31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

Representation of Developer Expertise in Open
Source Software

Anonymous Author(s)

Abstract—Background: Accurate representation of developer
expertise has always been an important research problem. While
a number of studies proposed novel methods of representing
expertise within individual projects, these methods are difficult
to apply at an ecosystem level. However, with the focus of software
development shifting from monolithic to modular, a method of
representing developers’ expertise in the context of the entire OSS
development becomes necessary when, for example, a project tries
to find new maintainers and look for developers with relevant
skills . Aim: We aim to address this knowledge gap by proposing
and constructing the Skill Space where each API, developer, and
project is represented and postulate how the topology of this
space should reflect what developers know (and projects need).
Method: we use the World of Code infrastructure to extract
the complete set of APIs in the files changed by open source
developers and, based on that data, employ Doc2Vec embeddings
for vector representations of APIs, developers, and projects.
We then evaluate if these embeddings reflect the postulated
topology of the Skill Space by predicting what new APIs/projects
developers use/join, and whether or not their pull requests get
accepted. We also check how the developers’ representation in the
Skill Space align with their self-reported API expertise. Result:
Our results suggest that the proposed embeddings in the Skill
Space appear to satisfy the postulated topology and we hope
that such representations may aid in the construction of signals
that increase trust (and efficiency) of open source ecosystems at
large and may aid investigations of other phenomena related to
developer proficiency and learning.

Index Terms—Developer Expertise,
Doc2Vec

Vector Embedding,

I. INTRODUCTION

The number of projects and developers involved with open
source software has reached staggering heights, e.g. GitHub
reported that over 10 million new developers joined and
over 44 million new projects were created in 2019 alone '.
While many of these developers or projects are based on
individual effort, further statistics, such as over 87 million pull
requests being merged and 20 million issues being closed in
the past year on GitHub alone, demonstrate that open source
development is a highly collaborative effort.

The key premise of open source software is not only to share
the code, but, more importantly, to enable contributions from
the community [1], [2]. However, despite improved tools and
practices enabled by social coding platforms such as GitHub,
it is not always easy to get contributions accepted, and, as
many studies have shown, repeated interactions between the
maintainers and contributors are necessary to establish trust
and increase the chances of pull request acceptance or issue
resolution [3], [4], [5], [6], [7], [8]. However, this method of

Thttps://octoverse.github.com/

building reputation and trust by repeated interactions does not
scale very well, and, with a growing number of developers and
an increasing number of projects their code may depend on [9],
other means of establishing trust are becoming necessary. Pre-
vious work [10], [7] has shown that both technical and social
aspects of a developer’s reputation can play an important role
in building the frust between themselves and other developers.
While social aspects, such as previous collaboration [11], can
greatly increase the trust between two developers, these aspects
are not broadly applicable as they enhance trust within an
already-established developer circle. For a developer looking
to contribute for the first time to a project outside of their social
circle, the technical aspect of their reputation, often referred
to as expertise, may serve as an important source of trust for
other developers when evaluating a developer as a potential
team member or collaborator [12].

We, therefore, concentrate on gauging the relevant expertise
of a developer based on their previous development activities.
Such measure, if it could be obtained, might partially substitute
for the traditionally laborious reputation building process as
a developer transitions from a peripheral participation in a
project to a contributor role [13], and could potentially increase
the efficiency of the open source development as a whole.
However, previous attempts at measuring developer expertise
either focus on very detailed views, e.g. counting “experience
atoms” associated with changes made by a developer on a
specific source code file [14], or, at the least granular level,
counting the volume, frequency, and breadth [15], [16] of a de-
veloper’s overall activities. Unfortunately, the former approach
can not be applied for developers who have never participated
in a specific project, while the latter does not account for
the specific experience of a developer beyond the aggregated
activity traces and projects they’ve worked on. Aggregates
of developer’s contributions by programming language was
previously proposed by Amreen et al. [16], however, expe-
rience in a particular language does not immediately confer
experience in the variety of libraries or frameworks in that
language which specific applications might rely on. However,
this measure of domain expertise, or expertise measured by the
fluency of using specific APIs, is something that may be of
greater concern to projects [15] than a potential contributor’s
overall skill in a language.

In this work, we try to measure and evaluate such specific
domain expertise by defining what we refer to as Skill Space,
that can be applied to developers, projects, and to individual
programming languages or APIs as well. In other words, Skill
Space provides a vector representation for individual develop-

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

17

118

119

120

121

122

128

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

ers, projects, programming languages, or APIs, with the topol-
ogy of the resulting representations (skill vectors) reflecting
the conceptual and practical (API-related) relationships among
these four entities.

To operationalize this Skill Space we use the World of
Code (WoC) [17] data that contains APIs extracted from
changes to source code files (discussed further in Section IV-B)
in 17 programming languages. We employ Doc2Vec [18§]
text embedding that uses as input the dependencies (APIs)
of a file modified in each change made by a developer to
produce the Skill Space representation for individual APIs,
developers, projects, and languages. The topology in this space
is defined by the alignment (cosine similarity) between vectors
representing any pair of developers, projects, APIs, developers
and APIs, developers and projects, and projects and APIs.

Our key contributions consist of a) conceptualization of
developer skill/expertise that transcends individual project
boundaries making it specific enough to determine its rele-
vance in a novel context; b) postulating the desirable topology
of the resulting Skill Space; c) proposing Doc2Vec embed-
ding method for operationalizing the Skill Space; and d)
an empirical evaluation of the proposed topology for this
operationalization.

In the rest of the paper, we start by describing the specific re-
search problems in Section II. The related works are described
in Section III. We describe our methodology in Section IV, and
the evaluation results for our proposed embedding for the pro-
posed Skill Space is described in Section V. We describe the
limitations to our study in Section VI, the planned extension
of the proposed technique in Section VII, and conclude the
paper in Section VIII.

II. RESEARCH PROBLEM

Our aim in this paper is to define a feasible represen-
tation of a developer’s expertise in specific focus areas of
software development by gauging their fluency with different
APIs. Such medium-granularity representation of developer
expertise might serve as a way to get a better understanding
of developer skill, help recommender systems that suggest
APIs, projects, or contributors, or to increase the trust between
external contributors and maintainers of a project. To achieve
these goals we define the concept of Skill Space and we
propose the desirable properties and an operationalization of
this concept. We quantify Skill Space based on the World of
Code (WoC) [17] data that contains information on the APIs
extracted from changes to source code files (discussed further
in Section IV-B) in 17 programming languages.

A. Postulated properties of Skill Space

The critical feature of our concept of Skill Space is the
ability to make direct comparisons among three entities: devel-
opers, projects, and APIs. The simplest way to accomplish that
is to represent each entity as a vector in a linear space. Once
such representation is accomplished, for it to be meaningful
it needs to satisfy several simple properties: First, we expect
that the skill vectors of APIs representing similar skills will be
close to each other; Second, a developer’s skill vector should

be similar to the representation of the APIs they use most
frequently; Third, a project’s skill vector should be similar to
the representations of the APIs used in these projects; Finally,
we expect the developer representations to be aligned with
their subjective perceptions of their API mastery.

