
Representation of Developer Expertise in Open

Source Software

Anonymous Author(s)

Abstract—Background: Accurate representation of developer1

expertise has always been an important research problem. While2

a number of studies proposed novel methods of representing3

expertise within individual projects, these methods are difficult4

to apply at an ecosystem level. However, with the focus of software5

development shifting from monolithic to modular, a method of6

representing developers’ expertise in the context of the entire OSS7

development becomes necessary when, for example, a project tries8

to find new maintainers and look for developers with relevant9

skills . Aim: We aim to address this knowledge gap by proposing10

and constructing the Skill Space where each API, developer, and11

project is represented and postulate how the topology of this12

space should reflect what developers know (and projects need).13

Method: we use the World of Code infrastructure to extract14

the complete set of APIs in the files changed by open source15

developers and, based on that data, employ Doc2Vec embeddings16

for vector representations of APIs, developers, and projects.17

We then evaluate if these embeddings reflect the postulated18

topology of the Skill Space by predicting what new APIs/projects19

developers use/join, and whether or not their pull requests get20

accepted. We also check how the developers’ representation in the21

Skill Space align with their self-reported API expertise. Result:22

Our results suggest that the proposed embeddings in the Skill23

Space appear to satisfy the postulated topology and we hope24

that such representations may aid in the construction of signals25

that increase trust (and efficiency) of open source ecosystems at26

large and may aid investigations of other phenomena related to27

developer proficiency and learning.28

Index Terms—Developer Expertise, Vector Embedding,29

Doc2Vec30

I. INTRODUCTION31

The number of projects and developers involved with open32

source software has reached staggering heights, e.g. GitHub33

reported that over 10 million new developers joined and34

over 44 million new projects were created in 2019 alone 1.35

While many of these developers or projects are based on36

individual effort, further statistics, such as over 87 million pull37

requests being merged and 20 million issues being closed in38

the past year on GitHub alone, demonstrate that open source39

development is a highly collaborative effort.40

The key premise of open source software is not only to share41

the code, but, more importantly, to enable contributions from42

the community [1], [2]. However, despite improved tools and43

practices enabled by social coding platforms such as GitHub,44

it is not always easy to get contributions accepted, and, as45

many studies have shown, repeated interactions between the46

maintainers and contributors are necessary to establish trust47

and increase the chances of pull request acceptance or issue48

resolution [3], [4], [5], [6], [7], [8]. However, this method of49

1https://octoverse.github.com/

building reputation and trust by repeated interactions does not 50

scale very well, and, with a growing number of developers and 51

an increasing number of projects their code may depend on [9], 52

other means of establishing trust are becoming necessary. Pre- 53

vious work [10], [7] has shown that both technical and social 54

aspects of a developer’s reputation can play an important role 55

in building the trust between themselves and other developers. 56

While social aspects, such as previous collaboration [11], can 57

greatly increase the trust between two developers, these aspects 58

are not broadly applicable as they enhance trust within an 59

already-established developer circle. For a developer looking 60

to contribute for the first time to a project outside of their social 61

circle, the technical aspect of their reputation, often referred 62

to as expertise, may serve as an important source of trust for 63

other developers when evaluating a developer as a potential 64

team member or collaborator [12]. 65

We, therefore, concentrate on gauging the relevant expertise 66

of a developer based on their previous development activities. 67

Such measure, if it could be obtained, might partially substitute 68

for the traditionally laborious reputation building process as 69

a developer transitions from a peripheral participation in a 70

project to a contributor role [13], and could potentially increase 71

the efficiency of the open source development as a whole. 72

However, previous attempts at measuring developer expertise 73

either focus on very detailed views, e.g. counting “experience 74

atoms” associated with changes made by a developer on a 75

specific source code file [14], or, at the least granular level, 76

counting the volume, frequency, and breadth [15], [16] of a de- 77

veloper’s overall activities. Unfortunately, the former approach 78

can not be applied for developers who have never participated 79

in a specific project, while the latter does not account for 80

the specific experience of a developer beyond the aggregated 81

activity traces and projects they’ve worked on. Aggregates 82

of developer’s contributions by programming language was 83

previously proposed by Amreen et al. [16], however, expe- 84

rience in a particular language does not immediately confer 85

experience in the variety of libraries or frameworks in that 86

language which specific applications might rely on. However, 87

this measure of domain expertise, or expertise measured by the 88

fluency of using specific APIs, is something that may be of 89

greater concern to projects [15] than a potential contributor’s 90

overall skill in a language. 91

In this work, we try to measure and evaluate such specific 92

domain expertise by defining what we refer to as Skill Space, 93

that can be applied to developers, projects, and to individual 94

programming languages or APIs as well. In other words, Skill 95

Space provides a vector representation for individual develop- 96

1



ers, projects, programming languages, or APIs, with the topol-97

ogy of the resulting representations (skill vectors) reflecting98

the conceptual and practical (API-related) relationships among99

these four entities.100

To operationalize this Skill Space we use the World of101

Code (WoC) [17] data that contains APIs extracted from102

changes to source code files (discussed further in Section IV-B)103

in 17 programming languages. We employ Doc2Vec [18]104

text embedding that uses as input the dependencies (APIs)105

of a file modified in each change made by a developer to106

produce the Skill Space representation for individual APIs,107

developers, projects, and languages. The topology in this space108

is defined by the alignment (cosine similarity) between vectors109

representing any pair of developers, projects, APIs, developers110

and APIs, developers and projects, and projects and APIs.111

Our key contributions consist of a) conceptualization of112

developer skill/expertise that transcends individual project113

boundaries making it specific enough to determine its rele-114

vance in a novel context; b) postulating the desirable topology115

of the resulting Skill Space; c) proposing Doc2Vec embed-116

ding method for operationalizing the Skill Space; and d)117

an empirical evaluation of the proposed topology for this118

operationalization.119

In the rest of the paper, we start by describing the specific re-120

search problems in Section II. The related works are described121

in Section III. We describe our methodology in Section IV, and122

the evaluation results for our proposed embedding for the pro-123

posed Skill Space is described in Section V. We describe the124

limitations to our study in Section VI, the planned extension125

of the proposed technique in Section VII, and conclude the126

paper in Section VIII.127

II. RESEARCH PROBLEM128

Our aim in this paper is to define a feasible represen-129

tation of a developer’s expertise in specific focus areas of130

