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Abstract
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Shape memory materials (SMMs) recover their original shape as an external stimulus is applied.
To meet the growing needs for complicated applications, it is imperative to design advanced
SMMs with more functions and better performance. This paper reports a new design of
liquid-based SMMs, i.e. liquid nanofoam (LN) system, by controlling the extent of liquid
outflow from hydrophobic nanopores. The liquid outflow behavior is dominated by the
thermoresponsive sensitive bubble nucleation process in the confined nanoenvironment. As
temperature increases, the extent of liquid outflow is promoted, and the system volume is
recovered. Thus, the LN system exhibits an instant volume memory behavior. As temperature
decreases, the volume memory behavior is reversed. A constitutive model for the shape memory
LN material has also been developed and validated. The thermoresponsive nanoconfined liquid
outflow opens up new avenues for the design of advanced SMM.
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1. Introduction

Shape memory materials (SMMs) are smart and adaptive
materials that are capable of recovering their original shapes
from a plastic deformation in response to an external stimulus
[1-3]. The external stimulus includes temperature [4, 5], light
[6, 7], pH [8, 9], and electric [10, 11] and magnetic [12, 13]
fields. The stimulus responsive properties have made SMMs
promising for various applications such as actuators [14, 15],
sensors [16], microfluidics [17], and many others.

Over the past decades, various SMMs have been developed,
among which shape memory alloys (SMAs) [3, 18, 19] and
shape memory polymers (SMPs) [6, 7, 20] are most com-
monly used. For instance, NiTi-based SMAs is one of the
most prevalent SMAs due to their high performance and
good biocompatibility. Polymeric materials, such as multi-
domain copolymers [21], hydrogels [22] and liquid crystal-
line elastomers [23], have also drawn increasingly attention as
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stimuli-responsive SMPs because of their synthetic flexibility
and easiness for tailoring. In addition, intensive efforts have
been devoted to improving the versatility of SMMs. One-step
SMMs can only remember one permanent shape [24], while
multi-step SMMs can recover multiple temporary but stable
shapes when exposed to a stimulus [25]. Two-way SMMs
have also been designed with reversible, bidirectional shape
memory function [26].

Despite these achievements in SMMs research and techno-
logy, it remains a challenge to develop SMMs with more func-
tions and better performance to fulfill the growing demands
for advanced engineering applications. To address the chal-
lenges, SMMs with new shape memory mechanisms are
desired. Specially, current SMMs are mainly solid-based,
while liquid-based SMMs are still scarce. It is anticipated that
liquid-based SMMs are endowed with multiple advantages.
Due to its intrinsic fluidity, liquid-based SMMs are more flex-
ible and can be easily accommodated to structures with any
shape and size. In addition, the hydrostatic force response of
liquid-based SMMs is isotropic, which is versatile to design
liquid-based smart devices.

© 2021 IOP Publishing Ltd  Printed in the UK
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One strategy to develop liquid-based SMMs is to employ
the reversible liquid flow in hydrophobic nanochannels [27].
As liquid molecules flow out of the nanochannels, the overall
system volume is recovered. Thus, multiple memorable shapes
can be engineered by controlling the extent of liquid outflow
from the nanochannel by an external stimulus. Recently, a
liquid nanofoam (LN) system [28-30], employing the liquid
flow in hydrophobic nanopores as its deformation mechanism,
is developed and could be a promising candidate for liquid-
based SMMs. In this study, we have demonstrated that through
precisely controlling the extent of liquid outflow from hydro-
phobic nanopores by temperature, LN system has shown a
unique reversible and bidirectional thermoresponsive shape
memory function.

