustrate the physics encoded in the energy I, we remark that the
first two terms of the integrand account for chemical diffusion, and the function
specifically captures the chemical cost of mixing high-density and low-
density lithium-ion phases. The final term of the integrand captures elastic
strain; herein, ceg represents the “ideal strain” in the solid host material for a
given density of lithium-ions, and the strain energy accounts for how far away
the material displacement u is from the ideal strain.

Adding a constant and letting p := €2, we rescale the functional by 1/e
to consider the collection of functionals {I.}.~o on H*(£2,R?) x L?(£2,[0,1])
defined as

I |u,c, 2] :=
{fQ (%f(c) + €| Vel|? + %(C(e(u) —ceg) : (e(u) — ceo)) dz (u,c) € X, (1.3)
%) otherwise,
where
f(s):= f(s) — min f(¢t), s€][0,1] (1.4)

is a double-well function and X := H(£2,R?) x H(£2,[0,1]). We wish to
consider the asymptotic behavior of this collection of energies as ¢ — 0 (i.e.,
when the interfacial width goes to 0). This analysis will, in some capacity,
mathematically validate the numerical solutions witnessing phase separation
for small interfacial widths as seen by Bazant and Cogswell in [I8].

To study the asymptotic behavior, we will use the notion of I'—convergence,
as introduced by De Giorgi in [32]. I'—convergence was first used by Modica
and Mortola in [38] to study the class of functionals arising in the Cahn-Hilliard
theory of fluid-fluid transitions given by

Ec, 2] = /Q <1W(c)+e||Vc||2> dz, c€ H'(2,R),

where W is a double well function and 2 C RY (see also the foundational work
by Cahn and Hilliard [I6]). Herein, they showed that I' — lim._,o E. = Ejy,
where Ey(c) := CPerg(c), with Perg(c), the perimeter in {2 of one of the
phases of ¢, taken to be oo if ¢ is not of finite perimeter. See also [31], [8], [3],
and references therein.
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More recently, a variety of work has been directed at analyzing classes of
functionals given by

F|u, 2] := /Q (1W(Vu) + 6|V2u||2> dz, ue H*(2,RN), (1.5)

with 2 C RY, which arise in the theory of solid-solid phase transitions [12].
Accounting for frame indifference in a geometrically nonlinear framework, it
is necessary to consider W satisfying the well condition W(G) = 0 if and
only if G € SO(N)A U SO(N)B for matrices A, B € RV*N  where SO(N) is
the special orthogonal group. To guarantee existence of nonaffine functions for
which the limiting energy is finite, the wells must satisfy Hadamard’s rank-one
compatibility condition given by QA — B = a ® v for some @ € SO(N), and
a,v € RN (see [6], [26]). As an initial step in [19], Conti et al. treat the case of
a double well function W disregarding frame indifference, meaning W(G) = 0
if and only if G = A or G = B, concluding that {F.}.~o I'—converges to
a functional reminiscent of Fjy defined in . Convergence of a case inter-
mediate to E. and F, is considered by Fonseca and Mantegazza [29] wherein
the nonconvex integrand of F, is replaced by %W(u) Many promising re-
sults regarding convergence of F. when it is the Eikonal functional, that is
W(G) := (1 — ||G||?)?, have been obtained, although the I'—limit is still yet
to be identified (see [24], [25]).

Restricted to a strictly star-shaped Lipschitz domain 2 C R2?, Conti and
Schweizer in [2I] address the problem of frame indifference in a geometrically
linear framework, that is when W is invariant under the tangent space of
SO(2) or, equivalently, satisfies the well condition W(G) = 0 if and only if
G"'TGT € {A}U{B}. Conti and Schweizer conclude that the functionals { F }e>o
I'—converge to

F()[u, Q] =

{IJE<u>k(V)dH1 itelu) € BV, 1A.BY, o

otherwise,

where Je(,) is the associated jumpset with normal v, and k(v) is the effective
anisotropic interfacial energy density. Again, the existence of displacement
with non-constant symmetrized gradient exactly on the two wells requires a
rank-one connectivity property. To be precise, there is some skew-symmetric
matrix S such that A — B+ S is rank one (see Proposition . Furthermore,
the condition that e(u) € BV (£2,{A, B}) forces considerable restriction on the
functions for which Fy[u] < oo. Specifically, each interface of J(,) has a single
normal (out of two choices) and extends to the boundary of 2. Consequently
u behaves like a laminate (see Theorem [3.2]).

Furthermore in [20], with N = 2, Conti and Schweizer analyze the case
of a geometrically nonlinear framework with a result analogous to the linear
case. Working to understand I'-convergence of the nonlinear, frame-invariant
problem in higher dimensions, Davoli and Friedrich [23] analyze the energy

1
| (G e+ vl 4 n@I7%P - ) ) ds, - u e H@.RY)
2
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utilizing sophisticated rigidity results for incompatible vector fields (see [40],
[17], [35]). Here, it is assumed that the two wells of W, given by SO(N)A and
SO(N)B, are connected by a single rank-one connection, i.e., B—A = dey®en
for some § > 0. Furthermore, the last term in the energy specifically penalizes
change in the displacement orthogonal to ey . These restrictions allow for con-
struction of recovery sequences that converge to functions with all interfaces
normal to ex. This result can be considered a special case of the analysis of
F, when there is only one interface normal (see Theorem [3.2). Here n(e) — oo
as € — 0, leaving the identification of the I'—limit of {F.}.~¢ in arbitrary
dimensions an open problem.

Looking towards applications to fracture mechanics, Bellettini et al. [I1]
analyze I'—convergence of the energy functionals

; U 63 2u 2 P w 2 N
/Q(e(b(l/e)sb(llv 1)+ € ||Vull )d, € H?(2,RY)

where ¢ : [0,00) — [0,00) is continuous, nondecreasing, has sublinear growth
at infinity, and satisfies $~1({0}) = {0}. As noted by the authors, this energy
may viewed as a special case of where the wells of W are at 0 and co.

The integrand in the energy I. bears clear similarities to the integrands
of both functionals E. and F¢. In our analysis of the I'—convergence of the
functionals I., we will use many of the ideas put forth in the I"—convergence
analyses of both E. by Modica and Mortola in [38] and F. by Conti and
Schweizer in [21].

We now introduce some terminology allowing us to state the main results
of this paper. Let po € (0,1) and p3 = 1—p0 € (0,1) be the two wells of f (see
Proposition . Heuristically, as ¢ — 0 in I, the density ¢ will take on the
values pg and 1, so that e(u) belongs to {poeo, p1eo}, an exact double-well
problem. Given grounding in the works [6] and [26], we then expect ey must
satisfy a rank-one type compatibility condition in order to guarantee existence
of nontrivial functions for which the limiting energy is finite. Precisely (see also
Remark |1| and Proposition 7 we assume that

det(eg) <0,  eg € R2X2 (1.7)

sym>

and consequently there are one or two choices (up to sign) of v € S such that
Syi=a®v— (11— po)eo (1.8)

is skew symmetric for some a € R? (see Section. Letting @, be a unit square
in R? centered at the origin with two sides parallel to v, we define the following
interfacial energy density
K(v) := inf{liminf I, [u;, ¢;,Q,] : €, = 0,
71— 00
u; € H'(Q,,R?),u; — @, in H'(Q,,R?), (1.9)
c; € HY(Q,,[0,1]),¢; — &, in L2(Q,)},
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.f N 0
ﬂy(x;y) = {‘ 060(1‘7y) 1 (‘T7y) v <,

(preo + Su)(z,y)"  if (z,y) -v >0,
(1.10)

- Ho if (xay)'l/<07
(z,y) = .
pr o if (zy) -v > 0.

Note that @, is Lipschitz by virtue of (1.8)). With these definitions in hand,
we now state the main results of this paper:

Theorem 1.1. Let 2 C R? be an open, bounded, strictly star-shaped domain
with Lipschitz continuous boundary, and assume that and hold.
Considering the strong topology of H(£2,R?) x L?(£2,[0,1]), we have

I —limI, = I,
e—0

where 1. is defined in , and
Ihlu, e, 2] :=

[, Kw) dH'  ce BV(2;{po,m}), u € H'(2;R?), e(u) = ceg, (L11)
o0 otherwise,

where J, is the jumpset for ¢ with normal v, and po and @1 are the wells of f
(see (1.4))).

We note that in the above theorem, the domain of I is restricted to func-
tions ¢ that map into [0, 1], a physically meaningful constraint as ¢ is the
normalized lithium-ion density.

Furthermore, it is natural to consider specific mass constraints imposed on
the admissible lithium-ion densities. We then have:

Theorem 1.2. The results of Theorem still hold under the additional
assumption that I'— convergence occurs with the domain of I. restricted to be

H'(2,R?) x <L2(Q, [0,1]) N {]{2 cdz= m}> ,

for {mc}eso C [0, 1] converging to mg € [po, p1] as € — 0.

We comment that this I'—convergence result specifically depends on the
coupled structure of I. wherein v and ¢ may be perturbed independently.
The analogous constraint in the case of energies such as F, would be a mass
constraint imposed on the gradient, but such gradient restrictions impose more
difficulties in the explicit construction of low energy sequences.

In Section [2] we introduce basic definitions and present some results about
the functional I.. With these in hand, in Section[3]we consider the compactness
of the energy functionals, i.e., if I, [u;, ¢;, 2] < C < oo for all ¢« € N, for which
topologies do {u;} and {¢;} converge? We conclude that, up to subsequences,
{u;} and {c¢;} strongly converge in H' and L?, respectively. This naturally
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motivates us to consider I'—convergence for the energy functionals with strong
convergence of (u;, ¢;) in H'(2,R?)x L?(£2,]0,1]). In Section 4] using a scaling
argument of Fonseca and Tartar’s [31], we prove the associated limit inferior
bound showing that for any sequence ¢; — 0, for all (u;, ¢;) — (u,c¢) in H' x L2,
we have

liminf I, [u;, ¢;, 2] > Io[u, ¢, £2].

71— 00

To conclude Theorem [T} it remains to prove that there is a recovery sequence
for any pair (u,c) € H'(2,R?) x L?(£2,[0,1]) such that Iy[u,c, 2] < co. To
do this, the primary challenge is obtaining a precise characterization of the
interfacial energy in terms of sequences which are affine away from the
interface. To develop this characterization, we prove an H'/2-rigidity estimate
for the functional I, which adapts technical geometric constructions used by
Conti and Schweizer in [2I]. The rigidity estimate and subsequent character-
ization of interfacial energy are proven in Section [5} In Section [6] we prove
that for any (u,c) € H(£2,R?) x L?(£2,[0,1]) there is a recovery sequence
(uiyc;) € HY(2,R?) x L2(£2,]0,1]) strongly converging to (u,c) with

lim T, [u;, ¢, 2] = Iplu, ¢, 2].

71— 00
Herein, the strictly star-shaped assumption on {2 reduces the crux of the proof
to the already proven characterization of the interfacial energy (see [19] for an
example of the difficulties encountered on more general domains). Lastly, in
Section [7] we extend Theorem [I.1] to the case of mass constraints (see Theorem
2.

The primary contribution of this paper to the existing literature on phase
field models for lithium-ion batteries is the mathematical validation of the
numerical solutions witnessing phase separation for small interfacial widths as
seen by Bazant and Cogswell [I8]. The primary mathematical contribution of
this paper is in connecting analysis of the functional I, to the treatment of the
functional F,. Apriori, the latter connection is not clear as no second order
terms appear in I, and I.[u, ¢, {2] possesses the integrand term

lle(u) — ceol®

which is not a well function. However this term is similar to the well function
W (Vu) := min{]||e(u) — uoeol|?, ||e(u) — pu1eo||?}, and this similarity is exploited
to crucially apply the rigidity analysis of Conti and Schweizer in [21].
Finally, we remark that the results of this paper are restricted to dimension
N = 2. The question of I'-convergence of energies in dimension N = 3
remains an open problem and appears intimately tied to the difficult open
problem in solid-solid phase transitions (see, e.g., [19], [20], [21], [23]).