Apart from these four fundamental properties, for Skill
Space to be useful in practice, we expect a few additional
properties to be satisfied: First, in order to predict API usage,
we expect that the new APIs a developer will use in the future
should have representations more similar to the representations
of APIs they have used in the past compared to randomly
selected APIs; Second, we expect that new APIs added in
projects should also follow a similar pattern; Third, we expect
that developers will be more likely to join new projects that
have representations similar to themselves in the Skill Space.
We also expect other manifestations of “good” Skill Spaces
in terms of outcomes of developer work, e.g. the closeness
between the skill vector of a developer who submitted a pull
request (PR) to a project and that of the target project should
have a significant impact on the PR acceptance probability.

Skill spaces satisfying these properties can obviously be of
practical and theoretical use, hence our objective in this paper
is to construct such a Skill Space and to evaluate if it satisfies
these desirable properties.

B. Operationalization of Skill Space

To produce the representations in the Skill Space we follow
previous successful approaches such as degree-of-knowledge
model [19] and experience atom [14] that take the uncontrover-
sial position that developer’s skill increases as they complete
and repeat tasks requiring a specific skill. In the context of
software engineering, that involves making changes to the
source code. Since we are trying to capture the experience
of using programming APIs, we capture the APIs that a
modified source code file depends upon. We further discuss
the pros and cons of this choice and potential alternatives in
Section VI. Since many of the software source code files are an
approximation of software modules [20], the collection of the
APIs a file depends upon should represent a specific use case
of the functionality instantiated by the file and should, thus,
provide implicit dependencies between the APIs utilized in
that file. The entirety of all source code, thus, should embody
all realized relationships among APIs. Once these implicit
relationships among APIs based on changes to the source
code are captured, the representation of a developer in the
skill space could simply be derived from the changes they
have made, the representation of a project through changes
made in that project, and the representation of a programming
language through all changes involving that language.

A naive representation of each change would simply be a
high-dimensional vector? that represents each of the distinct
APIs extracted from over 4 billion changes to the source
code files of the languages under consideration. However, such
representation of APIs in the Skill Space is not very effective or

2We counted over 100 million distinct import/use/package/etc. statements
in the programming languages from WoC version R

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

practical, and techniques from text analysis [21] may be used
to reduce the dimensionality of this vector. The key underlying
assumption of text analysis techniques is that words in a
natural language are used in certain combinations to express
certain ideas or thoughts. The unsupervised approaches where
the relationships are learned directly from the corpus of
text, assume that the words within a document have to be
related and represent some underlying idea expressed by that
document. For larger documents sliding window techniques
are often used to restrict the length of text where threse
asssumed relationships among words pertain to the same
idea. Similarly, we assume that a combination of APIs used
in a software module would also reflect some aspects of
the functionality implemened in that module. The number
of APIs in a single file tends to be quite low as we find
in Table I, so thre is no need for sliding windows when
representing the API. However, text analysis methods need a
large corpus of natural language text to extract the semantics
from word combinations. We, similarly, expect that the Skill
Space representation would require a very large corpus of
software modules to represent these distinct functionalities
(and the associated skill of developers who implemented it). In
this paper, we use Doc2Vec [18] text embedding approach to
produce the Skill Space representation not just for individual
developers, but also for individual APIs, projects, and even
languages. As a result, the proposed Skill Space representation
can be used to calculate a direct measure of alignment between
any pair of developers, projects, APIs, developers and APIs,
developers and projects, and projects and APIs.

C. Evaluation criteria

A conceptual definition also needs practical utility, there-
fore, to evaluate the suitability of the our proposed Skill Space
representation, we investigate a number of practical scenarios
where developer expertise and trust might come into play,
and we expect that a closer alignment between developers
and APIs or projects in the Skill Space will increase the
likelihood of a positive outcome in these events. Specifically,
we pose the desirable properties of the Skill Space (outlined in
Section II-A) as hypotheses which we evaluate to determine if
the proposed representation of a developer’s specific expertise
in the Skill Space might be useful in practice by evaluating
the following topological properties of the Skill Space:

HI1: A developer is more likely to choose new APIs that are
more closely aligned® with themselves.

A developer is more likely to join a new projects that are
more closely aligned to themselves.

A project is more likely to accept contributions from
developers who are more aligned to the project.
Developers better aligned with the project’s will have
better odds to have their pull requests accepted.

A developer’s self-reported API skills are closely aligned

to their own representation in Skill Space.

H2:
H3:
H4:

H5:

3Since we use cosine similarity to measure closeness between entities, the
word “alignment” is a better choice that a more conventional “distance.” 312

, _ III. RELATED WORK o
In this section, we present an overview of the historic efforts

to measure developer expertise and outline the role of word
embeddings in the software engineering literature to clarify
the existing gaps we try to address with our work.

A. Developer Expertise

The fascination with developer expertise and its variation
began in the early days of software development [22], [23],
[24], [25]. Early work was primarily motivated by the need
for software project cost estimation and focused on various
ways to measure the size of software by adjusting lines of
code for different languages or attempting to design ways to
have a language-independent measure of software size [26].
The later works embraced the idea that beyond language,
each software project requires long and arduous work by a
developer to comprehend its internal complexities [27]. This
suggested that developer expertise is project and file specific
with approaches such as Expertise Browser assuming that
each change to a source code file represents an experience
atom [14], whereby a developer changing code is forced to
understand the files’ internal design and, perhaps, impart of
their own design through implementing that change. However,
these early measures of lines of code written and file-specific
experience atoms pertain to expertise within a specific project.
They do not provide a general enough profile of developer
expertise that can be transferred among software projects.

Contemporary social coding platforms (e.g. GitHub) provide
a variety of indicators of developer activity (the timeline of
commits) and their social status (followers). This has sparked
a variety of research into how developer traces and developer
profiles can provide insight about a developer’s expertise.
These studies include qualitative approaches, such as the one
by Marlow et. al. [28], who showed that your developer profile
on GitHub can help other developers gauge your general
coding ability and project-relevant skills, but only at a more
general level. Similarly, Singer et. al. [29] interviewed devel-
opers and employers to observe how they utilize developer
profiles to gauge the quality of a potential new hire. The
results showed that profile sites with a “skills” word-cloud
representing the technologies (languages, frameworks, etc.) a
developer claimed to be familiar with proved to be the most
helpful assessment of a developer’s expertise. These works
indicate that more specific measures, such as language-specific
technologies and frameworks, help others gauge the relevant
expertise of developers in open source.

