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Abstract

Hierarchical clustering is a fundamental task
often used to discover meaningful structures
in data. Due to the combinatorial number of
possible hierarchical clusterings, approximate
algorithms are typically used for inference. In
contrast to existing methods, we present novel
dynamic-programming algorithms for exact
inference in hierarchical clustering based on
a novel trellis data structure, and we prove
that we can exactly compute the partition
function, maximum likelihood hierarchy, and
marginal probabilities of sub-hierarchies and
clusters. Our algorithms scale in time and
space proportional to the powerset of N el-
ements, which is super-exponentially more
efficient than explicitly considering each of
the (2N − 3)!! possible hierarchies. Also, for
larger datasets where our exact algorithms be-
come infeasible, we introduce an approximate
algorithm based on a sparse trellis that out-
performs greedy and beam search baselines.

1 Introduction

Hierarchical clustering is often used to discover mean-
ingful structures, such as phylogenetic trees of organ-
isms (Kraskov et al., 2005), taxonomies of concepts
(Cimiano and Staab, 2005), subtypes of cancer (Sørlie
et al., 2001), and jets in particle physics (Cacciari et al.,
2008). Among the reasons that hierarchical clustering
has been found to be broadly useful is that it forms
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Figure 1: Schematic representation of a hierarchical
clustering. H denotes the hierarchical clustering and X
the dataset.

a natural data representation of data generated by a
Markov tree, i.e., a tree-shaped model where the state
variables are dependent only on their parent or children.

We define a hierarchical clustering as a recursive split-
ting of a dataset of N elements, X = {xi}Ni=1 into
subsets until reaching singletons. This can equivalently
be viewed as starting with the set of singletons and
repeatedly taking the union of sets until reaching the
entire dataset. We show a schematic representation in
Figure 1, where we identify each xi with a leaf of the
tree and the hierarchical clustering as H. Formally,

Definition 1. (Hierarchical Clustering1) Given a
dataset of elements, X = {xi}Ni=1, a hierarchical clus-
tering, H, is a set of nested subsets of X, s.t. X ∈ H,
{{xi}}Ni=1 ⊂ H, and ∀Xi, Xj ∈ H, either Xi ⊂ Xj ,
Xj ⊂ Xi, or Xi

⋂
Xj = ∅. Further, ∀Xi ∈ H, if ∃Xj ∈ H

s.t. Xj ⊂ Xi, then ∃Xk ∈ H s.t. Xj

⋃
Xk = Xi.

Given a subset XL ∈ H, then XL is referred to as a
cluster in H. When XP , XL, XR ∈ H and XL

⋃
XR =

XP , we refer to XL and XR as children of XP , and XP

the parent of XL and XR; if XL ⊂ XP we refer to XP

as an ancestor of XL and XL a descendent of XP .(We
also denote the sibling of XL, as XR = XP \ XL.)
For binary trees, the total number of possible pairs
of siblings (XL, XR) for a parent with N elements
is given by the Stirling number of the second kind
S(N, 2) = 2N−1 − 1.

1We limit our exposition to binary hierarchical clustering.
Binary structures encode more tree-consistent clusterings
than k-ary (Blundell et al., 2010). Natural extensions may
exist for k-ary clustering, which are left for future work.
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In our work, we consider an energy-based probabilistic
model for hierarchical clustering. We provide a general
(and flexible) definition of the probabilistic model and
then give three specific examples of the distribution
in section 4. Our model is based on measuring the
compatibility of all pairs of sibling nodes in a binary
tree structure. Formally,

Definition 2. (Energy-based Hierarchical Clus-
tering) Let X be a dataset, H be a hierarchical cluster-
ing of X, let ψ : 2X ×2X → R+ be a potential function
describing the compatibility of a pair of sibling nodes
in H, and let φ(X|H) be a potential function for the H

structure. Then, the probability of H for the dataset
X, P (H|X), is equal to the unnormalized potential of
H normalized by the partition function, Z(X):

P (H|X) =
φ(X|H)

Z(X)
with φ(X|H) =

∏
XL,XR∈sibs(H)

ψ(XL, XR)

(1)
where sibs(H) = {(XL, XR)|XL ∈ H, XR ∈ H, XL ∩ XR =
∅, XL ∪XR ∈ H}. The partition function Z(X) is given by:

Z(X) =
∑

H∈H(X)

φ(X|H). (2)

where H(X) represents all binary hierarchical clusterings
of the elements X.

We refer to our model as an energy-based model given
that ψ(·, ·) is often defined by the unnormalized Gibbs
distribution, i.e., ψ(XL, XR) = exp(−βE(XL, XR)),
where β is the inverse temperature and E(·, ·) is the
energy. This probabilistic model allows us to express
many familiar distributions over tree structures. It also
has a connection to the classic algorithmic hierarchical
clustering technique, agglomerative clustering, in that
ψ(·, ·) has the same signature as a “linkage function”
(i.e., single, average, complete linkage). We note that in
this work we do not use informative prior distributions
over trees P (H) and instead assume a uniform prior.

Often, probabilistic approaches, such as coalescent mod-
els (Teh et al., 2008; Boyles and Welling, 2012; Hu
et al., 2013) and diffusion trees (Neal, 2003; Knowles
and Ghahramani, 2011), model which tree structures
are likely for a given dataset. For instance, in particle
physics generative models of trees are used to model
jets (Cacciari et al., 2008), and similarly coalescent
models have been used in phylogenetics (Suchard et al.,
2018). Inference in these approaches is done by ap-
proximate, rather than exact, methods that lead to
local optima, such as greedy best-first, beam-search, se-
quential Monte Carlo (Wang et al., 2015), and MCMC
(Neal, 2003). Also, these methods do not have efficient
ways to compute an exact normalized distribution over
all tree structures.

Exactly performing MAP inference and finding the par-
tition function by enumerating all hierarchical cluster-
ings over N elements is exceptionally difficult because

the number of hierarchies grows extremely rapidly,
namely (2N − 3)!! (see (Callan, 2009; Dale and Moon,
1993) for more details and proof), where !! is double fac-
torial. To overcome the computational burden, in this
paper we introduce a cluster trellis data structure for
hierarchical clustering. The cluster trellis, inspired by
(Greenberg et al., 2018), enables us to use dynamic pro-
gramming algorithms to exactly compute MAP struc-
tures and the partition function, as well as compute
marginal distributions, including the probability of any
sub-hierarchy or cluster. We further show how to sample
exactly from the posterior distribution over hierarchical
clusterings (i.e., the probability of sampling a given
hierarchy is equal to the probability of that hierarchy).
Our algorithms compute these quantities without hav-
ing to iterate over each possible hierarchy in the O(3N )
time, which is super-exponentially more efficient than
explicitly considering each of the (2N − 3)!! possible
hierarchies (see Corollary 2 for more details). Thus,
while still exponential, this is feasible in regimes where
enumerating all possible trees would be infeasible, and
is to our knowledge the fastest exact MAP/partition
function result(See §A.5 and §A.7 for proofs), making
practical exact inference for datasets on the order of
20 points (∼ 3 × 109 operations vs ∼ 1022 trees) or
fewer. For larger datasets, we introduce an approxi-
mate algorithm based on a sparse hierarchical cluster
trellis and we outline different strategies for building
this sparse trellis. We demonstrate our methods’ capa-
bilities for exact inference in discovering cascades of
particle decays in jet physics and subtype hierarchies in
cancer genomics, two applications where there is a need
for exact inference on datasets made feasible by our
methods. We find that greedy and beam search meth-
ods frequently return estimates that are sub-optimal
compared to the exact MAP clustering.

Contributions of this Paper. We achieve exact,
not approximate, solutions to the following:

• Compute the Partition Function Z(X) (§2.2).

• MAP Inference, i.e. find the maximum likeli-
hood tree structure argmaxH∈H P (H|X) (§2.3).