2 Preliminaries

We first introduce some notation that will be used throughout the paper. We
write z = (z,y) € R?, and we denote by e, and e, the standard basis vectors
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in R%. For a set D C R?, we define xp : R? — {0,1} to be the indicator
function of D. We denote the convex hull of a set D C R? by conv(D). Given
¢ € R, we further define the skew symmetric matrix

Ry = L(f)’ _oﬂ . (2.1)

For u € H'(£2,R?), we define the symmetrized gradient e(u) := M

For a function ¢ € BV (§2,R), we let J. denote the jumpset of ¢ (see [4],[27]).
We will occasionally drop reference to the domain or range in a function norm,
e.g., [[ull g1 (orey = ||lullg1 (@) = ||lullg. If a norm is written without a function
space subscript, it refers to the euclidean norm of the vector or matrix.

We note throughout the following that we will consider the class of func-
tionals {I.}eso (defined by ) as defined on H'(2,R?) x L?(12,[0,1]) x
A(R?), where A(R?) is the collection of all open subsets of R2.

We will make use of the exact structure of the well function f (see (1.1)

and (1.4)).
Proposition 2.1. Let f be defined as in , The following holds:

i) If w < 2KT, then f is a single-well function.

it) If w > 2KT, then f is a double-well function with super-quadratic wells
at pp € (0,1/2) and py = 1 — po € (1/2,1). Furthermore, [0,1] can be
written as the union of [0, pol, [wo,1/2], [1/2, 1], and [p1,1], where f is
decreasing on [0, ug] and [1/2, 1] and increasing on [po,1/2] and [u1,1].

Proof. By definition of absolute temperature and the Boltzmann constant, we
note that it always holds that KT > 0. However, there are no restrictions
on the sign of w. In the case w < 0, we note that f is decreasing on the
interval [0,1/2] and increasing on the interval [1/2, 1], as observed by a direct
inspection of the derivative

%f(s) =w(l—2s)+ KT log (ﬁ)

Consequently f is a single-well function.
For the case of w > 0, we note that
d? _ KT
@f(s) = s(1—3s)’
which has at most 2 zeros. Hence, f necessarily has zero, one, or two inflection
points.

In the case of zero inflection points, that is when w < 2KT, f has a single
well (minimum) at 1/2, as the derivative blows up to negative infinity at the
0 boundary point.

In the case of one inflection point, that is when w = 2KT, symmetry
implies it occurs at 1/2, and this is the minimizer. We note the well is not
super-quadratic.

(2.2)
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In the case of two inflection points, that is when w > 2KT, a straight-
forward argument shows that f is a double well function with superquadratic
wells, and related considerations show that we may decompose the interval

[0,1] as claimed.
O

In the case in which f is a single-well function, phase separation will not
be witnessed (see [44]). The analysis of this case is simple as the functions for
which Iy is finite still belong to Sobolev spaces, and we do not focus on it.
Consequently, in what follows we assume f is a double well, with wells po and
w1 satisfying

0<po<l/2<p <1, (2.3)

and
w>2KT. (2.4)

Before invoking (|1.7)) to simplify the functional I, we provide a justification
of this assumption (see also [6], [20]).

Remark 1 We note that by property (1.2)), (C(ngxefv) = {0}. Furthermore we
recall that symmetric and skew-symmetric matrices are orthogonal with re-
spect to the Frobenius inner product. Uniquely decomposing the lattice misfit

matrix as ey = g™ + e, with g™ € RZ%2 and ef™ € RZX2 | it follows

Cle(u) — cep) : (e(u) — ceg) = Cle(u) — ceg™) = (e(u) — ceg™).

Consequently, the assumption ey € ]ngxlf1 in l) occurs without loss of gen-
erality.

Proposition 2.2. Suppose there is non-affine u € C (2, R?) which is piecewise
C with the jumpset of Vu given by a disjoint union of C' manifolds, and
e(u) € {po, p1}eo where po, 1 satisfy and eg € RZX2. Then holds.

Proof. We may consider the tangent derivative of u at a point zy on interface
separating regions where e(u) = ppep and e(u) = p1ep. Computing the tangent
derivative in the direction ¢ € R? from both sides of the interface, we find

(poeo + S)t = Vu(zo)t = (n1eo + S')t
for some skew-symmetric matrices S and S’. Rearranging, we have
((11 — po)eo + Sy)t =0

0 s

with S, = [—s 0

} = 8" — 5. It follows that

(w1 — po)eo+ S, =a®v (2.5)

for some vector a € R? and v € S! normal to the interface (i.e., normal to t).
As eg is symmetric, taking the determinant of the previous equation implies

(1 — ,U())Zdet(eo) +5%2=0. (2.6)
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In order for equation (2.6 to have solutions in the variable s, we must have
det(eg) < 0.
O

Remark 2 For functions u and ¢ such that the I'—limit of I. (assuming it
exists) is finite, we would expect e(u) € {uo, u1}eo. A lenient approximation
of this relation is given by the hypothesis of the above proposition. A more
rigorous qualification of the assumption fin the spirit of Ball and James
[6] or Dolzmann and Miiller [26]-is beyond our scope of interest.

For a 2 x 2 matrix, having rank-one is equivalent to having zero determi-
nant, and thus for symmetric eg, det(eg) < 0 holds if and only if the rank-one
decompositon holds for some v. Equation clearly implies there are
at most two possible choices of s, and up to sign, two choices of v. In the
following, we assume that

det(ep) < 0, eo € R2X2 (2.7)

sym

with the simpler case being that det(eg) = 0 for which there is a single interface
normal (see (2.5) and (2.6)).

Remark 3 We claim that under a change of variables, we may consider the
case in which

01
eg =€ ey t+eyQe, = 10l

where we recall that e, and e, are the standard basis vectors. Note as e, ®
ey — €y ® ey is skew-symmetric, in this case, the normal v in can be t+e,
or +e,. We justify the claim: As eg € ngxlfl and det(eg) < 0, up to scaling by
a diagonal matrix, there is an orthogonal matrix R such that

RTeoR = [_01 ?] . (2.8)

In turn, direct computation shows that there is an orthogonal matrix @ such

that
QT [_01 (1)] Q= [(1) (1)} =: &. (2.9)

We detail how to change the energy functional I. (see (1.3))) assuming eq is
given by the right hand side of to the form (2.9); the other case, changing
eo from the original matrix to the right-hand side of , is similar. Define
the symmetric, positive definite, fourth order tensor C by

C(v) : w=C(QuQ") : (QuQ"), v,w e R

Sym *
For an admissible pair (u, c) € H'(£2)x L?(§2) for the functional I., we consider
the transform v — @ := QTu(Q-) and ¢ — & := ¢(Q-). We then define I, by
with C and ey replaced by C and €p, respectively. It follows by a change
of variables that
det(QT) I [u,c, 2] = L[4, QT 1),
which justifies the claim.
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3 Compactness

To motivate the topological convergence that we will consider for I'- conver-
gence, we look for appropriate function spaces where compactness holds for
sequences of bounded energy.

Theorem 3.1. Let 2 C R? be an open, bounded set with Lipschitz continuous
boundary. Assume that and hold. Let e; — 0, {u;}; C H'(2,R?),
and {c;}; C HY(£2,[0,1]) be such that sup; I, [u;, c;, 2] < oo, where I is the
functional defined in . Then up to skew-affine shifts of the functions u;,
we may find subsequences {u;, }r. and {c;, }x with u;, — u in H(2,R?) and
i, — ¢ in L?(02) for someu € H'(2,R?) and ¢ € BV (£2, {po, p1}), such that
e(u) = cep.

Proof. By standard results on the Modica-Mortola (Cahn-Hilliard) functional
[38], up to a subsequence (not relabeled), we may assume that ¢; — ¢ in L?(§2)
for some ¢ € BV (§2,{uo, u1}). By the coercivity of the bilinear form C (1.2)),
we have

/ lle(ui) — cieq? dz < Ce;.
7
By the triangle inequality,
le(us) — ceollL2 < [le(ui) — cieoll 2 + [|lcieo — ceoll 2 — 0.
Define
aey) = o) = (f et @) ) + e
o
where o; ensures [, v; dz = 0. By Korn’s inequality (see [42]), we have
Joillas < Cllei)llzz = Clle(us)lzs < C.

It follows that, up to a subsequence (not relabeled), v; — u in H'(£2,R?)
for some u € H'(£2,R?). By necessity, e(u) = ceg. Thus we apply Korn’s
inequality a second time to find

[lvi — ullgr < Clle(v; — )|z = Clle(u;) — ceollrz — 0,

which proves the theorem.
O

The above result is analogous to Theorem 2.1 in [2I]. We note the above
method of proof may be adapted to obtain the aforementioned theorem of
Conti and Schweizer without the use of Young measures. The relation derived
in the above compactness result, e(u) = ceq, is further characterized by the
following result due to Conti and Schweizer (Proposition 2.2 in [21]).
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Theorem 3.2. Let 2 C R? be an open, bounded set with Lipschitz continuous
boundary. Let u € H (2, R?) be such that e(u) € BV (£2,{uoeo, p1eo}), where
ep € R2X2 satisfies . Then the jumpset of e(u), Je(uy, is the union of

Sym
countablgyJ many disjoint segments with constant normal and endpoints in 02.
Furthermore, the normal of Je,) must be v for some v satisfying the skew
symmetric rank one connection . Lastly, Vu is constant in each connected
component of 2\ Je(u)-

4 Liminf bound

This argument is a slight variant of the one in Section 3 of [21]. We define the
functional

Fe,(d,1) := inf{liminf I, [u;, ¢;,(—d, d) x (=1,1)] : ¢, = 0,
12— 00
Ui = e, in H'((—d,d) x (—1,1),R?),
¢i = Ce, in L*((—d,d) x (—1,1))}

which captures the energy for a single interface in a box. Here #., and ¢, are
defined as in (|1.10). The proof of the following proposition is due to Fonseca
and Tartar (see [31], see also [19], [21]).

Proposition 4.1. Assume , , and . Then for d,l > 0,
Fe, (d, 1) = 2dK(ey), (4.1)
where IC is the interfacial energy defined in @

Proof. For simplicity, we drop the subscript e,. To see that (4.1) holds, we note
that F(d,l) is a nondecreasing function of {. Considering sequences @;(x) =
aui(z/a), ¢;(x) = ¢;(x/a), and € = «e;, we see that

Flad,al) = aF(d,l). (4.2)
By a diagonalization argument, we may find sequences ¢;, u;, and ¢; such that

F(d,1) = lim L., [us, 5, (—d, d) x (—1,1)].
1— 00

We divide (—d,d) into intervals I; of size 2d/n for any n € N. For one such
interval I;, we must have liminf I, [u;, ¢;, I; x (—1,1)] < +F(d,1). Translating
1—00

the sequence, this implies
1 1
F (d, l) < —F(d,1).
n n

Using this inequality, letting o = 1/n in (4.2), and by the monotonicity with
respect to [, we conclude that

Lran=r (1d, l) —F <1d, 1@) .
n n n n
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This implies that F is independent of [, and further we have
F(d,l) =2dF(1/2,1/2d) = 2dF(1/2,1/2) = 2dK(ey),

as desired.
O

Remark 4 Let u; € HY((—d,d) x (—1,1),R?) and ¢; € L?((—d,d) x (—1,1)) be
such that u; — @, in H', ¢; = ¢, in L?, and

lim I, [ui, ¢, (—d,d) x (=1,1)] = 2dK(ey).