There have also been several attempts to automate the pro-
cess of identifying developer expertise through social coding
platforms, e.g. CVExplorer [30] is a tool created to expose
developer expertise using a word-cloud of all relevant tech-
nologies, frameworks, and general skills by parsing developer
commit messages and README files. SCSMiner [31] is
another tool created to help identify experts on GitHub based
on an arbitrary input query. The authors also obtain expertise
attributes by parsing README files of projects a developer
has contributed to, but they extend this by creating a generative
probabilistic expert ranking model to rank developers based on

257
258

259

260

261

262

263

264

265

266

267

268

269

270

27

272

273

274

275

276

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

296

297

298

299

301

302

303

304

305

306

307

308

309

310

311

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

certain skills or expertise one might be looking for. Lastly,
Hauff et. al. [32] attempt to match developers with job
advertisements based on a developer’s expertise by extracting
relevant terms from README files and mapping them to
the same vector space as job advertisements, and ranking all
developer profiles based on the cosine similarity they share
with the job advertisements. While all of these approaches
are a similar step in the same direction as us, they provide a
weaker link between developers and their technologies than
desired by utilizing README files as the main source of
developer expertise, while we extract language-specific APIs
from files a developer has modified. Furthermore, along with
measuring a developer’s similarity to the technologies they
use as attempted in previous work, we also aim to use the
APIs to measure the similarity between developers, projects,
developers and projects, and projects and APIs.

We also motivate our work through some more recent stud-
ies. Montandon et. al. [15] present an approach to determine
experts for three JavaScript libraries. The authors identify
developers who have made changes to projects that depend
on these libraries and conduct a survey of 575 developers to
obtain their self-reported expertise. Using these survey results
as validation, the authors argue that their clustering approach is
feasible and can be used to identify relevant experts. However,
they also present the shortcomings of using basic GitHub
profile features for machine learning classifiers to predict
expertise in software libraries. We utilize the survey dataset
provided by the authors for our own evaluation and also at-
tempt to better predict developer expertise in software libraries,
an area in which the authors achieved poor performance.

The more recent Import2Vec [33] paper produces em-
beddings for each imported package. The authors do such
embeddings for JavaScript, Python, and Java, and provide
some qualitative evidence suggesting that these embeddings
of APIs accurately reflect different functionality profiles by
providing a number of examples where the similar APIs also
appear to implement similar functionality.

Unfortunately, none of the proposed approaches are suitable
for directly comparing developers and projects, as neither
developers nor projects are accurately represented in the same
vector space as the API embeddings. It is, therefore, not clear
how Import2Vec embeddings can be used to represent devel-
opers’ domain expertise nor if such profiles would accurately
reflect developer proficiency. Furthermore, the Import2Vec
approach can not be applied in a cross-language context. Our
proposed approach tries to address this gap by constructing a
Skill Space representation that, on one hand, may transcend
the specific programming languages, and on the other hand,
may identify a meaningful representation that can be matched
with skill sets of other developers or projects.

B. Vector Embedding in Software Engineering

Vector embeddings have been used in software engineering
for various tasks, e.g. using natural language associated with
coding to determine sentiment [34], using writing style in
commit messages to determine developer identity [35], or ims2
prove requirements traceability [36]. In these cases the naturals

language techniques do not need to be modified substantially
as the underlying data represents natural language.

Even more techniques have been applied to model pro-
gramming language source using text analysis techniques. For
example, these approaches can improve Interactive Develop-
ment Environments (IDEs) by performing next token predic-
tion [37], suggesting better class names [38], or even automatic
patching [39]. In a recent paper, Alon et al. [40] proposed
a method for representing snippets of code as continuous
distributed vectors (code embeddings).

The attempt to provide a common embedding space for
natural language and code was proposed by Ye et al. [41]
by training the natural language models on the API documen-
tation and the applications that use these APIs.

Unlike these approaches, we focus on training the models
on the APIs used in files that undergo a code change. While we
do not go to the level of a specific function used in the API, we
treat each import/use statement as an indication of the specific
functionality provided by the corresponding package. As noted
above, the best natural language analysis techniques typically
exploit the order of the words in a text document (such
as commit messages, requirements, or documentation). The
programming language modelling techniques also rely heavily
on the specific sequence that is necessary to do accurate
prediction of the next token, for example. In contrast, our work
looks at embedding package imports within source code files,
where the order of import statements may not be important.
Thus, the existing techniques that attempt to model the order
of the tokens need to be modified to fit our purpose.

IV. METHODOLOGY
To represent our entities in the Skill Space we need a very
large corpus of software and we turn to World of Code (WoC)
due to its size, coverage, data quality, and the ability to obtain
desirable subsamples as described below.

A. Data Source: World of Code

WoC is a prototype of an updatable and expandable in-
frastructure, aimed at supporting research and tools that rely
on version control data from open source projects that use
Git. It stores large and rapidly growing amounts of data
that approximates the entire FLOSS ecosystem, and provides
capabilities to efficiently extract and analyze the data at that
scale. In addition to storing objects from all git repositories,
WoC also provides relationships among them. The primary
focus of WoC is on the types of analyses that require global
reach across FLOSS projects, so it is the most appropriate
choice for answering the research questions we presented here.

WoC data is versioned, with the latest version labeled
as R, containing 7.9 billion blobs, 2 billion commits, 8.3
billion trees, 17.3 million tags, 123 million projects (distinct
repositories), and 42 million distinct author IDs. This version
of WoC data was collected during March, 2020.

As is often the case with datasets of this size, certain
data cleaning steps are critical to obtain meaningful results.
Gonveniently, in addition to providing access to the raw data,
WoC offer advanced data augmentation capabilities. Two such

369

370

371

372

373

374

375

376

377

378

379

380

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

424
425
426
427

428

438

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450

3%

453
454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471

472
473
474
475

476

techniques were used in this study for data preprocessing:
fork resolution (deforking) and developer identity resolution,
since our Skill Space representation considers the relationship
among projects, developers, and their API usage. Accurately

representing all three of these entities is, therefore, necessary.
1) Project Clones: Fork Resolution: Git is a distributed

version control system that, inherently, makes it easy to clone
or fork Git projects. This, however, creates a unique data clean-
ing problem for WoC, which has over 116 million projects,
many of which are clones or forks of another project. This
poses several problems for our expertise analysis. One such
problem is that a developer who contributes to a highly-cloned
project will have their commits appear in the remaining cloned
projects as well, e.g. if a developer contributes to one project
using the £1ask module in Python and 10 other people clone
this project and make little to no changes, the developer would
be attributed with having worked with £1ask on 11 different
projects, rather than just one.

To address this, we use the dataset published in [42],
which applies the Louvain community detection algorithm to
a massive graph consisting of links between commits and
projects in WoC (because two projects are highly unlikely
to share the same exact commit unless they are clones).
We leverage that work to combine commits from the forked
projects and ensure that we do not count the same project-

related information multiple times due to these forks/clones.
2) Identifying a Developer: Identity Resolution: The WoC

dataset contains the author ID for each git commit, which
would, ideally, correspond to a single developer, and could be
used to aggregate all commits associated with the author ID
and perform our expertise analysis. However, this is seldom
the case as the author ID is obtained from the git configuration
file residing on developer’s laptop/desktop/server where they
use git. The author ID tags, therefore, often differ between
commits made on different computers used by a developer.
As a result, many developers have multiple author IDs (with
some that they might not even be aware of) in WoC collection
that, collectively, need to represent the same developer.

