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ABSTRACT

Hypergraph-based machine learning methods are now widely rec-

ognized as important for modeling and using higher-order and

multiway relationships between data objects. Local hypergraph

clustering and semi-supervised learning specifically involve find-

ing a well-connected set of nodes near a given set of labeled vertices.

Although many methods for local graph clustering exist, there are

relatively few for localized clustering in hypergraphs. Moreover,

those that exist often lack flexibility to model a general class of hy-

pergraph cut functions or cannot scale to large problems. To tackle

these issues, this paper proposes a new diffusion-based hypergraph

clustering algorithm that solves a quadratic hypergraph cut based

objective akin to a hypergraph analog of Andersen-Chung-Lang

personalized PageRank clustering for graphs. We prove that, for

graphs with fixed maximum hyperedge size, this method is strongly

local, meaning that its runtime only depends on the size of the out-

put instead of the size of the hypergraph and is highly scalable.

Moreover, our method enables us to compute with a wide variety

of cardinality-based hypergraph cut functions. We also prove that

the clusters found by solving the new objective function satisfy

a Cheeger-like quality guarantee. We demonstrate that on large

real-world hypergraphs our new method finds better clusters and

runs much faster than existing approaches. Specifically, it runs in a

few seconds for hypergraphs with a few million hyperedges com-

pared with minutes for a flow-based technique. We furthermore

show that our framework is general enough that can also be used

to solve other p-norm based cut objectives on hypergraphs.
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1 INTRODUCTION

Two common scenarios in graph-based data analysis are: (i) What

are the clusters, groups, modules, or communities in a graph? and

(ii) Given some limited label information on the nodes of the graph,

what can be inferred about missing labels? These statements cor-

respond to the clustering and semi-supervised learning problems

respectively, and while there exists a strong state of the art in al-

gorithms for these problems on graphs [3, 13, 19, 29, 34, 35, 37, 42],

research on these problems is currently highly active for hyper-

graphs [8, 17, 27, 33, 38, 40, 41] building on new types of results [15,

26, 32] compared to prior approaches [1, 20, 43]. The lack of flexi-

ble, diverse, and scalable hypergraph algorithms for these problems

limits the opportunities to investigate rich structure in data. For

example, clusters can be relevant treatment groups for statistical

testing on networks [10] or identify common structure across many

types of sparse networks [24]. Likewise, semi-supervised learning

helps to characterize subtle structure in the emissions spectra of

galaxies in astronomy data through characterizations in terms of

biased eigenvectors [23]. The current set of hypergraph algorithms

are insufficient for such advanced scenarios.

Hypergraphs, indeed, enable a flexible and rich data model that

has the potential to capture subtle insights that are difficult or impos-

sible to find with traditional graph-based analysis [5, 27, 33, 38, 40].

But, hypergraph generalizations of graph-based algorithms often

struggle with scalability and interpretation [1, 15] with ongoing

questions of whether particular models capture the higher-order

information in hypergraphs. Regarding scalablility, an important

special case for that is a strongly local algorithm. Strongly local

algorithms are those whose runtime depends on the size of the

output rather than the size of the graph. This was only recently

addressed for various hypergraph clustering and semi-supervised

learning frameworks [17, 33]. This property enables fast (seconds

to minutes) evaluation even for massive graphs with hundreds of

millions of nodes and edges [3] (compared with hours). For graphs,
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perhaps the best known strongly local algorithm is the Andersen-

Chung-Lang (henceforth, ACL) approximation for personalized

PageRank [3] with applications to local community detection and

semi-supervised learning [42]. The specific problem we address is a

mincut-inspired hypergraph generalization of personalized PageRank

along with a strongly local algorithm to rapidly approximate solu-

tions. Our formulation differs in a number of important ways from

existing Laplacian [43] and quadratic function-based hypergraph

PageRank generalizations [25, 27, 31].

Although our localized hypergraph PageRank is reasonably sim-

ple to state formally (ğ3.2), there are a variety of subtle aspects

to both the problem statement and the algorithmic solution. First,

we wish to have a formulation that enables the richness of pos-

sible hypergraph cut functions. These hypergraph cut functions

are an essential component to rich hypergraph models because

they determine when a group of nodes ought to belong to the same

cluster or obtain a potential new label for semi-supervised learning.

Existing techniques based on star expansions (akin to treating the

hypergraph as a bipartite graph) or a clique expansion (creating

a weighted graph by adding edges from a clique to the graph for

each hyperedge) only model a limited set of cut functions [2, 32].

More general techniques based on Lovász extensions [25, 27, 40]

pose substantial computational difficulties. Second, we need a prob-

lem framework that gives sparse solutions such that they can be

computed in a strongly local fashion and then we need an algo-

rithm that is actually able to compute theseÐthe mere existence of

solutions is insufficient for deploying these ideas in practice as we

wish to do. Finally, we need an understanding of the relationship

between the results of this algorithm and various graph quantities,

such as minimal conductance sets as in the original ACL method.