2. Background

LN is a mixture of a hydrophobic nanoporous media and a
liquid phase (figure 1). At ambient condition, the liquid stay
outside of the nanopores due to its surface hydrophobicity. As
an external force is exerted (figure 2), initially, the LN shows
an elastic response (‘AB’), and the system bulk modulus is the
combination of the individual moduli of the liquid and solid
compositions. When the internal pressure reaches a critical
value (point ‘B’), the energy barrier caused by the hydrophobic
surface is overcome and the liquid molecules are driven into
the nanopores. As a result, the slope of the curve decreases, and
an infiltration plateau (‘BD’) is formed. The critical pressure
at which liquid molecules start to infiltrate into the nanopores
is defined as the liquid infiltration pressure, P;,, which is gov-
erned by the classic Laplace—Young equation, Py, = 2Av/r,
where A~ is the excessive solid-liquid interfacial tension and
r is the nanopore radius. As all the nanopores are filled with
liquid molecules, the infiltration plateau ends, and the LN sys-
tem becomes elastic again (‘DE’). The width of the infiltra-
tion plateau, Aw, is determined by the nanopore volume of the
LN system. Thanks to the ultra-fast liquid flow in hydrophobic
nanopores, this mechanical response of LN system is insensit-
ive to external loading speed, from quasi-static to intermediate
strain rates [31].

As the external force is removed, the pressure drops
abruptly (‘EF’), followed by a much-reduced slope of the
unloading curve (‘FG’). The reduced slope as well as the
associated system volume recovery reveal the liquid and gas
outflow from the hydrophobic nanopores [32]. It has been
demonstrated that the extent of liquid outflow from nano-
pores is dominated by the bubble nucleation process [33-35].
In a gas-containing LN system, the gas molecules are dis-
solved in the liquid phase during the liquid infiltration process.
Upon unloading, the dissolved gas molecules may become
supersaturated and tend to escape from the liquid phase to
the vapor phase. Meanwhile, the liquid phase flows out from
the hydrophobic nanopores. It has also been found that the
bubble nucleation process is highly sensitive to temperature
[36-38]. At elevated temperature, the bubble nucleation is
more prone to occur, leading to a promoted extent of liquid
outflow from hydrophobic nanopores. Therefore, at extreme
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Figure 2. Typical mechanical response of LN in the first
loading—unloading cycle.

low temperature, the bubble nucleation process does not occur,
and the liquid phase is ‘locked’ in the hydrophobic nanopores,
resulting in a smaller compressibility in the subsequent load-
ing cycles (figure 3(a)). At relatively high temperature, the gas
molecules are separated from the liquid phase and the liquid
molecules are fully repelled from the hydrophobic nanopores.
Consequently, the system will show a fully preserved com-
pressibility in the subsequent loading cycles (figure 3(b)).

As depicted in figure 1, an LN system is composed of
a hydrophobic nanoporous media with the mass of m and a
liquid phase with the volume of V. The specific pore volume
of the hydrophobic nanoporous media, i.e. the specific volume
of gas at ambient condition, is V. Given these system compos-
itions, the volume of nanoporous media skeleton is m/ p, where
p is the density of the skeleton material. For amorphous solid
silica, p = 2.2 g cm—3. The volume of the nanopores is mVj.
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Figure 3. Typical mechanical response of LN in all subsequent
loading—unloading cycles (a) at low temperature (b) at high
temperature.

The total system volume is mVy + m/p + V,. Thus, at extreme
low temperature, the system has no compressibility and the
plastic system volume change, Aw, is nearly zero. While at
relatively high temperature, Aw is

mV()

A= ————.
mV()er/erVZ

)

3. Materials and methods

3.1. Materials

A hydrophilic nanoporous silica gel (SP-120-10, DAISO Fine
Chem USA, Inc.) was used as the nanoporous media in the
LN in current study. The as-received material was in powder
form, with an average particle size around 10 pm and pore
size of 12 nm. The specific pore volume of the silica gel

Vo was around 0.6 cm® g~'. To make its nanopore surface
hydrophobic, a monolayer of n-octyldimethylchlorosilane was
anchored onto its surface. The detailed description can be
found in [29, 31]. Briefly, about 1 g of nanoporous silica was
mixed with 40 ml of anhydrous toluene for 3 h at 90 °C. Ten
milliliter of n-octyldimethylchlorosilane and 1 ml of pyridine
were injected into the mixture at room temperature. The mix-
ture was then stirred at 95 °C for 24 h, after which the surface-
modified nanoporous silica was filtered, rinsed by ethanol, and
dried for at least 24 h.

The liquid phase of the LN was 25 wt.% lithium chloride
(LiCl) aqueous solution. The freezing point of the LiCl solu-
tion was lower than —70 °C [39], which fulfilled typical indus-
trial standards of operating temperatures [40].