To address this, we have used a dataset shared by by Fry et
al. [43] that resolves the 38 million author identities in WoC
version Q by creating blocks of potentially related author IDs
(e.g. IDs that share the same email, unique first/last name)
and then predicting which IDs actually belong to the same
developer using a machine learning model. The approach
identified over 14 million author IDs belonging to at least one
other author ID. From this set, around 5.5 million developers
were identified, with a median of two author IDs per developeg,
When performing the expertise analysis described in thig,
paper, we identify each developer using the new associationg,
created by the identity resolution approach. This allows us tg;
create a much more accurate representation of each developer:s;
API usage and expertise and helps us avoid comparing twg,

author IDs that are in fact the same developer. 535

B. API Extraction L w6
To obtain developer API usage, we utilize the languag

mappings inside WoC. These mappings contain APIs extracted
from changes to source code files in C, C#, Java, FORTRAN,

Go, JavaScript, Python, R, Rust, Scala, Perl, Ruby, Dart,
Kotlin, TypeScript, and Julia languages, as well as source code
present in Jupyter (iPython) Notebooks . The mappings are
created by first obtaining all files in WoC with extensions
used by each of the languages listed previously. For each
language, the WoC file-to-blob> map is used to obtain all
blobs associated with language-specific files. The content
of the resulting blobs is then parsed for import statements
depending on the syntax of each language (e.g. #include
in C, import in Java/Python, use in Perl, the dependencies
in the package.json file for npm, and so forth).

Each of these blobs (versions of the source code) is further
mapped to the commit(s) that produced it and projects that
have that commit. Timestamps, authors and projects of these
commits are then associated with the blob as well as with
the APIs parsed from that blob resulting in the following
tuple (programming language, repository, timestamp, author
id, timestamp, API1, ...). We use deforking and author aliasing
described above to transform repository into deforked project
ID and author id into aliased developer id. The timestamp
allows us to perform time-based prediction in some of our
models as discussed in Section IV-E.

Thus, the final mapping and data used by some of the
models is a compressed file of entries containing:
project;timestamp; developer;API1;API2; ...,
where each entry represent all modules/APIs included in the
file that the developer added to the project at the instance
in time. There is a unique set of entries for each language
listed earlier, and they are stored in separate compressed
file. While this mapping serves as the base data for most of
our analysis, there are several intermediate steps that require
transformation of the provided mapping as well.

C. Summaries of API usage .
The previous “subsection describes the procedures used to

obtain the data from WoC (version R) that captures for each
modificaton to the source code the programming language, the
timestamp, the developer, the project, and the list of “import”
statements.

Table I shows the number of delta (changed blobs) asso-
ciated with each language as well as the number of distinct
authors and projects involved. The largest number of delta
by far involve C and C++ (we do not distinguish between
the two), followed by Java and Python. The relatively low
number of JavaScript delta relates to the way dependen-
cies are specified in JavaScript projects where a single file
(Package. json) is used to specify the dependencies while
in C, Java, or Python, every source code file needs to include
its dependencies explicitly.

Notably, Java language dominates in terms of the number
of unique APIs, presumably because the APIs in Java can be
specified using global namespace, while for other languages
they are defined by package managers or within the source
eode files (like .h files in C/C++) that may share the same
g;ame but be otherwise unrelated (see Section VI).

4814https://jupyter.org/
42> https://git-scm.com/book/en/v2/Git-Internals- Git-Objects

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515
516

517

518

519

520

522

523

524

525

526

527

528

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

TABLE I
SUMMARY OF DATA RETRIEVED FROM WOC-VERSION.R PER LANGUAGE

Language Delta (Changed blobs) Authors Projects Distinct Fraction of deltas Max no. of APIs in one delta
APIs (changed blobs) with 30 (changed blob)

or fewer APIs
FORTRAN 1,628,760 24,898 15,623 59,349 0.98 106
Julia 1,297,134 18,666 35,723 104,725 0.99 108
R 6,822,662 361,754 516,678 85,255 0.998 117
iPython 12,160,775 793,261 1,154,120 687,085 0.99 1,158
Perl 18,780,774 480,615 547,115 58,942 0.999 109
Rust 13,599,452 95,712 148,327 818,686 0.99 118
Dart 7,036,000 116,317 164,360 467,863 0.99 165
Kotlin 28,129,485 281,469 429,071 6,233,673 0.96 1,096
TypeScript 239,416,852 1,605,563 | 2,253,291 7,324,019 0.99 1,013
C# 220,871,444 | 2,092,316 | 3,092,761 6,648,357 0.997 150
Go 123,432,323 490,967 662,355 245,102 0.995 1,207
Scala 36,361,141 176,414 210,175 3,571,593 0.99 1,288
Ruby 74,618,824 1,222,886 | 2,343,825 669,297 0.997 1,002
JavaScript 55,609,812 | 3,362,191 7,347,050 1,105,918 0.67 10,014
Python 612,708,423 | 4,795,735 | 6,820,899 17,227,676 0.99 1,001
C/C++ 1,780,602,124 | 3,656,965 | 4,704,446 2,553,521 0.99 1,007
Java 1,106,084,606 | 5,063,200 | 7,512,800 85,079,403 0.92 1,004

As noted above, the total number of distinct APIs we
observe is far higher than the number of words in a natural
language putting computational strains on the text analysis
methods designed to deal with many orders of magnitude
smaller dictionaries. Moreover, the order of the APIs in source
code files is not important, hence we need to apply methods
that do not attempt to model the sequences. While some early
text analysis methods, such as LSI, work strictly on the bag
of words (BOW) and are immune from this problem. Others,
such as continuous bag of words (CBOW)), try to predict words
within a certain window size. The wider the window, the more
complicated and time consuming it is to fit these models.
To investigate what window sizes might be appropriate, we
investigate the distribution of the number of distinct APIs
within a single delta (a modification by a single commit to
one source code file).

Table I shows the fraction of delta for each languages where
the number of distinct APIs is less than 30 and also shows the
maximum number of APIs. Again, JavaScript is an outlier here
since a single file (package.json) defines APIs for the entire
project. We chose to consider the window size of 30 or less for
the CBOW models since it captures most of the deltas for all
languages. The deltas with huge numbers of APIs used may
indicate unusual cases or outliers that may not bring much
information to which APIs are used together and it is not
unreasonable to exclude those from consideration.

The total number of delta and the number of distinct APIs
pose serious computational challenges if we want to fit the,
complete dataset obtained from WoC with 4.3B delta ang,
over 100M distinct APIs not counting the number of disting;
projects and authors. We, therefore, fit several smaller datasets,
by filtering the data to a more manageable size. 607

First, for the multi-language model, we focus on developezss
that made between 100 and 25K commits partially to excludes
the bot activities and partly to consider ordinary but productive
developers, since by the premises of our proposed hypotheses.
we’re trying to focus on developers who have a good amount:
of contributions in social-coding platforms, since our assumps
tion is that they will use new APIs, contribute to multiple:

projects, and will submit a number of pull requests. This filter
reduces the total number of delta down to 1.2B. For language
specific models we are dealing with much smaller datasets, but
we can decrease that size even further by randomly sampling
projects or developers. We used these smaller samples to debug
the techniques and to find the parameters for the Skill Space
embeddings that produce feasible results before running the
computation on the entire model.