To address these challenges, we extend and employ a number of

recently proposed hypergraph frameworks. First, we show a new

result on a class of hypergraph to graph transformations [32]. These

transformations employ carefully constructed directed graph gad-

gets, along with a set of auxiliary nodes, to encode the properties of

a general class of cardinality based hypergraph cut functions. Our

simple new result highlights how these transformations not only

preserve cut values, but preserve the hypergraph conductance values

as well (ğ3.1). Then we localize the computation in the reduced

graph using a general strategy to build strongly local computations.

This involves a particular modification often called a łlocalized

cutž graph or hypergraph [4, 11, 28, 33]. We then use a squared

2-norm (i.e. a quadratic function) instead of a 1-norm that arises in

the mincut-graph to produce the hypergraph analogue to strongly

local personalized PageRank. Put another way, applying all of these

steps on a graph (instead of a hypergraph) is equivalent to a char-

acterization of personalized PageRank vector [12].

Once we have the framework in place (ğ3.1,ğ3.2), we are able

to show that an adaptation of the push method for personalized

PageRank (ğ3.3) will compute an approximate solution in time that

depends only on the localization parameters and is independent

of the size of a hypergraph with fixed maximum hyperedge size

(Theorem 3.5). Consequently, the algorithms are strongly local.

The final algorithm we produce is extremely efficient. It is a

small factor (2-5x) slower than running the ACL algorithm for

graphs on the star expansion of the hypergraph. It is also a small

factor (2-5x) faster than running an optimized implementation of

the ACL algorithm on the clique expansion of the hypergraph. Nev-

ertheless, for many instances of semi-supervised learning problems,

it produces results with much larger F1 scores than alternative

methods. In particular, it is much faster and performs much better

with extremely limited label information than a recently proposed

flow-based method [33].

Summary of additional contributions. In addition to pro-

viding a strongly local algorithm for the squared 2-norm (i.e. a

quadratic function) in ğ3.2, which gives better and faster empirical

performance (ğ7), we also discuss how to use a p-norm (ğ6) instead.

Finally, we also show a Cheeger inequality that relates our results

to the hypergraph conductance of a nearby set (ğ4).

Our method is the first algorithm for hypergraph clustering that

includes all of the following features: it is (1) strongly-local, (2) can

grow a cluster from a small seed set, (3) models flexible hyperedge

cut penalties, and (4) comes with a conductance guarantee.

A motivating case study with Yelp reviews.We begin by il-

lustrating the need and utility for the methods instead with a simple

example of the benefit to these spectral or PageRank-style hyper-

graph approaches. For this purpose we consider a hypothetical use

case with an answer that is easy to understand in order to compare

our algorithm to a variety of other approaches. We build a hyper-

graph from the Yelp review dataset (https://www.yelp.com/dataset).

Each restaurant is a vertex and each user is a hyperedge. This model

enables users, i.e. hyperedges, to capture subtle socioeconomic sta-

tus information as well as culinary preferences in terms of which

types of restaurants they visit and review. The task we seek to un-

derstand is either an instance of local clustering or semi-supervised

learning. Simply put, given a random sample of 10 restaurants in

Las Vegas Nevada, we seek to find other restaurants in Las Vegas.

The overall hypergraph has around 64k vertices and 616k hyper-

edges with a maximum hyperedge size of 2566. Las Vegas, with

around 7.3k restaurants, constitutes a small localized cluster.

We investigate a series of different algorithms that will identify

a cluster nearby a seed node in a hypergraph: (1) Andersen-Chung-

Lang PageRank on the star and clique expansion of the hypergraph

(ACL-Star, ACL-Clique, respectively), these algorithms are closely

related to ideas proposed in [1, 43]; (2) HyperLocal, a recent max-

imum flow-based hypergraph clustering algorithm [33]; (3) qua-

dratic hypergraph PageRank [25, 31] (which is also closely related

to [15]), and (4) our Local Hypergraph-PageRank (LHPR). These

are all strongly local except for (3), which we include because our

algorithm LHPR is essentially the strongly local analogue of (3).

The results are shown in Figure 1. The flow-based HyperLocal

method has difficulty finding the entire cluster. Flow-based methods

are known to have trouble expanding small seed sets [11, 28, 34] and

this experiment shows that same behavior. Our strongly local hyper-

graph PageRank (LHPR) slightly improves on the performance of a

quadratic hypergraph PageRank (QHPR) that is not strongly local.

In particular, it has 10k non-zero entries (of 64k) in its solution.