The LN sample was prepared by mixing 0.2 g of surface-
modified nanoporous silica and 0.4 ml of 25 wt.% LiCl
aqueous solution in a testing cell with two O-ring equipped
pistons. The LN sample was pre-compressed to minimize
the air trapped in between the nanoporous silica particles, as
detailed in our previous work [28, 32]. The cross-sectional
area of the pistons, A, was 126 mm?.

3.2. Characterization of thermo-mechanical properties of LN

LN sample sealed in the testing cell was compressed by a
universal tester (Floor Model 5982, Instron, Inc.) equipped
with environmental chamber (Table Model 3119-609, Instron,
Inc.) at system temperature 7 = —60, —45, —30, —15, 0,
25, and 90 °C. The loading speed was 2 mm min~' (strain
rate = 6.7 x 1073 s~!). The applied force, F, gradually
increased to 6 kN, leading to an equivalent pressure of 48 MPa
in the testing cell. When F reached the peak force, the
crosshead of the Instron was moved back at the same speed.
The loading—unloading process was repeated at least three
times for each LN sample. The pressure in the testing cell was
calculated as P = F/A. The system volume change of the LN
sample was calculated as w = 4/1, where 0 was the measured
piston displacement and / = 5 mm was the initial LN sample
length for all following cyclic tests.

4. Results and discussion

4.1. Isothermal mechanical behavior of LN at various
temperatures

Figure 4(a) shows typical isothermal mechanical response
of LN samples in the first loading—unloading cycle at vari-
ous temperatures. At T = —60 °C, the infiltration starts at
w = 4.3% and ends at w = 24.2%. The plastic system volume
change Aw is 19.9% and close to the theoretical value 19.6%
calculated from equation (1). As the external force is removed,
the LN system shows a sharp linear response until the pres-
sure decreases to zero at w = 21%. This fast-linear reduction
of LN system pressure at 7 = —60 °C indicates the bubble
nucleation does not occur and the extent of liquid outflow
is nearly zero. As the temperature gradually increases, the
loading curves remain almost the same, that is, neither the
infiltration pressure nor the plastic system volume change of
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Figure 4. (a) Isothermal mechanical response of LN samples in the
first loading—unloading cycle at various temperatures. (b) Isothermal
mechanical response of LN samples in all the subsequent
loading—unloading cycles at various temperatures. (c) The plastic
volume change of LN samples at various temperatures.

the LN is affected by the elevated temperature. The nearly
identical loading curves prove that the nanoporous structure
of the particles is not deformed and the solid-liquid—gas inter-
facial tension is a constant. However, the unloading curves
are extremely sensitive to temperature increase. After a lin-
ear reduction of the system pressure, a clear turning point fol-
lowed by a defiltration plateau is observed. Consequently, the
ending point of the unloading process is extended. To be spe-
cific, the unloading process ends at w = 2.7% for LN system at
T =25 °C. The thermally-sensitive unloading curve is consist-
ent with previous studies [35, 41]. The extended defiltration
plateau indicates that the liquid molecules partially or even
fully flow out of the hydrophobic nanopores. As the temperat-
ure further increases from 25 °C to 90 °C, the stress level of the
unloading curve increases while the ending point of unloading
curve shows negligible change. Since the system recoverabil-
ity may not be precisely quantified from the unloading curve
in the first loading—unloading cycle, the loading curves of LN
sample in the subsequent loading—unloading cycles are a dir-
ect and accurate measure.

Figure 4(b) shows typical mechanical response of LN
samples in all subsequent loading—unloading cycles at various
temperatures. Since all subsequent loading—unloading curves
are identical to that in the second cycle, only the curves in
the second cycle are shown here for clarity. For LN sample
at T = —60 °C, the ‘plastic’ system volume change Aw is
zero, which agrees well with the sharp unloading curve in the
first loading—unloading cycle. As temperature is elevated, the
Auw in the 2nd cycle of LN sample increases (figure 4(b)). At
T =25°C, Aw is promoted to 17.5%. The increased Aw is due
to the much-enhanced bubble nucleation process, facilitating
the liquid outflow from the hydrophobic nanopores [33]. Since
the liquid outflow process is completed at T = 25 °C, fur-
ther increasing temperature to 7 = 90 °C leads to nearly zero
variation of Aw. Please note that from the second loading—
unloading cycle, the LN system becomes fully reusable at
specified temperature and volume memorable as temperature
changes.