71— 00

Then for each 0 < h < [ we have

lim I, [u, ¢, (—d, d) x (=1, 1)\ (—h, h))] = 0. (4.3)

11— 00

To see this, we apply Proposition [.1] with [ and A to find
lim I, [ui, ¢, (—d, d) x (=1,1)] = 2dK(e,) = Fe,(d, h)
71— 00
< liminf I, [u;, ¢;, (—d, d) x (=h, h)],
12— 00

which implies (4.3]).

Remark 5 The previous proposition continues to hold if e, is replaced by a
different choice of normal v of the jumpset so that

Fo(d,1) = 2dK(v).

With this calculation in hand, we have the following theorem (see the proof
of Proposition 3.1 in [21I]). We note these results may be extended to higher
dimensions relatively easily with the aid of the blow-up method (see [23], [30],
[28)]).

Theorem 4.2. Let 2 C R? be an open bounded set with Lipschitz continuous

boundary. Assume , , and . Then for every u € H*(£2,R?) and
c € L3(0), every ¢; — 0, and all {u;}; in H*(2,R?) and {c;}; in L*(£2) with
u; — w in HY and ¢; — ¢ in L2, it holds

)

liminf I, [u;, ¢;, 2] > Iylu, ¢, £2],

71— 00

where I, and Iy are defined in and , respectively.

Proof. If
liminf I, [u;, ¢;, 2] = oo,
11— 00
then there is nothing to prove. Thus we assume the limit inferior is finite and
extracting a subsequence if necessary, we may suppose that the limit inferior
is a limit and sup, I, [u;, ¢;, 2] < oo. Hence, we are in a position to apply
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Theorem and to obtain that ¢ € BV (£2, {10, 11}) and e(u) = cep and
that the jumpset of ¢, J., can be written as

Je = (X5 x {y;H u| J{z;} x ¥5),
J J
for some X, Y; intervals in R, where | | denotes a disjoint union. As H!(J,) <
0o, for any 6 € (0,1) we may find n € N such that

(|;| X; % {y;} )zeﬂl(u(xjx{yj})).

Scaling the intervals X;, we find intervals X such that for all j <n, X7 x {y;}
are compactly contained in {2 and

(L

Likewise we find Y.

By Theorem the compactly contained intervals are disjoint. Further-
more, we claim there is A > 0 such that each box X} x (y; — h,y; + h) and
(xj — h,zj + h) x Y], with j < n, intersects only one interface. Let

|||::

Fx () = 1 (LG < (i)

J

K= | J(Xjx{y;}) |_| {aipx)), He= || (Xpc{yhu | (i} xY)).
j=1 j=1 j=n+1 j=n+1

By Theorem we have that K and H are disjoint. Furthermore, there
cannot be z € KN (H \ H) as H\ H C 0£2. To see this last claim, suppose
x € H\ H. Thus there must be a subsequence of distinct interfaces {Zj, }ken
such that Z;, = X;, % {y;.} or Z;, = {x;,} x Yj, with jr > n such that

B(x,1/j,)NI;, # (D As the interfaces are distinct and H!(J,) < oo, it follows
HY(Z;,) — 0. Consequently,

dist(z,00) < 1/jx +H(Z;,) = 0

proving the claim. Hence the sets K and H are disjoint, which shows that such
an h exists.
Using Proposition we find

liirgirolf I, [ui, ci, 2] ZZIiirgioglf( wiy i, X5 < (y; — hyy; + )]

+ I, [ui, Ci, (l‘j - h,.]?j + h) X Y;’])
>Z (L (XK (ey) + L1 (Y])K(en) > 92/J K(v) dH.

Letting § — 1, we complete the proof. O
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5 Characterization of interfacial energy

In this section, we characterize the interfacial energy on a box in terms of
K(ey), defined in (1.9)), via the following theorem.

Theorem 5.1. Let ¢; — 0,1 >0, and d > 0. There exists sequences u; — e,
in H'((—d/2,d/2) x (—1,1),R?) and ¢; — ¢, in L*((—d/2,d/2) x (=1,1)) such
that
lm I, [u;, ¢, (—d/2,d/2) x (—=1,1)] = dK(ey). (5.1)
11— 00
Furthermore, ¢; = ¢ and i; = @+ Xy<o(Rg, (z,y)T + a;) in some neighborhood
of the upper and lower boundaries {(z,y) € (—d/2,d/2) x R : y = £}, where
|¢i| + |ai| = 0, and Ry is defined in (2.1)).

To motivate the criticality of the above theorem, when proving the lim sup
bound, we will need to construct a minimizing sequence of functions for a rel-
atively generic domain. To construct such a sequence, we will interpolate be-
tween minimizing sequences for boxes containing a single interface. Accepting
that this will be the applied methodology, a theorem like the above is crucial
to interpolation. We note however that there are other possible methods in-
cluding proof of an H'/2 bound for a general domain or box (see Theorem
and [23]).

As the proof of Theorem [5.1]is involved, we decompose it into three steps.

Step I Suppose

lim I, [u;, ¢;, (—2d, 2d) x (=1,1)] = 4dK(ey),

with u; — e, and ¢; — ¢e,. We will find new sequences u; — e,
and ¢; — Ce, such that

limsup qu', [ﬂia Ci, (7d/2a d/Q) x (7la l)} < d’C(ey)

K3

Furthermore both ¢; = ¢, and @; = ., + (R, (x,9)T + @i)Xy<0
in some neighborhood of the upper and lower boundaries {(z,y) €
(=d/2,d/2) xR : y = +1}, where |¢;| +|a;| — 0. See Theorem [5.2}

Step II Let ¢; — 0,1 > 0, and d > 0. There exists sequences u; — ., and
¢i — Ce, such that

lim I, [ui, ¢, (—d,d) x (=1,1)] = 2dK(ey).
11— 00

See Theorem [5.111
Step III We bring together the previous two steps to complete the proof of
Theorem [B.11
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5.1 Proof of Step I

In the following we fix [ > 0, and for d > 0, ¢; > 0, and y; € (—1,1), let
Dy :=(—d,d) x (=1,1), Dge, :={(z,y) €Dg:vy; <y <y, + €},
D, ={(z,y) € Dqa:y <uyi}, DIQ ={(x,y) € Dg:y; +¢ <y}
In the proofs, Dy, will represent a transition layer in the y-direction starting
at y; and of width ¢;. The main result of this subsection is the following:

Theorem 5.2. Let d > 0. Assume that , , and hold, and

suppose

(5.2)

lim I, [u;, ¢;, Daq] = 4dK(ey), (5.3)

with u; — e, in HY (D24, R?) and ¢; — Ce, N L?*(D2q), where K(e,) and
Ue, are defined in and respectively. We may find new sequences
Ui — Ue, N Hl(Dd/27R2) and ¢; — Ce, In LQ(Dd/Q) such that

lim I, [, G, Dayo] = dK(ey).
Furthermore both ¢; = €., and U; = te, + (R, (z, )T + a;i)X{y<o} in some
neighborhood of the upper and lower boundaries of Dg/o, where |¢;|+ |a;| — 0.

Remark 6 A standard approach to proving this type of theorem (for the top
boundary) for first order Cahn-Hilliard functionals would involve sequences as
given by the following: Let ¢ : R — [0, 1] be a smooth cutoff function with
Y(x) =1 for x < 0 and ¢(z) = 0 for > 1. For some y; € (1/4,3l/4) to be
determined, let 9;(x,y) := ¥((y — y;)/€;) and define

;=1 (uz —][DMQ (u; — Te,) dz) + (1 = wbi)tde,,

Ci = ici + (1 —1y)ee,.
Analyzing the energy, it turns out that the elastic energy presents the main
difficulty, wherein we have an energy term of the form

1
/ — <ui — ’Uey —][ (uz — aey) dw) ® le
Daa.e; € Dag,e;

1
x/ — ||wi — Ue, — (ui — te,) dw
Dsaq,e, € Doa,e;

Here we see that the mean subtraction was introduced in hopes that the
Poincaré inequality (see [37]) might suffice to bound the term. However, with

this we have
1 _ _
= ||ui e, — (ug — e, ) dw
Dag,e; “i Dag,e,

max{e;, d}> _
< / WAL B s — g, | e,
Doa,e; €

2
dz

2
dz.

2
dz

2
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which cannot be controlled via averages as €; < d for large i. Consequently, it
is crucial that we apply the Poincaré inequality for H{, in some sense, which
will replace the maximum in the above inequality with ¢; itself.

To prove Theorem [5.2] and overcome the challenges posed by Remark [6]
we derive an H'/2 bound in Theorem |5.3| for low energy functions which will
help to control the trace of w on Dgg,¢,. The proof relies on ideas of Conti and
Schweizer (see Section 4 of [2I]) who derive an analogous bound for functionals
of the form F, (see (1.5))), as mentioned in the introduction.

Theorem 5.3. Assume , , and hold. Given d > 0,11 > I,
ce HY((—d,d)x(lp, 1)), and u € C?((—d,d) x (lo, 1), R?), there are constants

1o, C > 0 such that if (Cu,Ce) € {(1o€o, ko), (160, 111)},
Ié[uaca (7d7 d) X (lovll)] < n < Mo,

and
le(w) = CullFa gm0y T 16 = CellE2 (< o)) < 7

then for some set E C (lo,11) with LY(E) > 15l we have the following: For
all y € E there is an affine function wy, : R* — R? with e(w,) = ¢, such that

2
”u - waHl/z((—d/Q’d/Q)X{y}) < 0776.

To prove this, H'/? bound, we are immediately drawn to looking at the
elastic energy which heuristically looks like

1 .
/ L min{lle(u) — pocoll, o) — preoll}? d=.
D, €

If we could simply conclude that |le(u) —p1eo|| < |le(w) — poeo|| in Dg, we could
then apply Korn’s inequality to conclude ||u—w||%;; < Cne, where e(w) = pieq.
From which we could apply standard trace bounds to conclude the theorem.
But to conclude the pointwise estimate ||e(u) — pieo|| < ||e(w) — poeo|| appears
infeasible. Thus we proceed via the methods of Conti and Schweizer (Section 4
of [21]), wherein we find a large set E C (—I,1) for which we may define some
function %, associated to each y € E which satisfies @,(-,y) = u(-,y) and has
energy estimates representative of |le(d,) — pieol < |le(@y) — poeol|, conse-
quently reducing the problem to an application of Korn’s inequality. Finding
the function u, involves nontrivial constructions, and will be constructed via
linear interpolations of averages of u on a grid which refines towards the line
(—d, d) x {y}. Before embarking on the constructive journey necessary to prove
Theorem we take the result for granted and prove Theorem [5.2}

First, we prove a simple lemma which allows us to control some energies
via averages.