• Sample Hierarchies from the Posterior Dis-
tribution, i.e. weighted by their probability,
P (H|X) (§2.5).

2 Hierarchical Cluster Trellis

Exactly performing MAP inference and finding the par-
tition function by enumerating all hierarchical cluster-
ings over N elements is intractable since the number of
hierarchies grows extremely rapidly, namely (2N − 3)!!
(see (Callan, 2009; Dale and Moon, 1993) for more de-
tails and proof), where !! is double factorial. To address
this challenge, we introduce a cluster trellis data struc-
ture for hierarchical clustering. We describe how this
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data structure enables us to use dynamic programming
algorithms to exactly compute the partition function,
MAP hierarchical clusterings, and marginals, as well
as how to sample from the exact distribution over hier-
archical clusterings.

2.1 Trellis Data Structure

The trellis data structure is a directed acyclic graph
that encodes a set of hierarchical clusterings. Each ver-
tex in the trellis corresponds to a node in a hierarchical
clustering, and edges between vertices in the trellis cor-
respond to a parent/child relationship in a hierarchical
clustering. As in a hierarchical clustering, the trellis has
a root node, that corresponds to the entire dataset, and
leaf nodes that correspond to the individual elements of
the dataset. The dataset associated with a trellis vertex
V is denoted X(V) and the trellis vertex associated
with a dataset X is denoted V(X). Each vertex in the
trellis stores memoized values of Z(V) for computing
the partition function, as well as the value φ(H∗[V])
and the backpointer Ξ(H∗[V]) for computing the MAP
tree. We denote C(X) as the children of V(X). We
refer to a full trellis as the data structure where every
possible hierarchical clustering given a dataset X can
be realised, i.e., there is a bijection between the set
of trellis vertices and P(X)\∅, where P indicates the
power set, and there is an edge between Vi and Vj if
X(Vi) ⊂ X(Vj). In contrast, a sparse trellis will only
contain a subset of all possible hierarchies by omitting
some of the vertices and edges in a full trellis.

2.2 Computing the Partition Function

Given a dataset of elements, X = {xi}Ni=1, the partition
function, Z(X), for the set of hierarchical clusterings
over X, H(X), is given by Equation 2. The trellis im-
plements a memoized dynamic program to compute
the partition function and the MAP. To achieve this,
we need to re-write the partition function in the corre-
sponding recursive way. In particular,

Proposition 1. For any x ∈ X, the hierar-
chical partition function can be written re-
cursively, as Z(X) =

∑
H∈H(X) φ(X|H) =∑

Xi∈C(X)x
ψ(Xi, X \Xi) · Z(Xi) · Z(X \Xi) where

C(X)x is the set of all children of X containing the
element x, i.e,. C(X)x = {Xj : Xj ∈ C(X) ∧ x ∈ Xj}.
In the particular case of a full trellis, then
C(X)x = {Xj : Xj ∈ 2X \X ∧ x ∈ Xj}.

The proof is given in § A.1 in the Appendix. Algorithm
1 describes in a recursive way how to efficiently com-
pute the partition function using the trellis based on
Proposition 1. We first set the partition function of
the leaf nodes in the trellis to 1. Then, we start by
selecting any element in the dataset, xi, and consider
all clusters Xi ∈ C(X) such that xi ∈ Xi. Next, the
partition function is computed (memoized, recursively)

for Xi and its complement X \Xi, thus enabling the
application of Proposition 1 to get Z(X). For a full trel-
lis, the algorithm can straightforwardly be written in a
bottom-up, non-recursive way. In this case, the parti-
tion function for every node in the trellis is computed in
order (in a bottom-up approach), from the nodes with
the smallest number of elements to the nodes with the
largest number of elements, memoizing the partition
function value at each node. By computing the partial
partition functions in this order, whenever computing
the partition function of a given node in the trellis, the
corresponding ones of all of the descendent nodes will
have already been computed and memoized. In Figure
2, we show a visualization comparing the computation
of the partition function with the trellis to the brute
force method for a dataset of four elements. Next, we
present the complexity result for Algorithm 1:

Algorithm 1 PartitionFunction(X)

Pick xi ∈ X and set Z(X)← 0
for Xi in C(X)xi

do
if Z(Xi) not set then
Z(Xi)← PartitionFunction(Xi)
if Z(X \Xi) not set then
Z(X \Xi)← PartitionFunction(X \Xi)
Z(X)← Z(X) + ψ(Xi, X \Xi) · Z(Xi) · Z(X \Xi)

return Z(X)

Theorem 1. For a given dataset X of N elements,
Algorithm 1 computes Z(X) in O(3N ) time.

The time-complexity of the algorithm is O(3N ), which
is is significantly smaller than the (2N − 3)!! possible
hierarchies.

Corollary 2. For a given dataset X of N elements,
Algorithm 1 is super-exponentially more efficient than
brute force methods that consider every possible hier-
archy. In particular the ratio is O(( 2

3 )N Γ(N − 1/2)).

The proofs of Algorithm 1 and Corollary 2 are given
in § A.7 of the Appendix.

2.3 Computing the MAP Hierarchical
Clustering

Similar to other dynamic programming algorithms,
such as Viterbi, we can adapt Algorithm 1 in order to
find the MAP hierarchical clustering.

The MAP clustering for dataset X, is H?(X) =
argmaxH∈H(X) φ(H). Here we can also use a recursive
memoized technique, where each node will store a value
for the MAP, denoted by φ(H?(X)) and a backpointer
Ξ(H?(X)). Specifically,

Proposition 2. For any x ∈ C(X), let C(X)x =
{Xj : Xj ∈ C(X) ∧ x ∈ Xj}, then φ(H?(X)) =
maxXi∈C(X)x ψ(Xi, X \Xi) · φ(H?(Xi)) · φ(H?(X\Xi)).
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Z({a, b, c, d}) =  ({a, b, c}, {d}) · Z({a, b, c}) · Z({d}) +  ({a, b, d}, {c}) · Z({a, b, d}) · Z({c})
+  ({a, c, d}, {b}) · Z({a, c, d}) · Z({b}) +  ({b, c, d}, {a}) · Z({b, c, d}) · Z({a})
+  ({a, b}, {c, d}) · Z({a, b}) · Z({c, d}) +  ({a, c}, {b, d}) · Z({a, c}) · Z({b, d})
+  ({a, d}, {b, c}) · Z({a, d}) · Z({b, c})

Z({a, b, c}) =  ({a, b}, {c}) · Z({a, b}) · Z({c})
+  ({a, c}, {b}) · Z({a, c}) · Z({b})
+  ({b, c}, {a}) · Z({b, c}) · Z({a})

Z({a, b, c, d}) =  ({a, b, c}, {d}) ·  ({a, b}, {c}) ·  ({a}, {b})
+  ({a, b, c}, {d}) ·  ({a, c}, {b}) ·  ({a}, {c})
+  ({a, b, c}, {d}) ·  ({b, c}, {a}) ·  ({b}, {c})
+  ({a, c, d}, {b}) ·  ({a, c}, {d}) ·  ({a}, {c})
+  ({a, c, d}, {b}) ·  ({a, d}, {c}) ·  ({a}, {d})
+  ({a, c, d}, {b}) ·  ({c, d}, {a}) ·  ({c}, {d})
+  ({a, b, d}, {c}) ·  ({a, b}, {d}) ·  ({a}, {b})
+  ({a, b, d}, {c}) ·  ({a, d}, {b}) ·  ({a}, {d})
+  ({a, b, d}, {c}) ·  ({b, d}, {a}) ·  ({b}, {d})
+  ({b, c, d}, {a}) ·  ({b, c}, {d}) ·  ({b}, {c})
+  ({b, c, d}, {a}) ·  ({b, d}, {c}) ·  ({b}, {d})
+  ({b, c, d}, {a}) ·  ({c, d}, {d}) ·  ({c}, {d})
+  ({a, b}, {c, d}) ·  ({a}, {b}) ·  ({c}, {d})
+  ({a, c}, {b, d}) ·  ({a}, {c}) ·  ({b}, {d})
+  ({a, d}, {b, c}) ·  ({a}, {d}) ·  ({b}, {c})

Figure 2: Computing the partition function for the dataset {a, b, c, d}. Left: exhaustive computation, consisting of
the summation of (2 ·4−3)!! = 15 energy equations. Right: computation using the trellis. The sum for the partition function
is over 24−1 − 1 = 7 equations, each making use of a memoized Z value. Colors indicate corresponding computations over
siblings in the trellis.