software development by gauging their fluency with different131

APIs. Such medium-granularity representation of developer132

expertise might serve as a way to get a better understanding133

of developer skill, help recommender systems that suggest134

APIs, projects, or contributors, or to increase the trust between135

external contributors and maintainers of a project. To achieve136

these goals we define the concept of Skill Space and we137

propose the desirable properties and an operationalization of138

this concept. We quantify Skill Space based on the World of139

Code (WoC) [17] data that contains information on the APIs140

extracted from changes to source code files (discussed further141

in Section IV-B) in 17 programming languages.142

A. Postulated properties of Skill Space143

The critical feature of our concept of Skill Space is the144

ability to make direct comparisons among three entities: devel-145

opers, projects, and APIs. The simplest way to accomplish that146

is to represent each entity as a vector in a linear space. Once147

such representation is accomplished, for it to be meaningful148

it needs to satisfy several simple properties: First, we expect149

that the skill vectors of APIs representing similar skills will be150

close to each other; Second, a developer’s skill vector should151

be similar to the representation of the APIs they use most 152

frequently; Third, a project’s skill vector should be similar to 153

the representations of the APIs used in these projects; Finally, 154

we expect the developer representations to be aligned with 155

their subjective perceptions of their API mastery. 156

Apart from these four fundamental properties, for Skill 157

Space to be useful in practice, we expect a few additional 158

properties to be satisfied: First, in order to predict API usage, 159

we expect that the new APIs a developer will use in the future 160

should have representations more similar to the representations 161

of APIs they have used in the past compared to randomly 162

selected APIs; Second, we expect that new APIs added in 163

projects should also follow a similar pattern; Third, we expect 164

that developers will be more likely to join new projects that 165

have representations similar to themselves in the Skill Space. 166

We also expect other manifestations of “good” Skill Spaces 167

in terms of outcomes of developer work, e.g. the closeness 168

between the skill vector of a developer who submitted a pull 169

request (PR) to a project and that of the target project should 170

have a significant impact on the PR acceptance probability. 171

Skill spaces satisfying these properties can obviously be of 172

practical and theoretical use, hence our objective in this paper 173

is to construct such a Skill Space and to evaluate if it satisfies 174

these desirable properties. 175

B. Operationalization of Skill Space 176

To produce the representations in the Skill Space we follow 177

previous successful approaches such as degree-of-knowledge 178

model [19] and experience atom [14] that take the uncontrover- 179

sial position that developer’s skill increases as they complete 180

and repeat tasks requiring a specific skill. In the context of 181

software engineering, that involves making changes to the 182

source code. Since we are trying to capture the experience 183

of using programming APIs, we capture the APIs that a 184

modified source code file depends upon. We further discuss 185

the pros and cons of this choice and potential alternatives in 186

Section VI. Since many of the software source code files are an 187

approximation of software modules [20], the collection of the 188

APIs a file depends upon should represent a specific use case 189

of the functionality instantiated by the file and should, thus, 190

provide implicit dependencies between the APIs utilized in 191

that file. The entirety of all source code, thus, should embody 192

all realized relationships among APIs. Once these implicit 193

relationships among APIs based on changes to the source 194

code are captured, the representation of a developer in the 195

skill space could simply be derived from the changes they 196

have made, the representation of a project through changes 197

made in that project, and the representation of a programming 198

language through all changes involving that language. 199

A naive representation of each change would simply be a 200

high-dimensional vector2 that represents each of the distinct 201

APIs extracted from over 4 billion changes to the source 202

code files of the languages under consideration. However, such 203

representation of APIs in the Skill Space is not very effective or 204

2We counted over 100 million distinct import/use/package/etc. statements
in the programming languages from WoC version R

2



practical, and techniques from text analysis [21] may be used205

to reduce the dimensionality of this vector. The key underlying206

assumption of text analysis techniques is that words in a207

natural language are used in certain combinations to express208

certain ideas or thoughts. The unsupervised approaches where209

the relationships are learned directly from the corpus of210

text, assume that the words within a document have to be211

related and represent some underlying idea expressed by that212

document. For larger documents sliding window techniques213

are often used to restrict the length of text where threse214

asssumed relationships among words pertain to the same215

idea. Similarly, we assume that a combination of APIs used216

in a software module would also reflect some aspects of217

the functionality implemened in that module. The number218

of APIs in a single file tends to be quite low as we find219

in Table I, so thre is no need for sliding windows when220

representing the API. However, text analysis methods need a221

large corpus of natural language text to extract the semantics222

from word combinations. We, similarly, expect that the Skill223

Space representation would require a very large corpus of224

software modules to represent these distinct functionalities225

(and the associated skill of developers who implemented it). In226

this paper, we use Doc2Vec [18] text embedding approach to227

produce the Skill Space representation not just for individual228

developers, but also for individual APIs, projects, and even229

languages. As a result, the proposed Skill Space representation230

can be used to calculate a direct measure of alignment between231

any pair of developers, projects, APIs, developers and APIs,232

developers and projects, and projects and APIs.233

C. Evaluation criteria234

A conceptual definition also needs practical utility, there-235

fore, to evaluate the suitability of the our proposed Skill Space236

representation, we investigate a number of practical scenarios237

where developer expertise and trust might come into play,238

and we expect that a closer alignment between developers239

and APIs or projects in the Skill Space will increase the240

likelihood of a positive outcome in these events. Specifically,241

we pose the desirable properties of the Skill Space (outlined in242

Section II-A) as hypotheses which we evaluate to determine if243

the proposed representation of a developer’s specific expertise244

in the Skill Space might be useful in practice by evaluating245

the following topological properties of the Skill Space:246

H1: A developer is more likely to choose new APIs that are247

more closely aligned3 with themselves.248

H2: A developer is more likely to join a new projects that are249

more closely aligned to themselves.250

H3: A project is more likely to accept contributions from251

developers who are more aligned to the project.252

H4: Developers better aligned with the project’s will have253

better odds to have their pull requests accepted.254

H5: A developer’s self-reported API skills are closely aligned255

to their own representation in Skill Space.256

3Since we use cosine similarity to measure closeness between entities, the
word “alignment” is a better choice that a more conventional “distance.”