D. Vector Embedding

Since the total number of possible APIs that can be used by
a developer or a project across different languages is extremely
large and the naive embedding, representing API usage as a
component, of over 100M-dimensional vector is not practical,
we reduce the dimensionality of the Skill Space. We chose
to employ Doc2Vec embedding method since it is capable of
embedding not only the APIs themselves but developers and
projects at the same time. It is also one of the most efficient
embeddings to compute: an important consideration given the
large data corpus we handle.

Word2Vec, [21] is a highly computationally efficient algo-
rithm used to create a numerical representation for a word
using a continuous bag of words or skipgram (two distinct
algorithms). The primary assumption of Word2Vec is that only
words that are close together in a document are semantically
related. In our context that assumption doesn’t hold, because
there is no semantic order for the APIs used by a developer
or a project. We address this potential problem by using the
continuous bag of words algorithm with a wide window of
30 words. Since the number of APIs associated with a single
blob rarely exceeds 30 as shown in Table I, the algorithm in
practice predicts one API of a blob using all remaining APIs.
s68 Doc2Vec is an extension of Word2Vec, where in addition
t@ word (API) embeddings, the model also produces the
embeddings for an arbitrary set of tags associated with a
group of APIs, as is the case when an author, a project, and
azlanguage is associated with the set of APIs extracted from
each change of every file. The continuous bag of words analog
in Doc2Vec corresponds to obtaining doc-vectors by training
asneural network on the synthetic task of predicting a a word

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

based on an average of both context word-vectors and the full
document’s doc-vector. We used the Gensim framework for
evaluation due to its high performance.

E. Evaluation strategies

The evaluation strategy involves fitting a Doc2Vec model
on past data where each document represents the APIs en-
countered in a single delta and the document tags represent
the language, the project, and the developer. The resulting
model thus creates vectors for each API, for each developer,
each project, and each language. We then obtain new APIs a
developer uses during the testing period, the new projects the
developer joins, and the new developers who join a project
during the testing period. The alignment to these factual
APIs/projects/developers are then compared with randomly
chosen sets of APIs/projects/developers of the same size.

We chose the dates so that we have a fairly short testing
period starting from February, 2019. All changes prior to
that date were used to fit the model and the activities past
that date to check the predictions. We used these dates for
predicting new APIs, developers joining new projects, and
projects accepting new contributors.

For PR accetance and self-reported expertise we fitted
models based on data prior to Feb 14, 2018 and tested on
activities after that time in order to have a sufficient numbero
accepted or rejected PRs during the testing period for most
developers. To conduct the study of pull request acceptance,
we sourced the pull request dataset [44] used by Dey and
Mockus [6] for verifying our hypothesis and studying the
effects of technical and social factors on PR acceptance. The
dataset contained information on 470,925 PRs from 3349
popular NPM packages and 79,128 GitHub users who created
those. We filtered this dataset to only include developers who
made between 100 and 25,000 commits, similar to what we
did for testing earlier hypotheses. In addition, we removed
small projects that didn’t have any API calls. After filtering,
we were left with 150,173 PRs made by 14,784 developers
for 1860 GitHub projects.

Then, as in the other cases, we proceeded to obtain em-
beddings for the developers and projects using past data and
then model the acceptance rate during the future PR activity
using the binomial regression with the independent variable
representing the alignment of the developer and project vectors
where the PRs have been submitted to together with the
predictors used by [6]. We once again use February, 2018
to separate training and test data.

Finally, we use a previously reported survey [15] of
JavaScript developers to compare how aligned each surveyed
developer is to the the API in which developers were reported
to be proficient. Since the survey did not include APIs where
developers reported being not proficient, we randomly chose
ten other APIs under the assumption that they might not be
equally proficient in these 10 randomly chosen APIs. As in
other comparisons, we report the difference in alignment be-
tween the self-reported expert APIs and the randomly chosen
APIs. To make the Skill Space representations commensurate
with developer self-reported expertise, we only use the data

TABLE II
SUMMARY OF PER-LANGUAGE RESULTS OF T-TEST SHOWING THE
DIFFERENCE OF ALIGNMENTS BETWEEN A DEVELOPER’S
REPRESENTATION IN THE Skill Space AND THE APIS THEY USED IN
FUTURE VS. RANDOM APIS THEY DIDN’T USE (IN THE SAME LANGUAGE).
P-VALUES <1E-200 ARE SHOWN AS 0.

Language Estimated Difference 95% Confidence p-Value
in Means Interval
Dart 0.41 0.39 - 0.43 3.12e-92
Julia 0.21 0.15 - 0.27 8.57e-05
R 0.14 0.09 - 0.20 1.46e-06
iPython 0.20 0.18 - 0.22 6.68¢-65
Perl 0.05 0.03 - 0.06 2.85¢-13
Rust 0.21 0.20 - 0.22 2.0le-151
Kotlin 0.21 0.20 - 0.22 1.09e-139
TypeScript 0.23 0.22 - 0.24 0
C# 0.25 023 -0.26 6.16e-137
Go 0.15 0.14 - 0.15 0
Scala 0.20 0.19 - 0.22 8.45¢-89
Ruby 0.17 0.16 - 0.18 3.80e-188
Java 0.13 0.12 - 0.13 0
C/C++ 0.13 0.13 - 0.13 0
Python 0.12 0.12 - 0.12 0
JavaScript 0.10 0.10 - 0.10 0
FORTRAN -0.11 -0.73 - 0.51 0.268

close to the time when the survey was conducted (also
February, 2018).

Given the very large vocabularies for the APIs, we chose a
relatively high-dimensional vector of 200 for Skill Space, to
make sure there is enough flexibility to represent the extremely
large number of potential skills. We excluded APIs that occur
in fewer than five deltas to increase computational efficiency
and, also, avoid highly uncertain embeddings. As discussed
above, we chose a window size of 30 to ensure that the order
of APIs in the delta does not matter. Finally, we chose the
negative sampling parameter to be 20. It tends to speed up the
convergence by creating synthetic samples (API combinations)
that do not exist in the data and penalizes the model if it
produces a good fit for such “negative” samples. All of these
parameters were chosen after extensive experimentation fitting
the models on manageable-size datasets.

V. RESULTS

A. Qualitative Evaluation of Skill Space Embeddings

or a qualitative evaluation of our proposed embedding we
decided to observe which APIs provide similar functionality
across different languages. Specifically, we can do some arith-
metic with the resulting vectors by asking what are packages
the most similar to Python “pandas” package in R language:
55> mod.wv. similar_by_vector (-mod.docvecs[’PY’] +

mod.docvecs['R’] + mod.wv.get_vector ('pandas’))

>>> [(’data.table’, 0.83), ('dplyr’, 0.82)]

As we see, the most popular data frame (after which “pandas”
Was modeled) packages are most similar. Also, only R pack-
%ges appear in the most similar list even though we start from
the python package and move in the direction of R.