Algorithm 2 MAP(X)

if φ(X) set then
return φ(X),Ξ(X)

Pick xi ∈ X
φ(X)← −∞
Ξ(X)← null {Backpointer to give MAP tree struc-
ture.}
for Xi in C(X)xi

do
t← ψ(Xi, X \Xi) · φ(V(Xi)) · φ(V(X \Xi))
if φ(X) < t then
φ(X)← t
Ξ(X)← {Xi, X \Xi} ∪ Ξ(Xi) ∪ Ξ(X \Xi)

return φ(X),Ξ(X)

See §A.6 in the Appendix for the proof. As in the
partition function algorithm described in Section 2.2,
the time complexity for finding the MAP clustering is
also O(3N ). The main difference is that to compute the
maximal likelihood hierarchical clustering, the maximal
energy of the sub-hierarchy rooted at each node is
computed, instead of the partition function. Pointers
to the children of the maximal sub-hierarchy rooted
at each node are stored at that node. A proof of the
time complexity, analogous to the one for the partition
function, can be found in §A.5 of the Appendix.

2.4 Computing Marginals

In this section, we describe how to compute two types
of marginal probabilities. The first is for a given sub-
hierarchy rooted at Xi, i.e., Hi ∈ H(Xi), defined as
P (Hi|X) =

∑
H∈A(Hi)

P (H|X), where A(Hi) = {H : H ∈
H(X) ∧ Hi ⊂ H}, and Hi ⊂ H indicates that Hi is a
subtree of H. Thus, we marginalize over every possi-
ble hierarchy while keeping fixed the sub-hierarchy
Hi. The second is for a given cluster, Xi, defined as
P (Xi|X) =

∑
H∈A(Xi)

P (H|X), where A(Xi) = {H : H ∈
H(X) ∧ Xi ⊂ H}, and Xi ⊂ H indicates that cluster

Xi is contained in H. In this case, we marginalize over
every possible sub-hierarchy that contains the cluster
Xi while keeping the rest of the hierarchy H fixed. The
value of P (Hi|X) can be computed using the same al-
gorithm used for the partition function, except that we
first merge Hi into a single leaf node and use φ(Hi(Xi))
for the energy of the newly merged leaf. The same
is true for computing the value of P (Xi|X), except
that after merging Xi into a single leaf node, the value
Z(Xi) should be used. See Appendix § A.4 for proofs.

2.5 Sampling from the Posterior Distribution

Drawing samples from the true posterior distribution
P (H|X) is also difficult because of the extremely large
number of trees. In this section, we introduce a sampling
procedure for hierarchical clusterings Hi implemented
using the trellis which gives samples from the exact true
posterior without enumerating all possible hierarchies.

The sampling procedure will build a tree structure in
a top-down way. We start with the cluster of all the
elements, X, then sample one child of that cluster,
XL ⊂ X, (Eq. 3) and set the other one to be the com-
plement of XL, i.e., X\XL. This is repeated recursively
from each of the children and terminates when a cluster
contains a single element. A child XL of parent Xp,
i.e., XL ⊂ Xp is sampled according to:

p(XL|Xp) =
1

Z(Xp)
· ψ(XL, Xp\XL) · Z(XL) · Z(Xp\XL).

(3)

Pseudocode for this algorithm is given in Algorithm 3.

Theorem 3. Sample (X) (Alg. 3) gives samples from
P (H|X).

The proof is given in Appendix § A.2. This algorithm
is notable in that it does not require computing a cate-
gorical distribution over all trees and samples exactly
according to P (H|X).
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Algorithm 3 Sample(X)

if |X| = 1 return {X}
Sample XL from p(Xi|X) (Eq. 3).

return {XL, X \XL} ∪ Sample(XL) ∪ Sample(X \XL)

3 Sparse Hierarchical Cluster Trellis

In this section, we introduce a sparse trellis data struc-
ture, which allows to scale to larger datasets by control-
ling the sparsity index, i.e. the fraction of hierarchies
we consider from the total of (2N − 3)!!. Most hierar-
chies have potential values orders of magnitude smaller
than the MAP clustering making their contribution
to the partition function negligible. As a result, if we
build a sparse trellis that considers the most relevant
hierarchies, we could find approximate solutions for in-
ference in datasets where implementing the full trellis
is not feasible. Conceptually, the only difference with
respect to the full trellis is that the children of each
vertex are typically a subset of all 2X possible ones.
Thus, the algorithms and proofs are the same as the
ones presented in Section 2 but the solutions will be
approximate. The specific vertices that are contained
in the sparse trellis depend on how we build it. Below
we present two possible strategies.

3.1 Building Strategies

The performance of the sparse trellis depends on the
subset of all possible hierarchies over which it expands.
This subset is chosen by the building strategy, which
provides a sample of trees used to create the trellis.
There are also different mappings for the ordering of
the leaves of the input trees, and it is interesting to
study the different subsets of hierarchies spanned by
the sparse trellis depending on this mapping.

We start with a set of input trees. Once we choose a
specific ordering of the leaves, we iterate over each in-
put tree, creating a vertex Vi in the trellis for each new
node in the tree, i.e. nodes that have not been visited
in previous input trees. A schematic representation is
shown in Figure 3. This way, the input sample of trees
determines the trellis vertices that are created. The
trellis considers every possible hierarchical clustering
that can be realized with these vertices which is typ-
ically much greater than the number of input trees.
After creating the trellis, we initialize the leaf vertices
values with some dataset of interest and run the in-
ference algorithms, e.g. MAP and partition function
computations.

We emphasize that the approximate methods work
precisely the same as in the exact method, and that
the only difference is the exact algorithms use a full
trellis, while the approximate algorithms use a sparse
trellis. This means that the approximate algorithms
find the optimal hierarchical clustering among those

Figure 3: Schematic representation of how the
sparse trellis is built iterating over each tree with four
leaves from a sample dataset X. After every hierarchical
structure is added, the final trellis is composed of the colored
vertices, the added edges, the leaves and the root vertex.
The vertices that are not colored represent the subset of
vertices of the full trellis that are missing in the sparse case.

encoded by the sparse trellis, and thus the quality
of the approximate hierarchical clustering is entirely
dependent on the quality of hierarchical clusterings
encoded by the sparse trellis.

Next, we present two distinctive procedures to build
the trellis, which we refer to as Simulator trellis and
Beam Search trellis. In both cases, a number of trees
are generated, and then the union of the nodes and
edges of these generated trees become the vertices and
edges of the sparse trellis.

Simulator Trellis: in some cases there exists a gen-
erative model or simulator that implicitly defines a
distribution over hierarchies. In the simulator trellis,
we use this model/simulator to sample a set of trees
that are used to seed the sparse trellis. We restrict
the generated trees to have the same number of leaves,
which is fixed for each trellis we create.

Beam Search Trellis: trees used to seed the sparse
trellis are obtained by repeatedly running the beam
search algorithm over a sample of sets of leaves. This
approach is much more general than a simulator trellis,
as it could be implemented for datasets where there
is no generative model. Note that we choose beam
search for our experiments, but this approach could be
implemented with any agglomerative clustering, and
only requires a “linkage function” (i.e., single, average,
complete linkage).