III. RELATED WORK 257

In this section, we present an overview of the historic efforts 258

to measure developer expertise and outline the role of word 259

embeddings in the software engineering literature to clarify 260

the existing gaps we try to address with our work. 261

A. Developer Expertise 262

The fascination with developer expertise and its variation 263

began in the early days of software development [22], [23], 264

[24], [25]. Early work was primarily motivated by the need 265

for software project cost estimation and focused on various 266

ways to measure the size of software by adjusting lines of 267

code for different languages or attempting to design ways to 268

have a language-independent measure of software size [26]. 269

The later works embraced the idea that beyond language, 270

each software project requires long and arduous work by a 271

developer to comprehend its internal complexities [27]. This 272

suggested that developer expertise is project and file specific 273

with approaches such as Expertise Browser assuming that 274

each change to a source code file represents an experience 275

atom [14], whereby a developer changing code is forced to 276

understand the files’ internal design and, perhaps, impart of 277

their own design through implementing that change. However, 278

these early measures of lines of code written and file-specific 279

experience atoms pertain to expertise within a specific project. 280

They do not provide a general enough profile of developer 281

expertise that can be transferred among software projects. 282

Contemporary social coding platforms (e.g. GitHub) provide 283

a variety of indicators of developer activity (the timeline of 284

commits) and their social status (followers). This has sparked 285

a variety of research into how developer traces and developer 286

profiles can provide insight about a developer’s expertise. 287

These studies include qualitative approaches, such as the one 288

by Marlow et. al. [28], who showed that your developer profile 289

on GitHub can help other developers gauge your general 290

coding ability and project-relevant skills, but only at a more 291

general level. Similarly, Singer et. al. [29] interviewed devel- 292

opers and employers to observe how they utilize developer 293

profiles to gauge the quality of a potential new hire. The 294

results showed that profile sites with a “skills” word-cloud 295

representing the technologies (languages, frameworks, etc.) a 296

developer claimed to be familiar with proved to be the most 297

helpful assessment of a developer’s expertise. These works 298

indicate that more specific measures, such as language-specific 299

technologies and frameworks, help others gauge the relevant 300

expertise of developers in open source. 301

There have also been several attempts to automate the pro- 302

cess of identifying developer expertise through social coding 303

platforms, e.g. CVExplorer [30] is a tool created to expose 304

developer expertise using a word-cloud of all relevant tech- 305

nologies, frameworks, and general skills by parsing developer 306

commit messages and README files. SCSMiner [31] is 307

another tool created to help identify experts on GitHub based 308

on an arbitrary input query. The authors also obtain expertise 309

attributes by parsing README files of projects a developer 310

has contributed to, but they extend this by creating a generative 311

probabilistic expert ranking model to rank developers based on312

3



certain skills or expertise one might be looking for. Lastly,313

Hauff et. al. [32] attempt to match developers with job314

advertisements based on a developer’s expertise by extracting315

relevant terms from README files and mapping them to316

the same vector space as job advertisements, and ranking all317

developer profiles based on the cosine similarity they share318

with the job advertisements. While all of these approaches319

are a similar step in the same direction as us, they provide a320

weaker link between developers and their technologies than321

desired by utilizing README files as the main source of322

developer expertise, while we extract language-specific APIs323

from files a developer has modified. Furthermore, along with324

measuring a developer’s similarity to the technologies they325

use as attempted in previous work, we also aim to use the326

APIs to measure the similarity between developers, projects,327

developers and projects, and projects and APIs.328

We also motivate our work through some more recent stud-329

ies. Montandon et. al. [15] present an approach to determine330

experts for three JavaScript libraries. The authors identify331

developers who have made changes to projects that depend332

on these libraries and conduct a survey of 575 developers to333

obtain their self-reported expertise. Using these survey results334

as validation, the authors argue that their clustering approach is335

feasible and can be used to identify relevant experts. However,336

they also present the shortcomings of using basic GitHub337

profile features for machine learning classifiers to predict338

expertise in software libraries. We utilize the survey dataset339

provided by the authors for our own evaluation and also at-340

tempt to better predict developer expertise in software libraries,341

an area in which the authors achieved poor performance.342

The more recent Import2Vec [33] paper produces em-343

beddings for each imported package. The authors do such344

embeddings for JavaScript, Python, and Java, and provide345

some qualitative evidence suggesting that these embeddings346

of APIs accurately reflect different functionality profiles by347

providing a number of examples where the similar APIs also348

appear to implement similar functionality.349

Unfortunately, none of the proposed approaches are suitable350

for directly comparing developers and projects, as neither351

developers nor projects are accurately represented in the same352

vector space as the API embeddings. It is, therefore, not clear353

how Import2Vec embeddings can be used to represent devel-354

opers’ domain expertise nor if such profiles would accurately355

reflect developer proficiency. Furthermore, the Import2Vec356

approach can not be applied in a cross-language context. Our357

proposed approach tries to address this gap by constructing a358

Skill Space representation that, on one hand, may transcend359

the specific programming languages, and on the other hand,360

may identify a meaningful representation that can be matched361

with skill sets of other developers or projects.362

B. Vector Embedding in Software Engineering363

Vector embeddings have been used in software engineering364

for various tasks, e.g. using natural language associated with365

coding to determine sentiment [34], using writing style in366

commit messages to determine developer identity [35], or im- 367

prove requirements traceability [36]. In these cases the natural 368

language techniques do not need to be modified substantially 369

as the underlying data represents natural language. 370

Even more techniques have been applied to model pro- 371

gramming language source using text analysis techniques. For 372

example, these approaches can improve Interactive Develop- 373

ment Environments (IDEs) by performing next token predic- 374

tion [37], suggesting better class names [38], or even automatic 375

patching [39]. In a recent paper, Alon et al. [40] proposed 376

a method for representing snippets of code as continuous 377

distributed vectors (code embeddings). 378

The attempt to provide a common embedding space for 379

natural language and code was proposed by Ye et al. [41] 380

by training the natural language models on the API documen- 381

tation and the applications that use these APIs. 382

Unlike these approaches, we focus on training the models 383

on the APIs used in files that undergo a code change. While we 384

do not go to the level of a specific function used in the API, we 385

treat each import/use statement as an indication of the specific 386

functionality provided by the corresponding package. As noted 387

above, the best natural language analysis techniques typically 388

exploit the order of the words in a text document (such 389

as commit messages, requirements, or documentation). The 390

programming language modelling techniques also rely heavily 391

on the specific sequence that is necessary to do accurate 392

prediction of the next token, for example. In contrast, our work 393

looks at embedding package imports within source code files, 394

where the order of import statements may not be important. 395

Thus, the existing techniques that attempt to model the order 396

of the tokens need to be modified to fit our purpose. 397

IV. METHODOLOGY 398

To represent our entities in the Skill Space we need a very 399

large corpus of software and we turn to World of Code (WoC) 400

due to its size, coverage, data quality, and the ability to obtain 401

desirable subsamples as described below. 402

A. Data Source: World of Code 403

WoC is a prototype of an updatable and expandable in- 404