B. Examining HI: New APIs used by developers are closely

%?Zié\I}ed to themselves in the Skill Space
ess We follow the process outlined in Section IV-E to get the

alignment between embeddings of each developer, created by
the APIs they used during the training period, and the APIs

671

672

673

674

675

676

677

678

679

680

682

683

684

685

687

688
689

691

692

693

694

695
696

697

698

699

700

701

702
703

704

705

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

the new APIs used in the testing period and a set of random
APIs in the same language that they did not use. We did
the calculation separately for each language to get a clearer
understanding of the performance of our proposed Skill Space
embeddings at that level.

We were unable to fit model for the entire corpus (it would
have taken several months on a fast multi-processor server).
Intead we sampled 36K projects that contain 1.2B delta by
690K athors in all 17 languages. The amount of data for each
language is similar to that in the entire corpus.

The pared t-test results in Table II show that the APIs used
in the future were indeed more closely aligned as compared
to random APIs they didn’t use. The amount of data for the
FORTRAN language in the sample was too small to get a
statistically significant difference.

C. Examining H2: A developer is more likely to join a new
project that is more closely aligned to themselves in the Skill
Space

Here we try to validate the expectation that the new projects
a developer will join (make an accepted contribution to) would
be more closely aligned with the developer’s Skill Vector than
a randomly selected project.

As described in Section IV-E, we calculated the alignment
between embeddings of each developer and the projects they
contributed to and a set of random other projects in the same
language that they did not contribute to, and measured if
there is any significant difference between them using t-test.
We found there is indeed a significant difference (p-value <
2.2e-16) with a difference between the estimated means of
the cosine similarity of 0.017 and 95% confidence interval
of [0.013,0.021]. This supports our hypothesis that there is a
similarity between the developers vectors and vectors of the
projects they contribute to in future.

D. H3: A project is more likely to accept contributions from
developers who are aligned to the project in the Skill Space

One of the potential Skill Space applications is increasing
trust. New contributors who have Skill Vectors aligned to a
project’s Skill Vectors should be more likely to have their
contributions accepted all other factors being equal. Their skill
(if it exists) should manifest itself in the technical aspects of
the PR and, threfore, might be recognized by the maintainerss
of that project. Once again, we constructed skill vectorss
for the developers who contributed to a project, measureds
the alignment between them and the skill vectors of thes
corresponding projects, and compared them with the alignment
between skill vectors of a project and the skill vectors ofi
randomly chosen developers who did not contribute to that
project. The differences between the alignments was found tes
be significant using t-test, with p-value < 2.2e-16, an estimated:
difference of means between the alignments being 0.141, ands
a 95% confidence interval of [0.126, 0.156]. 786

706 TABLE III

707 RESULT OF LOGISTIC REGRESSION MODEL PREDICTING PR
ACCEPTANCE.Cosine Similarity between Developer and Project 1S THE

708yARIABLE WE INTRODUCED IN THIS STUDY (HIGHLIGHTED IN GRAY).

709 OTHER VARIABLES ARE ADOPTED FROM [6]. THE NON-SIGNIFICANT

1oVARIABLE IS HIGHLIGHTED IN RED, BINARY VARIABLES ARE IN BLUE

E‘edictor Coefficient = Std. Error p-Value
(Intercept) 0.654 £ 0.093 2.24e-12
Cosine Similarity between De- 0.396 £+ 0.084 2.10e-06
veloper and Project

creator_submitted -0.120 £ 0.009 < 2e—16
creator_accepted 0.874 £ 0.033 < 2e—16
repo_submitted -0.026 £ 0.005 1.62e-06
repo_accepted 2.864 £ 0.056 < 2e—16
dependency: 1 -0.212 £ 0.021 < 2e—16
age -0.221 + 0.004 < 2e—16
comments -0.173 £ 0.013 < 2e—16
review_comments 0.342 £ 0.011 < 2e-—16
commits -0.360 £+ 0.015 < 2e—16
additions -0.015 + 0.008 0.05
deletions -0.035 £ 0.006 < 2e—16
changed_files -0.151 £ 0.016 < 2e—16
contain_issue_fix:1 0.123 £ 0.020 1.89e-09
contain_test_code: 1 -0.418 + 0.324 0.197
user_accepted_repo: 1 1.326 £ 0.027 < 2e—16
creator_total_commits 0.086 £ 0.009 < 2e—16
creator_total_projects 0.015 £ 0.007 0.029

E. H4: A developer whose Skill Space is aligned more closely
to the project’s Skill Space will be more likely to have their
pull requests accepted

To more directly evaluate the previous hypothesis, here
we restrict our attention to Pull Requests (formal external
contributions) where we can see not only the cases when the
contribution was accepted as above, but also cases where the
contribution was made but not accepted. As previously, we
hypothesize the developers’ alignment with projects in Skill
Space should have a significant impact on PR acceptance
probability, with a better alignment being associated with a
higher chances of acceptance.

We used a regression model for this analysis, as mentioned
in Section IV-E. The result of the Logistic Regression model
is presented in Table III, which shows that the alignment
between developers and projects remains a significant variable
even after accounting for the other social and technical factors
described in [6], i.e. this variable describes a factor which is
net captured by other technical and social factors. We also
netice that the coefficient for this variable is positive, i.e. the
eloser a developer’s alignment is to a project, the higher the
chance of their PR being accepted, which validates our pro-
posed hypothesis. We checked the Variance Inflation Factors
for these variables and found the values to be less than 2.5
in all cases, signifying that there is no multicollinearity effect.
7Fhe variable ‘contain_test_code’ was found to be insignificant,
stmilar to [6]. However, the variable ‘deletions’ was found to
be insignificant in [6] but it’s significant here, which could be
because we’re only focusing on a subset of the data used in
that study.

757

758

759

760

761

762

763

764

765

766

768

769

770

771

772

773

774

775

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

TABLE IV
RESULT OF LINEAR REGRESSION MODELS: (A) EXPLAINING
DEVELOPER-API ALIGNMENT (R2 VALUE: 0.90); (B) EXPLAINING SELF
REPORTED SKILL SCORE (R? VALUE: 0.92)

A) B)
Predictors Estimate + p-Value Predictors Estimate =+ p-Value
Std. Err. ‘ Std. Err.

APL:'mongodb 0.249 £ 0.013 < 2e-16 API:mongodb 2.5 +£0.10 < 2e-16
APLreact 0.307 £ 0.011 < 2e-16 APLreact 2.9 £ 0.08 < 2e-16
API:socketio 0.422+ 0.012 < 2e-16 API:socketio 1.9 £ 0.12 < 2e-16
log(No. of 0.000+ 0.001 0.9 log(No. of Com- 1.1£0.012 < 2e-16
Commits) mits)

Self-Reported 0.014=+ 0.003 1.8e-6 Developer-API 0.98 £ 0.21 1.81e-6
Score Alignment

F HS5: A developer’s self-reported API skills are closely

aligned to themselves

The final question we pose is whether the representations in
Skill Space align with developer’s self-reported opinions about
their own expertise related to a specific technology.

