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We report results of a search for an isotropic gravitational-wave background (GWB) using data from
Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the
earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in
the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we
place upper limits on the strength of the GWB. We find that the dimensionless energy density Qgw <
5.8 x 1077 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is
uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-
76.6 Hz; Qaw (f) < 3.4 x 107 at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent
with expectations for compact binary coalescences), in the band 20-90.6 Hz; and Qg (f) < 3.9 x 10710 at
25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous
results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3.
We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories
of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these
polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by
performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic
background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial
model for the GWB from the merger of compact binaries, updating the model to use the most recent data-
driven population inference from the systems detected during O3a. Finally, we combine our results with
observations of individual mergers and show that, at design sensitivity, this joint approach may yield
stronger constraints on the merger rate of binary black holes at z 2 2 than can be achieved with individually

resolved mergers alone.
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I. INTRODUCTION

The gravitational-wave background (hereafter referred
to as the GWB or the background) is a superposition of
gravitational-wave (GW) sources that is best characterized
statistically [1]. There are many possible astrophysical
and cosmological contributions to the background, includ-
ing distant compact binary coalescences (CBCs) that
cannot be resolved individually [2-6], core collapse
supernovae [7—11], rotating neutron stars [12—19], stellar
core collapses [20,21], cosmic strings [22—-26], primordial
black holes [27-29], superradiance of axion clouds
around black holes [30-33], phase transitions in the early
universe [34-38], and GWs produced during inflation
[39—41] or in a preheating phase at the end of inflation
[42,43]. While some sources of the GWB, such as slow
roll inflation, have a fundamentally stochastic character,
others like the background from CBCs are a superposition
of deterministic sources.
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The LIGO Scientific Collaboration and Virgo
Collaboration have previously placed upper limits on
isotropic [44] and anisotropic [45] GWBs using data
from the first two observing runs, in the frequency range
20-1726 Hz. The searches were performed by calculating
the cross correlation between pairs of detectors. An
extension of this method has been applied to searching
for a background of non-tensor modes [44,46,47]; see
[48,49] for recent reviews. Cross-correlation methods
have also been applied to publicly released LIGO data
[50] by other groups, who have obtained similar upper
limits [51-53]. A new method that does not rely on the
cross-correlation technique and targets the background
from CBCs was proposed in [54].

In this work we apply the cross-correlation based method
used in previous analyses to Advanced LIGO’s [55] and
Advanced Virgo’s [56] first three observing runs (O1, O2,
and O3). We do not find evidence for the GWB, and
therefore place an upper limit on the strength. Unlike in
previous observing runs, in this work we present the
headline results using a log uniform prior [57]. We find
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two advantages to using a log uniform prior. First, a log
uniform prior gives equal weight to different orders of
magnitude of the strength of the GWBs, which is appro-
priate given our current state of knowledge. Second, a log
uniform prior is agnostic as to which power we raise the
strain data. It is not clear whether one should put a uniform
prior on the strain amplitude, or the strength of the GWB,
which scales like the square of the strain. On the other hand,
the log uniform prior does not depend on the exponent of
the strain data. For completeness, we also present results
with a uniform prior on the strength of the GWB in Sec. IV.
Results with any other prior can be obtained by reweighing
the posterior samples available at [58].

There are several new features in our analysis of the
03 data. First, we incorporate Virgo, by cross correlating
the three independent baselines in the LIGO-Virgo net-
work and combining them in an optimal way [59].
Second, in order to handle a large rate of loud glitches
in O3, we analyze data where these artifacts have been
removed via gating [60,61]. Third, we perform a careful
analysis of correlated magnetic noise that could impact the
search. In addition to constructing a correlated magnetic
noise budget, as in past runs, we use a Bayesian statistical
framework developed in [62] to constrain the presence of
magnetic noise.

Perhaps the most interesting source of an astrophysical
GWRB, given the current network sensitivity, is the GWB
from CBCs. Previous studies have shown that this GWB
may be detectable with Advanced LIGO and Advanced
Virgo running at design sensitivity [63,64], and the ability
to detect such a background has been confirmed with
mock data challenges [65-67]. Therefore in this work we
carefully consider the implications of our results for the
CBC population. We estimate the GWB using the most
up-to-date information from observations during O3 [68—
73] and compare with the sensitivity of the current and
future detector networks. We show that an upgrade of the
current Advanced LIGO facilities, known as A+ [74],
could dig into a substantial part of the expected parameter
space for the GWB at its target sensitivity. Furthermore,
we apply the methods of [75] to constrain the merger rate
as a function of redshift for binary black holes (BBHs) by
combining the GWB upper limits with information about
individually resolvable events. We find that the cross-
correlation analysis can provide complementary informa-
tion at large redshifts, compared to the population analysis
using individually detectable events alone [76]. We make
the results of our cross correlation analysis available [58],
enabling further detailed studies of the GWB from CBCs
and other models.

The rest of this work is organized as follows. In Sec. II,
we review the method of the cross-correlation search. We
discuss the data quality procedures and studies we per-
formed in Sec. I1I. We present the main results of the search
in Sec. IV: we derive upper limits on the GWB in Sec. IV A,

put constraints on the presence of scalar-and vector-
polarized backgrounds in Sec. IV B, and in Sec. IVC
we extend these results by simultaneously fitting for an
astrophysical GWB and an effective GWB arising from
magnetic correlations of terrestrial origin. We compare our
upper limits with a fiducial model for the GWB from CBCs
in Sec. VA, and derive constraints on the BBH merger rate
using the upper limits on the GWB and observations of
individual CBCs in Sec. V B. We conclude in Sec. VI.

II. METHODS

A GWB that is Gaussian, isotropic, unpolarized, and
stationary is fully characterized by a spectral energy
density. It is standard to express the spectrum in terms
of the dimensionless quantity Qgw (f), which is the GW
energy density dpgw contained in the frequency interval f
to f + df, multiplied by the GW frequency and divided by
df times the critical energy density p,. needed to have a flat
Universe

Qn(f) = L0, (n

where p, = 3H3c?/(87G), c is the speed of light, and
G is Newton’s constant. For consistency with other GW
measurements (for example those of [68]), we take the
Hubble constant from Planck 2015 observations to be
Hy = 67.9 kms~! Mpc~! [77].

A. Cross correlation spectra

Let us label the GW detectors in the LIGO-Hanford,
LIGO-Livingston, and Virgo (HLV) network by the index
I={H,L,V}. We denote the time-series output of the
detectors by s;(¢), and the Fourier transform by 3;(f).
Following [48,59], we define the cross-correlation statistic
for the baseline /J as

_ 2Re[} (A)5,(F)]
T Vu(f)So(f) ’

where y;;(f) is the normalized overlap reduction function
[59,78,79] for the baseline 1J, the function Sy(f) is given
by So(f) = (3H3)/(102%f?), and T is the observation time.
In practice, because the noise is nonstationary, we break the
data into segments, and then take 7 to be the segment
duration. We then average together segments using inverse
noise weighting [59]. If the noise were stationary, this
average would reproduce Eq. (2). This estimator is nor-
malized so that (C"(f)) = Qaw(f) in the absence of
correlated noise. In the small signal-to-noise ratio limit,
the variance can be estimated as

L P(DP)
2TAf v (f)S5(f)°

e (f) (2)

o1, (f) (3)
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where Af is the frequency resolution, and P;(f) is the one-
sided power spectral density in detector I. Note that TAf
need not equal one if several frequency bins are coarse
grained around the central frequency f to produce the
estimator in Eq. (2).