Lemma 5.4. Letn > 0. Supposing r : [a,b] — [0,00) is an integrable function

with fabr dx < n, then for any 0 € (0,1) there exists a measurable set Ey C
[a,b] with measure at least O(b — a) such that

Ui

TS U0 —a)

on Fy.
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Proof. Proceeding by contradiction, we have £!({r < m}) < 6(b—a).
Thus £ ({r > m}) > (1—6)(b— a), which implies that f:r dr >n,a

contradiction. O

Proof of Theorem[5.3 We construct the desired sequence by forming a transi-
tional layer of thickness €; on the upper and lower halves of the box. We treat
the upper half; the lower half is analogous. Let ¢ : R — [0, 1] be a smooth
cutoff function with ¢ (z) = 1 for z < 0 and ¥ (z) = 0 for z > 1. For some
yi € (1/2,31/4) to be determined, let v;(z,y) == ¥ ((y — v:)/€:). We define

Ci ‘=i + (1 —;)e. (5.4)

We must be more cautious in defining @, as previously noted.
By Proposition [£.1]

liminf I, [u;, ¢;, (—2d, 2d) x (—1/8,1/8)] > 4dK(e,),

71— 00

and therefore by (5.3)),
lim T, [u;, ¢, (—2d,2d) x (1/4,1)] = 0.
1— 00
For computational simplicity, we perturb the hypotheses of the theorem to

consider
u; — U =: U, (x,y) — Se, (x,y)"  in H'(D2q,R?) (5.5)

and
¢ — C=:C, in L?(Day)

(see (1.10) and (5.2) for relevant definitions). Hence

ni = llei = llie + llui — @l + L2({e — & > 1/2 = po})

+ I, [ug, ciy (—2d,2d) x (1/4,1)] — 0. (5.6)

By Theorem [5.3|for each i sufficiently large, there is a set E; C (I/2,31/4) such
that £*(E;) > 1/8 and for all yo € E; there is an affine function

Wy, (1'7 y) = (Mleo + R(byo )(‘T7 y)T T+ Ay, (57)
(depending on ) such that
[Jui — wyo”?{w((fd,d)x{yo}) < COnie;. (5.8)

Modifying a proof of Gagliardo’s (see Lemma below this proof), we
may construct vy, € H'((d/2,d/2) x (yo,1), R?) satisfying
Vyg = Ui — Wy, O (_d/27d/2) X {yO}
vy, =0 on some neighborhood of {(z,y) : y ={} (5.9)

Hvyo||%11((d/27d/2)><(y0,l)) < Oniei.
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Define

Ui = Yu; + (1 — wi)(vi + wi), (510)
where v; = vy, w; = wy,, and y; € E; is to be determined. We compute the
energy for the constructed sequence (recall (5.2))):

1
Iel. [ai,éi,Dd/Q] :Iei [ui7ci,D;/2,q] +/ *f(él) dz +/ 67;||v5i||2 dz
d/2.¢;

Day2,e; €i

1 . ¢ (elu;) —ce z
" /Dd/%i —Ce(u;) — Cieo) : (e(us) — Cieo) d

€

1
+ /D+ o Cle(w) = e(vs) dz

d/2,e;

:ZA1 —|—A2 +A3—|—A4+A5

We will bound terms As, As, A4, and As by 7; for appropriate choices of
y; and explicitly compute the limit of energy Aj.

Term As: By (5.4),
1
M= [ fthet (=)o) ds
Daya,e,

%

1 _
:/ —f(@Wici + (1 —;)e) dz
Daya,e;Mlei—e|<1/2—po} €i (5~11)
1
+ L (ci + (1 - 0)e) dz
Daya,e;M{lci—e|>1/2—po} €i
:ZA21 + A22.

To bound Ass, we integrate y; over (I/2,31/4) and apply Fubini’s Theorem to
find

31/4 ¢
f/ X{|ci—é\21/2—uo}(l‘ay) d(z,y) dy;
€i Day2,e,

3U/4 | yites df2
=/ */ / X{lei—2|>1/2—p0} (T, y) dz dy dy;
12 € Jy, —d/2

1 €4 3[/4 d/2
Zf/ / X{lei—c|>1/2—po} (T, ¥i +y) dx dy dy;
€ Jo Ji/2 —d/2

1/2

(5.12)

1 pd/2
S/ / X{lei—e|>1/2—p0} (T, 1) do dt < ;.
1/4J—d/2

By Lemma for 0 € (0,1) there exists By C (1/2,31/4) with £L1(Fy4) >
01/4 such that
1

- X{\c,-—azl/z—uo}(x,y) d(z,y) < Con;
€ Daya,e,
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for all y; € F 9. Hence
Asa < Co|l £l oomi- (5.13)

To estimate Agq, we use that f is decreasing on the interval [1/2, 1] and
increasing on [u1, 1] (see Proposition , and that in Doy ,, we have ¢ = 1.
Supposing ¢; € [1/2, p1], we find ¥;c; + (1 —;)E > ¢; > 1/2, and consequently
fWici + (1 = :)¢) < f(c;), implying

A21 S /D lf(CZ) dz. (514)
d/2,e

€;

Combining (5.13) and (|5.14] -, we have

Az < Con. (5.15)

Term Ag: By (5.4), we have

/~ e || Ve |2 dz:/ €illviVe; + (c; — &) V|| dz

P

i €i

1
Qsi %

€7

As in (5.12), by integrating in y; over (1/2,3l/4) and applying Fubini’s Theo-
rem and a change of variables,

31/4 ¢
L, ol ey el de.y i
€ JDys,,

3l/4 yite; d/2
[, w [ et et e dy
€ d/2

31/4 pd/2 (5.16)
/ / / lci(@,y; +y) — e(z,y; +y)| dz dy dy;
/2
/2
/ / lci(z,t) — ¢(x,t)| de dt < Cn;.
1/aJ—d/2

By Lemma for 0 € (0,1) there exists Eag C (1/2,31/4) with £L1(F24) >
01/4 such that
1
— lci — ¢ dz < Com;
i JDgasa.c;

for all y; € Ey 9. Hence
Az < Con. (5.17)



On I'—Convergence of a Variational Model for Lithium-Ion Batteries 21

Term A4: We now estimate the elastic energy on the transition layer: By

(5.4) and (5.10) we have

Ay
C
<= (Iliews) = cieo) + (1 = i) (e(vi + wy) — ceo)
t JDgya.,
+ ((ui —wi —v5) ® VT/)i)Sym||2) dz
C C
<— (He(ui) — cieo|* + IIVvi||2) dz+—3/ |u; —w; — vi]|? dz
€ JDasa., € JDuja,
=:Aq + Ago, (5.18)

where we have used that in Dyg (,, ¢ = p1 by definition (|1.10)) and that e(w;) =

puieo by (5.7). By (1.2) and (5.9), A41 is controlled by Cn;. To bound Ays,
we utilize the Poincaré inequality in Dg/o . as u; — w; —v; = 0 on the lower

boundary of this domain by (5.9) (see proof of the Poincaré inequality in [37]).
Explicitly,

C
A g—/ 1V (s — wi — v)|2 d2
i JDy s ..
o 42 (5.19)
<— Vu; — preol|? + [y |12 + ([ Vil dz,
€i Day2,e,

where in the last inequality we have used (2.1) and (5.7).

Reasoning as in the proof of (5.12) and (5.16]), we may apply Lemma
to find a set F3 ¢ C (1/2,31/4) with £1(E39) > 01/4 such that

¢ Vi — pieg|® dz < Com. (5.20)
¢ JDy)s.,

The last term in the integrand on the right side of is controlled
by (5.9). Thus, it remains to control ¢; := ¢,, by 7;; to do this, we must
first bound the constant a; := a,, in . Applying Lemma to |lu; —
L‘L||%2(Dd/2 _ s thereis aset Eyp C (1/2,30/4), with LY(Eyg) > 01/4, such that

for all y; € By C (1/2,31/4),
/2
/ ) = meate )T 0 < Con
—d/2

where we have used (5.5)). Consequently, supposing y; € EoN Ey4 g, we are able
to compute
2

d/2
][ wi(x,y;) *#160(95,%)T)(2) dx
—d/2

laf?? <

2 (5.21)
+

d/2
][ wile, y) — wilz, y:)® do
—d/2

<Cn; + Cnie; < Ch;.
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where we have used l) 1) the fact that fiigjz ¢;x dx = 0, and the
)

notation z = (2(1),2(2 for a vector z € R%. With this in hand, we may

estimate

d3 2 4/2 2,2
9 =/ ¢i|"2” dx
ghol? = 1ol

d/2
<O(@)® P det [ e = meate )P de
—d/2
/2
+/ |(us — w;) P2 dx)
—d/2

<Cn;.
By a similar argument, one can conclude |(a;)M|? < Cn; too. Combining
(5.19), (5.20), (5.21f), and the previous inequalities, we conclude

C
Ts/ Jui —w; —vi]|* < Cn;.
€ JDy)a.,

7

By (5.18) this implies
A4 S C@?]i. (522)

Term As: By construction of v; (see (5.9)), we have that
1 1
Asx :/ *(C<€(Uz>) : e(Ui) dz < C/ 7vaz||2 dz < Cn. (5.23)
Dt €;

+ €;
Dijae, a/2.¢;

Term A;: We may apply Proposition [4.1] and Theorem [4.2] to see
liminf I, [u;, ¢;, DJ/Q N > liminf I [ug, ¢;, (—=d/2,d/2) x (—1,1/4)]
v 1—00

i—00

>dK(ey).
The upper bound follows by contradiction. Suppose that
lim sup I, [u;, ¢, Dy o) > dK(ey).

1—00
It follows from Remark 4] and (4.3) that
4dK(ey) = lim I, [u;, c;, (—2d,2d) x (—1,31/4)]
11— 00

> liminf I, [u;, ¢;, ((—2d, —d/2) U (d/2,2d)) x (=1,31/4)]

1—00

+ limsup I, [u;, ¢;, (—d/2,d/2) x (=1, 31/4)]

1—>00

>3dK (ey) + dK(ey) = 4dK(ey),

where in the second inequality we used Proposition and horizontal trans-
lation. This contradiction proves

Zlgglo I, [ui7ci’Dd/2,ei] = dK(ey). (5.24)
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Choosing 6 sufficiently close to 1, by Lemma below, we find that
E; N (NjE;jg) # 0, and thus there is y; such that all previous bounds are
simultaneously satisfied. It follows that u; — @ in H'(Dg/2,R?) (unknown till
now as we needed estimates for a; and ¢;) and ¢ — ¢ in L?(Dy/2). Utiliz-

ing energy bounds (5.15)), (5.17), (5.22)), (5.23)), convergence of n; (5.6)), and
convergence of Ay (5.24)), we find that

lim I, [us, ci, Dayo] = dK(ey),

71— 00

concluding the theorem. O
Lemma 5.5. Suppose E;, i = 0,...,k, are measurable subsets of [0,1], and
A € (0,1). Then there is €9 = €o(\, k) such that if LY(Eg) > X and LY(E;) >
1—¢ for some 0 <e<e foralli=1,... k, then

k

() Ei #0. (5.25)

i=0
Proof. Using subadditivity, we have

£1(01’>0EZ‘) =1- Ll(UZ‘>0EiC) 2 1— ke.
Take €p < A/E. If (5.25)) does not hold,
El(ﬂizoEi) = £1(E0) + £1(ﬂi>0Ei) > A+ (1 — )\) =1,

a contradiction. O

Lemma 5.6. (see [37]) Given d,l > 0 and g € H'/?((—d,d) x {0}), we may
construct v € H*((—d/2,d/2) x (0,1)) satisfying

v=yg on(—d/2,d/2) x {0}
v=0 on some neighborhood of {(z,y) 1y =1}

101 (a/2,a72)x 0.0y) < CllgIm1/2((—dsayx o3

for some constant C > 0 independent of g.