We obtained data from the replication package of [15] that
surveys a sample of GitHub users to create a ground truth for
self-reported developers expertise in the studied libraries. In
this survey, the participants declared their expertise (on a scale
from 1 to 5) for three JavaScript libraries: mongodb, react, and
socketio.

Similarly to previous experiments, we obtain skill space
representations for survey participants and the three APIs. We
investigate if the skill space similarity can be explained by the
self-reported score by fitting a linear regression model and find
that the self reported score explains increases in alignment to
each API as self reported expertise score increases. The result
of the linear regression model is shown in Table IV(A).

Finally, we try to model the self-reported score using the
amount of activity (commits) as reported in [15] and adding
the Skill Space similarity. Again, we find that the increase in
skill alignment has a statistically significant positive relation-
ship with the self-reported score even after adjusting for the
direct measure of experience based on the number of commits.
The result of the model is shown in Table IV(B).

In summary, we find that the proposed Skill Space em-
bedding based on Doc2Vec models of the APIs in files
changed by a developer has a strong and statistically signif-
icant relationship with the self-reported developer expertise.
Furthermore, even after adjusting for less granular measure of
experience (number of commits), we still see that Skill Space
representation has a strong explanatory power.

VI. LIMITATIONS

It is important to note the primary objective behind ins
troducing the concept of Skill Space: the ability to comparer
developers, projects and APIs with the ultimate goal of betters
measuring developer skills and at facilitating ways to makes
open source software development more effective by creatingp
signals about the developers’ expertise that is more general:
than the modification of individual files, but more specific than
their volume of overall activity. 883

The objective of this work is to conceptualize Skill Spacesy
to list some of its properties, and to demonstrate that it iss
possible to construct it on a very large corpus of programmings
languages and APIs. 887

Our results, consequently, have to be interpreted with care.
First, our definition of developer skill is constructive and
practical. We are only concerned that it reflects postulated
measures of performance and has some agreement with de-
velopers’ subjective perceptions. Further work is needed to
ascertain if it satisfies any additional properties or is suitable
for non-constructive definitions of skill.

Specifically, the definition of Skill Space we chose is based
on API usage, but the skill embeddings can be conducted for
other types of skills as well.

We validate the proposed Skill Space by checking if it
would satisfy the intuitive properties the Skill Space should
exhibit, but there may be additional properties we do not
consider (and the proposed Skill Space does not satisty). For
example, our primary concern in this work is to capture the
aspects of developer expertise related to the APIs they use
and we are not concerned with other types of expertise, such
as their proficiency to do good design, architecture, testing,
and so forth, or with their ability to communicated with other
developers.

The particular mechanism of what it means to use an API
may be refined. We only consider if the version of the file
modified by a developer has certain import statements, but do
not verify that the API is actually exercised in the file, and
we also do not check if the developer made a change to the
part of the code that exercises a specific subset of the API
used in the file. Moreover, it can be argued that just because a
developer uses some API in a file doesn’t mean that they are
expert in using that API, since code snippets are often copied
and pasted from different sources. However, our assumption is
that a developer should have a basic familiarity with the APIs
used in the files they modify, at least more than a random
other API they have never been associated with, and, as noted
by Lucassen and Schraagen [12], “domain familiarity can be
seen as a weaker form of domain expertise.”

Since our aim is to capture the profile of expertise as a
trust-building support and we attempt to create such measures
that equally apply to individual APIs, projects, and developers,
there no golden datasets that could be created to evaluate
the objectivity of all such measures. Specifically, there is no
convincing test everyone would agree upon that a developer
is a good fit for a project. As such, we can evaluate the
goodness of the measures we propose through several indirect
means e.g., can a specific developer be trusted when they
make a contribution if there has been no prior interaction
between the developer and maintainer? As we noted above,
different languages have different conventions in which APIs
ate declared and these differences may play a role or need to
be taken into account in order to improve upon the proposed
implementation of the skill space.
a6 There are a few other shortcomings associated with our
approach, e.g. our method of measuring expertise can’t be
applied to complete newcomers, since they likely have worked
aith very few APIs, and their representation in the Skill Space
i likely to be unstable. However, these developers are not our
target audience, we are trying to focus on developers with

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

a moderate amount of contribution record who are trying to
join a new project, trying to use a new API, or aiming to get
their contributions accepted in a project. Similarly, rare APIs
may not be accurately represented as the corpus may not have
sufficient number of instances of using such APL

Many potential improvements to the embedding approaches
could be considered. Since our concern was to demonstrate
the feasibility of the approach, we chose an established and
computationally efficient Doc2Vec method. With the field of
text analysis rapidly evolving, we expect that future work
will develop more accurate methods that are likely to vary
with task (API/developer/project/PR prediction), vary with
programming language, or use alternative embedding tech-
niques. We also expect further work to refine the parameters
of embedding methods as well. Our largest model took more
than three weeks to fit, limiting the ability to run performance-
optimization experiments.

Another potential shortcoming of our approach is that it is
not completely resistant to hacking (like most other existing
methods of reporting developer expertise), since it is possible
to generate a number of toy projects that use a specific set
of APIs to give an impression that the developer who set up
those projects is skilled with such APIs. However, this is not
completely straightforward either, since it involves the creation
of several toy projects. Further refinements of our method are
in progress to make it more robust.

While we model a very large corpus of software, it all
represents open source development. Activity of developers
in non-public repositories and non-public software is not
captured in this analysis. Future work is needed to apply
our techniques on proprietary code bases to ascertain if Skill
Spaces can be operationalized in the same way or some
adaptations are needed to take into account the differences
in the development process.

VII. FUTURE WORK

Previous sections discussed a variety of promising ap-
proaches for future work to improve the quality of Skill Space
representations and to evaluate alternative ways to capture to
what extent a particular change may require/increase API-
related skills. More far reaching extensions ofSkill Space
would be to include non-technical skills, such as communi-
cation and collaboration skills that are also very important in
establishing trust. We could, potentially, use traces of devel-
opment activity related to developers ability to communicatess
write high-quality code, respond to issues, get pull request
accepted and other important skills. This, however, woukds
require a way to evaluate the quality of the artifacts a developer
produces and the quality of the practices they employ.

A recent paper [16] utilized WoC as a way to estimate
the reputation of a developer. The authors created a toel
(DRE) that displays a developer’s aggregated contributionss
to open source as derived from their commits. The measures:
include both expertise (e.g. total commits, files, programmings
language usage, and how widely a developer’s code hass
been re-used) and social aspects (e.g. projects worked omg

990

10

collaborators, and the Torvalds Index), with some of the
measures overlapping both aspects. Overall, DRE serves up
developer profiles that provides a broad overview of many
facets of a developer’s activity. However, we propose that
the skill spaces presented in this paper can be used to
enhance developer profile tools such as DRE. For example,
we can first fill the need for specific developer expertise by
providing a developer’s skill space that consists of their API
usage. Furthermore, rather than just serving as a developer
profile, we believe our embedding approaches can provide
recommendation features for both the developer and those
who are browsing the profile. For example, as a developer,
our approach allows us to recommend: similar projects that
you might consider joining, similar developers that you might
want to work with in the future, and similar technologies/APIs
you might consider working with, all based on the Skill Space
generated for you by our embedding approach.