While we have expressed the cross-correlation estimator
in terms of the GW strain channel, in fact this analysis can
be applied to any pair of instruments. Following [62], in
Sec. HID and Sec. IVC we will also employ these
techniques to cross correlate magnetometer channels to
search for correlated magnetic noise.

B. Optimal filtering

Strictly speaking, the optimal estimator for a given signal
includes both autocorrelation and cross-correlation terms
[48]. We only use the cross correlation, and not autocorre-
lation, in the search because the noise power spectral
density is not known precisely enough to be subtracted
accurately, and therefore in practice the cross correlation is
nearly optimal. With this caveat, we can construct an
optimal estimator to search for a GWB of any spectral
shape by combining the cross-correlation spectra from
different frequency bins with appropriate weights

S w(F)CY (f1)oi7 (fr)
Sowv(fPerr (fi)
o7} = Zw(fk>261_12(fk)v (4)
3

o=

where f) are a discrete set of frequencies, and the optimal
weights for spectral shape Qgw(f) are given by

QGW (f )
QGW (f ref ) .

Here, f, is a fixed reference frequency. For ease of
comparison with previous observing runs, we choose the
reference frequency to be f..; = 25 Hz. This is approx-
imately the start of the most sensitive frequency band for
the isotropic search as described in [44]. This analysis is
very flexible and can be applied to a GWB of any spectral
shape. We will report results for a power law GWB of the

form
Qaw(f) = Qs (f) (6)

ref

w(f) = (5)

Our final estimator combines information from all base-
lines optimally using the sum

& > uCloif
- —, ) 7
S 07 E i (7)

where ) ,, is a shorthand notation meaning a sum
over all independent baselines IJ. We can also include

cross correlation results from previous observing runs in a
natural way by including them in this sum as separate
baselines. More concretely, we combine HL-O1, HL-O2,
HL-0O3, HV-03, and LV-03.

C. Parameter estimation

In order to estimate parameters of a specific model of the
GWB, we combine the spectra from each baseline 1J to
form the likelihood [80]

p(er10) wesp [-5 35 (G 2],

oy fk

where C¥ = C(f,), and where we assume that the C/
are Gaussian-distributed in the absence of a signal. The
term Qy;(f|®) describes the model for the GWB, charac-
terized by the set of parameters @. This hybrid frequentist-
Bayesian approach has been shown to be equivalent to a
fully Bayesian analysis in [81].

Equation (8) assumes that cross-correlation spectra
measured between different baselines are uncorrelated.
This is not strictly true, as different baselines share
detectors in common. Correlations between baselines,
however, enter at O(Q?) and so can be neglected in the
small-signal limit [59].

In this work we shall consider several different models:

(i) Noise (N): Qn(f) =0. We implicitly include un-

correlated Gaussian noise as part of every model that
follows.

(ii) Power law (PL): Qpy (f) = Qut(;5)". The param-
eters @p; are the amplitude Q¢ and’s spectral index a.
We will consider cases in which « is allowed to vary
as well as those in which it is fixed.

(iii) Scalar-vector-tensor power law (SVT-PL): This
model contains tensor polarizations, as allowed
in general relativity (GR), and vector and scalar
polarizations, which are forbidden in GR but
generically appear in alternative theories of gravity.
We define p to be an index referring to polarization,
p={T,V,S}, where T, V, and S refer to tensor,
vector, and scalar polarized GWs, respectively. We
assume the GWB for each polarization can be
described by a power law, which may be different
for each polarization. Thus there are six parameters

Ogyr_pL, given by the amplitudes Qg’f) and spectral

indices aj, for each polarization. The model is given

Zpﬂ[]( ) ref(lL)ap’

where A () =y (f)/71,(f) is the ratio of the
overlap reduction function for polarization p and

baseline 1J to the standard (tensor) overlap reduc-
tion function for that baseline [46].

(iv) Magnetic MAG): Qyag(f) describes correlations
between two detectors induced by large-scale

by the sum Qgyr_p (f) =
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coherent magnetic fields, which can appear as an
effective background. We model this effective back-
ground in terms of magnetometer correlations and a
transfer function between the local magnetic field
and the strain channel of the detectors. The free
parameters @y;og describe the coupling function, as
described in Sec. IV C.

(V) CBC: Qcpc(f) is determined by an underlying
parametrized model for the mass distribution of
compact binaries and their merger rate R(z) as a
function of redshift. The parameters of this model
are discussed in Sec. V.

We will also consider combinations of these models, for
example Qy(f) = Qpp(f) + Qumac(f). Given the likeli-
hood, we form a posterior using Bayes theorem,
p(O|CY) x p(CY|©)p(O), where p(@) is the prior dis-
tribution on the parameters @. We will consider different
prior choices for each model we consider below.

Finally, it is often of interest to combine upper limits on
the amplitude of the GWB with other observations, in order
to obtain the best possible constraints on a given model. For
example, such a strategy can be used to combine mea-
surements across a range of frequency bands as in [82].
Denoting data from the other observations as D, we can
consider a factorized likelihood

p(CY(fy). DI®) = p(CV (f()|@)p(DI®).  (9)

In Sec. VB, we will apply this method to combine the
upper limits on the GWB with observations of individual
BBH events from [68], similar to that performed in [75].

III. DATA QUALITY

A. Data

We analyze strain data taken during O3 by the LIGO-
Hanford, LIGO-Livingston, and Virgo detectors. The O3
run is divided into two sets. The first, O3a, began April 1,
2019, 15:00 UTC, and continued until October 1, 2019
15:00 UTC, while O3b ran from November 1 2019, 15:00
UTC, to March 27, 2020 17:00 UTC. The HL baseline had
205.4 days of coincident livetime, HV 187.5 days, and LV
195.4 days, before applying any data quality vetoes.

We look for correlated magnetic noise using magnetom-
eters located at the sites. Each LIGO detector has installed
two low-noise LEMI-120 magnetometers [83]. The Virgo
detector has two low-noise MFS-06 magnetometers by
Metronix [84]. In order to allow a comparison between the
magnetic and GW searches, we apply the same data
processing to the magnetometer channels that we do to
the strain channels, except where otherwise stated.