4 Experiments

In this section, we demonstrate the use of the exact
MAP, partition function, and sampling approaches de-
scribed in this paper on two real world applications: jet
physics and cancer genomics, as well as one synthetic
data experiment related to Dasgupta’s cost (Dasgupta,
2016). First, we give an illustrative example for the use
of the proposed approaches with Dasgupta’s cost, run-
ning on the kinds of data for which greedy methods are
known to be approximate. In each real world applica-
tion, we demonstrate how the trellis is used to compute
exact MAP and the distribution over clusterings that
are more informative and accurate than approximate



Cluster Trellis: Data Structures & Algorithms for Exact Inference in Hierarchical Clustering

methods. In particle physics, we additionally demon-
strate the use of the sampling procedure (§2.5) and the
implementation of a sparse trellis. In cancer genomics,
we show how we can model subtypes of cancer, which
can help determine prognosis and treatment plans.

4.1 Dasgupta’s Cost

Probabilistic model Dasgupta (2016) defines a cost
function for hierarchical clustering that has been the
subject of much theoretical interest (primarily on ap-
proximation algorithms for the cost) (Cohen-Addad
et al., 2017, 2019; Charikar and Chatziafratis, 2017;
Charikar et al., 2019; Moseley and Wang, 2017; Roy
and Pokutta, 2017). Given a graph with vertices of
the dataset X and weighted edges representing pair-
wise similarities between points W = {(i, j, wij)|i, j ∈
{1, ..., |X|} × {1, ..., |X|}, i < j, wij ∈ R+}. Dasgupta’s
cost is defined as:

E(Xi, Xj) = (|Xi|+ |Xj |)
∑

xi,xj∈Xi×Xj

wij (4)

This is equivalent to the cut-cost definition of Das-
gupta’s cost with the restriction to binary trees (Das-
gupta, 2016).

Results Figure 4 gives an example graph, as pro-
posed by (Charikar et al., 2019) to bound average-
linkage performance, following a model for which greedy
methods are known to be approximate with respect
to Dasgupta’s cost (Moseley and Wang, 2017; Cohen-
Addad et al., 2017). We run greedy agglomerative clus-
tering and trellis-based MAP procedure (Eq. 4). Unsur-
prisingly, the greedy method fails to achieve the lowest
cost tree while the trellis-based method identifies an
optimal tree. The cost of the greedily built tree is 44.08
while the tree built using the trellis is 40.08.

4.2 Jet Physics

Background The Large Hadron Collider (LHC) at
CERN collides two beams of high-energy protons and
produces many new (unstable) particles. Some of these
new particles (quarks and gluons) will undergo a show-
ering process, where they radiate many other quarks
and gluons in successive binary splittings. These 1→ 2
splittings can be represented with a binary tree, where
the energy of the particles decreases after each step.
When the energy is below a given threshold, the show-
ering terminates, resulting in a spray of particles that
is called a jet. The particle detectors only observe the
leaves of this binary tree (the jet constituents), and
the unstable particles in the showering process are
unobserved. Thus, a specific jet could result from sev-
eral latent trees2 generated by the showering process.

2We refer to the trees as “latent” since an instance of a
showering process has a corresponding tree, however that
tree is unobserved.

While the latent showering process is unobserved, it is
described by quantum chromodynamics (QCD).

Probabilistic Model The potential of a hierarchy
is identified with the product of the likelihoods of all
the 1→ 2 splittings of a parent cluster into two child
clusters in the binary tree. Each cluster, X, corresponds
to a particle with an energy-momentum vector x =
(E ∈ R+, ~p ∈ R3) and squared mass t(x) = E2 − |~p|2.
A parent’s energy-momentum vector is obtained from
adding its children, i.e., xP = xL + xR. We study a toy
model for jet physics (Cranmer et al., 2019a), where for
each pair of parent and left (right) child cluster with
masses

√
tP and

√
tL (
√
tR) respectively, the likelihood

function is,

ψ(XL, XR) = f(t(xL)|tP , λ) · f(t(xR)|tP , λ) (5)

with f(t|tP , λ) =
1

1− e−λ
λ

tP
e
−λ t

tP (6)

where the first term in f(t|tP , λ) is a normalization
factor associated to the constraint that t < tP .

Data and Methods We will compare full and sparse
trellises results for the MAP hierarchical clustering
with approximate methods, as described below. The
ground truth hierarchical clusterings of our dataset
are generated with the toy generative model for jets
Ginkgo, see (Cranmer et al., 2019a) for more details.
This model implements a recursive algorithm to gener-
ate a binary tree, whose leaves are the jet constituents.
Jet constituents (leaves) and intermediate state parti-
cles (inner nodes) in Ginkgo are represented by a four
dimensional energy-momentum vector.

Next, we review new implementations of greedy and
beam search algorithms to cluster jets based on the joint
likelihood of the jet binary tree in Ginkgo. The goal is
to obtain the maximum likelihood estimate (MLE) or
MAP for the latent structure of a jet. In this approach,
the tree latent structure H is fixed by the algorithm.
Greedy simply chooses the pairing of nodes that locally
maximizes the likelihood at each step, whereas beam
search maximizes the likelihood of multiple steps before
choosing the latent path. The current implementation
only takes into account one more step ahead, with

a beam size given by N(N−1)
2 , with N the number

of jet constituents to cluster. Also, when two or more
clusterings had an identical likelihood value, only one of
them was kept in the beam, to avoid counting multiple
times the different orderings of the same clustering
(see (Boyles and Welling, 2012) for details about the
different orderings of the internal nodes of the tree).
This approach significantly improved the performance
of beam search in terms of finding the MAP tree.

Results In this section we show results for a jet
physics dataset of 5000 Ginkgo (Cranmer et al., 2019b)
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Figure 4: Dasgupta’s Cost.
Trellis vs agglomerative clus-
tering MAP trees for a graph
that is known to be difficult
for with greedy methods.

Table 1: Mean and standard deviation for the dif-
ference in log likelihood for the MAP tree found by
algorithms indicated by the row and column heading on
the Ginkgo510 dataset.

Beam Search Greedy

Trellis 0.4 ± 0.5 1.5 ± 1.1
Beam Search 1.1 ± 1.1

jets with a number of leaves between 5 and 10, and
we refer to it as Ginkgo510. We start by comparing
in Table 1 the mean difference among the MAP val-
ues for the hierarchies log likelihood obtained with the
full trellis, beam search and greedy algorithms. We see
that the likelihood of the trees increases from greedy
to beam search to the trellis one, as expected. Next,
in Figure 5 we show the partition function versus the
MAP hierarchy for each set of leaves in Ginkgo510
dataset. It is interesting to note that there seems to be
a correlation between Z and the Trellis MAP.
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Figure 5: Scatter plot of the partition function Z vs.
the trellis MAP value ` for Ginkgo510 dataset, with
up to 10 leaves (jet constituents). The color indicates the
number of leaves of each hierarchical clustering. There
appears to be a correlation between Z and the MAP values.

Next, we show an implementation of the sampling pro-
cedure introduced in section 2.5. We compare in Figure
6 the results from sampling 105 hierarchies (black dots)
and the expected distribution3 (green) for the likeli-

3The expected posterior is defined as the probability
density function of each possible hierarchy. In principle,
this could be obtained by taking the ratio of the likelihood
of each hierarchy with respect to the partition function
Z. We opt to take an approximate approach, as follows. If
we sample enough number of times, we would expect each
possible hierarchy to appear at least once. Thus, as a proof
of concept, we sample 105 hierarchies for a set of five leaves
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Figure 6: Comparison of the posterior distribution
for a specific jet with five leaves for sampling 105 hierarchies
using Alg 3 (black dots with small error bars) and expected
posterior distribution (in green). The plots show the discrete
nature of the distribution. The log likelihood for the ground
truth tree is a vertical dashed red line.

hood of each hierarchy. There is an excellent agreement
between the sampled and the expected distributions.
Here we showed, for illustrative purposes, a way to
estimate the posterior distribution using our sampling
procedure. However, we want to emphasize that the key
contribution of our procedure is that it allows to sample
hierarchies from the exact true posterior distribution,
i.e. sample a hierarchy according to its probability.