VIII. CONCLUSION

We have established a proof-of-concept for Skill Space: an
approach to represent packages (APIs), developers, languages,
and projects in the same vector space with a topology that
satisfies several practically-relevant criteria, such that the
representations of developers (projects) in Skill Space are
similar to the representations of the APIs they use (contain).
Furthermore, Skill Space representations are predictive of
the future API usage by developers, developers joining new
projects, and it also affects the probability of a developer’s
pull requests being accepted. Finally, these representations are
aligned with developers self-reported expertise.

As with all data-intensive techniques, only entities that
have sufficient data can be accurately represented, but a large
volume of public data from OSS projects can help. The
simplicity of the proposed estimation techniques makes is easy
to apply them within enterprises, producing company-specific
Skill Spaces that could be integrated with the OSS data.

Two observations were primary motivator for us to con-
ceptualize the medium-granularity expertise created from the
implicitly defined relationships among APIs in the vast corpus
of open source software projects:

1) Contemporary software development increasingly in-

volves complex dependency chains with much of a
software product depending on software developed by
unknown and unfamiliar teams;
The ability of developers to use specific libraries and
frameworks (in the dependency chains noted above) is an
important factor that determines their ability to complete
programming tasks.

931 2)

932
933
934
935 We hope that the progress on measuring and understanding
technical aspects of expertise may prove helpful in develop-
ing approaches that establish trust between maintainers and
eentributors who had no prior interactions. We also hope that
itomay shed some light on the causes of the vast differences
in programmer productivity and help research on developer
learning trajectories. We are sharing the source code and the
datasets used in this work with the intention of facilitating

943

944

945

946

947

948

949

950

951

952

953

954

955

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

978

979

980

981

982

983

984

985

998

9

©

9

1000

1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

replications, further improvements in the approaches to con-
struct Skill Space, and, more generally, supporting further
studies in this area.

[1]
[2]

[3]

[5]

[6]

[7]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

11

REFERENCES

E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &
Policy, vol. 12, no. 3, pp. 23-49, 1999.

A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,” ACM Transactions
on Software Engineering and Methodology, vol. 11, no. 3, pp. 1-38,
July 2002. [Online]. Available: http://dl.acm.org/authorize?39725

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 345-355.
J. Zhu, M. Zhou, and A. Mockus, “Effectiveness of code contribution:
From patch-based to pull-request-based tools,” in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2016, pp. 871-882. [Online]. Available:
https://dl.acm.org/authorize?N27515

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, 2010, pp. 495-504.

T. Dey and A. Mockus, “Effect of technical and social factors on pull re-
quest quality for the npm ecosystem,” arXiv preprint arXiv:2007.04816,
2020.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the
36th International Conference on Software Engineering. New York,
NY, USA: Association for Computing Machinery, 2014, p. 356366.
[Online]. Available: https://doi.org/10.1145/2568225.2568315

T. Dey and A. Mockus, “Which pull requests get accepted and why?
a study of popular npm packages,” arXiv preprint arXiv:2003.01153,
2020.

P. Audris Mockus, C.-P. James Herbsleb, c.-P. Randy Bradley, c.-P.
Bogdan Bicescu, and c.-P. Russell Zaretsky, “Bigdata: Collaborative
research: Ia: Oscar - open source supply chains and avoidance of risk:
An evidence based approach to improve floss supply chains,” National
Science Foundation, IIS-1633437 1,300K, 2016-2018.

J. Marlow and L. Dabbish, “Activity traces and signals in software
developer recruitment and hiring,” in Proceedings of the 2013 conference
on Computer supported cooperative work, 2013, pp. 145-156.

J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of new
project teams from open source software developer networks:
Impact of prior collaboration ties,” Information Systems Research,
vol. 19, no. 3, pp. 369-391, 2008. [Online]. Available: https:
//pubsonline.informs.org/doi/abs/10.1287/isre.1080.0192

T. Lucassen and J. M. Schraagen, “Factual accuracy and trust in
information: The role of expertise,” Journal of the American Society
for Information Science and Technology, vol. 62, no. 7, pp. 1232-1242,
2011.

C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration
in open source ecosystems,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 70-80.

A. Mockus and J. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in 2002 International Conference on
Software Engineering. Orlando, Florida: ACM Press, May 19-25 2002,
pp. 503-512. [Online]. Available: http://dl.acm.org/authorize?24835

J. E. Montandon, L. L. Silva, and M. T. Valente, “Identifying experts
in software libraries and frameworks among github users,” in 2079
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR). 1EEE, 2019, pp. 276-287.

S. Amreen, A. Karnauch, and A. Mockus, “Developer reputation es-
timator (dre),” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2019, pp. 1082-1085.
Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World
of code: An infrastructure for mining the universe of open source vcs
data,” in IEEE Working Conference on Mining Software Repositories,
May 2019.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188-1196.

T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in /CSE '10: Pro-
ceedings of the 32th international conference on Software engineering.
ACM, 2010, pp. 385-394.

D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

T Mikolov T Sutskever K Chen G S Corrado and 1 Dean

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

11078
1074
1075
1076
1077

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 38-49.

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair at scale,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). 1EEE, 2019,
pp. 269-278.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1-29, 2019.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on
software engineering, 2016, pp. 404—415.

A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing, “A complete set of
related git repositories identified via community detection approaches
based on shared commits,” in IEEE Working Conference on Mining
Software Repositories: Data Showcase, May 2020. [Online]. Available:
https://arxiv.org/abs/2002.02707

T. Fry, T. Dey, A. Karnauch, and A. Mockus, “A dataset and an
approach for identity resolution of 38 million author ids extracted from
2b git commits,” in [EEE Working Conference on Mining Software
Repositories: Data Showcase, May 2020.

T. Dey and A. Mockus, “A Dataset of Pull Requests and A Trained
Random Forest Model for predicting Pull Request Acceptance,” May
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3858046

1167
1168

12

	Introduction
	Research Problem
	Postulated properties of Skill Space
	Operationalization of Skill Space
	Evaluation criteria

	Related Work
	Developer Expertise
	Vector Embedding in Software Engineering

	Methodology
	Data Source: World of Code
	Project Clones: Fork Resolution
	Identifying a Developer: Identity Resolution

	API Extraction
	Summaries of API usage
	Vector Embedding
	Evaluation strategies

	Results
	Qualitative Evaluation of Skill Space Embeddings
	Examining H1: New APIs used by developers are closely aligned to themselves in the Skill Space
	Examining H2: A developer is more likely to join a new project that is more closely aligned to themselves in the Skill Space
	H3: A project is more likely to accept contributions from developers who are aligned to the project in the Skill Space
	H4: A developer whose Skill Space is aligned more closely to the project's Skill Space will be more likely to have their pull requests accepted
	H5: A developer's self-reported API skills are closely aligned to themselves

	Limitations
	Future Work
	Conclusion
	References