Proof. With an abuse of notation we treat g as a function of t € (—d,d).
Let n := min{d,l} > 0. Let ¢ € C*((—1,1)) be a standard mollifier. For
(z,y) € (—d/2,d/2) x (0,1/2) we define

d
)=y [ ol —1/mate)
Since ¢ is even, fjd &' ((x—t)/y) dt =0, so
v 1t
See) =o [ —0/ma) a

d
:& [d ¢'((x—1)/y)lg(t) — g()] dt.
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Consequently,
v C
(&, Y S—/ g(t) — g(z)] dt.
g <gp [l - gle)

By Holder’s inequality and Fubini’s Theorem

dv 2
a_ ‘T,y‘ dlL’,y
/<d/2,d/2>x<o,n/2> oz Y| Aw:9)
< | ([ a0 9@ ) diwy)
S i g —g\x €,y
(—d/2,d/2)x(0,d/2) (y)4 B(z,y)
1
< L / l9(t) — g(@)[2 dt d(z,y)
(—d/2,d/2)x(0,d/2) (y) B(z,y)

o0

1
<C / gt—gx2/ —— dy ) dt dx
(—d/2,d/2) (—d,d)‘ ) = g(=) ( lt—a| (¥)? )

_ 2
—c / (=9I gy
(—d/2,d/2) J (~d,d) |t — |

<Clglg1/2((~d,a)x{0})-

Similarly, we compute

%(%y) :/d g(wﬁ((w —t)/y))g(t) dt

where in the last inequality we have used that for (z,y) € (—d/2,d/2) x
(0,n/2),

0= a%(l) = aay(/dd iqﬁ((aj —t)/y) dt) = /2 §(1¢((x - t)/y)) dt.

y\y
We bound
2 (Ratta =) || - o=+ Lt
C
§W7

where we have used the fact that |x — ¢| < y in the domain of integration.
Thus we have

0v C

o) < [ ) - g ae
6y (y)2 B(z,y)
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and we may proceed as before. We conclude that

2
/ HVT](Z)” dz < Clglgr/2((—a,a)x{o})-
(—d/2,d/2)x(0,n/2)
Lastly, it remains to truncate the function, while preserving bounds. Let
¢ : R — [0,1] be a smooth function such that 1 (t) = X(—cc,1/2)(t) for all
t € [1/4,1]. For any o > 0, we define v, (z,y) := ¢ (y/a)v(x, y). It is clear that

a 2
—Ua(z)‘ dz < Clg| sz
/<—d/2,d/2>x<o,n/2> ‘3I Aoy

still holds.
We compute

2 2
Z)H dz <C z)H dz

o
5,7
(—d/2,d/2)x (0,1/2) || OY
C
+= [o(2)
a? J(—aj2,4/2)x(0.n/2)

0
P
(—d/2,d/2)x(0,n/2) ' Y
2
‘ dz.
Using Fubini’s/Tonelli’s Theorem, it is straightforward to show that

2
/ o) s < ClgleCanniey (5:26)
(=d/2,d/2)x(0,n/2)

Consequently, for any « > 0, we have

2
/ vaa(z)H dz < CocHgH%p/Z((fd,d)x{o}y
(=d/2,d/2)x(0,n/2)

Choosing « sufficiently small based on the geometry of the domain, we con-
clude the lemma by setting v = v,. Note the desired L? bound follows from

inequality (5.26]). O

Proving the rigidity estimate of Theorem

The rest of this section is dedicated to the proof of Theorem [5.3] Our argument
relies the construction of a grid with fine properties. We define

G' = {(z,y): (z,y) €0(0,1)2orz =y orz =1—y}. (5.27)

For some fixed n € N, we then set

n—1

G" = U ((z/n,]/n) + %Gl). (5.28)

i,j=0

For some fixed k¥ € N, we define dy := 27 and suppose z = (z,y),2' =
(2',y') € R? (with y < y') are the left vertices of a parallelogram P with a base
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(a) G, see (b) G2, see

Fig. 1 Basic elements of the grid.

of length dj, parallel to the z-axis; consider the affine map Ly (z,2’) : R? — R?
which maps (0,1)? onto P with Ly(z,2')(0,0) = z and Lg(z,2')(0,1) = 2.
We define

A2k —1

Gr(2,2) = Lz, )| | (G,0)+6M)], (5.29)

=0

where A > 0 is such that A2* is an integer.

Fig. 2 Gi(z,2') for A=1, z=(0,0), 2’ = (1/4,1), see

Recalling (1.4), let

ge(z,y) = %f(C(x,y)) + | Ve(z, ) |I” + élle(U(-fr,y)) — c(x, y)eol®.  (5.30)

Up to modification of a few constants, the proof of the following theorem
follows closely the one of Lemma 4.3 in [21], and hence we refer the reader to
this for a proof.

Theorem 5.7. Assume , , and hold. Given 0 € (0,1), ¢ €
(0,1/4), d > 0, Iy > lp, and (Cu,Cc) € {(poeo, o), (1€0, 1)}, there are con-
stants 1o, €0, Cy ko, A, Cay > 0 such that for all € € (0,¢), u € C?*((—d,d) x
(lo,11),R?), c € C*((—d,d) x (lp,11),[0,1]) satisfying

IE[U,C, (_d7 d) X (107l1)} <n<no
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and
lle(u) — Cu”QL?((—d,d)x(lo,ll)) + e — CCH%%(—d,d)x(lo,ll)) =,
we may find a set E C (lp,l1) with LY(E) > b3l for which we have the
following: For each yo € E and all k > ko, there are zy, = (g, yr) such that:
i) Yk € [Yo — dk—1,Y0 — dg—1 + 0di—1] and |xr, — Tpy1| < 0dg, and —xy, €
(—d,—d + 39).

i) Ic[u,c, (—=d,d) X (yx,yo)] < Cnlyo — k|-
iii) For all points z in the grid G} (zk, zx1) defined in [5.29), |c(z) — | < 6.
iv) We have the energetic bound

/ ge dH' < Cn,
an

W(2ksZk41)

where g. is defined in .
v) A2% € N and (—d/2,d/2) x (yo — Ca1,v0) is contained in

U conv (G (zk, 2k+1))-

k>ko

2k+3
MWW Ghto(Zhra; 2u13)
Zk+2

Ghi1(2h41s 2kr2)

Zk+1

G} (2K, Z41)

2k

Fig. 3 This figure illustrates the collection of grids constructed in Theorem
in the case that n =1

Without loss of generality, suppose ((u, () = (roeo, o). Utilizing proper-
ties [iii| and Theorem and that f is super-quadratic at the wells (see

Proposition [2.1)), we find that

/ ¢ — pol* dH* < Cne,
G (2k,2k+41)
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Fig. 4 Grid L(dG*) with segments 'yii, see 1) and points zii, see 1'

which by Minkowski’s inequality (see [28]) and property [iv| in Theorem
allows us to further conclude

/ lle(u) — poeo||* dH' < Cne. (5.31)
Gg(Zk,Zk+1)

We include a lemma of Conti and Schweizer [21] relating energy bounds on
one element of the grid to an affine approximation of the function u. Let

L= [161 ﬂ (5.32)

be the matrix mapping the unit square onto the parallelogram with vertices
(0,0), (1/1,0), (s,1), and (s + 1/1,1). For all s,I with |s| + |l — 1| sufficiently
small, the parallelogram is “close” to the square.

Letting a € R?, s~ := 0, sT := 5,1~ := 0, and [T := [, we define (see
Figure [4)) the segments v on the grid given by a + L(dG™) as

. -
7E = a+ ((Fd+ (4D, s+ %(d/l)) x {di*}), (5.33)

with left endpoints zf given by
2 = at (sTd + —(d)1), diT). (5.34)

n
Across all parallelograms sufficiently close to the square, we have the fol-
lowing affine approximation result:
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Lemma 5.8. (Lemma 4.4, Remark 4.5 in [21]) Suppose a € R?, d > 0, and
Cu € {1oeo, p1eo}. There exist constants d,tg, C > 0 such that for all s,1, with

ls| + [l — 1] < 6, (5.35)
and u € H'(a + L(0,d)? R?), with
1

L min{le(u) — piocoll’, le(u) — meoll?} d= < o
a+L(0,d)?

and

1

d JatL(aGn)
we may find € R and wy € R? such that fori=0,...,n—1,

uli ::][ u dH!
v

wi = wo + Cu(z) + Ry (3),

le(w) = Gull* dH' < o,

and

we have
luf - wf|]? < Cod?.

We recall that Ry, G™, and L are defined in , , and respec-
i

tively. Furthermore, ’yii and zzjE are depicted in Figure ||

To obtain the H'/2 bound in Theorem it is essential that we estimate
how ¢ changes between neighboring parallelograms. We collect these estimates
in the following lemma.

Lemma 5.9. Suppose n = 4, a € R?, Qo = Lo[a + (0,d)?], and one of the
following cases

Case 1: Q1 = Li]la+ (0,d) + (0, %d) x (0, %d)],

Case 2: Q1 = Lola + (d,0) + (0,d) x (0,d)],

Case 3: Q1 = Lo[a+ (3d,0) + (0,d) x (0,d)],
where Lo and Ly are affine maps with linear part of the form with
parameters l;, s;, subindezed by 0 and 1 respectively, satisfying condition
of Lemma [5.8 We further assume that Lo(0,d) = L1(0,d) and Lo(d,d) =
Li(d,d). Then if u € H*((Qo U Q1)°,R?), we have that parameters ¢o and
wo,o associated to the grid Py = Lo(a + dG*) and parameters ¢, and wo,1
associated to the grid

Case 1: Py = Li(a+ (0,d) + 3dG*),

Case 2: P, = Lo(a+ (d,0) + dG*),

Case 3: P1 = Lo(a+ (0, 3d) + dG*),
by applications of Lemma[5.8 satisfy the bounds

lwo,0 — wo 1|l < Cv/od

and

|po — o1 < C/o,
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Qo Qo Q1

(a) Case 1 (b) Case 2

T
|
|
|
!
!
|
|
|

1

(c) Case 3

Fig. 5 Cases of Lemma H when L =1

where

1 . 1
- ﬁ/ min{ ()%, lle(u) — eo||?} dz + 8/ le(u)|[® dH*.
QoUQ1 Poup,

Proof. We prove Case 1, the others being similar. For notational simplicity,
we perform the following calculation when a =0, L =1 (i.e. s; =0,1; = 1)
and ¢, = 0 (which cannot be the case, but the calculation is the same as this
amounts to an affine shift). We note that up to a shift in wq by —R¢(£ 0)T

n ’
we may replace %d by #d in the definition of zzlL @ , which allows us
to use midpoints of segments versus left end-points. This allows us to perform
slightly cleaner estimates on ¢ and wy.

We use an additional subscript to denote whether a quantity relates to Qg
or Q1. We apply Lemma [5.§ in Qo and @ with grids Py and P, respectively,

to find wo ; and ¢; for j = 0, 1. It follows that
lugo — wioll < CVad (5.36)

and
Jugy 4+ uy g — (woy +wip)ll < 20/od. (5.37)

Furthermore, as @)y and @) overlap at their top and bottom boundary respec-
tively, we have

1 _ _
u{{o = §(u0’1 + U1,1)- (5.38)

Consequently, using the definition of wfj, equation 1] , the triangle inequal-
ity, followed by application of the bounds (5.36)) and (5.37]), we find

1, _ _
lwo.0 = wo.1 + oy, (1/2)d/n, )T = [l — 5 (wo 1 +wiy)| < CVad.
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By a similar argument, since ufo = §(uy, +uz,), we find

lwo,0 = wo,1 + Rey—g, ((3/2)d/n,d)" || < C/ad.

We note that to obtain both of these estimates is where we needed n = 4.
Taking the difference of the terms, we find

(d/n)\qﬁo - ¢1‘ = ||R¢0*¢1 (d/n7 O)TH < C\/Ed7

which implies |¢pg — ¢1]| < Cy/o. From this, it also follows that ||wg,o —wo 1| <

C\/ad.
O

With this in hand, we have enough tools to prove Theorem

Proof of Theorem[5.3 Given that the energy bounds of Lemmal5.§ and equa-
tion are independent of ¢, we do not concern ourselves with the function.
We assume that ¢, = poeo. Shifting u by the affine function —pgeq(z,y)T, we
can assume that one well is ¢, = 0 and, rescaling « and the energies by the
fixed constant p11 — po > 0, the other well is eg.