frastructure, aimed at supporting research and tools that rely 405

on version control data from open source projects that use 406

Git. It stores large and rapidly growing amounts of data 407

that approximates the entire FLOSS ecosystem, and provides 408

capabilities to efficiently extract and analyze the data at that 409

scale. In addition to storing objects from all git repositories, 410

WoC also provides relationships among them. The primary 411

focus of WoC is on the types of analyses that require global 412

reach across FLOSS projects, so it is the most appropriate 413

choice for answering the research questions we presented here. 414

WoC data is versioned, with the latest version labeled 415

as R, containing 7.9 billion blobs, 2 billion commits, 8.3 416

billion trees, 17.3 million tags, 123 million projects (distinct 417

repositories), and 42 million distinct author IDs. This version 418

of WoC data was collected during March, 2020. 419

As is often the case with datasets of this size, certain 420

data cleaning steps are critical to obtain meaningful results. 421

Conveniently, in addition to providing access to the raw data,422

WoC offer advanced data augmentation capabilities. Two such423

4



techniques were used in this study for data preprocessing:424

fork resolution (deforking) and developer identity resolution,425

since our Skill Space representation considers the relationship426

among projects, developers, and their API usage. Accurately427

representing all three of these entities is, therefore, necessary.428

429
1) Project Clones: Fork Resolution: Git is a distributed430

version control system that, inherently, makes it easy to clone431

or fork Git projects. This, however, creates a unique data clean-432

ing problem for WoC, which has over 116 million projects,433

many of which are clones or forks of another project. This434

poses several problems for our expertise analysis. One such435

problem is that a developer who contributes to a highly-cloned436

project will have their commits appear in the remaining cloned437

projects as well, e.g. if a developer contributes to one project438

using the flask module in Python and 10 other people clone439

this project and make little to no changes, the developer would440

be attributed with having worked with flask on 11 different441

projects, rather than just one.442

To address this, we use the dataset published in [42],443

which applies the Louvain community detection algorithm to444

a massive graph consisting of links between commits and445

projects in WoC (because two projects are highly unlikely446

to share the same exact commit unless they are clones).447

We leverage that work to combine commits from the forked448

projects and ensure that we do not count the same project-449

related information multiple times due to these forks/clones.450

451
2) Identifying a Developer: Identity Resolution: The WoC452

dataset contains the author ID for each git commit, which453

would, ideally, correspond to a single developer, and could be454

used to aggregate all commits associated with the author ID455

and perform our expertise analysis. However, this is seldom456

the case as the author ID is obtained from the git configuration457

file residing on developer’s laptop/desktop/server where they458

use git. The author ID tags, therefore, often differ between459

commits made on different computers used by a developer.460

As a result, many developers have multiple author IDs (with461

some that they might not even be aware of) in WoC collection462

that, collectively, need to represent the same developer.463

To address this, we have used a dataset shared by by Fry et464

al. [43] that resolves the 38 million author identities in WoC465

version Q by creating blocks of potentially related author IDs466

(e.g. IDs that share the same email, unique first/last name)467

and then predicting which IDs actually belong to the same468

developer using a machine learning model. The approach469

identified over 14 million author IDs belonging to at least one470

other author ID. From this set, around 5.5 million developers471

were identified, with a median of two author IDs per developer.472

When performing the expertise analysis described in this473

paper, we identify each developer using the new associations474

created by the identity resolution approach. This allows us to475

create a much more accurate representation of each developer’s476

API usage and expertise and helps us avoid comparing two 477

author IDs that are in fact the same developer. 478

B. API Extraction 479

To obtain developer API usage, we utilize the language 480

mappings inside WoC. These mappings contain APIs extracted 481

from changes to source code files in C, C#, Java, FORTRAN, 482

Go, JavaScript, Python, R, Rust, Scala, Perl, Ruby, Dart, 483

Kotlin, TypeScript, and Julia languages, as well as source code 484

present in Jupyter (iPython) Notebooks 4. The mappings are 485

created by first obtaining all files in WoC with extensions 486

used by each of the languages listed previously. For each 487

language, the WoC file-to-blob5 map is used to obtain all 488

blobs associated with language-specific files. The content 489

of the resulting blobs is then parsed for import statements 490

depending on the syntax of each language (e.g. #include 491

in C, import in Java/Python, use in Perl, the dependencies 492

in the package.json file for npm, and so forth). 493

Each of these blobs (versions of the source code) is further 494

mapped to the commit(s) that produced it and projects that 495

have that commit. Timestamps, authors and projects of these 496

commits are then associated with the blob as well as with 497

the APIs parsed from that blob resulting in the following 498

tuple (programming language, repository, timestamp, author 499

id, timestamp, API1, ...). We use deforking and author aliasing 500

described above to transform repository into deforked project 501

ID and author id into aliased developer id. The timestamp 502

allows us to perform time-based prediction in some of our 503

models as discussed in Section IV-E. 504

Thus, the final mapping and data used by some of the 505

models is a compressed file of entries containing: 506

project;timestamp;developer;API1;API2;..., 507

where each entry represent all modules/APIs included in the 508

file that the developer added to the project at the instance 509

in time. There is a unique set of entries for each language 510

listed earlier, and they are stored in separate compressed 511

file. While this mapping serves as the base data for most of 512

our analysis, there are several intermediate steps that require 513

transformation of the provided mapping as well. 514

C. Summaries of API usage 515

The previous subsection describes the procedures used to 516

obtain the data from WoC (version R) that captures for each 517

modificaton to the source code the programming language, the 518

timestamp, the developer, the project, and the list of “import” 519

statements. 520

Table I shows the number of delta (changed blobs) asso- 521

ciated with each language as well as the number of distinct 522

authors and projects involved. The largest number of delta 523

by far involve C and C++ (we do not distinguish between 524

the two), followed by Java and Python. The relatively low 525

number of JavaScript delta relates to the way dependen- 526

cies are specified in JavaScript projects where a single file 527

(Package.json) is used to specify the dependencies while 528

in C, Java, or Python, every source code file needs to include529

its dependencies explicitly.530

Notably, Java language dominates in terms of the number531

of unique APIs, presumably because the APIs in Java can be532

specified using global namespace, while for other languages533

they are defined by package managers or within the source534

code files (like .h files in C/C++) that may share the same535

name but be otherwise unrelated (see Section VI).536

4https://jupyter.org/
5https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

5



TABLE I
SUMMARY OF DATA RETRIEVED FROM WOC-VERSION.R PER LANGUAGE

Language Delta (Changed blobs) Authors Projects Distinct

APIs

Fraction of deltas

(changed blobs) with 30
or fewer APIs

Max no. of APIs in one delta

(changed blob)

FORTRAN 1,628,760 24,898 15,623 59,349 0.98 106
Julia 1,297,134 18,666 35,723 104,725 0.99 108

R 6,822,662 361,754 516,678 85,255 0.998 117
iPython 12,160,775 793,261 1,154,120 687,085 0.99 1,158

Perl 18,780,774 480,615 547,115 58,942 0.999 109
Rust 13,599,452 95,712 148,327 818,686 0.99 118
Dart 7,036,000 116,317 164,360 467,863 0.99 165

Kotlin 28,129,485 281,469 429,071 6,233,673 0.96 1,096
TypeScript 239,416,852 1,605,563 2,253,291 7,324,019 0.99 1,013

C# 220,871,444 2,092,316 3,092,761 6,648,357 0.997 150
Go 123,432,323 490,967 662,355 245,102 0.995 1,207

Scala 36,361,141 176,414 210,175 3,571,593 0.99 1,288
Ruby 74,618,824 1,222,886 2,343,825 669,297 0.997 1,002

JavaScript 55,609,812 3,362,191 7,347,050 1,105,918 0.67 10,014
Python 612,708,423 4,795,735 6,820,899 17,227,676 0.99 1,001
C/C++ 1,780,602,124 3,656,965 4,704,446 2,553,521 0.99 1,007