The data are first downsampled. For the GW data, we
decimate the data from the original sampling rate 16384 Hz
to 4096 Hz. The maximum frequency that we analyze is
1726 Hz, which is sufficiently below the Nyquist frequency

to avoid aliasing effects. Since we only analyze magnetic
data up to 100 Hz, we downsample the LEMI magne-
tometers from 16384 Hz to 512 Hz, and the Metronix
magnetometers from 2000 Hz to 512 Hz. Then the data
are high-pass filtered using a 16th-order Butterworth
filter with a knee frequency of 11 Hz, which is con-
structed using second-order sections. We divide the
original data stream into time segments of duration
192 s which are Hann-windowed and overlapped by
50%, then compute a discrete Fourier transform on each
of these segments, and coarse-grain the resulting spec-
trum to a frequency resolution of 1/32 Hz. We perform
the cross-correlation search with a publicly available
implementation [85] of the algorithm described in
Sec. II using MATLAB [86].

As an end-to-end test of the entire system, we added
stochastic signals in the Hanford and Livingston detectors
by actuating the test masses, following the procedures
described in [87]. We injected the same realization of the
stochastic background with a flat power law index and
strength of 4.3 x 1073 in two 15-minute segments of data.
We found for the first injection Qgw = (4.6 +0.4) x 107>
and the second Qgw = (4.7 £ 0.4) x 107>; both recoveries
are statistically consistent with the injected signal.

B. Time and frequency domain cuts

For each baseline, we require that both detectors in
the baseline are in observing mode, and that there
are no critical issues with the detector hardware, as
defined by category 1 vetoes described in [88,89]. As
in previous runs, we apply a nonstationarity cut by
removing times where the square root of the variance
in Eq. (4) is found to vary by more than 20% between
segments. We take the union of the cuts for
a={-5,0,3,5}; each power law is sensitive to a differ-
ent frequency band. While we use a = 2/3 for the search,
we do not include it in the cut since it does not provide
significantly new information for the nonstationarity cut,
because the frequency range is very similar to the one
probed by a = 0. We remove Hanford data from April 1-
April 16 2019 due to nonstationarity arising from cali-
bration lines at 35.9 and 36.7 Hz. These lines were moved
below 20 Hz on April 16, 2019.

In principle, the CBC signals known to be present
in the data contribute to the integrated cross-correlation.
Using the median values for the masses and redshifts of
direct detections in O3a [68], the livetime for O3a, and the
inspiral approximation in Eq. 16 of [67], we estimate that
resolved sources contribute Qgw < 10710 to the GWB,
which is well below the O3 sensitivity. Therefore we do not
remove the observed CBCs from the data.

After applying the category 1 vetoes and nonstationarity
cut, we found that 17.9% of available livetime was lost in
the HL baseline, 22.1% in the HV baseline, and 21.9% in
the LV baseline.
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Coherence spectra for the HL baseline without (left panel) and with (right panel) gating applied. In both cases, we have applied

the nonstationarity cut described in the main text. We show the coherence spectrum at 1/32 Hz (the same frequency resolution used for
the isotropic search) as a gray line, a rolling average with a 1 Hz resolution as a blue line, and the average value expected for
uncorrelated, Gaussian noise which is given by 1 divided by the number of averages used to make the coherence spectrum as a black
dashed line. The gated coherence is consistent with the expectation from Gaussian noise, while the spectrum without gating is not.
Additionally, we see that more segments are used for averages in the gated spectrum after applying the nonstationarity cut described in
the text. This is because without gating, many segments are removed due to a single glitch biasing the power spectrum estimate of the
segment. Note that in this figure, we have not applied any frequency notching; the large line visible at 33.2 Hz is due to a beat note in the
calibration lines at both H1 and L1 arising from nonlinear couplings.

We do not analyze frequency bins where there is evidence
of coherence between instruments that is determined to be
caused by the instruments themselves. The coherence
between two channels,

(10)

(51 (NP8, (1)

is a useful measure to determine when correlations in a given
frequency bin exceed what is expected from uncorrelated
data. In the above expression, the angle brackets () refer to an
average over analysis segments. The coherence between the
strain and auxiliary channels at a given site can also be used
to identify an instrumental source of contamination [90]. We
removed 13.3% of the frequency band in the HL baseline,
21.5% of the frequency band in the HV baseline, and 18.9%
of the frequency band in the LV baseline. However, we only
removed 3.2% from HL, 9.3% from HV, and 5.9% from LV
below 300 Hz, where the search is most sensitive. In O3, we
found many 1 Hz harmonics which were coherent between
Hanford and Virgo. We also observed a large coherent line in
the HL baseline at 33.2 Hz, which was likely due to the
beating of two different calibration lines at Hanford and
Livingston, and therefore did not appear in linear coherences
between the strain and auxiliary channels. Generally speak-
ing, line mitigation efforts were particularly effective at the
LIGO-Livingston detector, and the HL and LV baselines had
many fewer coherent lines. The full list of frequencies
removed from the analysis is available online [58].

C. Gating

In O3, we found a much higher rate of loud glitches
compared to previous observing runs [89]. A naive appli-
cation of the standard nonstationarity cut used in previous
searches led to losing >50% of the data when running with
192-s data segments. In order to reduce the amount of data
lost to the nonstationarity cut, and thus improve the
sensitivity of the search, we pre-conditioned the data by
applying a gating procedure. This procedure involves first
identifying data from the Hanford and Livingston baselines
that contain a glitch, and then zeroing out these data. We
defined segments containing a glitch when the root-mean-
squre (RMS) value of the whitened strain channel in the
25-50 Hz band or 70-110 Hz band exceeded a threshold
value. We then removed the glitches from the time series by
multlipying the data in these segments by an inverse Tukey
window. We found that a total of 0.4% of Hanford data was
gated in the data that we analyzed, and 1% of Livingston
data for each baseline. We refer the interested reader to [60]
for further details of the procedure, including the whitened
channels and precise thresholds used. This was not neces-
sary for Virgo data due to the lower rate of large glitches.
The impact of gating can be clearly seen on the coherence
spectra, as we show in Fig. 1. Compared to the nongated
data, many more segments are analyzed after applying
nonstationarity cuts, and the spectrum is much closer to
what is expected from uncorrelated Gaussian noise. It was
discovered that from April 20-25 a 1/120-Hz comb was
visible in the Livingston data around large calibration lines.
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The comb was caused by an inadvertently running diag-
nostic camera clicking at regular two minute intervals. To
be cautious, we removed this period of time from the
analysis. We have verified with a mock data challenge that
applying this gating procedure to simulated data did not
affect our ability to recover a GWB. This check is described
further in [61].

D. Correlated magnetic noise budget

In order to be able to claim detection of a GWB, one
must understand and control environmental sources of
correlated noise [91]. Some magnetic fields are expected
to be correlated between sites and are monitored with
sensitive magnetometers placed away from the buildings.
For example, Schumann resonances are electromagnetic
modes of the Earth-ionosphere resonant cavity [92]. They
are coherent on a global scale [93], so if they couple to the
interferometer and produce noise in the GW channel, they
will cause correlations between the outputs of detectors on
different continents [94,95]. If these effects are large
enough, they can be a source of confusion noise for
cross-correlation searches. In this section we show that
there is no evidence for correlated magnetic noise in the
03 GW strain data.