Fix the grid parameter n = 4. Let UyG} be the grid as constructed in
Theorem [5.7] with parameter 6 > 0 for some § € E. We write

lend

Gi = U P
=1

where each parallelogram grid element P; j, is a translation of Ly (2, 2kt1)GH
and P;_ , ;. is the rightmost grid element. Choosing ¢ sufficiently small, each
P, ;, may be written as a translation of (14 O(8))L(0, dx)?, with |s|+ |l — 1| =
O(9). Thus the results of Lemma still apply, and we find an associated pair
(wi g, ¢ir) satisfying the estimates of the lemma on the slightly rescaled grid
P j.

We now work to define our function u,. For each P, we let ;1 be the
bottom left segment of the grid (in Lemma this would be on the interval
(0,d/n) x {0}). We denote the line average associated to this segment by

Uik ::][ u dH. (5.39)
Yik

Note, for the last index i, for a fixed level k, we define u;_, ,+1,% to be the line
average over the bottom right segment for the rightmost grid element P;__, 1.

For each i, k, we let z; ;, be the bottom left vertex of P; , (2;,,,+1.% being the
bottom right of the rightmost grid element). As such, we may divide P, , into
two parallelograms P and P;‘k, which each have a base of length dj, /2 = dj1,
and have the vertex 22,41 x+1 in common.
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Z1,k+2 &

Piry1 \ Pory1 \ P3rs1 \ Pagt1 G§+1(21,k+1,21,k+2) level

/

21,k+1

1 1
I I
! !
! !
1 1
1 + 1 +
- i — i 4
Pl,k / Pl,k P2,k / P2,k G (21,85 21,k+1) level
! !
I I
I I
1 1
21,k ! 22k ! 23,k

Fig. 6 Geometric quantities involved in the proof of Theorem

We define @, on conv(P, 1) as follows:

— Along the lower boundary,
ﬂy(Ozi,k + (1 — 9)2i+1,k) = Gui’k + (1 — H)UiJrl,lm (540)

for 6 € [0, 1].
— Along the upper boundary,

Uy (022i 11 k+1+(1=0) 2264141 k41) = Ouzip 1 +H(1=0)ugipir1 k41, (5.41)

for 6 € [0,1],1 = 0,1, where [ designates whether we are considering the
first (left) or second (right) half of the upper boundary.
— Throughout the convex hull of P; 4,

Uy (024 (1=0)(2+ (221, k41— 2i,k))) = Oty (2) + (1—=0)y (2 + (220 k41— 2Zik))
(5.42)
for all z on the lower boundary of P; x, 6 € [0, 1].

In words, we define @, on the vertices of conv(P; ;) in terms of the associated
averages of u. Then we use linear interpolation to define the values on the upper
and lower boundaries of conv(P,; ;). Lastly, we interpolate between the lower
and upper boundaries by moving in lines parallel to the sides of conv(P; j).

Given this construction of @,, we now wish to show that in each parallelo-
gram conv(P; 1), Vi, is close to the skew symmetric matrix Ry, , . We restrict
our attention to grid elements which are not the rightmost, a simpler case.
We introduce the parallelogram grid Pi” E= Pifk UP for which Lemma
applies (associated terms have apostrophe, i.e. ¢; ;). Define

Ri+1,k — Rik 22i,k+1 — Zik
vy = (170) = i+l b v+ k3

R TRy = T TR
[2it1,6 = 2kl |22 k41 — Zi k|l
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As vy and vy are linearly independent, we have

_ 0
||vuy - R¢Lk ”L‘X’(conv(Pi,k)) < ‘ p)
(5.43)

L (conv(P; 1))

As 4, is constructed via linear interpolations (5.40), (5.41), (5.42), we bound
- R¢i)k(y1)\|Lm(C0nv(Pfk)) via difference quotients along the top and

o —
[ vy Yy
bottom boundary of P,

0 _
I gy = Roe ()

<c<
(
|

L (conv(PiTk )

(ﬂy - R@k)('z:,k) - (ﬂy - R¢7‘,,k)(zi,k)

[

(dy — Ry, (22i11,6+1) — (Uy — Ry, ) (22i k1)
||227,+1 k+1 — Z2l k+1 H

7.L1+1 k — U'Lk Rqﬁhk(l,o)T‘

D (5.44)

U2i4+1,k+1 — U24,k+1 T
: d = - Rd’i,k(lvo) H) .
k+1

Similarly,

9
8V2

<

Uy — R¢i,k (VQ)
Lo (conv(P; )

U2 k+1 — Uik 22 k+1 — Zik
TP TR LU S W po—
HZZz,k-&-l - zz,kH ‘|2’2@,k+1 - Zz,kH

(5.45)
U441, k41 — %(uzk + Uit1,k)

2241041 — 5 (Zik + Zie1,0) |

22i+1,k+1 — (Zz k+ Zit1k)
_R¢i,k ‘

|22i 41,641 — (Zz &+ Ziv1n)|l

The bounds over PJr,c are once again similar and we do not state them.

We bound the horizontal finite difference along the lower boundary of P; ,
which will account for both terms on the right hand side of (5.44) up to an
application of Lemma Define

A
Ui,k =

min{|le(u)[|?, e(u) — e} dz + — 7 / le(u)|* dH,
k JP; xUP;iy1 1

conv(P; kUPj41,k)
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where the integral is performed over P;1;  versus P/, for convenience, not
necessity. We compute

2
Uit1,k — Uik
- d n R¢i,k(170)T
k

1
< (isn = i = R, (di/2,0)7 12 + ] — i = o, (d/2,0)7 )
k

c
Sdf (Iluz'+1,k — i, — Ry, (di/2,0)7 17 + | Ry, — .., (di/2,0)T |7

g g — wik — Ry, (21 1P + Nt — wig — Rd:i,k(zz‘,k)Hz)

C
<= (i = wh = Ry, Gor )2 + luf e = wh i = Ry (21,11
k
+ dp |} — il + Cagykdi)
<C(oj 1 + |9i 1 — dikl?) < Coiy,
(5.46)
where we have used that
Zig = Zik = Zig Lk — Zip = (dr/2,0)
and
| — Gil” < Coiy, (5.47)

by Lemma and

i = wig = R, o (zi )| < Oy /0] i

along with

[l x — w;  — Ras;,k(zz/‘,k)” < C,/o} di,

which are consequences of Lemma with ¢, = 0 applied to P;; and Pi/, &>

respectively (note that in the notation of Lemma u;k is u, associated
with the grid P, 1).

We define
Ji,k =
. 1
Fo gl e — eolPh + o [ fletw)|? axe
conv(P; 1) k JP;

X 1
4 ][ min{lle(w) |, e(u) — col?} + - / le(u) |2 2!
conv(Pa; k1 k+1 J Py; g4

. 1
+f min((le(w) P e(w) — col} + - [ fle(w an.
conv(P2i4+1,k+1) k41 JPoitq k41

We note that ||z, k+1 — 2k = (1 + O(5))dg by construction. Furthermore,
up to translation, we have that z; ;, = 0, and ||z2; x+1]| = (1 + O(9))dy. Using
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Lemma and Lemma we compute a finite difference in the direction of

% on the left boundary of conv(P; ;). This estimate will be

used to bound the first term of the right hand side of (5.45)).

Vy =

‘ U2i,k4+1 — Uik < 22ik+1 — Zik > H
[z2ipr1 — zenll 0 \Tz2iprs — 20l
C
< - . _ . R. . . 2
S —— (||u2z,k+1 (Waik+1 + Ry s (220, 041)) (5.48)

+ [lui gk — (wik + Ry, , (zix))|1?

2 + ||R¢2i,k+1*¢i,k(ZQi,kJrl)HQ) < Ca-i;k'

Note that the integrals in the definition of o, j associated with Py 41 are
not needed for the above inequality, but will be necessary for the next bound.

We perform a similar calculation for near vertical finite differences along
the common boundary of conv(F; ;) and COHV(P:k)- This estimate bounds the
second term of the right hand side of . Using that 29,41 k41 = %(ZQZ"]CJFl +
zoi+2.k+1) and adding and subtracting the term %(/U/Qi,k;Jr] + Uit k1), We
estimate

‘ Uit 1 k1 — 5 (Wi + Uit k) B ( 225+ 1,k+1 — 3(Zik + Zit1k) ) H
||Z2i+1 k1 — 3 (2ik + Zig1e) | ¢ l22i41,k+1 — 5 (Zik + Zig1.0) |
C
<= ||u2z k1 — — Ry, (225541 — zio)|1°
d

+ Z||U2i+2,k+1 —Uiy1k — Ry, (22i12,041 — Zivik)|?

)

(U2z+2 Rl + U2 k1) — U241 k+1

+ H 5 (U2itz 1 + Uik1) = Uziti ket

d2

/
<C(oik + Tig1,k + U2i,k+1 + 0%i42,k41)

1
§C<Ui,k + o1k +

)
(5.49)

where in the second inequality we have applied the analysis of finite differences
along the left boundaries and the bound |¢;115 — ¢ x|* < Cag,k provided by
Lemma, To see the last inequality, we note

2

1
H —(U2i42,k+1 + Ui k+1) — Uit k+1

ugita k1 = U2it1h41 — Ronisrpps (dis1,0)7

+ u2it 1 k1 — U2i ki1 — Roorpr o (dig1, 0)7

which are the horizontal finite differences, modulo a term like ([5.47) for the
second term, which have already been analyzed, thus concluding the bound.
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We define

¢ = Z Xconv(P,;,k)Rqﬁi,k 5
ik

noting that by (2.1), (Rg)™™ = 0 almost everywhere. Let G := |J,, conv(G}).
Applying (5.43)), (5.44), (5.45)), and the subsequent finite difference estimates

(5.46), (5.48)), (5.49), we have

Ve, — R¢>||2L2(G)

<C Z L2 (conv(P; 1)) (

ik

Ui k1 — Wik ( 22i k41 — Zik ) H
_etnwl LR R¢,
||Z2i k+1 _Zik” ||Zzz k+1 — 24 k”

2
Ui4-1,k — WU

k T
— Ry (1,0
dy, ¢1,k( ; )

U441,k+1 — (Uz b+ Uit1k)

(zik + Zit1,k) )H )
(Z’Lk+zl+1k H

<C Z L2 (conv(P; 1)) (05 + Cig1k + Ohi 1 T O9ivokr1)

Hz2z,k+1 Zz,k”

R ( 22i41,k+1 —
- g
||2'21'+1,k+1 -

[SIEISIES

ik
<C L2 (conv(P; min{|le(w)|], |le(u) — eo|}?
< zk: (conv( ,k))(]éonv(ﬂ)k) {lle(w)ll; lle(u) — eoll}
v L et are)

<%/mw|w<w%mm+2@2/ I

<Chne +C( de / le(u)||? dH' < Cne,

n

where in the last line we have applied the energy bounds from Theorem
and the bound in the second to last line follows by undoing the affine shift
of w and using I.[u,c, (—d,d) x (lp,!1)] < n in conjunction with f being a
super-quadratic well. As (—d/2,d/2) x (y — Cq1,y) C G, we have

He(ﬂy)||%2((—d/27d/2)><(y—1/2,y)) <C||Vuy — R¢||2L2(G) < Che.

Applying Korn’s inequality (see [42]), subsequently the trace theorem (see
[37]), and noting by continuity that @,(-,y) = u(-,y), we conclude the proof.
[
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5.2 Proof of Step II

In this subsection, we use similar methods of proof as in the paper of Conti
and Schweizer (Proposition 5.5 of [21]). We first prove a lemma relating ener-
gies to a geodesic distance similar to that of the Modica-Mortola functional.
In what follows, given a curve 7y, we interchangeably use v as the set and
parameterization representing the curve.