Java 1,106,084,606 5,063,200 7,512,800 85,079,403 0.92 1,004

As noted above, the total number of distinct APIs we537

observe is far higher than the number of words in a natural538

language putting computational strains on the text analysis539

methods designed to deal with many orders of magnitude540

smaller dictionaries. Moreover, the order of the APIs in source541

code files is not important, hence we need to apply methods542

that do not attempt to model the sequences. While some early543

text analysis methods, such as LSI, work strictly on the bag544

of words (BOW) and are immune from this problem. Others,545

such as continuous bag of words (CBOW), try to predict words546

within a certain window size. The wider the window, the more547

complicated and time consuming it is to fit these models.548

To investigate what window sizes might be appropriate, we549

investigate the distribution of the number of distinct APIs550

within a single delta (a modification by a single commit to551

one source code file).552

Table I shows the fraction of delta for each languages where553

the number of distinct APIs is less than 30 and also shows the554

maximum number of APIs. Again, JavaScript is an outlier here555

since a single file (package.json) defines APIs for the entire556

project. We chose to consider the window size of 30 or less for557

the CBOW models since it captures most of the deltas for all558

languages. The deltas with huge numbers of APIs used may559

indicate unusual cases or outliers that may not bring much560

information to which APIs are used together and it is not561

unreasonable to exclude those from consideration.562

The total number of delta and the number of distinct APIs563

pose serious computational challenges if we want to fit the564

complete dataset obtained from WoC with 4.3B delta and565

over 100M distinct APIs not counting the number of distinct 566

projects and authors. We, therefore, fit several smaller datasets 567

by filtering the data to a more manageable size. 568

First, for the multi-language model, we focus on developers 569

that made between 100 and 25K commits partially to exclude 570

the bot activities and partly to consider ordinary but productive 571

developers, since by the premises of our proposed hypotheses, 572

we’re trying to focus on developers who have a good amount 573

of contributions in social-coding platforms, since our assump- 574

tion is that they will use new APIs, contribute to multiple 575

projects, and will submit a number of pull requests. This filter 576

reduces the total number of delta down to 1.2B. For language 577

specific models we are dealing with much smaller datasets, but 578

we can decrease that size even further by randomly sampling 579

projects or developers. We used these smaller samples to debug 580

the techniques and to find the parameters for the Skill Space 581

embeddings that produce feasible results before running the 582

computation on the entire model. 583

D. Vector Embedding 584

Since the total number of possible APIs that can be used by 585

a developer or a project across different languages is extremely 586

large and the naive embedding, representing API usage as a 587

component, of over 100M-dimensional vector is not practical, 588

we reduce the dimensionality of the Skill Space. We chose 589

to employ Doc2Vec embedding method since it is capable of 590

embedding not only the APIs themselves but developers and 591

projects at the same time. It is also one of the most efficient 592

embeddings to compute: an important consideration given the 593

large data corpus we handle. 594

Word2Vec, [21] is a highly computationally efficient algo- 595

rithm used to create a numerical representation for a word 596

using a continuous bag of words or skipgram (two distinct 597

algorithms). The primary assumption of Word2Vec is that only 598

words that are close together in a document are semantically 599

related. In our context that assumption doesn’t hold, because 600

there is no semantic order for the APIs used by a developer 601

or a project. We address this potential problem by using the 602

continuous bag of words algorithm with a wide window of603

30 words. Since the number of APIs associated with a single604

blob rarely exceeds 30 as shown in Table I, the algorithm in605

practice predicts one API of a blob using all remaining APIs.606

Doc2Vec is an extension of Word2Vec, where in addition607

to word (API) embeddings, the model also produces the608

embeddings for an arbitrary set of tags associated with a609

group of APIs, as is the case when an author, a project, and610

a language is associated with the set of APIs extracted from611

each change of every file. The continuous bag of words analog612

in Doc2Vec corresponds to obtaining doc-vectors by training613

a neural network on the synthetic task of predicting a a word614

6



based on an average of both context word-vectors and the full615

document’s doc-vector. We used the Gensim framework for616

evaluation due to its high performance.617

E. Evaluation strategies618

The evaluation strategy involves fitting a Doc2Vec model619

on past data where each document represents the APIs en-620

countered in a single delta and the document tags represent621

the language, the project, and the developer. The resulting622

model thus creates vectors for each API, for each developer,623

each project, and each language. We then obtain new APIs a624

developer uses during the testing period, the new projects the625

developer joins, and the new developers who join a project626

during the testing period. The alignment to these factual627

APIs/projects/developers are then compared with randomly628

chosen sets of APIs/projects/developers of the same size.629

We chose the dates so that we have a fairly short testing630

period starting from February, 2019. All changes prior to631

that date were used to fit the model and the activities past632

that date to check the predictions. We used these dates for633

predicting new APIs, developers joining new projects, and634

projects accepting new contributors.635

For PR accetance and self-reported expertise we fitted636

models based on data prior to Feb 14, 2018 and tested on637

activities after that time in order to have a sufficient numbero638

accepted or rejected PRs during the testing period for most639

developers. To conduct the study of pull request acceptance,640

we sourced the pull request dataset [44] used by Dey and641

Mockus [6] for verifying our hypothesis and studying the642

effects of technical and social factors on PR acceptance. The643

dataset contained information on 470,925 PRs from 3349644

popular NPM packages and 79,128 GitHub users who created645

those. We filtered this dataset to only include developers who646

made between 100 and 25,000 commits, similar to what we647

did for testing earlier hypotheses. In addition, we removed648

small projects that didn’t have any API calls. After filtering,649

we were left with 150,173 PRs made by 14,784 developers650

for 1860 GitHub projects.651

Then, as in the other cases, we proceeded to obtain em-652

beddings for the developers and projects using past data and653

then model the acceptance rate during the future PR activity654

using the binomial regression with the independent variable655

representing the alignment of the developer and project vectors656

where the PRs have been submitted to together with the657

predictors used by [6]. We once again use February, 2018 658

to separate training and test data. 659

Finally, we use a previously reported survey [15] of 660

JavaScript developers to compare how aligned each surveyed 661

developer is to the the API in which developers were reported 662

to be proficient. Since the survey did not include APIs where 663

developers reported being not proficient, we randomly chose 664

ten other APIs under the assumption that they might not be 665

equally proficient in these 10 randomly chosen APIs. As in 666

other comparisons, we report the difference in alignment be- 667

tween the self-reported expert APIs and the randomly chosen 668

APIs. To make the Skill Space representations commensurate 669

with developer self-reported expertise, we only use the data 670

TABLE II
SUMMARY OF PER-LANGUAGE RESULTS OF T-TEST SHOWING THE

DIFFERENCE OF ALIGNMENTS BETWEEN A DEVELOPER’S

REPRESENTATION IN THE Skill Space AND THE APIS THEY USED IN

FUTURE VS. RANDOM APIS THEY DIDN’T USE (IN THE SAME LANGUAGE).
P-VALUES <1E-200 ARE SHOWN AS 0.

Language Estimated Difference
in Means

95% Confidence
Interval

p-Value

Dart 0.41 0.39 - 0.43 3.12e-92
Julia 0.21 0.15 - 0.27 8.57e-05
R 0.14 0.09 - 0.20 1.46e-06
iPython 0.20 0.18 - 0.22 6.68e-65
Perl 0.05 0.03 - 0.06 2.85e-13
Rust 0.21 0.20 - 0.22 2.01e-151
Kotlin 0.21 0.20 - 0.22 1.09e-139
TypeScript 0.23 0.22 - 0.24 0
C# 0.25 0.23 - 0.26 6.16e-137
Go 0.15 0.14 - 0.15 0
Scala 0.20 0.19 - 0.22 8.45e-89
Ruby 0.17 0.16 - 0.18 3.80e-188
Java 0.13 0.12 - 0.13 0
C/C++ 0.13 0.13 - 0.13 0
Python 0.12 0.12 - 0.12 0
JavaScript 0.10 0.10 - 0.10 0
FORTRAN -0.11 -0.73 - 0.51 0.268