As in past runs [44,96], following [94,95] we create a
budget for the magnetic correlations

; _ 2|1 (ONT, (F) Relmg () iy ()]
Cmag,]J (f) - T . (f)SO(f)

where 7/, (f) are Fourier transforms of the magnetometer
channels. The coupling functions 7;(f) are estimated by
injecting an oscillating magnetic field of a known fre-
quency and amplitude at different locations near each
detector, and measuring the resulting output in the GW
strain channel. Weekly injections were performed to study
the time-dependence of the magnetic coupling [97].

Potential differences in the strength of the magnetic
field at the magnetometers located around the detector
versus the strength of the field at the “true” coupling
location mean that these measurements are only rough
estimates, and are susceptible to large uncertainties. This
uncertainty is estimated by comparing injections at differ-
ent locations at each site; to account for this, we include a
factor of two uncertainty in the coupling function of each
detector [98].

Another possible source of error in the coupling
function measurement is that the low-noise magnetome-
ters are located outside, far from the local magnetic noise
associated with the buildings, but the weekly injections
described above are performed inside. One may worry
that ferromagnetic material in the buildings can amplify
the outside-to-inside magnetic coupling. However, addi-
tional measurements at Handford suggest that the cou-
pling function from outside to inside the building is less

. (11)

than one. Injections were performed around the corner
station using seven frequencies ranging from 11 to
444 Hz, and the magnetic field was measured inside
and outside the building at the same distance from
the injection coil. A power-law fit to the ratio of the
magnetic field measured inside to the field measured
outside as a function of frequency indicates that the
magnetic coupling is suppressed by up to a factor
of 2 in the frequency range 10-100 Hz, however with
variation depending on the orientation of the field. To be
conservative, we assume the inside-to-outside magnetic
coupling is equal to one.

To construct the budget, we first compute a linear
interpolation for the coupling function as a function of
frequency measured at each detector in each week. For
weeks where a coupling function was not measured, we use
the coupling function that was nearest in time. For each
baseline, and each week, we then multiply the coupling
functions for each detector by the magnetic cross-
correlation spectrum for that baseline, to form a budget.
We use the pair of directions that gives the largest
coherence. Studies based on shorter stretches of data
indicate that the coherence of the magnitude of the
magnetic field can be up to a factor of two larger than
the coherence of the worst-case components; therefore
to be conservative we multiply the coherence in each
detector baseline by a factor of two. We combine the
budgets across baselines by using the error bars from the
GW channels as weights to account for the relative
sensitivity of each baseline, Cmag:Z, wi( f)@mag,l (),
where wy, (f) = (6,,(f)/o(f)) 2. We show an estimate of
the correlated magnetic noise compared to the O3 sensi-
tivity curve in Fig. 2, combining all three baselines. The
red band shows the range of budgets we obtain accounting
for the combined weekly magnetic coupling function
measurements, as well as the overall factor of two
uncertainty in each detector’s coupling function described
above. The overall trend of the red band should be
compared with the O3 power-law integrated (PI) curve
[99], which shows the sensitivity of our search to power
law backgrounds, accounting for integration over fre-
quency. The black dotted line shows the upper range of the
budget. Narrowband features should be compared with
o(f), shown as a black solid line, which shows the
sensitivity to a GWB in every frequency bin. The
measurements at Hanford were sampled at a fine fre-
quency resolution due to the use of broadband injections
with a large coil [100]. This allowed us to see fine-grained
features in the coupling function, such as the broad
resonances visible between 80 Hz and 100 Hz Fig. 2.
While the exact origin of these resonances is presently
unknown, they are correlated with excess motion of test
masses in the power recycling cavity [101]. The final
budget indicates that the nonobservation of correlated
magnetic noise is expected given the coupling function
measurements.
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FIG. 2. Correlated magnetic noise budget, as described in the
main text. The band shows the expected range of magnetic
contamination, using weekly measurements of the coupling
function at each site, and accounting for the uncertainty in the
coupling function measurements. We display the O3 sensitivity in
two ways. First, we plot the power-law integrated (PI) curve as a
red line. This indicates the sensitivity of the search to power-law
backgrounds and includes the effect of integrating over frequen-
cies, and should be compared with the overall trend of the red
band. Second, we plot the square root of the variance, o(f), as a
black line, which gives the sensitivity of the search to narrowband
features. This can be compared with narrow features in the upper
range of the noise budget, which we show as a black dashed line.
We conclude that the O3 sensitivity is well above the level of
correlated magnetic noise estimated in O3.

IV. RESULTS
A. Upper limits on the GWB

In Table I we report the point estimate and 1-¢ error bar
from O3 obtained from each baseline independently, as
well as combining all three baselines together with the HL
baseline results available from O1 and O2, using an optimal
filter for three different power law models

(1) @ =0 approximately characterizes cosmic string

[22-26], and slow-roll inflation GWBs [39—41] in
the LIGO-Virgo frequency band.

TABLE L.

(i) a = 2/3 describes the CBC GWB when contribu-
tions from the inspiral dominate the GWB, which is
a very good approximation in the LIGO-Virgo
frequency band [102]. However, this approximation
may not be valid for mergers of binaries arising from
Population III stars [103], or from heavy BBH
mergers with masses above the pair-instability mass
gap [104].

(iii) o =3 1is a fiducial choice used in past searches
which approximately describes some astrophysical
sources such as supernovae [10-37,39-88,90,92—
105], and corresponds to a GWB that is flat in the
strain power, S,(f) « f3Qgw(f) [59].

While we use the entire band 20—1726 Hz to compute the
point estimate and error bar, we also show f1J... which is
the upper frequency of the band starting at 20 Hz that
contains 99% of the sensitivity in baseline /J.

The HL baseline contributes most to the sensitivity. The
contributions from the baselines that include Virgo are
relatively more important at higher frequencies and espe-
cially relevant to searches for larger power laws. We note
that the point estimates for HV and LV are approximately
20 away from zero, however we do not interpret this as
evidence of a signal given that the point estimate of the
much more sensitive HL baseline is consistent with zero to
within 1. The combined spectrum is shown in Fig. 3. From
this figure, one can see that the point estimate fluctuates
roughly symmetrically around zero, consistent with expect-
ations from Gaussian noise. Additionally, by comparing
with Fig. 1 of [44], it is clear that the addition of Virgo data
compensates for a zero in the HL overlap reduction
function at around 64 Hz. After having applied the data
quality cuts described in Sec. III, data are consistent with
uncorrelated, Gaussian noise. The spectra have a y>-per-
degree-of-freedom value of 0.98.