Finally, as a proof of concept, we show in Figure 7 the
performance of the sparse trellis to calculate the MAP
values on a set of 100 Ginkgo jets with 9 leaves. This il-
lustrates the relationship between the effectiveness and
sparsity observed in our experiments, where a higher
value on the y-axis represents greater effectiveness and
a smaller value on the x-axis represents greater spar-
sity. We chose a dataset of 9 elements to be able to
easily compare the performance of the sparse and full
trellises. However, the sparse trellis can be applied to
larger datasets. Even though beam search has a good
performance for trees with a small number of leaves,
we see that both sparse trellises quickly improve over
beam search, with a sparsity index of only about 2%.
Both sparse trellises approach the performance of the
exact one, but the BS trellis does it sooner. Also, in

(88 different hierarchies), keep only one of them for each
unique likelihood value and normalize by Z and bin size.
We show this result in the histogram labeled as Expected
(green) in Figure 6.
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Figure 7: Trellises MAP hierarchy log likelihood vs
their sparsity. MAP hierarchy log likelihood values are
relative to the greedy algorithm. Each value corresponds to
the mean over 100 trees of a test dataset. We show the Sim-
ulator (Sim.) and the Beam Search (BS) trellises. In both
cases, we present the trellis obtained by ordering the leaves
of the input trees in increasing norm of their momentum
vector ~p ∈ R3 (see the probabilistic model description of
section 4.2 for more details). We compare sparse trellises
with other orderings of the leaves in Appendix § A.12. We
add the values of the exact trellis, beam search and greedy
algorithms. The BS trellis approaches the performance of
the full one for a smaller sparsity index than the Sim. Trellis.
Also, the sparse trellises are pre-built and then run on new
datasets (test), which is why BS performs better than BS
trellis sometimes.

Figure 13 in Appendix § A.12 we compare the empirical
running times of the algorithms on the same dataset.

4.3 Cancer Genomics

Background Hierarchical clustering is a common
clustering approach for gene expression data (Sørlie
et al., 2001). It is not uncommon to have a need for
clustering a small number of samples in cancer genomics
studies. An analysis of data available from https://

clinicaltrials.gov shows that the median sample
size for 7,412 completed phase I clinical trials involving
cancer is only 30.

Probabilistic Model In this case we are given a
dataset of vectors indicating the level of gene expres-
sions which are endowed with pairwise affinities that
are both positive and negative. We define the energy
of a pair of sibling nodes in the tree to be the sum
of the across-cluster positive edges, minus the sum of
negative within-cluster edge weights.

E(Xi, Xj) =
∑

xi,xj∈Xi×Xj

wij I[wij > 0]−
∑

xi,xj∈Xi×Xi,

xi<xj

wij I[wij < 0]−
∑

xi,xj∈Xj×Xj,

xi<xj

wij I[wij < 0]

(7)

where wij is the affinity between xi and xj . The cor-
relation clustering input can be represented as a com-
plete weighted graph, G = (V,E), where each edge
has weight wuv ∈ [−1, 1], ∀(u, v) ∈ E. The goal is to
construct a clustering of the nodes that maximizes the
sum of positive within-cluster edge weights minus the
sum of all negative across-cluster edge weights (since we

MAP Tree via TrellisApproximate Tree via Greedy

Figure 8: Cancer Genomics. Comparison of trees from
greedy hierarchical clustering (left) and exact MAP cluster-
ing using the trellis (right) on the subsampled pam50 data
set. The colors indicate subtypes of breast cancer (grey if
unknown). Though both appear to assign unknown samples
to LumB, the right tree positions the unknown samples
closer to the Her2 samples.

wish to minimize the energy function given by Equation
7). This energy is the correlation clustering objective
(Bansal et al., 2004).

Data and Methods Here, we compare a greedy ag-
glomerative clustering to our exact MAP clustering
tree using the Prediction Analysis of Microarray 50
(pam50) gene expression data set. The pam50 data set
(n = 232, d = 50) is available from the UNC MicroAr-
ray Database (University of North Carolina, 2020). It
has intrinsic subtype annotations for 139 of the 232
samples. Missing data values (2.65%) were filled in with
zeros. We drew a stratified sample of the total data set
with two samples from each known intrinsic subtype
and two samples from the unknown group.

Results Figure 8 displays the greedy hierarchical
clustering tree and the MAP tree with transformed
weights for the twelve samples selected from the pam50
dataset. (The correlations among subsampled pam50

(n = 12) data set are all positive.) The main difference
between these trees is in the split of the subtree includ-
ing LumB, HER2, and unknown samples. The greedy
method splits HER2 from LumB and unknown, while
the MAP tree shows a different topology for this sub-
tree. For the MAP solution, we note that the subtree
rooted at {7, 8, 9, 10, 11, 12} is consistent. All of the
correlation coefficients among this cluster are positive,
so the optimal action is to split off the item with the
smallest (positive) correlation coefficient.

4.4 Relationship Between Cost Functions

There are several measures of hierarchical clustering
quality that are popular in the community. In addi-
tion to the Dasgupta cost and Hierarchical Correlation
Clustering (HCC) objectives, which we discuss above,
Dendrogram Purity (DP) is often used to measure the

https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
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quality of hierarchical clusterings when a ground truth
flat clustering is available. We briefly discuss here how
these three measures relate.

The degree to which Dasgupta cost and the HCC ob-
jectives correlate to DP is a function of how closely the
pair wise edge weights reflect the ground truth cluster-
ing. To drive this point home, as an extreme, one could
imagine adversarial edge weights, where the MAP hi-
erarchical clusterings according to Dasgupta/HCC is
un/negatively correlated with the hierarchical cluster-
ings with maximal DP. In particular: (1) Maximal DP
can be achieved by making a forest, where each tree
consists solely of within cluster elements. Any tree that
contains any such forest as subtrees is a maximal with
respect to DP, and any such tree would have DP = 1.
(2) Given 1/0 edge weights for within/across ground
truth classes, respectively, the MAP Dasgupta cost
could also be obtained by making a forest, where each
tree consists solely of within cluster elements. Any tree
that contains any such forest as subtrees is a MAP tree
with respect to Dasgupta cost. In this case, the set of
maximal DP trees and the set of MAP Dasgupta cost
trees should be the same. (3) The same is true for HCC
(but with edge weights set as +/- 1 for within/across
ground truth classes). (4) If the edge weights are se-
lected randomly, the MAP Dasgupta/HCC trees will
be uncorrelated with DP. (5) If the edge weights are
selected as -1 * edge weights described in (2) or (3)
above, any MAP Dasgupta or HCC tree will achieve
the worst possible cost with respect to DP.

5 Related Work

Modeling distributions over tree structures has been
the subject of a large body of work. Bayesian non-
parametric models typically define a posterior distri-
bution over tree structures given data such as diffu-
sion trees coalescents, and others (Neal, 2003; Teh
et al., 2008, inter alia). These methods, while provid-
ing a distribution over trees, only support using para-
metric distributions to define emission probabilities
rather than the energy-based model used in this pa-
per. The Bayesian hierarchical clustering (BHC) model
(Heller and Ghahramani, 2005b) is akin to the energy-
based ones used in this paper. Inference includes greedy
agglomerative (Heller and Ghahramani, 2005b), ran-
domized (Heller and Ghahramani, 2005a), and tree
re-arrangement approaches (Xu et al., 2009). Future
work could consider how to use the trellis for BHC.
Interestingly, the BHC likelihood is a mixture of tree
consistent partitions, also related to using the trellis for
flat clustering. Factor graph-based distributions over
tree structures such as (Wick et al., 2012) on the other
hand support a flexible class of distributions over tree
structures as in our approach. However inference in
factor graph models as well as many of the Bayesian
non-parameteric models is typically approximate or

performed by sampling methods. This lends in practice
to approximate MAP solutions and distributions over
tree structures. Exact methods like the one proposed in
this paper have not, to our knowledge, been proposed.