close to the time when the survey was conducted (also 671

February, 2018). 672

Given the very large vocabularies for the APIs, we chose a 673

relatively high-dimensional vector of 200 for Skill Space, to 674

make sure there is enough flexibility to represent the extremely 675

large number of potential skills. We excluded APIs that occur 676

in fewer than five deltas to increase computational efficiency 677

and, also, avoid highly uncertain embeddings. As discussed 678

above, we chose a window size of 30 to ensure that the order 679

of APIs in the delta does not matter. Finally, we chose the 680

negative sampling parameter to be 20. It tends to speed up the 681

convergence by creating synthetic samples (API combinations) 682

that do not exist in the data and penalizes the model if it 683

produces a good fit for such “negative” samples. All of these 684

parameters were chosen after extensive experimentation fitting 685

the models on manageable-size datasets. 686

V. RESULTS 687

A. Qualitative Evaluation of Skill Space Embeddings 688

For a qualitative evaluation of our proposed embedding we 689

decided to observe which APIs provide similar functionality 690

across different languages. Specifically, we can do some arith- 691

metic with the resulting vectors by asking what are packages 692

the most similar to Python “pandas” package in R language: 693

>>> mod.wv.similar_by_vector(-mod.docvecs[’PY’] + 694

mod.docvecs[’R’] + mod.wv.get_vector(’pandas’)) 695

>>> [(’data.table’, 0.83), (’dplyr’, 0.82) ] 696

As we see, the most popular data frame (after which “pandas” 697

was modeled) packages are most similar. Also, only R pack- 698

ages appear in the most similar list even though we start from 699

the python package and move in the direction of R. 700

B. Examining H1: New APIs used by developers are closely 701

aligned to themselves in the Skill Space 702

We follow the process outlined in Section IV-E to get the 703

alignment between embeddings of each developer, created by 704

the APIs they used during the training period, and the APIs 705

7



the new APIs used in the testing period and a set of random 706

APIs in the same language that they did not use. We did 707

the calculation separately for each language to get a clearer 708

understanding of the performance of our proposed Skill Space 709

embeddings at that level. 710

We were unable to fit model for the entire corpus (it would 711

have taken several months on a fast multi-processor server).712

Intead we sampled 36K projects that contain 1.2B delta by713

690K athors in all 17 languages. The amount of data for each714

language is similar to that in the entire corpus.715

The pared t-test results in Table II show that the APIs used716

in the future were indeed more closely aligned as compared717

to random APIs they didn’t use. The amount of data for the718

FORTRAN language in the sample was too small to get a719

statistically significant difference.720

C. Examining H2: A developer is more likely to join a new721

project that is more closely aligned to themselves in the Skill722

Space723

Here we try to validate the expectation that the new projects724

a developer will join (make an accepted contribution to) would725

be more closely aligned with the developer’s Skill Vector than726

a randomly selected project.727

As described in Section IV-E, we calculated the alignment728

between embeddings of each developer and the projects they729

contributed to and a set of random other projects in the same730

language that they did not contribute to, and measured if731

there is any significant difference between them using t-test.732

We found there is indeed a significant difference (p-value <733

2.2e-16) with a difference between the estimated means of734

the cosine similarity of 0.017 and 95% confidence interval735

of [0.013, 0.021]. This supports our hypothesis that there is a736

similarity between the developers vectors and vectors of the737

projects they contribute to in future.738

D. H3: A project is more likely to accept contributions from739

developers who are aligned to the project in the Skill Space740

One of the potential Skill Space applications is increasing741

trust. New contributors who have Skill Vectors aligned to a742

project’s Skill Vectors should be more likely to have their743

contributions accepted all other factors being equal. Their skill744

(if it exists) should manifest itself in the technical aspects of 745

the PR and, threfore, might be recognized by the maintainers 746

of that project. Once again, we constructed skill vectors 747

for the developers who contributed to a project, measured 748

the alignment between them and the skill vectors of the 749

corresponding projects, and compared them with the alignment 750

between skill vectors of a project and the skill vectors of 751

randomly chosen developers who did not contribute to that 752

project. The differences between the alignments was found to 753

be significant using t-test, with p-value < 2.2e-16, an estimated 754

difference of means between the alignments being 0.141, and 755

a 95% confidence interval of [0.126, 0.156]. 756

TABLE III
RESULT OF LOGISTIC REGRESSION MODEL PREDICTING PR

ACCEPTANCE.Cosine Similarity between Developer and Project IS THE

VARIABLE WE INTRODUCED IN THIS STUDY (HIGHLIGHTED IN GRAY).
OTHER VARIABLES ARE ADOPTED FROM [6]. THE NON-SIGNIFICANT

VARIABLE IS HIGHLIGHTED IN RED, BINARY VARIABLES ARE IN BLUE

Predictor Coefficient ± Std. Error p-Value

(Intercept) 0.654 ± 0.093 2.24e-12
Cosine Similarity between De-

veloper and Project

0.396 ± 0.084 2.10e-06

creator submitted -0.120 ± 0.009 < 2e− 16

creator accepted 0.874 ± 0.033 < 2e− 16

repo submitted -0.026 ± 0.005 1.62e-06
repo accepted 2.864 ± 0.056 < 2e− 16

dependency:1 -0.212 ± 0.021 < 2e− 16

age -0.221 ± 0.004 < 2e− 16

comments -0.173 ± 0.013 < 2e− 16

review comments 0.342 ± 0.011 < 2e− 16

commits -0.360 ± 0.015 < 2e− 16

additions -0.015 ± 0.008 0.05
deletions -0.035 ± 0.006 < 2e− 16

changed files -0.151 ± 0.016 < 2e− 16

contain issue fix:1 0.123 ± 0.020 1.89e-09
contain test code:1 -0.418 ± 0.324 0.197
user accepted repo:1 1.326 ± 0.027 < 2e− 16

creator total commits 0.086 ± 0.009 < 2e− 16

creator total projects 0.015 ± 0.007 0.029

E. H4: A developer whose Skill Space is aligned more closely 757

to the project’s Skill Space will be more likely to have their 758

pull requests accepted 759

To more directly evaluate the previous hypothesis, here 760

we restrict our attention to Pull Requests (formal external 761

contributions) where we can see not only the cases when the 762

contribution was accepted as above, but also cases where the 763

contribution was made but not accepted. As previously, we 764

hypothesize the developers’ alignment with projects in Skill 765

Space should have a significant impact on PR acceptance 766

probability, with a better alignment being associated with a 767

higher chances of acceptance. 768

We used a regression model for this analysis, as mentioned 769

in Section IV-E. The result of the Logistic Regression model 770

is presented in Table III, which shows that the alignment 771

between developers and projects remains a significant variable 772

even after accounting for the other social and technical factors 773

described in [6], i.e. this variable describes a factor which is 774

not captured by other technical and social factors. We also 775

notice that the coefficient for this variable is positive, i.e. the776

closer a developer’s alignment is to a project, the higher the777

chance of their PR being accepted, which validates our pro-778

posed hypothesis. We checked the Variance Inflation Factors779

for these variables and found the values to be less than 2.5780

in all cases, signifying that there is no multicollinearity effect.781

The variable ‘contain test code’ was found to be insignificant,782

similar to [6]. However, the variable ‘deletions’ was found to783

be insignificant in [6] but it’s significant here, which could be784

because we’re only focusing on a subset of the data used in785

that study.786

8



TABLE IV
RESULT OF LINEAR REGRESSION MODELS: (A) EXPLAINING

DEVELOPER-API ALIGNMENT (R2 VALUE: 0.90); (B) EXPLAINING SELF

REPORTED SKILL SCORE (R2 VALUE: 0.92)

(A)
Predictors Estimate ±

Std. Err.
p-Value

API:mongodb 0.249 ± 0.013 < 2e-16
API:react 0.307 ± 0.011 < 2e-16
API:socketio 0.422± 0.012 < 2e-16
log(No. of
Commits)

0.000± 0.001 0.9

Self-Reported
Score

0.014± 0.003 1.8e-6

(B)
Predictors Estimate ±

Std. Err.
p-Value

API:mongodb 2.5 ± 0.10 < 2e-16
API:react 2.9 ± 0.08 < 2e-16
API:socketio 1.9 ± 0.12 < 2e-16
log(No. of Com-
mits)