Since we do not find evidence of a GWB, we place upper
limits on the PL. model, combining the O3 spectra with the
results from previous runs. We report upper limits using
both a prior that is uniform in the log of the strength of the
GWB, and a prior that is uniform in the strength. We choose
to report the upper limit obtained with the log uniform prior
as our headline result, because a log uniform prior is a more

Search results for an isotropic GWB, using the optimal filter method for power law GWBs with a = {0, 2/3,3}. For each of

the three baselines /J, we show the point estimate and 1o uncertainty for the cross-correlation estimate C;;, along with the frequency
band from 20 Hz to f1J, containing 99% of the sensitivity. We see that the HL baseline is the most sensitive, and the HV and LV
baselines are more sensitive at higher frequencies, and for larger spectral indices, due to the longer baseline. In the last two columns, we
also present the search result combining all three baselines from O3, as well as the O1 and O2 data. As noted in the main text, the point
estimates for the HV and LV are approximately 2¢ away from zero, however this is not consistent with a GWB given the result of the

much more sensitive HL. baseline.

Power law  fHL [Hz]  CHM/107° W Mzl ¢V /107° b0, [Hzl — CMV/1070  fOMrO0%T O3 [Hz]  €O1F02103 /1070
0 76.1 —2.14+82 97.7 229 4+ 98 88.0 —134 £ 63 76.6 1.1+75
2/3 90.2 -344+6.1 117.8 145 + 60 107.3 —82 +40 90.6 -02+5.6
3 282.8 -1.34+09 375.8 9.1+4.1 388.0 -494+3.1 291.6 -0.6+0.8
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FIG. 3. Cross-correlation spectra combining data from all three

baselines in O3, as well as the HL baseline in O1 and O2. As
described in the main text, the spectrum is consistent with
expectations from uncorrelated, Gaussian noise.

natural choice for a scaling parameter, and also is more
sensitive to small signals. However, since upper limits
computed with a uniform prior are more conservative, we
present results for the uniform prior as well. For both cases,
we choose the upper bound of the prior to be large enough
that there is no posterior support at the upper end of the
prior range. For the log uniform prior, the upper limit
depends mildly on the lower bound of the prior range,
which cannot be taken to be zero. Following [44], we
choose the lower bound to be Q. > 10713, This choice
enables a direct comparison with previous upper limits, and
is the same order of magnitude as the expected reach of
next-generation ground-based detectors [106—108].

For the spectral index, we compute upper limits by fixing
a to the three values {0, 2/3, 3} discussed earlier, as well as
allowing a to vary. For the latter case, we assume a
Gaussian prior on a with zero mean and standard deviation
3.5. This prior on a is very similar to the triangular prior on
a we used in the O2 analysis [44], however it does not
vanish for large values of |a|. Therefore in principle, this
prior allows us to probe extreme power laws if the data
support them. We have checked that the Gaussian prior

TABLE II.

gives posterior distributions that are nearly identical to
those produced using the triangular prior.

We marginalize over calibration uncertainty following
the methods in [109]. We use an amplitude calibration
uncertainty of 7.0% for Hanford, 6.4% for Livingston,
and5% for Virgo [110]; this is a conservative choice
describing the worst case over the entire run. We use the
same amplitude calibration uncertainty factors for O1 and
02 as in previous analyses [44]. In all cases, phase
uncertainty is negligible. The results are given in
Table II. We also show the posterior in the Q ¢-a plane
in Fig. 4.

At the 95% credible level, using a log-uniform (uniform)
prior, we find that Qgw (25 Hz) is less than 5.8 x 107~°
(1.7x107%) for a=0, 34x10"° (1.2x107% for
a=2/3,39x10719 (1.3 x10™) for a =3, and 6.6 x
1072 (2.7 x 107®) when marginalizing over a. This repre-
sents an improvement by a factor of about 6.0 (3.6) for a flat
power law,8.8 (4.0) for a power law of @ = 2/3, and 13.1
(5.9) for a power law of @ = 3. The improvement for large
a is due in part to the improved high-frequency sensitivity
of Advanced LIGO in O3; to the addition of the baselines
involving Virgo; and to the specific noise realization, in
particular the negative point estimate a = 3 in O3, as seen
in Table I. We find a log;, Bayes Factor of —0.3 when
comparing the hypotheses of signal and noise to noise-only
when marginalizing over a.

B. Non-GR polarizations

We can use our results to constrain modifications to GR
by using the SVT-PL model defined in Sec. IIC. This
analysis benefits from the inclusion of Virgo data, since
adding more detectors to the network can help distinguish
between different polarizations, as shown in [46]. We note
that Qgw does not necessarily have the interpretation of an
energy density in modified theories of gravity, and it is in
general more appropriate to think of these quantities as a
measure of the strain power in each polarization [111].

We use the log-uniform prior on each strength Q) and

ref
the Gaussian prior for each spectral index a,, as described

Upper limits at the 95% credible level on ;s under the power law model for the GWB. We show upper limits conditioned

on different fixed power law indices a, as well as a marginalized limit obtained by integration over a, using a Gaussian prior with zero
mean and a standard deviation of 3.5. We show the results using a prior that is uniform in €, as well as uniform in log Q. As
described in the main text, the uniform upper limits are more conservative, while the log uniform priors are more sensitive to weak
signals. We also compare with the upper limits from [44], and give the improvement factor we achieve using O3 data.

Uniform prior

Log-uniform prior

a 03 02 [44] Improvement 03 02 [44] Improvement
0 1.7 x 1078 6.0x 1078 3.6 5.8x 107 3.5x 1078 6.0
2/3 1.2x1078 4.8 x 1078 4.0 3.4 x107° 3.0x 1078 8.8
3 1.3 x 107 7.9 x 1070 5.9 3.9 x 10710 5.1x%x 107 13.1
Marg. 2.7 %1078 1.1x 1077 4.1 6.6 x 1070 3.4 x1078 5.1
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FIG. 4. Posteriors for the strength Q.+ and spectral index « for
the power law model described in the main text, using a prior
uniform in the log of Q.;. The top and right panels show
marginalized posteriors for Q. and @, while the center plot
shows the 2D posterior density. The dashed, gray lines indicate
the prior distributions.

in the previous section. We show the results in Table III.
Marginalizing over the spectral indices for each polariza-
tion, we find that the upper limit on a scalar-polarized GWB

in this model is QE}S\),\,(ZS Hz) < 2.1 x 1078, the limit on a

vector GWB is QU0 (25 Hz) < 7.9 x 10~ and the limit on

a tensor GWB is QU1 (25 Hz) < 6.4 x 10~. Note that the

upper limit on tensor modes in this analysis is slightly
different from the upper limit when we consider only GR
modes given in the previous section, because of the
inclusion of additional parameters under this current model.