Lemma 5.10. Let g, be defined as in . For any 6 > 0 there is h(§) > 0
such that if vy is a C*-curve with length at least €, range in (—d,d) x (—1,1),
and fﬂ/ ge dH' < h(8), then either |c(z,y) — 1| < & or |e(z,y) — pol < & for

all (z,y) € 7.

Proof. Consider the geodesic distance between points on the interval I := [0, 1]
defined by

1
di(s, ) = inf { / VIV db =6 € CHI1),9(0) = 5,9(1) = 5'}.

(5.50)
Let
ho :=inf{d;(s,s") : 8,8 € I,|s — po| < 8/2,|s" — po| > 6},
and similarly,
hy == inf{d[(s,s’) : 5,8 € I,|s — pu1| < 6/2,]s' — pa| > &}.
Lastly, we define
ho :=1inf{f(s) :x € I,|s — pa1| > /2, |s — po| > §/2}.
Let h(8) := $min{ho, h1, ha}.
Assuming now that fv ge dH' < h(8) and H'(v) > €, we have
1
o> [ocat =Lt ) eNHE)

>inf{f(c(z,y)) : (x,y) € v},

which implies there must be a point (Z, ) € 7 such that either |¢(Z, ) — u1| <
0/2 or |e(Z,5) — po| < §/2. Without loss of generality, assume that the latter
holds.

By (5.30)), we compute
1
ho> [ gt = [ VF@IVel ' = [ VFean|Viean)
¥ gl 0

Zd[(C(.’E, y)v C(iv g))v

where (x,y) € v and ¥ is a curve contained in v connecting (z,y) and (Z, 7).
By definition of hg, this implies |c(z, y) — puo| < d for all (z,y) € v as desired.
[

(5.52)
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As in the proof of Proposition via a diagonalization argument, for
any domain (—d,d) x (—I,1), we may find sequences & ~\, 0, 4; — U, in
H'((—d,d) x (=1,1),R?), and ¢; — ¢, in L*((—d,d) x (—1,1)) such that

lim I, [w;, G, (—d,d) x (=1,1)] = 2dK(ey). (5.53)
11— 00
However with respect to gamma convergence, the sequence ¢; is given a priori.
Hence the critical result is the following;:

Theorem 5.11. Assume , , and hold. Let e; — 0,1 > 0, and

d > 0. There exist sequences u; — Ue, and ¢; — Ce,, such that
lim I, [u, ¢, (—d/2,d/2) x (=1,1)] = dK(ey). (5.54)
11— 00

Proof. For notational convenience, we drop the subscript e,. Let & ~\, 0, @i; —
u, and ¢; — ¢ be the sequences prior to the theorem statement for the domain
(—4d, 4d) x (—1,1). By Theorem we find sequences (not relabeled) {¢;} C
L?((—d,d) x (=1,1)) and {@;} € H'((—d,d) x (=I,1),R?) such that on the
upper and lower boundaries of (—d,d) x (—=1,1), ¢, = ¢ and @; = @ + Xy>0W;,
where w; is a skew affine function, with
tim I, [, &, (~d, d) % (~1,1)] = 24K (e,).

Thus we extend ¢; and 4; to (—d, d) X R via constants or affine functions.

For each i € N, we let j(i) € N be the smallest number such that j(i) > ¢
and €;(;) < €;/i. We then rescale our sequences as follows:

_ €& _ (€ - _ (€5
/Ui(xay) = fui(ﬁ(mvy)>7 bz(x7y) = CZ<£($7y)>
€5(4) €i €
Letting «; := =%~ and using a change of variables, we find

€i(i)

Iei [’Ui, b;, (—ozid, Oéld) X R] = 2aidlC(ey) + QM (4)s
where n; := I¢, [4;, ¢, (—d, d) x (—1,1)] — 2dK(e,). Thus

lag| -1
> L [0i,bi, (2k — [ai])d, (2(k + 1) — [a;])d) x R]

k=0

=I,[0;, bi, (— | d, | ]d) x R]
<L20;dK(ey) + ainj(,

which implies there is some ko € {—|a; ], —|ai] +2,...,|a;] — 2} such that

_ T Q; Q;
Translating the sequences, we assume ky = —1. Taking the limsup of the

previous inequality, we find

limsup I, [0;, b;, (—d, d) x R] < 2dK(ey), (5.55)

1—00
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as LZ—ZJ — 1. Note further that associated to each sequence {%;,b;} is some

L; > 0 such that o; is affine and b; is constant in each of the connected regions
specified by the inequality |y| > L;. From this last fact, we are able to conclude
that for each i € N, I [0, b;, (—d,d) x R] > Cd (see )
We now work to truncate the domain under consideration from (—d, d) xR
o (—=d,d) x (=L, L) for some L > 0 such that

Cd < liminf I, [u;, ¢;, (—d,d) x (=L, L)] (5.56)
71— 00
S thUP Iei [uiac’ia (_d7 d) X (_LaL)] S lec(ey)a
i—00

where u; and ¢; are constructed from modifications of #; and b; and u; — @ in
HY((—d,d) x (-L,L),R?), and ¢; — ¢ in L?((—d,d) x (=L, L)).
In this direction, we let & := (3 — o)/2 and define the functions
foy) == L {x € (=d,d) : [bi(x,y) — pol < 63) (5.57)

and
Hily) = L' {z € (=d,d) : [bi(x,y) — | < 6}). (5.58)

For large y, fo(y) = 0 and f1(y) = 2d. An analogous situation holds for y << 0.
We utilize these functions to isolate an interval where will hold up to
translation.

Note that the set of y satisfying fo(y)+ f1(y) < 3d/2 has Lebesgue measure
less than Cye; < Cy. To see this, note that if fo(y) + f1(y) < 3d/2, then

LY{x € (=d,d) : |bj(z,y) — p1| > and |b(x,y) — po| > 6}) > d/2. (5.59)

This implies
L' ({y : inequality (5.59) holds})
/c (o € (~d,d) : buCe.y) — o] > 8 and [by(e,) — pol > 3}) dy

f(b;) dz < Ciey,
(—d,d)xR

where we have used that f > 0 with f(c) = 0 if and only if ¢ = pg or ¢ = py.
We further note that the set on which both fy > 0 and f; > 0 is bounded
in measure by a constant Cy. To see this, we use (5.30) to write

Cy > I, [ﬁi,l_ji, (=d,d) x R] = // ge,; (z,y) dz dy. (5.60)
d,d)

By Lemma if f(_d i) Jei (z,y) dz < h(0), then either fo(y) or fi(y) is

0. Thus, we are concerned in bounding

Lt <{y eR: /(dd) ge,; (z,y) dx > h(é)}) .
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But by Markov’s Inequality and (5.60)),

c ({y eER: / ge; (z,y) dx > h(§)}> < C1/h(9).
(7d’d)
Thus

Ly« foly) + fi(y) < 3d/2} Uy : fo(y) > 0, fi(y) > 0}) < Cy + C1/(6).

It follows that we may write R as the disjoint union of the three sets M, N,
and O, where

— fo=0and f; > 3d/2 on M.
— fo>3d/2and f =0 on N.
— The remaining portion of R is O with £1(0) < C; + Cy/h(9).

Suppose yo and y; are such that fo(yo) > 3d/2 and fi(y1) > 3d/2. Then by
[£:57) and (5.58), the set

E:={z e (=d,d) : |bi(z,y0) — ol <5} N{x € (—=d,d) : |bi(x,y1) — p1| < 0}

satisfies
LYE) > d.

Assuming without loss of generality y9 < y1, we compute

_ Y1
L. [50,Bi (—d, d)  (y0,91)] = / / ge, dy do
E Jyo

>inf{d;(c,c) : |c — po| < 8, |c" — pa| < 0}d = Csd,
(5.61)

where dj is the geodesic distance from Lemma (see ) and Cs > 0.
If we refer to an interval (yo,y1) as above as a transition, the energy

bound implies there are at most J (independent of ¢) transitions.
Note that (—oo,—L;) € N C (—o0,L;] by and and the

comment following these definitions. Hence we can define
g=inf{y: (y—Cy)NN=0}>—-L; > —o0,

where ¢ > 2(C1+C1/h(5)) (the constant makes sure at most half the interval is
in O). For some L > 0, we consider the interval (§— 2L, §—2(), and divide the
interval into segments of length ¢ (assuming 2L is divisible by (). Each interval
intersects N by definition of §. If an interval also intersects M, it contains a
transition. Thus for 2L > (J + 2)(, there must be at least one such interval,
(2z,Z + (¢), which does not intersect M, as the number of transitions must be
less than J. Consequently, in this interval, for at least half the y € (Z,z + (),
f1(y) = 0. We note this implies

inf |b;(z,y) — pi| >0 5.62
wees({lgd)l (@,y) —ml = (5.62)
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for at least half the y € (2, Z + (). Similarly, we have

inf |bi(z,y) — po| >0 5.63
Lssinf |bi(2, y) = pol = (5.63)
for at least half the y € (5 — ¢, 7).

We consequently define

vi(z,y) = 0i(x,y — L+79), bi(z,y):=bi(z,y— L+7),

for (z,y) € (—d,d)x(—L, L) =: Ur. By construction, there must be at least one
transition on the interval (—L, L), and consequently, these sequences satisfy
. It remains to prove convergence.

We define

n; = inf{[Jv; — wollmrw,) + 1bi — collz2(vy) : (wo,c0) € G},
where

G = {(uo, o) € H' (U, R*) x L*(UL) = uo(w,y) = u(z,y — a) + S(z,y)" +r,
co(z,y) =e(z,y — a),for all (z,y) € UL, and
ae(—L+¢/2,L—¢/2),8 e RY2 r e R?}.

skew?

We claim 7; — 0. If not, there is a subsequence {n;, } bounded away from
0. Considering the compactness Theorem we have that v;, = v in €
HY(UL,R?) and b;, — b € BV (Up,{po,p1}) in L*(Uyr), with e(v) = beg.
Without loss of generality, we may assume that b;, — b pointwise a.e., and

consequently, b satisfies (5.62)) and (5.63)). By Theorem we have that v

only has horizontal or vertical interfaces. By the essential infimum estimates
and , there are no vertical interfaces. By the energy bounds ,
v can have at most one horizontal interface transition. Once again by the
essential infimum estimates, b(x,y) = p; for y > L — (/2 and b(x,y) = po for
y < —L + (/2, else we contradict L? convergence results. We conclude that
b=¢(z,- —a) for some a € (—L + (/2,L — (/2). It follows (v,b) € G, which
then contradicts the assumption liminfy n;, > 0.

We conclude that n; — 0. Translating functions and shifting by affine
functions with skew gradient, we find w; : (—d,d) x (—(/2,(/2) — R? and
¢t (—d,d) x (=(/2,(/2) — [0,1] satisfying the conclusion of the theorem
with ! = (/2. Applying Theorem we obtain the theorem’s conclusion for
I = (/2 where u; and ¢; are affine or constant (respectively) on the upper
and lower boundaries. Extending these functions to be affine or constant, the
theorem’s conclusion holds on (—d/2,d/2) x R, which may then be truncated
to the desired domain (—d/2,d/2) x (—I,1).