Dasgupta (2016) defines a cost function for hierarchi-
cal clustering. Much work has been done to develop
approximate solution methods and related objectives
(Moseley and Wang, 2017, inter alia).

Bootstrapping methods, such as (Suzuki and Shi-
modaira, 2006), represent uncertainty in hierarchical
clustering. Unlike our approach, bootstrapping meth-
ods approximate statistics of interest through repeat-
edly (re-)sampling from the empirical distribution.

Work on exact inference and exact distributions over
flat clusterings (Greenberg et al., 2018), provides the
foundation of our dynamic programming approach.
Other work on exact flat clustering uses fast convo-
lutions via the Mobius transform and Mobius inversion
(Kohonen and Corander, 2016). Kappes et al. (2015)
produce approximate distributions over flat clusterings
using Perturb and MAP (Papandreou and Yuille, 2011).

Orthogonal to our work on uncertainty in hierarchical
clustering, recent work has proposed continuous repre-
sentations of trees for hierarchical clustering (Monath
et al., 2019; Chami et al., 2020). This work represents
uncertainty of child-parent assignments by considering
the distance between two nodes in embedding space.
We note that the distribution over trees used in these
papers does not directly correspond to the energy-based
distribution proposed in our work.

6 Conclusion

This paper describes a trellis data structure and
dynamic-programming algorithm to efficiently compute
and sample from probability distributions over hierar-
chical clusterings. Our method improves upon the com-
putation cost of brute-force methods from (2N − 3)!!
to sub-quadratic in the substantially smaller power-
set of N , which is super-exponentially more efficient.
We demonstrate our methods’ utility on jet physics
and cancer genomics datasets, as well as a dataset re-
lated to Dasgupta’s cost (Dasgupta, 2016), and show
its improvement over approximate methods. Also, for
larger datasets where the full trellis implementation
becomes infeasible, we introduce a sparse trellis that
compares well to other benchmarks. Finally, our meth-
ods allow to sample hierarchies from the exact true
posterior distribution without enumerating all possible
ones, i.e. sample a hierarchy according to its prob-
ability. Code for our methods of finding exact solu-
tions for the MAP hierarchy and partition function
for any user-defined energy-based model of hierarchi-
cal clustering is available here: https://github.com/
SebastianMacaluso/ClusterTrellis.

https://github.com/SebastianMacaluso/ClusterTrellis
https://github.com/SebastianMacaluso/ClusterTrellis
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A Appendix

A.1 Proof of Proposition 1

Proof. Given a dataset X, pick an element x ∈ X. We consider all possible Ω clusters Xω
L in C(X)x. Given Xω

L ,
then Xω

R is fixed so as to satisfy Xω
L

⋃
Xω
R = X and Xω

L

⋂
Xω
R = ∅. We want to show that the partition function

Z(X) can be written recursively in terms of Z(Xω
L) and Z(Xω

R).

The partition function is defined as the sum of the energies of all possible hierarchical clusterings HX = {Hm}Mm=1,

Z(X) =

M∑
m=1

φ(Hm(X)) =

M∑
m=1

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (8)

where Xm
L

⋃
Xm
R = X, Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted

at Xm
L and Xm

R , respectively. Next, we rewrite Eq. 8 grouping together all the hierarchies Hi that have the same
clusters {Xm

L , X
m
R } 4,

Z(X) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R)

J∑
j=1

φ(Hj(Xω
L))

K∑
k=1

φ(Hk(Xω
R)) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R) Z(Xω

L) Z(Xω
R) (9)

with M = Ω · J ·K, J = (2|Xω
L | − 3)!!, and K = (2|Xω

R| − 3)!! for a full trellis. Thus, Z(X) of a cluster X can be
written recursively in terms of the partition function of the sub-clusters of X 5.

A.2 Proof of Theorem 3

Proof. We want to show that drawing samples of trees using Algorithm 3 gives samples from P (H|X). To do this,
we show that the probability of a tree can be re-written as the product of probabilities of sampling each split in
the structure. This then directly corresponds to the top-down sampling procedure in Algorithm 3.

Recall from Definition 2 we have:

P (H|X) =
1

Z(X)

∏
XL,XR∈sibs(H)

ψ(XL, XR) (10)

We can equivalently write this as:

P (H|X) =
∏

XL,XR∈sibs(H)

1

Z(XL ∪XR)
· ψ(XL, XR) · Z(XL) · Z(XR) (11)

To understand why this can be written this way, observe that for internal nodes the Z(XL) and Z(XR) terms will
be cancelled out by corresponding terms in the product for the children of XL or XR. To see this we can write
out the product for three pairs of nodes XL, XR and their children XLL, XLR and XRL and XRR respectively:

1

Z(Xp)
ψ(XL, XR) Z(XL) Z(XR) · 1

Z(XL)
ψ(XLL, XLR) Z(XLL) Z(XLR) · 1

Z(XR)
ψ(XRL, XRR) Z(XRL) Z(XRR) (12)

Recall that for the pair of siblings that are the children of the root, the 1
Z(XL∪XR) term will not be cancelled out

and corresponds exactly to 1
Z(X) .

Next, we observe that Eq. 11 can be re-written in terms of Equation 3 which defines p(XL|XL ∪XR):

P (H|X) =
∏

XL,XR∈sibs(H)

p(XL|XL ∪XR) (13)

Algorithm 3 applies Eq. 3 recursively in a top-down manner using a series of splits which have a probability that
directly corresponds to the product of terms in Eq. 13.

4The cluster trellis provides an exact solution conditioned on the fact that the domain of the linkage function is the set
of pairs of clusters, and not pairs of trees.

5Note that for each singleton xi, we have Z(xi) = 1.



C. Greenberg, S. Macaluso, N. Monath, J. Lee, P. Flaherty, K. Cranmer, A. McGregor, A. McCallum

A.3 Proof of Lower Bound on Number of Trees

The number of trees on N leaves is given exactly by
∏N−1

i=1 mi

(N−1)!

∏N
i=2

(
i
2

)
, where mi is the number of internal

nodes in the subtree rooted at node i (Boyles and Welling, 2012). Since
∏N
i=2

(
i
2

)
= N !2

N∗2N−1 , this makes the

number of trees on N leaves
∏N−1

i=1 mi

(N−1)!
N !2

N∗2N−1 =
∏N−1

i=1 mi∗N∗N !

N∗2N−1 =
∏N−1

i=1 mi∗N !

2N−1 . The smallest conceivable value for∏N−1
i=1 mi = ω(N), which gives us the bound on the number of trees to be ω(NN !/2N−1), as desired.

Note that this is a loose lower-bound, and that it could be improved upon as follows: say a hierarchical clustering
is a caterpillar clustering is every internal node in the underlying tree has two children and the set associated with
one of those children as size one. There are n!/2 caterpillar clustering. To see this, note that the ith level (where
the root is level 1) of a caterpillar clustering has exactly one leaf for i = 2, . . . , n−1. There are n(n−1) . . . 3 = n!/2
choices for the corresponding singleton sets.

Note, however, that there is a closed form expression for the exact number of unordered hierarchies given by
a(N) = (2N − 3)!!, with n the number of singletons (see (Callan, 2009; Dale and Moon, 1993) for more details
and proof).