We compute two Bayesian odds ratios O: the odds OS1G
that a stochastic background of any polarization is present
(SIG) versus Gaussian noise (N), and the odds OXSR that
alternative polarization modes are present (NGR) versus
standard tensor polarizations obeying GR. Note that the
signal hypothesis is formally the union of seven distinct
sub-hypotheses, corresponding to the seven possible com-
binations of tensor, vector, and scalar modes (T, TV, TS,
TVS, etc.) When computing OY¢, we adopt equal prior
odds between the signal and noise hypotheses, and within

TABLE III.  Upper limits at the 95% credible level on Qs for
scalar, vector, and tensor polarizations, along with the improve-
ment of the O3 result over the previous result from O2. We use
the log-uniform prior for Q¢ and a Gaussian prior on the spectral
index for each polarization, as described in the main text.

Polarization 03 02 [44] Improvement
Tensor 6.4 x 107° 32x 1078 5.0
Vector 7.9 %1077 2.9 %1078 3.7
Scalar 2.1 x 1078 6.1 x 1078 29

the signal hypothesis assign equal priors among the various
signal subhypotheses. Similarly, in computing OXSR we
choose equal priors between NGR and GR hypotheses, and
within NGR assign equal priors to the six distinct ways that
nonstandard polarizations might be present; see Refs. [46]
and [47] for more details. We find log,,O3¢ = —0.4 and
log;gONSR = —0.2, confirming that we have no evidence
for a stochastic background alternative gravitational-wave
polarizations.

C. Joint fit for GWB and magnetic noise

We extend the standard analysis to do a joint fit allowing
for both a GWB with an arbitrary power-law index, as well
as an apparent GWB arising from correlated magnetic
noise. While we have already seen that correlated magnetic
noise is below the O3 sensitivity in Sec. III D, the analysis
presented here is complementary because it allows us to
simultaneously fit for the presence of both a GWB of
astrophysical origin and a correlated magnetic noise com-
ponent. In future runs, this kind of joint fit will become
increasingly important. We use the method described
in [62].

We evaluate whether correlated magnetic noise is detected
by first constructing a likelihood function that includes a
model for both the correlated magnetic noise and a power-
law GWB, Qu(f|0©) = Qp(f]OpL) + Qumac(f|Omac)-
Our model Qyag(f|Omag) takes the same form as
Eq. (11). However, rather than use the coupling functions
measured using magnetic-field injections, we model the
coupling functions as power laws, which approximate the
frequency dependence of the measurements. The vector
BOnaG contains the parameters of the model for the coupling
functions T ;(f), which we take to be a simple power law

0 =) (12)

The parameters for the power law GWB are the strength
Q. and spectral index a. We use nested sampling to
estimate the model evidences for three separate models:
N, MAG, and PL + MAG, using the notation defined in
Sec. II C.

Our prior distribution for the magnitude «; is log uniform
from 1072 to 10722 pT~! for all of the detectors. Our prior
on the spectral index $3; is uniform from A" to P, the
minimum and maximum values of the spectral index for the
magnetic coupling measured at detector / during the O3
run. For Hanford, Livingston and Virgo, the f priors chosen
for the study are (0, 12), (1, 10) and (0, 7), respectively. The
chosen prior range is large enough to encompass all
measured coupling function measurements in O3, includ-
ing the uncertainties mentioned in Sec. III. We find
log,o BMAG = —0.03, which indicates that there is no
preference for a model with correlated magnetic noise
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compared to a model with only uncorrelated Gaussian
noise. We also consider a model with a power-law GWB
present, using the log-uniform prior on €,; and Gaussian
prior on a as in Sec. IVA. We find that the Bayes factor
between a model with correlated GWB and magnetic noise,
to a model with only uncorrelated Gaussian noise, is
logg B%IAG*PL = —0.3, confirming that there is no evi-
dence of a GWB in the data.

V. IMPLICATIONS FOR COMPACT BINARIES

With upper limits on the GWB in hand, we now explore
the implications of these results for the GWB due to CBCs.
We first compare our upper limits to updated predictions for
the energy-density due to CBC sources. We then combine
our limits with the direct detections of CBCs in the local
Universe to constrain the merger rate of compact binaries at
large redshifts.

A. Fiducial model

Observations from O3a have significantly increased our
knowledge of the compact binary population [68,69,71—
73,76]. Here, we update the fiducial model of the GWB due
to compact binaries [44,63,64,96] in accordance with the
latest observational and theoretical advances. The energy-
density spectrum due to a particular source class k is

- Ri(2)((dE/df)|;. )k
(1+2)H(z) '

_/
«lf) =2 |

(13)

where R;(z) is the source-frame merger rate per
comoving volume of objects of class k and H(z) =

Hy\/Q,, (1 +z)> +Q, is the Hubble parameter, where
Q,, is the fraction of the critical energy density p,. contained
in matter and Q, the fraction contained in the cosmological

constant; we take Q,, = 1 —Q, = 0.3065 [77]. The quan-

tity <% |¢.)« is the source-frame energy radiated by a single
source, evaluated at the source frequency f, = f(1 + z)

and averaged over the ensemble properties of the given

class k:
dE,\ dE,
(G5) = [ameGz@. v

where p;(¢) is the probability distribution of source
parameters ¢ (e.g., masses, spins, etc.) across class k.
We consider here three classes of compact binaries:
binary black holes (BBHs), binary neutron stars (BNSs),
and neutron-star—black-holes (NSBHs). Except where oth-
erwise stated, we use the same choices for dE/df, pi(¢),
and R (z) as in [44]. We note that there are several
important astrophysical uncertainties which are not
included in our fiducial model, which could potentially
have an impact on our predictions. These include the

possibility that the initial mass function can lead to a lower
number of neutron stars than what we assume [112];
indications that the star formation rate may peak at a
smaller redshift [113]; and uncertainty in the metallicity
evolution.

1. Binary black holes.

We assume that BBH formation follows a metallicity-
weighted star formation rate (SFR) with a distribution
p(ty) ~ t;' of time delays 7, between binary formation and
merger, where 50 Myr < 7; < 13.5 Gyr. We take the SFR
from Ref. [114], and multiply it by the fraction of stellar
formation occurring at metallicities Z < Zy.n [115]. In
Ref. [44], we adopted Zy,q, = 0.5 Zg, and applied this
threshold only to black holes above 30 M. Here, we adopt
a more stringent cutoff Zy..q =0.1 Z5 [116,117].
Moreover, we apply this weighting across the entire mass
spectrum, as recent population synthesis studies suggest
that the mass spectrum of BH mergers does not evolve
appreciably with redshift [117].