1.1±0.012 < 2e-16

Developer-API
Alignment

0.98 ± 0.21 1.81e-6

F. H5: A developer’s self-reported API skills are closely787

aligned to themselves788

The final question we pose is whether the representations in789

Skill Space align with developer’s self-reported opinions about790

their own expertise related to a specific technology.791

We obtained data from the replication package of [15] that792

surveys a sample of GitHub users to create a ground truth for793

self-reported developers expertise in the studied libraries. In794

this survey, the participants declared their expertise (on a scale795

from 1 to 5) for three JavaScript libraries: mongodb, react, and796

socketio.797

Similarly to previous experiments, we obtain skill space798

representations for survey participants and the three APIs. We799

investigate if the skill space similarity can be explained by the800

self-reported score by fitting a linear regression model and find801

that the self reported score explains increases in alignment to802

each API as self reported expertise score increases. The result803

of the linear regression model is shown in Table IV(A).804

Finally, we try to model the self-reported score using the805

amount of activity (commits) as reported in [15] and adding806

the Skill Space similarity. Again, we find that the increase in807

skill alignment has a statistically significant positive relation-808

ship with the self-reported score even after adjusting for the809

direct measure of experience based on the number of commits.810

The result of the model is shown in Table IV(B).811

In summary, we find that the proposed Skill Space em-812

bedding based on Doc2Vec models of the APIs in files813

changed by a developer has a strong and statistically signif-814

icant relationship with the self-reported developer expertise.815

Furthermore, even after adjusting for less granular measure of816

experience (number of commits), we still see that Skill Space817

representation has a strong explanatory power.818

VI. LIMITATIONS819

It is important to note the primary objective behind in- 820

troducing the concept of Skill Space: the ability to compare 821

developers, projects and APIs with the ultimate goal of better 822

measuring developer skills and at facilitating ways to make 823

open source software development more effective by creating 824

signals about the developers’ expertise that is more general 825

than the modification of individual files, but more specific than 826

their volume of overall activity. 827

The objective of this work is to conceptualize Skill Space, 828

to list some of its properties, and to demonstrate that it is 829

possible to construct it on a very large corpus of programming 830

languages and APIs. 831

Our results, consequently, have to be interpreted with care. 832

First, our definition of developer skill is constructive and 833

practical. We are only concerned that it reflects postulated 834

measures of performance and has some agreement with de- 835

velopers’ subjective perceptions. Further work is needed to 836

ascertain if it satisfies any additional properties or is suitable 837

for non-constructive definitions of skill. 838

Specifically, the definition of Skill Space we chose is based 839

on API usage, but the skill embeddings can be conducted for 840

other types of skills as well. 841

We validate the proposed Skill Space by checking if it 842

would satisfy the intuitive properties the Skill Space should 843

exhibit, but there may be additional properties we do not 844

consider (and the proposed Skill Space does not satisfy). For 845

example, our primary concern in this work is to capture the 846

aspects of developer expertise related to the APIs they use 847

and we are not concerned with other types of expertise, such 848

as their proficiency to do good design, architecture, testing, 849

and so forth, or with their ability to communicated with other 850

developers. 851

The particular mechanism of what it means to use an API 852

may be refined. We only consider if the version of the file 853

modified by a developer has certain import statements, but do 854

not verify that the API is actually exercised in the file, and 855

we also do not check if the developer made a change to the 856

part of the code that exercises a specific subset of the API 857

used in the file. Moreover, it can be argued that just because a 858

developer uses some API in a file doesn’t mean that they are 859

expert in using that API, since code snippets are often copied 860

and pasted from different sources. However, our assumption is 861

that a developer should have a basic familiarity with the APIs 862

used in the files they modify, at least more than a random 863

other API they have never been associated with, and, as noted 864

by Lucassen and Schraagen [12], “domain familiarity can be 865

seen as a weaker form of domain expertise.” 866

Since our aim is to capture the profile of expertise as a 867

trust-building support and we attempt to create such measures 868

that equally apply to individual APIs, projects, and developers, 869

there no golden datasets that could be created to evaluate 870

the objectivity of all such measures. Specifically, there is no 871

convincing test everyone would agree upon that a developer 872

is a good fit for a project. As such, we can evaluate the 873

goodness of the measures we propose through several indirect 874

means e.g., can a specific developer be trusted when they 875

make a contribution if there has been no prior interaction876

between the developer and maintainer? As we noted above,877

different languages have different conventions in which APIs878

are declared and these differences may play a role or need to879

be taken into account in order to improve upon the proposed880

implementation of the skill space.881

There are a few other shortcomings associated with our882

approach, e.g. our method of measuring expertise can’t be883

applied to complete newcomers, since they likely have worked884

with very few APIs, and their representation in the Skill Space885

is likely to be unstable. However, these developers are not our886

target audience, we are trying to focus on developers with887

9



a moderate amount of contribution record who are trying to888

join a new project, trying to use a new API, or aiming to get889

their contributions accepted in a project. Similarly, rare APIs890

may not be accurately represented as the corpus may not have891

sufficient number of instances of using such API.892

Many potential improvements to the embedding approaches893

could be considered. Since our concern was to demonstrate894

the feasibility of the approach, we chose an established and895

computationally efficient Doc2Vec method. With the field of896

text analysis rapidly evolving, we expect that future work897

will develop more accurate methods that are likely to vary898

with task (API/developer/project/PR prediction), vary with899

programming language, or use alternative embedding tech-900

niques. We also expect further work to refine the parameters901

of embedding methods as well. Our largest model took more902

than three weeks to fit, limiting the ability to run performance-903

optimization experiments.904

Another potential shortcoming of our approach is that it is905

not completely resistant to hacking (like most other existing906

methods of reporting developer expertise), since it is possible907

to generate a number of toy projects that use a specific set908

of APIs to give an impression that the developer who set up909

those projects is skilled with such APIs. However, this is not910

completely straightforward either, since it involves the creation911

of several toy projects. Further refinements of our method are912

in progress to make it more robust.913

While we model a very large corpus of software, it all914

represents open source development. Activity of developers915

in non-public repositories and non-public software is not916

captured in this analysis. Future work is needed to apply917

our techniques on proprietary code bases to ascertain if Skill918

Spaces can be operationalized in the same way or some919

adaptations are needed to take into account the differences920

in the development process.921

VII. FUTURE WORK922

Previous sections discussed a variety of promising ap-923

proaches for future work to improve the quality of Skill Space924

representations and to evaluate alternative ways to capture to925

what extent a particular change may require/increase API-926

related skills. More far reaching extensions ofSkill Space927

would be to include non-technical skills, such as communi-928

cation and collaboration skills that are also very important in929

establishing trust. We could, potentially, use traces of devel-930

opment activity related to developers ability to communicate, 931

write high-quality code, respond to issues, get pull request 932

accepted and other important skills. This, however, would 933

require a way to evaluate the quality of the artifacts a developer 934

produces and the quality of the practices they employ. 935

A recent paper [16] utilized WoC as a way to estimate 936

the reputation of a developer. The authors created a tool 937

(DRE) that displays a developer’s aggregated contributions 938

to open source as derived from their commits. The measures 939

include both expertise (e.g. total commits, files, programming 940

language usage, and how widely a developer’s code has 941

been re-used) and social aspects (e.g. projects worked on, 942

collaborators, and the Torvalds Index), with some of the 943

measures overlapping both aspects. Overall, DRE serves up 944

developer profiles that provides a broad overview of many 945

facets of a developer’s activity. However, we propose that 946

the skill spaces presented in this paper can be used to 947

enhance developer profile tools such as DRE. For example, 948

we can first fill the need for specific developer expertise by 949

providing a developer’s skill space that consists of their API 950

usage. Furthermore, rather than just serving as a developer 951

profile, we believe our embedding approaches can provide 952

recommendation features for both the developer and those 953

who are browsing the profile. For example, as a developer, 954

our approach allows us to recommend: similar projects that 955