4.2. Volume memory behavior of LN in heating

LN sample at T = —60 °C is first employed to demonstrate
the volume memory behavior of LN in heating. As the unload-
ing process in (N — 1) cycle ends, the system temperature is
elevated to a specified value by controlling the Instron envir-
onmental chamber. Once the temperature reaches the target
value, another loading—unloading cycle N is applied on the LN
sample to evaluate its volume memory behavior.

Figure 5(a) shows typical thermo-mechanical response of
LN samples after heating up from —60 °C to 25 °C. Initially,
the LN shows zero plastic volume change at —60 °C. Upon
heating, the system volume increases gradually. As the tem-
perature reaches 25 °C and another loading cycle is exerted.
The LN exhibits a remarkable increase in the system plastic
volume change. Compared with the loading—unloading curves
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Figure 5. (a) Typical volume memory behavior of LN samples
upon heating up from —60 °C to 25 °C. (b) Mechanical response of
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Figure 6. Mechanical response of LN samples in the N cycle upon
heating up from low temperatures to 25 °C after (N — 1) cycle.

at 25 °C in figure 4(b), the infiltration pressure as well as
the plastic volume change are fully recovered. As shown in
figure 5(b), same trends are observed when the LN is heated
up to various temperatures. The recovered volume at elevated
temperatures is also plotted in figure 5(c), agreeing well with
the extent of liquid outflow at given temperature points shown
in figure 4(c). The plastic volume change, i.e. the deformabil-
ity, of the LN system is dominated by the nanopore volume in
the LN and can reach 17%, which is about five times that of
shape memory NiTi alloys [18, 19, 42]. The recoverability of
the LN system as temperature changes can be calculated using
the following equation:

_ AWT0—>T

R(T) Awor

x 100% 2)

where Awr is the plastic system volume change at temper-
ature T and Awy,_,7 is the plastic system volume change as
temperature changes from 7 to 7. As shown in figure 5(c),
the recoverability R is nearly 100% at various temperatures.

Similar volume memory behavior is observed when LN
samples at various low temperatures are heated up to 25 °C
and shown in figure 6. As previously discussed, the volume
memory behavior is attributed to the well-preserved extent of
bubble nucleation and liquid outflow at different temperatures.
According to the bubble nucleation theory [33, 34], the system
thermodynamic equilibrium is expressed as

PAw = AvA+P,V, (3

where P is the system pressure, A~ is the liquid—solid—gas
interfacial tension, A is the effective surface area, P, is the
gas partial pressure, V, is the gas volume. P, A, and P, are
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cycle (a) mechanical response of LN samples in the N cycle.
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(c) The recovered volume and recoverability of LN samples.

temperature-dependent parameters. As temperature is elev-
ated, these temperature-dependent parameters change accord-
ingly, leading to the target Aw and rebalance of equation (3)
at a given temperature.
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Figure 8. Instant volume memory behavior in heating and delayed
volume memory behavior in cooling.

4.3. Volume memory behavior of LN in cooling

To demonstrate the volume memory behavior of LN system in
cooling, LN sample with initial 7= 25 °C is evaluated. As the
unloading process in (N — 1) cycle ends, the system is cooled
down to a specified temperature. Two consecutive loading—
unloading cycles, namely N and (N + 1), are applied on the
LN sample. Figure 7 shows typical mechanical response of LN
samples in N and (N + 1) cycles after cooling down to various
low temperatures. Different from the instant volume memory
behavior in heating, the LN system shows a delayed volume
memory in cooling. As shown in figure 7(a), the loading curves
of LN after cooling down to low temperatures resemble that at
25 °C and only the unloading curves exhibit dramatic changes.
For example, as temperature decreases to —60 °C, the unload-
ing curve is similar to that in figure 4, indicating no plastic
volume is recovered during the unloading process. As expec-
ted, the nearly 100% volume memory ability is observed in the
(N + 1) cycle (figures 7(b) and (c)).