We additionally update our assumptions regarding the
mass and spin distributions of BBHs. In Ref. [44], we
assumed that BBHs had aligned dimensionless spin mag-
nitudes distributed uniformly between —1 to 1. It now
appears, though, that the BBH population exhibits small
effective spins [76,118], and so when computing Qgg(f)
we now assume that BBHs have negligibly small spin. We
also adopt a close variant of the broken power law model of
Ref. [76] to describe the mass distribution of BBHs (for
convenience we assume a sharp low-mass cutoff in the
BBH mass spectrum, corresponding to §,, — 0 in Eq. (B6)
of [76]). We do not assume fixed values for the parameters
of this model, but include our uncertainty on the BBH mass
spectrum as an additional systematic uncertainty in our
estimate of Qg (f). To achieve this, we use GWTC-2 [68]
to hierarchically compute a joint posterior on the mass
distribution and local merger rate of BBHs, given the
assumed redshift distribution described above. Hierarchical
inference is performed following the method discussed in
Ref. [76]. By evaluating Eq. (13) across the resulting
ensemble of posterior samples, we subsequently obtain a
probability distribution on the energy-density spectrum
Qpgu(f) due to BBH mergers, given our knowledge of
the local population.

Our updated estimate of Qpgy(f) is shown in green in
Fig. 5. We find Qggy(25 Hz) = 4.711¢ x 1071°. This
uncertainty includes the standard Poisson uncertainty on
the local merger rate, which we find to be Rgpy(0) =
1974* Gpc=3 yr~! (median and symmetric 90% credible
interval) given our fiducial redshift distribution above. This
rate estimate matches that obtained in Ref. [76] when
agnostically allowing the merger rate to evolve with red-
shift, although in general estimates of Rgpy(0) may differ
under different presumed redshift distributions. Our
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FIG. 5. Fiducial model predictions for the GWB from BBHs, BNSs, and NSBHs, along with current and projected sensitivity curves.

In the left panel we show 90% credible bands for the GWB contributions from BNS and BBH mergers. Whereas the BNS uncertainty
band illustrates purely the statistical uncertainties in the BN'S merger rate, the BBH uncertainty band additionally includes systematic
uncertainties in the binary mass distribution, as described in the main text. As no unambiguous NSBH detections have been made, we
only show an upper limit on the possible contribution from such systems. The right panel compares the combined BBH and BNS energy
density spectra, and 2o power-law integrated (PI) curves for O2, O3, and projections for the HLV network at design sensitivity, and the
A + detectors. The solid blue line shows the median estimate of Qpgy,pns(f) as a function of frequency, while the shaded blue band
illustrates 90% credible uncertainties. The dashed line, meanwhile, marks our projected upper limit on the total GWB, including our

upper limit on the contribution from NSBH mergers.

estimate of Qppy (25 Hz) also reflects, though, the addi-
tional systematic uncertainty on Qgpy(f) due to imperfect
knowledge of the BBH mass distribution. This uncertainty
on the mass distribution is, for example, responsible for the
larger uncertainty in Qggy(f) at high frequencies.

2. Binary neutron stars.

As in [44], we assume that the rate of BNS progenitor
formation is proportional to the rate of star formation [114]
and that the distribution of time delays 7, between their
formation and merger is of the form p(z,) « ;! between
20 Myr < t; < 13.5 Gyr. The detection of a second binary
neutron star merger in O3a, GW 190425 [70], has decreased
uncertainty on the BNS merger rate and demonstrated that
at least some neutron star mergers contain significantly
heavier masses than expected. Following [76], we assume a
uniform distribution of component masses between
1-2.5 M, which yields an estimated present-day merger
rate of Rpns(0) = 320750 Gpe~3yr~'. When modeling
Qpns(f), we consider the energy radiated during the
inspiral phase only, truncating the BNS energy spectra

fo (¢) at frequencies corresponding to the innermost stable

circular orbit. Our estimate of the BNS GWB is shown in
red in Fig. 5. We find Qpyg(25 Hz) = 2.0777 x 10710,

3. Neutron star-black hole binaries.

To date, Advanced LIGO and Virgo have made no
confirmed detections of neutron star-black hole (NSBH)

mergers. Two events, GW190814 and the low-significance
candidate GW190426_152155, have secondary masses
constrained below 3 M, with primary masses above
3 Mg and so are possibly consistent with NSBH systems,
but their true physical natures remain unknown [68,73]. In
order to forecast the possible contribution of NSBH mergers
to the GWB, we therefore use the upper limit on the NSBH
merger rate previously adopted in Ref. [44], again assuming
a delta-function mass distribution at 10 Mg + 1.4 M. We
estimate Qugpy(f) using the same redshift distribution as
adopted for BBH mergers, and include contributions from
the complete inspiral, merger, and ringdown. This likely
results in an overestimate of Qspy(f) at high frequencies,
since some fraction of NSBH inspirals are expected to end in
tidal disruption of the neutron star companion [119-121].
The resulting upper limit on Qysgy (f) is shown as a dashed
black line in Fig. 5, with Qygpn(25 Hz) < 8.4 x 10719,

4. Total CBC GWB.

In the right-hand side of Fig. 5 we present an updated
estimate of the combined GWB due to BBH and BNS
mergers. Under our model, we predict this combined
background to be Qg pns(25 Hz) = 6.8755 x 10710,
Combining the upper limit on Qyspy(f) with the upper
95% credible bound on the contributions from BBH and
BNS mergers, we bound the total expected GWB to be
Qo (25 Hz) < 1.9 x 107°. We also show the 26 power-
law integrated (PI) curves [99] indicating the integrated
sensitivity of the O3 search [99], along with projections for
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2 years of the Advanced LIGO-Virgo network at design
sensitivity, and the envisioned A + design sensitivity after
2 years, assuming a 50% duty cycle. We use the power
spectra available from [122,123]. Previous work has shown
that the residual background obtained after subtracting
resolvable signals is expected to be within 10% of the total
background for Advanced LIGO and Virgo at design
sensitivity, and approximately a factor of 2 smaller for
the A + detectors [63,106]. These curves indicate that by the
time the detectors reach the A + design sensitivity, much of
the expected parameter space of the compact binary GWB
will be accessible by ground-based detectors. The continued
addition of new instruments to the worldwide detector
network, like KAGRA [124] and LIGO-India [125], is
expected to further improve upon our projected sensitivity.
For coincident and co-aligned detectors with the same power
spectral density, the improvement in sensitivity should scale
like the square root of the number of baselines, or equiv-
alently with the number of detectors in the network.
However, in practice one must account for the different
overlap reduction functions for each baseline, as well as for
different sensitivities. Reference [99] gives a prescription for
a general set of detectors. Figure 9 of that paper indicates that
the improvement is likely to be minimal for small power
laws, and becomes larger for large power laws.

B. Constraining the BBH merger rate

The energy-density spectra in Fig. 5 show our current
best estimates for the GWB under an astrophysically
plausible model for the rate density Rgpy(z) of BBH
mergers of stellar origin. By combining direct detections
of compact binaries with upper limits on the GWB,
however, we can alternatively seek to directly measure
Rpgh(z). Knowledge of the BBH redshift distribution, and
in particular the redshift at which Rppy(z) is at a maximum,
offers a potential measure of the mean evolutionary time
delay between binary formation and merger, the branching
ratios between competing formation channels, or even the
underlying star formation rate [126,127]. Although the
measurement of Rgp(z) is made difficult by the limited
range of present ground-based detectors, we can never-
theless make progress by combining direct BBH detections
with upper limits on the GWB [75].