you might consider joining, similar developers that you might 956

want to work with in the future, and similar technologies/APIs 957

you might consider working with, all based on the Skill Space 958

generated for you by our embedding approach. 959

VIII. CONCLUSION 960

We have established a proof-of-concept for Skill Space: an 961

approach to represent packages (APIs), developers, languages, 962

and projects in the same vector space with a topology that 963

satisfies several practically-relevant criteria, such that the 964

representations of developers (projects) in Skill Space are 965

similar to the representations of the APIs they use (contain). 966

Furthermore, Skill Space representations are predictive of 967

the future API usage by developers, developers joining new 968

projects, and it also affects the probability of a developer’s 969

pull requests being accepted. Finally, these representations are 970

aligned with developers self-reported expertise. 971

As with all data-intensive techniques, only entities that 972

have sufficient data can be accurately represented, but a large 973

volume of public data from OSS projects can help. The 974

simplicity of the proposed estimation techniques makes is easy 975

to apply them within enterprises, producing company-specific 976

Skill Spaces that could be integrated with the OSS data. 977

Two observations were primary motivator for us to con- 978

ceptualize the medium-granularity expertise created from the 979

implicitly defined relationships among APIs in the vast corpus 980

of open source software projects: 981

1) Contemporary software development increasingly in- 982

volves complex dependency chains with much of a 983

software product depending on software developed by 984

unknown and unfamiliar teams; 985

2) The ability of developers to use specific libraries and986

frameworks (in the dependency chains noted above) is an987

important factor that determines their ability to complete988

programming tasks.989

We hope that the progress on measuring and understanding990

technical aspects of expertise may prove helpful in develop-991

ing approaches that establish trust between maintainers and992

contributors who had no prior interactions. We also hope that993

it may shed some light on the causes of the vast differences994

in programmer productivity and help research on developer995

learning trajectories. We are sharing the source code and the996

datasets used in this work with the intention of facilitating997

10



replications, further improvements in the approaches to con-998

struct Skill Space, and, more generally, supporting further999

studies in this area.1000

REFERENCES1001

[1] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &1002

Policy, vol. 12, no. 3, pp. 23–49, 1999.1003

[2] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open1004

source software development: Apache and Mozilla,” ACM Transactions1005

on Software Engineering and Methodology, vol. 11, no. 3, pp. 1–38,1006

July 2002. [Online]. Available: http://dl.acm.org/authorize?397251007

[3] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of1008

the pull-based software development model,” in Proceedings of the 36th1009

International Conference on Software Engineering, 2014, pp. 345–355.1010

[4] J. Zhu, M. Zhou, and A. Mockus, “Effectiveness of code contribution:1011

From patch-based to pull-request-based tools,” in Proceedings of the1012

2016 24th ACM SIGSOFT International Symposium on Foundations of1013

Software Engineering. ACM, 2016, pp. 871–882. [Online]. Available:1014

https://dl.acm.org/authorize?N275151015

[5] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-1016

ing and predicting which bugs get fixed: an empirical study of microsoft1017

windows,” in Proceedings of the 32Nd ACM/IEEE International Con-1018

ference on Software Engineering-Volume 1, 2010, pp. 495–504.1019

[6] T. Dey and A. Mockus, “Effect of technical and social factors on pull re-1020

quest quality for the npm ecosystem,” arXiv preprint arXiv:2007.04816,1021

2020.1022

[7] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical1023

factors for evaluating contribution in github,” in Proceedings of the1024

36th International Conference on Software Engineering. New York,1025

NY, USA: Association for Computing Machinery, 2014, p. 356366.1026

[Online]. Available: https://doi.org/10.1145/2568225.25683151027

[8] T. Dey and A. Mockus, “Which pull requests get accepted and why?1028

a study of popular npm packages,” arXiv preprint arXiv:2003.01153,1029

2020.1030

[9] P. Audris Mockus, C.-P. James Herbsleb, c.-P. Randy Bradley, c.-P.1031

Bogdan Bicescu, and c.-P. Russell Zaretsky, “Bigdata: Collaborative1032

research: Ia: Oscar - open source supply chains and avoidance of risk:1033

An evidence based approach to improve floss supply chains,” National1034

Science Foundation, IIS-1633437 1,300K, 2016-2018.1035

[10] J. Marlow and L. Dabbish, “Activity traces and signals in software1036

developer recruitment and hiring,” in Proceedings of the 2013 conference1037

on Computer supported cooperative work, 2013, pp. 145–156.1038

[11] J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of new1039

project teams from open source software developer networks:1040

Impact of prior collaboration ties,” Information Systems Research,1041

vol. 19, no. 3, pp. 369–391, 2008. [Online]. Available: https:1042

//pubsonline.informs.org/doi/abs/10.1287/isre.1080.01921043

[12] T. Lucassen and J. M. Schraagen, “Factual accuracy and trust in1044

information: The role of expertise,” Journal of the American Society1045

for Information Science and Technology, vol. 62, no. 7, pp. 1232–1242,1046

2011.1047

[13] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration1048

in open source ecosystems,” in Proceedings of the 19th ACM SIGSOFT1049

symposium and the 13th European conference on Foundations of soft-1050

ware engineering, 2011, pp. 70–80.1051

[14] A. Mockus and J. Herbsleb, “Expertise browser: A quantitative1052

approach to identifying expertise,” in 2002 International Conference on1053

Software Engineering. Orlando, Florida: ACM Press, May 19-25 2002, 1054

pp. 503–512. [Online]. Available: http://dl.acm.org/authorize?24835 1055

[15] J. E. Montandon, L. L. Silva, and M. T. Valente, “Identifying experts 1056

in software libraries and frameworks among github users,” in 2019 1057

IEEE/ACM 16th International Conference on Mining Software Reposi- 1058

tories (MSR). IEEE, 2019, pp. 276–287. 1059

[16] S. Amreen, A. Karnauch, and A. Mockus, “Developer reputation es- 1060

timator (dre),” in 2019 34th IEEE/ACM International Conference on 1061

Automated Software Engineering (ASE). IEEE, 2019, pp. 1082–1085. 1062

[17] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World 1063

of code: An infrastructure for mining the universe of open source vcs 1064

data,” in IEEE Working Conference on Mining Software Repositories, 1065

May 2019. 1066

[18] Q. Le and T. Mikolov, “Distributed representations of sentences and 1067

documents,” in International conference on machine learning, 2014, pp. 1068

1188–1196. 1069

[19] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of- 1070

knowledge model to capture source code familiarity,” in ICSE ’10: Pro- 1071

ceedings of the 32th international conference on Software engineering. 1072

ACM, 2010, pp. 385–394. 1073

[20] D. L. Parnas, “On the criteria to be used in decomposing systems into 1074

modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1075

1972. 1076

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, 1077

11



[38] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate1142

method and class names,” in Proceedings of the 2015 10th Joint Meeting1143

on Foundations of Software Engineering, 2015, pp. 38–49.1144

[39] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,1145

A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair at scale,”1146

in 2019 IEEE/ACM 41st International Conference on Software Engi-1147

neering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019,1148

pp. 269–278.1149

[40] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning1150

distributed representations of code,” Proceedings of the ACM on Pro-1151

gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.1152

[41] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings1153

to document similarities for improved information retrieval in software1154

engineering,” in Proceedings of the 38th international conference on1155

software engineering, 2016, pp. 404–415.1156

[42] A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing, “A complete set of1157

related git repositories identified via community detection approaches1158

based on shared commits,” in IEEE Working Conference on Mining1159

Software Repositories: Data Showcase, May 2020. [Online]. Available:1160

https://arxiv.org/abs/2002.027071161

[43] T. Fry, T. Dey, A. Karnauch, and A. Mockus, “A dataset and an1162

approach for identity resolution of 38 million author ids extracted from1163

2b git commits,” in IEEE Working Conference on Mining Software1164

Repositories: Data Showcase, May 2020.1165

[44] T. Dey and A. Mockus, “A Dataset of Pull Requests and A Trained1166

Random Forest Model for predicting Pull Request Acceptance,” May 1167

2020. [Online]. Available: https://doi.org/10.5281/zenodo.3858046 1168

12


	Introduction
	Research Problem
	Postulated properties of Skill Space
	Operationalization of Skill Space
	Evaluation criteria

	Related Work
	Developer Expertise
	Vector Embedding in Software Engineering

	Methodology
	Data Source: World of Code
	Project Clones: Fork Resolution
	Identifying a Developer: Identity Resolution

	API Extraction
	Summaries of API usage
	Vector Embedding
	Evaluation strategies

	Results
	Qualitative Evaluation of Skill Space Embeddings
	Examining H1: New APIs used by developers are closely aligned to themselves in the Skill Space
	Examining H2: A developer is more likely to join a new project that is more closely aligned to themselves in the Skill Space
	H3: A project is more likely to accept contributions from developers who are aligned to the project in the Skill Space
	H4: A developer whose Skill Space is aligned more closely to the project's Skill Space will be more likely to have their pull requests accepted
	H5: A developer's self-reported API skills are closely aligned to themselves

	Limitations
	Future Work
	Conclusion
	References