A.4 Correctness Proof of Marginal Algorithms

A.4.1 Sub-Hierarchy Marginal

For a given sub-hierarchy rooted at Xi, i.e., Hi ∈ H(Xi), the marginal probability is defined as
P (Hi|X) =

∑
H∈A(Hi)

P (H|X) , where A(Hi) = {H : H ∈ H(X) ∧ Hi ⊂ H}, and Hi ⊂ H indicates that Hi is a

subtree of H. We can rewrite
∑

H∈A(Hi)
P (H|X) as

∑
H∈A(Hi)

φ(H(X))/Z, which gives us:

P (Hi|X) =
∑

H∈A(Hi)

P (H|X) =
∑

H∈A(Hi)

φ(H(X))

Z
=
ZHi(X)

Z
(14)

where ZHi(X) =
∑

H∈A(Hi)
φ(H(X)), the sum of potential values for all the hierarchies containing the sub-hierarchy

Hi. This gives us

ZHi(X) =

|A(Hi)|∑
m=1

φ(Hm(X))

=

|A(Hi)|∑
m=1

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (15)

where Xm
L

⋃
Xm
R = X, Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted

at Xm
L and Xm

R , respectively. Next, we rewrite Eq. 15 grouping together all the hierarchies Hi that have the same
clusters {Xm

L , X
m
R }. Note that Hi ⊂ H, implies Xi ⊆ XL or Xi ⊆ XR. Assume W.L.O.G. that Xi ⊆ XL.

ZHi(X) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R)

J∑
j=1

φ(Hj(Xω
L))

K∑
k=1

φ(Hk(Xω
R))

=

Ω∑
ω=1

ψ(Xω
L , X

ω
R) ZHi(X

ω
L) Z(Xω

R)

(16)

with |A(Hi)| = Ω · J ·K, J = |{H(XL) : Xi ⊆ XL}|, K = |{H(XR)}| and setting ZHi(Xi) = φ(H(Xi)).

A.4.2 Subset Marginal

For a given cluster Xi, the marginal probability is defined as P (Xi|X) =
∑

H∈A(Xi)
P (H|X) , where A(Xi) = {H :

H ∈ H(X) ∧Xi ⊂ H}, and Xi ⊂ H indicates that cluster Xi is contained in H. We can rewrite
∑

H∈A(Xi)
P (H|X) as∑

H∈A(Xi)
φ(H(X))/Z, which gives us:

P (Xi|X) =
∑

H∈A(Xi)

P (H|X) =
∑

H∈A(Xi)

φ(H(X))

Z
=
ZXi(X)

Z
(17)
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where ZXi(X) =
∑

H∈A(Xi)
φ(H(X)), the sum of potential values for all the hierarchies containing the cluster Xi.

This gives us

ZXi(X) =

|A(Xi)|∑
m=1

φ(Hm(X)) =

|A(Xi)|∑
m=1

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (18)

where Xm
L

⋃
Xm
R = X, Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted

at Xm
L and Xm

R , respectively. Next, we rewrite Eq. 18 grouping together all the hierarchies Hi that have the same
clusters {Xm

L , X
m
R }. Note that Xi ⊂ H, implies Xi ⊆ XL or Xi ⊆ XR. Assume W.L.O.G. that Xi ⊆ XL.

ZXi(X) =

Ω∑
ω=1

ψ(Xω
L , X

ω
R)

J∑
j=1

φ(Hj(Xω
L))

K∑
k=1

φ(Hk(Xω
R))

=

Ω∑
ω=1

ψ(Xω
L , X

ω
R) ZXi(X

ω
L) Z(Xω

R)

(19)

with |A(Hi)| = Ω · J ·K, J = |{H(XL) : Xi ⊆ XL}|, K = |{H(XR)}|, and setting ZXi
(Xi) = Z(Xi).

A.5 Proof of MAP Time Complexity

The MAP tree is computed for each node in the trellis, and due to the order of computation, at the time of
computation for node i, the MAP trees for all nodes in the subtrellis rooted at node i have already been computed.
Therefore, the MAP tree for a node with i elements can be computed in 2i steps (given the pre-computed
partition functions for each of the node’s descendants), since the number of nodes for the trellis rooted at node i
(with i elements) corresponds to the powerset of i. There are

(
n
i

)
nodes of size i, making the total computation∑N

i=1 2i
(
N
i

)
= 3N − 1.

A.6 Proof of Proposition 2

Proof. We proceed in a similar way as detailed in Appendix § A.1 , as follows. Given a dataset X, pick an
element x ∈ X. We consider all possible Ω clusters Xω

L in C(X)x. Given Xω
L , then Xω

R is fixed so as to satisfy
Xω
L

⋃
Xω
R = X and Xω

L

⋂
Xω
R = ∅. We want to show that the MAP clustering φ(H∗(X)) can be computed

recursively in terms of φ(H∗(Xω
L)) and φ(H∗(Xω

R)).

The MAP value is defined as the energy of the clustering with maximal energy φ among all possible hierarchical
clusterings HX = {Hm}Mm=1,

φ(H∗(X)) = max
m∈M

φ(Hm(X))

= max
m∈M

ψ(Xm
L , X

m
R ) φ(Hm(Xm

L )) φ(Hm(Xm
R )) (20)

where Xm
L

⋃
Xm
R = X, Xm

L

⋂
Xm
R = ∅. Also, Hm(Xm

L ) and Hm(Xm
R ) are the sub-hierarchies in Hm that are rooted

at Xm
L and Xm

R , respectively. As mentioned earlier, the cluster trellis provides an exact MAP solution conditioned
on the fact that the domain of the linkage function is the set of pairs of clusters, and not pairs of trees. Thus, we
can rewrite Eq. 20 grouping together all the hierarchies Hi that have the same clusters {Xm

L , X
m
R }, as follows

φ(H∗(X)) = max
ω∈Ω

(
ψ(Xω

L , X
ω
R) max

j∈J
φ(Hj(Xω

L)) max
k∈K

φ(Hk(Xω
R))

)
= max
ω∈Ω

ψ(Xω
L , X

ω
R) φ(H∗(Xω

L)) φ(H∗(Xω
R)) (21)

with M = Ω · J ·K. Thus, φ(H∗(X)) of a cluster X can be written recursively in terms of the MAP values of the
sub-clusters of X 6.

6Note that for each singleton xi, we have φ(H∗(xi)) = 1.
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A.7 Proofs of Theorem 1 and Corollary 2

The partition function is computed for each node in the trellis, and due to the order of computation, at the time
of computation for node i, the partition functions for all nodes in the subtrellis rooted at node i have already
been computed. Therefore, the partition function for a node with i elements can be computed in 2i steps (given
the pre-computed partition functions for each of the node’s descendants), since the number of nodes for the trellis
rooted at node i (with i elements) corresponds to the powerset of i. There are

(
N
i

)
nodes of size i, making the

total computation
∑N
i=1 2i

(
N
i

)
= 3N − 1.

In Corollary 2 we state that Algorithm 1 is super-exponentially more efficient than brute force methods that
consider every possible hierarchy. Their ratio is

r =
(2N − 3)!!

3N
=

1

2
√
π

(
2

3

)N

Γ(N − 1/2) (22)

with Γ the gamma function. Thus, r presents a super-exponential growth in terms of N .

A.8 Jet Physics Background

It is natural to represent a jet and the particular clustering history that gave rise to it as a binary tree, where
the inner nodes represent each of the unstable particles and the leaves represent the jet constituents. This
representation connects jets physics with natural language processing (NLP) and biology, which is exciting and
was first suggested in (Louppe et al., 2019).