Here, we update the constraints on the rate evolution of
BBHs from [75], using our latest O3 limits on the GWB
and the expanded GWTC-2 catalog of BBH detections. We
again assume a broken power law form for the mass
distribution of BBH mergers, but now adopt a phenom-
enologically-parametrized form

Ro(l ‘I’Z)l]
1+( 1+z )/I]Jr/lz

1+Zpeak

Rgpu(z) = C(A1, 42, Zpeak) (15)

for their merger rate density. Under this form, the merger
rate evolves as Rppy (2) & (1 + 2)" at 2 S Zpeqx and Rppyy ~
(1+2)™ at 22 Zpeu, and at low redshifts 4; can be

Median Estimate

90% Credible Bounds
====Vangioni+ SFR

1073 | 1 1
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FIG. 6. Posterior constraints on the BBH merger rate Rpgy(z)
as a function of redshift when allowing for a merger rate that
peaks and subsequently turns over at high z, combining stochastic
search results and direct BBH detections. The black line shows
our median estimate of Rppy(z), while solid grey lines denote
90% credible bounds. For comparison, the dashed red line is
proportional to the rate of cosmic star formation [114]. At 90%
credibility, the merger rate of BBHs is bounded below
~10% Gpc~3 yr~! beyond z ~ 2, an order of magnitude improve-
ment relative to O1 and O2 [75].

identified with the parameter x of Ref. [76]. The normali-
zation constant C(4;, ;. Zpeqx ) is defined such that Ry, is the
local merger rate density of BBHs at z = 0.

Using the direct BBH detections from GWTC-2 along
with the updated GWB search results presented here, we
jointly infer the parameters governing both the mass and
redshift distributions of BBH mergers. We adopt the
factorized likelihood from Eq. (9), given by the product
between the standard GWB likelihood p(CY(f;)|®ggn)
under our model for the BBH background, and the like-
lihood p({d}|®gpy) of having measured data {d} asso-
ciated with the 44 direct BBH detections in GWTC-2 with
false alarm rates < 1 yr~!'. This likelihood p({d}|®ggy)
for direct detections is evaluated using posterior samples on
the parameters of each individual event, as described
further in Sec. 4 of [76]. The direct detection likelihood
also corrects for selection biases, such as LIGO and Virgo’s
higher detection efficiency for higher-mass systems; we
evaluate selection effects using the same injection cam-
paign discussed in [76]. Our priors are uniform on A;, 4,,
and Zpeay, and log-uniform on Ry,

The resulting constraints on the BBH merger rate as a
function of redshift are shown in Fig. 6. Each blue trace
represents a single draw from our posterior on the BBH
mass distribution and merger rate history. The black curve
marks the median estimated merger rate at a given redshift,
while solid grey curves mark our central 90% credible
bound. From O1 and O2 data, the nondetection of the GWB
served to constrain the BBH merger rate to less than
~10* Gpc™3 yr~! beyond z~2 at 90% credibility [75].
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FIG. 7. 2D posterior density for joint CBC-GWB inference on

the parameters 4, and zp., describing the BBH redshift distri-
bution, defined in the main text. While the O3 stochastic
measurement (solid line) is not competitive with measurements
on Zp and A; obtained from GWTC-2 (shown as a blue
posterior density), stochastic background measurements from
future observing runs (dashed lines) may be able to put tighter
constraints on these parameters in combinations with observa-
tions of individual binaries.

This limit is here improved by a factor of approximately
ten. For reference, the dashed red curve is proportional to
the star formation rate model of Ref. [114]. While the BBH
merger rate remains consistent with directly tracing star
formation, it likely increases more slowly as a function of
redshift, consistent with a nonvanishing time delay dis-
tribution between binary formation and merger [76].

While O1/02 constraints on the behavior of Rgpy(z) at
redshifts 72 0.5 were dominated by stochastic search
results [75], the results in Fig. 6 from O3 are now due
primarily to the direct detections comprising GWTC-2. The
cause for this shift is illustrated in Fig. 7, which shows our
joint A — zZ,eq posterior (informed by both GWB data and
direct BBH detections), marginalized over the remaining
parameters governing the BBH mass and redshift distri-
butions. The solid black contour show the values of 4, and
Zpeak €xpected to yield a GWB detection with SNR = 2 in
03; values to the right of this contour can be excluded on
the basis of a GWB nondetection. Direct BBH detections,
meanwhile, allow for a measurement of A;, but are not
expected to meaningfully constrain z,.,, which likely lies
beyond the horizon of Advanced LIGO and Virgo. The direct
BBH detections in GWTC-1 only allowed for a weak upper
limit on A;: A4; < 13.7. The nondetection of the GWB in O2
therefore ruled out a considerable portion of otherwise
available parameter space. Improved measurements due to
GWTC-2, though, have revised estimates of 1; downwards to
Ay = 1.3721 [76], and so present GWB searches cannot
further constrain its value. The results in Fig. 6 are therefore
now dominated by direct BBH detections.

With continued data collection, however, the nondetec-
tion (or eventual detection) of the GWB may again offer
informative constraints on 4; and z,... As additional direct
BBH detections are made, our knowledge of 4; will continue
to improve, identifying an increasingly narrow, nearly-
vertical contour in the 4; — Z,c, plane. Continued time
integration in searches for the GWB, meanwhile, will
exclude a growing fraction of this plane, ruling out large
values of both A} and zpe,,. In Fig. 7, for example, we show
projected exclusion contours corresponding to one year of
integration with Advanced LIGO and Virgo, at both their
design sensitivity and A + configurations; both exclusion
curves extend into the presently allowed values of 4;, where
they may again be informative and break the degeneracy
between 4; and Zpeq-

VI. CONCLUSIONS

In this work, we have performed a search for an isotropic
GWB using data from Advanced LIGO’s and Virgo’s first
three observing runs. Since we did not find evidence for a
background of astrophysical origin, we placed upper limits,
improving previous bounds by about a factor of 6.0 for a
flat background.

We considered the implications of the results, and by
combining the upper limits with measurements from
GWTC-2 we have constrained the BBH merger rate as
a function of redshift. Our results can be used to constrain
additional models such as cosmic strings [128] or phase
transitions [129], using the cross correlation spectra we
have made publicly available [58]. Our results can also be
combined with other measurements of the GWB at other
frequencies [82]. Although in this work we focused on
searching for an isotropic GWB, in a companion paper we
present a search for an anisotropic GWB using data from
LIGO and Virgo’s third observing run [130].

Moving forward, we expect currently proposed ground-
based facilities such as A+ have the potential to probe a
large range of the model space for CBC backgrounds. In
order to make full use of the data and confidently claim a
detection, it will be important to further develop the
methods to handle correlated terrestrial noise sources, such
as the magnetic couplings described here.
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