O

5.3 Proof of Step III

Proof of Theorem[5.1 Apply Theorem to the domain (—2d, 2d) x (—1,1).
Subsequently, apply Theorem [5.2] to conclude the result. O
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6 Limsup bound

We outline our plan to prove the limsup bound on a strictly star-shaped
Lipschitz domain 2. In essence, we wish to put boxes around the interfaces,
and interpolate between the sides of the boxes parallel to the interface by low
energy sequences while maintaining regularity of the functions. More explicitly:

— Given v and ¢ for which Iy[u, ¢, 2] is finite, we rescale the functions utilizing
the fact that the domain is strictly star-shaped. This reduces the problem
to the case of finitely many interfaces.

— Suppose without loss of generality that some interface has normal e,.
Around this interface, we intersect the domain with a box of small width
in the normal direction. For a given sequence ¢;, in each box, we use the
characterization of the interfacial energy to construct a sequence of func-
tions such that I, [u;, ¢;, (—d, d) x (—=1,1)] — 2dK(e,), and both u; is affine
and ¢; is constant on the boundaries of the box parallel to the interface.

— We use the previous step to construct a low energy sequence which is equal
to u plus a “small” skew affine function outside of the boxes and in the
box is equal to the low energy sequence with affine boundary conditions.

Theorem 6.1. (see also Proposition 5.1 of [21]) Assume (1.3), (27), and
hold. Suppose €; — 0 and that (2 is an open, strictly star-shaped domain
with Lipschitz continuous boundary. For (u,c) € H'(2,R?)x BV (£2, {10, t11})
with Io[u,c, 2] < oo, there are sequences u; — u in H'(£2,R?) and ¢; — c in
L?(02) such that
lim sup I, [u;, ¢;, 2] < Iplu, ¢, £2].
71— 00

Proof. Assume without loss of generality that {2 is star-shaped about 0. Given
6 € (0,1), we rescale u and ¢ to define

ug(z,y) = %u(@(x,y)), co(x,y) :=c(0(x,y)), for (z,y) € L.

We prove
lim sup I, [us, ci, £2] < é[o[u,c, al, (6.1)
1— 00
for sequences u; — up in H(2,R?) and ¢; — ¢ in L?(£2).

Supposing we prove this for ug and cy, we may consider a sequence 6 — 1
and find subsequences {u;}; and {c; }; satisfying inequality ‘ Taking
the limsup with respect to k& of the above inequality, we may apply a diago-
nalization argument to conclude the theorem.

Thus it remains to prove for fixed 6. By Theorem Je = U;855,
where each S; is a connected segment parallel to one of the axes. Thus J., =
U; (2N $5;) =t U;S;j 9. We note that dist(S;g, Sm,e) > 0 for j # m as S;
and S, can only intersect at endpoints, and thus the strict star-shapedness
implies, gj,g N Sm,g =0.

Furthermore, we have that S; o = 0 for all but finitely many of the j.
Supposing not, we may find a sequence zj such that z; € S;, N 02 for a
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Fig. 7 The POS (<) induced on {2} is illustrated in an example domain 2,
where the direction of the arrows indicates movement up the order.

strictly increasing sequence {jj}r. As H'(J.) < oo, H'(S;,) — 0. It follows
that up to a subsequence zx — 29 € 9{2. But by choice of zx, we have z € 612.
This is a contradiction as 92 N 02 = () by strict star-shapedness.

From here on we only consider j for which S;¢ is nonempty. Consider a
horizontal segment, S; = (27, ;) x {y;}. By strict star-shapedness %(xji X
{y;}) € £2. Thus we may find o > 0 such that {%xji}x(éyj—o, %yj—i—a)ﬂfz = 0.
We let R; := (%x;, %x;r) X (3y;—0, $y;+0). Similarly, we define R; for vertical
interfaces. For o sufficiently small, the sets R; N {2 are disjoint.

Associated to each R; is unit normal v; and, as given by Theorem
there is a sequence with {u},c!}; with ] = u + Xuj-(a:,y)>0(R¢g (x,9)T + a;)

and cz’ = ¢ on the boundaries of the box parallel to the interface and energy
bounds as given by (5.54). We now seek to define sequences u; and ¢;.

We divide 2\ (U;S;9) into connected components {{2;}. We induce a
partially ordered system (<) on {2} to make it into a downward directed
set (see Figure E[) Up to reordering, let 21 be a connected component with
boundary touching at most one interface, which exists as there are finitely
many interfaces and U;S;9 C §2. (21 is defined to be the minimal element in
the POS (<). By star-shapedness, between every point of £2; and (2, there
is a unique minimal sequence of connected components, {2, }7 ,, k1 = 1 and
k, = k, through which a continuous path in {2 must travel to move between
the points. We say (2, < (2, ,. Looking at all paths induces the desired POS
(<). Note, we have that each {2, has a unique element {2, which is the greatest
element less than it. Letting S; ¢ be the interface separating the domains (2;
and £2;,. We define ¢ := qﬁf and likewise for af . Without loss of generality, we
have that v; points from (2 towards (2;. Note we also treat (<) as a partial
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order on {k}. With this, we define
Ui(x7 y) =
ul(#,9) + Lok (Rop (2,9)" +al) - (w,y) € Ry N 2,20 R; #0,
2N Rj # 0,
u(@,y) + >, <k (Rep (2, y)T +a) not in the previous case
and (z,y) € {2,

o c(x,y) (z,y) € RN,
v c otherwise.

It follows that

lim sup I, [u;, ¢;, 2] < E lim sup I, [ug,cZ,Rj]
1—00 - 1—00
J

1 L 1
<3 ;K(wm (5:) < glolu, e, 2],

proving the desired inequality . Convergence of the subsequences to ug
and ¢y follows from convergence on the boxes and decay of ¢! and a] to 0 (see
Theorem [5.2)).

O

7 Mass Constraint

We now treat the case of I'-convergence under the restriction of a mass con-
straint. Recall that we let {m.}e~0 C [0, 1] converge to mg € 1o, u1] as € = 0,
and we wish to consider I'-convergence restricting the domain of I, to densities
¢ such that fQ cdz = m.. Obviously, the lim inf bound still holds, and thus for
given ¢; — 0, it remains to show that we may construct a sequence obtaining
the limit. We write m; for m.,. We break this into cases depending on whether
™Mo = o, Mo = 1, or mo € (g, i11). In each case, we need to find a low-energy
method for varying the mass of the functions ¢; as previously constructed in
Theorem To do this, we will emulate the proof of the lim sup bound for
the Modica-Mortola functional (see [36], [38]).

Proof of Theorem[1.3. Consider (u,c) such that Io[u, ¢, 2] < oo and f,, cdz =
mg. We construct minimizing sequences for different cases.
Case 1, mg = po or mg = p1: Without loss of generality, we treat the case
that mo = po. Note that in this case, the function ¢ = pg and e(u) = poeq.
Thus if m; = pg, we may simply choose ¢; = c¢. Consequently, in the following
construction, we assume that m; # pug for all i.

We consider the energy functionals given by

1
I,[d, Q= I, ud, Q)= / E(f(d) + (' — u0)60||2> + e||VC'||2 dz.
(%}
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We condense notation by defining W (s) := f(s) + ||(s — po)eol|?. Note this is
a single-well potential.

Subcase 1, po < m; < p1: We define the sequence {Ey}e. >n>0 by B ==
B(z0,1)¢, for any fixed 2o € 2 such that B(z,2¢,,) C £2. Define E; := E,, =
B(zo,1;)¢, where n; > 0 is such that

1o L% (Ey, N 02) + uL2(ES N 2) = mL2(02). (7.1)

This assumes that m; is sufficiently close to po (as given by some relation to
€4, ), which we do.
Define

oi(s) == /;m 761’ W) dr.

Then, |¢;(u1)] < 63/2. We note that ¢; is strictly increasing with differentiable
inverse ¢; ' : [0, ¢i(u1)] — [po, p1] satisfying

d e+ Wi(p; (1)
%@ l(t) = ,

€

by the inverse function theorem. Extend ¢, ! by constants at the boundary of
[0, &;(u1)]. We define

qolt) = {ZT: - 3: (7.2)
and
vs(2) := ¢; H(dp, (2) + 5),
where

d ( ) 7d(Z, aEZ) if z € Ei,
(z) =
b d(z,0F;) otherwise,

is the signed distance function of E; (negative in E;).
We now wish to choose s such that the fQ vs; dz = m;. To do this, we
apply the Mean Value theorem to the function s — fg vs dz. We compute

F 07 n @) d= <f goldn(2)) dz = m,

(9] (]

67 () + i) de = gl () dz = m.
2 (7]

Thus, for some s; € [0, ¢;(u1)], we have {,vs, dz = m;. Define ¢; := v,,. We
now wish to perform a precise estimate on ¢;. Since dg, is Lipschitz continuous
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and |Vdg, (2)|| = 1 for a.e. 2 € R?\ OF;, (see [27], [36], [10]) we can apply the
coarea formula (see [27],[37]) to obtain

I;i [Ci, .Q]

= [ I e () + ) + 60 A 2) + )P

= [" (G e s + el o+ )P H (= € 25 dp) = 1) dr

. o

< swp H(e@idn( =) [ TWEI0) el O dr
ni+si ‘ 1 .,

< sw w(enine - [ FEELD gy a
OUH—Sz‘

— s H(ze@idn (=) [ 2 Wl )l () ar

< sup H'({z€R?:dp, () =t}) / 2V e, +W(s) ds

—s;<t<m; 0
<C(e; 1/2 + 1) /1 2v/e; + W(s)ds =0
0

as i — oo. We now check convergence in L?({2) by the same means:

(/m ol? = /w (de.(2) + 5) — o’

*[ﬂw (r+s:) = pol® H'({z € Q:dp, (2) = 1)) dr

<(si| + i) sup H'({z €R?:dp,(2) =t}) =0
—5;<t<n;

With this, we have proven I'-convergence.
Subcase 2, m; < po: The proof is predominantly the same as the previous
subcase. We comment on the changes. To define n;, consider uoL?(E, N 2) =
m; in place of . We use 0 in place of p; in the definition of .
Case 2, mg € (po, p1): In this case, we know that J. # 0, and further,
there must be a point zg € §2 such that B(zo, 2¢,,) C §2 and B(zp,2¢,,)NJ. =
(). Thus by the construction in Theorem we can find a low energy se-
quence {(u;, ¢;)}; converging to (u, ¢) such that ¢;|p(z,c. ) €0 = €(U)|B(zg,e.,) =
pnoeg for all i. Likewise, we can find z; € 9f2 such that cl-\B(ZhEZI)eO =
e()|B(z1,e.,) = f1e0 with B(21,2¢,,) C 2 and B(z1,2¢,,) N J. =0

We note that m; — myg, and §,¢; dz — mg. Supposing f, ¢; dz < my,
we perform the same procedure from the preceding section on B(zp,€,,) to
construct cg; : B(20,€5,) N 2 — [0,1] (utilizing E,, = B(z0,7)¢) with mass

m; L2(2) — [, ¢; dz
][ Coi dz = (D= Jg + po;
B(ZD,GZO)

L2(B(z20,€))



On I'—Convergence of a Variational Model for Lithium-Ion Batteries 47

(which makes sense for sufficiently large i) and

lim /e, [c¢,i7 U, B(207 €z )] = 0.

We define

¢ ifz€ 2\ B(zo,€z),
coi if z € 2N B(20,€),

which satisfies ¢; — ¢ in L?(£2) and is directly shown to satisfy fQ ¢, dz = m;.

We note by Theoremthe sequence (u;, ¢;) is of minimal energy on every

Lipschitz subset of 2, and it follows I, [u;, ¢;, B(z0, €2,) N 2] — 0. Thus,

lim I, [u;, ¢, 2] = lim I, [u;, &, 2]
1—> 00 1—> 00

Similarly, if fn c; dz > m;, we would perform the analogous calculation

about z; to decrease the mass of ¢;. Consequently, we have shown the desired
I'-convergence result.

O
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