Jets are among the most common objects produced at the Large Hadron Collider (LHC) at CERN, and a great
amount of work has been done to develop techniques for a better treatment and understanding of them, from
both an experimental and theoretical point of view. In particular, determining the nature (type) of the initial
unstable particle (the root of the binary tree), and its children and grandchildren that gave rise to a specific jet is
essential in searches for new physics, as well as precision measurements of our current model of nature, i.e., the
Standard Model of particle physics. In this context, it becomes relevant and interesting to study algorithms to
cluster the jet constituents (leaves) into a binary tree and metrics to compare them. Being able to improve over
the current techniques that attempt to invert the showering process to reconstruct the ground truth-level tree
would assist in physics searches at the Large Hadron Collider.

There are software tools called parton showers, e.g., PYTHIA, Herwig, Sherpa, that encode a physics model
for the simulation of jets that are produced at the LHC. Current algorithms used by the physics community
to estimate the clustering history of a jet are domain-specific sequential recombination jet algorithms, called
generalized kt clustering algorithms (Cacciari et al., 2008), and they do not use these generative models. These
algorithms sequentially cluster the jet constituents by locally choosing the pairing of nodes that minimizes a
distance measure. Given a pair of nodes, this measure depends on the angular distance between their momentum
vector and the value of this vector in the transverse direction with respect to the collision axis between the
incoming beams of protons.

Currently, generative models that implement the parton shower in full physics simulations are implicit models,
i.e., they do not admit a tractable density. Extracting additional information that describes the features of the
latent process is relevant to study problems where we aim to unify generation and inference, e.g inverting the
generative model to estimate the clustering history of a jet. A schematic representation of this approach is shown
in Figure 9.

At present, it is very hard to access the joint likelihood in state-of-the-art parton shower generators in full physics
simulations. Also, typical implementations of parton showers involve sampling procedures that destroy the analytic
control of the joint likelihood. Thus, to aid in machine learning (ML) research for jet physics, a python package
for a toy generative model of a parton shower, called Ginkgo, was introduced in (Cranmer et al., 2019b). Ginkgo
has a tractable joint likelihood, and is as simple and easy to describe as possible but at the same time captures
the essential ingredients of parton shower generators in full physics simulations. Within the analogy between jets
and NLP, Ginkgo can be thought of as ground-truth parse trees with a known language model. A python package
with a pyro implementation of the model with few software dependencies is publicly available in (Cranmer et al.,
2019b).

http://home.thep.lu.se/Pythia/
https://herwig.hepforge.org/
https://sherpa.hepforge.org/trac/wiki
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A.9 Counting Trees

We count the total number of hierarchies7. We implement a bottom-up approach and start by assigning a number
of trees N = 1 to to each cluster of one element. Then, given a parent cluster Xp, we add the contribution N i

p

(Np =
∑
iN

i
p) of each possible pair i of left and right children, sXp

= {XL, XR}, where XL ∪ XR = Xp and
XL ∩XR = ∅. In particular, we obtain

N i
p = N i

XL
·N i

XR
(23)

Thus Np is the number of possible trees of the sub-branch whose root node is Xp. We repeat the process until we
reach the cluster of all elements X.

A.10 Runtime Asymptotics Plots

See Figure 10 for a comparison of the number of trees vs the time complexity of the trellis algorithms for finding
the partition function, MAP, and marginal values.

A.11 Description of Computer Architecture and Experimental Runtime

When using a MacBook Pro with a 2.5 GHz Intel Core i5 processor with 8GB 1600 MHz DDR3 RAM to compute
the MAP for the genetics experiments using the PAM dataset, it takes approximately 15 minutes to complete
from start to finish (including data loading and result output). When using this same machine to compute that
MAP for Dasgupta cost on the given graph, it takes approximately 4 seconds to complete from start to finish
(including data loading and result output).

When using a MacBook Pro with a 2.3 GHz Intel Core i9 processor with 16GB 2400 MHz DDR4 RAM to compute
the MAP for the jet physics experiments it takes 5x10−2, 1.6 and 6.1 seconds to run the trellis on jets with 5, 9
and 10 leaves respectively.

A.12 Sparse Trellis

As mentioned in section 3.1, there are different mappings for the ordering of the leaves of the input trees when
building the sparse trellis, and the subset of hierarchies spanned by the trellis depends on this mapping. Specifically,
two sub-hierarchies identical under some ordering of the leaves would contribute the same vertices and edges to
the trellis. However, this could change by modifying the ordering, e.g. vertex {a, b} could turn into vertices {a, b}
and {a, d}. Thus, the hierarchies over which the sparse trellis spans depend on the ordering of the leaves of the
input trees that we use to build it. We show in Figure 11 the performance of the sparse trellis to calculate the
MAP values on a set of 100 Ginkgo jets with 9 leaves. Here we study the sparse trellises for more orderings of the
leaves of the input trees than the ones shown in Figure 7.

Next, in Figure 12 we show the number of vertices added to the sparse trellis vs their sparsity (number of trees
that they can realize over total possible number of trees). It is interesting to note that the sparsity depends not
only on the number of vertices but also on their location in the trellis as well as the edges. Thus, we see that for
the same number of vertices, there are different sparsity indices, depending on the building strategy.

7This gives a result matching exactly the formula (2N − 3)!!

Figure 9: Schematic representation of the tree structure of a sample jet generated with Ginkgo and the clustered
tree for some clustering algorithm. For a given algorithm, z labels the different variables that determine the latent structure
of the tree. The tree leaves x are labeled in red and the inner nodes in green.
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Figure 10: Comparison of the complexity of the cluster trellis (orange) and the number of trees (blue) vs the number
of elements of a dataset.
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Figure 11: Trellises MAP hierarchy log likelihood vs their sparsity. MAP hierarchy log likelihood values are
relative to the greedy algorithm. Each value corresponds to the mean over 100 trees of a test dataset. We show the
Simulator (Sim.) and the Beam Search (BS) trellises. We present the trellis obtained by ordering the leaves of the input
trees in three different ways. First, in increasing norm of their momentum vector ~p ∈ R3 (pT ), see the probabilistic model
description of section 4.2 for more details. Second, leaves ordered randomly (rand). Third, leaves ordered by how they are
accessed by traversing the trees (standard). Note that in this last case, we only show the Sim. trellis results as the BS
trellis spans over sparsity indices values of O(10−5) and has a worse performance. We add the values of the full trellis,
beam search and greedy algorithms. The BS trellis approaches the performance of the full one for a smaller sparsity index
than the Sim. Trellis.
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Figure 12: Trellises number of vertices vs their sparsity. We show the Simulator (Sim.) and the Beam Search (BS)
trellises. The leaves of the input trees are ordered in different ways, as explained in Figure 11. Sim. trellis saturates all the
vertices below a sparsity of ∼ 0.1 but the performance in Figure 11 keeps increasing. The reason is that we keep adding
edges to existing vertices, thus realizing a greater number of trees.

Finally, in Figure 13 we show the MAP hierarchy log likelihood vs algorithms running time on a set of 100
Ginkgo jets with 9 leaves. Also, in both the Simulator (Sim.) and the Beam Search (BS) trellises the nodes have
to be initialized, which is done only once for each sparsity index and typically takes between 1 and 10 seconds
(depending on the sparsity).



C. Greenberg, S. Macaluso, N. Monath, J. Lee, P. Flaherty, K. Cranmer, A. McGregor, A. McCallum

0 1 2 3
Run Time (sec)

−0.5

0.0

0.5

1.0

1.5

lo
g

p(
x,

H
∗ )

re
la

tiv
e

to
gr

ee
dy

BS Trellis (pT )
Sim. Trellis (pT )
Full Trellis
BS
Greedy

Figure 13: MAP hierarchy log likelihood vs algorithms running time on a set of 100 Ginkgo jets with 9 leaves.
Each value corresponds to the mean over 100 trees of a test dataset. The difference between the sparse and exact trellises
running times is because the exact one is iterative over the nodes and the sparse one is recursive (this was done to optimize
memory requirements). We can see that the sparse trellis is faster for low sparsity while the running times are of the same
order of magnitude when the sparse trellises are close to saturate.
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