This delayed volume memory behavior is due to the liquid—
gas interaction in the hydrophobic nanopores. In heating cases,
the bubble nucleation, which reduces the system free energy, is
a spontaneous process. Therefore, upon heating, bubble nuc-
leation as well as liquid outflow occur immediately, and the
plastic system volume change is recovered (figure 8). How-
ever, in cooling cases, the gas dissolution, which is the reverse
process of bubble nucleation, requires external loading to
occur. Thereafter, the volume memory behavior is activated
in the (N + 1) loading process (figure 8).

4.4. Constitutive model for the shape memory behavior of LN
material

This section presents a constitutive model based on phenomen-
ological aspects of thermomechanical behavior of the LN
shape memory material by following the SMA one [43]. In
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this model, the constitutive relationship for pressure is written
as

P-P' =K w—u’(—KAw £—€°< )

where K is the bulk modulus of the material, w is the volumet-
ric strain of the material, Aw is the plastic volumetric strain at
complete recovery, and ¢ is the recovery extent of the material.

Table 1. Computations associated with the volume memory effect.

P w
a 0 (1-¢8)Aw
a—b P=K[w—(1-¢&)Aw]
b Pysp =Py
b—c P=K,w+ P,
C Pp e =Pesa
c—d P=K(w— Aw)
d Py Pdg/K—FAoJ
d—e P=Pys+Kw—P>

Table 2. Material parameters in the constitutive model.
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Py 7.3 MPa
50
~-=-- 0°C - Experiment f
w0l — 0 °C - Model §
--------- -30 °C - Experiment §
= —e— -30 °C - Model
& .'u
= 30
e
3
@ 20 -
o
o
10 4
0
0 10 15 25

System Volume Change (%)

Figure 10. Comparison between numerical and experimental
results.

The superscript O denotes the initial values of volume change
and recovery extent. K is generally obtained from the pressure-
volume change response of the LN material over the linear
elastic regime. £ is bounded between 0 (nearly zero recov-
erability at low temperature) and 1 (fully recovered) and is
obtained by analyzing the hysteresis loop shown in previous
experimental data. These model parameters are adjusted using
the experimental results at 7 = 25, —15, —45, and —60 °C
in current study. Then, the constitutive model is validated by
the experimental results obtained at 7 = 0 and —30 °C in this
study.

Figure 9(a) shows the proposed model and table | summar-
izes the formula in the model. The recovery extent is modeled
with the thermodynamic function

1 T—T; s
£ 2}sm>TfTs7T 2[—1— (5)
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where ¢ is the recovery coefficient, Ty and T are the initial and
final recovery temperatures. £ = 1 when 7 > Tt. £ =0 when
T < T;. T;is setto —60 °C, at which £ converges to 0. By fitting
the above equation to the data points at 7 = 25, —15, —45, and
—60 °C, Ty = 20 °C. From the linear regression analysis of the
experimental data shown in figure 9(c), Ps = 3.9+ 0.065T.
All other material parameters as shown in table 2 have also
been obtained by fitting the formula with the experimental
data at T = 25, —15, —45, and —60 °C. Thus, the constitutive
model has been fully calibrated.

Figure 10 presents the predicted shape memory behavior
of LN material at T = 0 and —30 °C. The numerical results
show good agreement with the experimental data, validating
the proposed constitutive model.

5. Conclusion

In summary, we have demonstrated a novel design of liquid-
based volume memory material in this work. The LN sys-
tem shows a distinct two-way volume memory function by
employing the thermoresponsive liquid outflow behavior in
hydrophobic nanopores. When subjected to heat, the bubble
nucleation process is spontaneously activated, and the extent
of liquid outflow is promoted. As a result, the system original
volume is recovered, and the LN system exhibits an instant
volume memory behavior. While in cooling, the gas dissolu-
tion process needs one more loading process to trigger and thus
the LN system shows a delayed volume memory behavior. A
phenomenological constitutive model has also been developed
and validated to describe the thermodynamic behavior of the
LN-based SMM. Such LN system provides a new paradigm
for the design of novel shape memory materials.
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