This experiment shows the opportunities with our approach

for large hypergraphs. We are able to model a flexible family of

hypergraph cut functions beyond those that use clique and star

expansions and we equal or outperform all the other methods. For

instance, another more complicated method [17] designed for small

hyperedge sizes showed similar performance to ACL-Clique (F1

around 0.85) and took much longer.
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ACL-Clique
P=0.80, R=0.99, F1=0.876

ACL-Star
P=0.76, R=0.98, F1=0.85

HyperLocal [33]
P=0.92, R=0.05, F1=0.10

QHPR [25, 31]
P=0.83, R=0.95, F1=0.886

LHPR (Ours)
P=0.83, R=0.98, F1=0.900

Figure 1: This figure shows locations of the ∼7,300 restaurants of Las Vegas that are reviewed on Yelp and how often algorithms

recover them from a set of 10 random seeds; our hypergraph PageRank (LHPR)methods has the highest accuracy and finds the

result by exploring only 10000 vertices total comparedwith a fully dense vector for QHPR giving a boost to scalability on larger

graphs. The colors show the regions that aremissed (red or orange) or found (blue) by each algorithmover 15 trials. HyperLocal

is a flow-based method that is known to have trouble growing small seed sets as in this experiment. (The parameters for

HyperLocal were chosen in consultation its authors; other parameters were hand tuned for best case performance.)

2 NOTATION AND PRELIMINARIES

Let G = (V ,E,w) be a directed graph with |V | = n and |E | = m.

For simplicity, we require weightswi j ≥ 1 for each directed edge

(i, j) ∈ E. We interpret an undirected graph as having two directed

edges (i, j) and (j, i). For simplicity, we assume the vertices are

labeled with indices 1 to n, so that we may use these labels to index

matrices and vectors. For instance, we define d as the length-n

out-degree vector where its ith component di =
∑
j ∈V wi j . The

incidence matrix B ∈ {0,−1, 1}m×n measures the difference of

adjacent nodes. The kth row of B corresponds to an edge, say (i, j),

and has exactly two nonzero values, 1 for the node i and -1 for the

node j. (Recall that we have directed edges, so the origin of the

edge is always 1 and the destination is always -1.)

Let H = (V , E) be a hypergraph where each hyperedge e ∈ E

is a subset of V . Let ζ = maxe ∈E |e | be the maximum hyperedge

size. With each hyperedge, we associate a splitting function fe that

we use to assess an appropriate penalty for splitting the hyperedge

among two labels or splitting the hyperedge between two clusters.

Formally, let S be a cluster and let A = e ∩ S be the hyperedge’s

nodes inside S , then fe (A) penalizes splitting e . A common choice

in early hypergraph literature was the all-or-nothing split, which

assigns a fixed value if a hyperedge is split or zero if all nodes in

the hyperedge lie in the same cluster [14, 18, 22]: fe (A) = 0 ifA = e

or A = ∅ and fe (A) = 1 otherwise (or an alternative constant).

More recently, there have been a variety of alternative splitting

functions proposed [26, 27, 32] that provide more flexibility. We

discuss more choices in the next section (ğ3.1). With a splitting

function identified, the cut value of any given set S can be written

as cutH(S) =
∑
e ∈E fe (e ∩ S). The node degree in this case can

be defined as di =
∑
e :i ∈e fe ({i}) [26, 33], though other types of

degree vectors can also be used in both the graph and hypergraph

case. This gives rise to a definition of conductance on a hypergraph

ϕH(S) =
cutH(S)

min(vol(S), vol(S̄))
(1)

where vol(S) =
∑
i ∈S di . This reduces to the standard definition of

graph conductance when each edge has only two nodes (ζ = 2) and

we use the all-or-nothing penality.

Diffusion algorithms for semi-supervised learning and lo-

cal clustering. Given a set of seeds, or what we commonly think

of as a reference, set R, a diffusion is any method that produces a

real-valued vector x over all the other vertices. For instance, the

personalized PageRank method uses R to define the personalization

vector or restart vector underlying the process [3]. The PageRank

solution or the sparse Andersen-Chung-Lang approximation [3] are

then the diffusion x. Given a diffusion vector x, we round it back to

a set S by performing a procedure called a sweepcut. This involves

sorting x from largest to smallest and then evaluating the hyper-

graph conductance of each prefix set Sj = {[1], [2], . . . , [k]}, where

[i] is the id of the ith largest vertex. The set returned by sweepcut

picks the minimum conductance set Sj . Since the sweepcut proce-

dures are general and standardized, we focus on the computation

of x. When these algorithms are used for semi-supervised learning,

the returned set S is presumed to share the label as the reference

(seed) set R; alternatively, its value or rank information may be

used to disambiguate multiple labels [13, 42].

3 METHOD

Our overall goal is to compute a hypergraph diffusion that will

help us perform a sweepcut to identify a set with reasonably small

conductance nearby a reference set of vertices in the graph. We ex-

plain our method: localized hypergraph quadratic diffusions (LHQD)

or also localized hypergraph PageRank (LHPR) through two trans-

formations before we formally state the problem and algorithm.

We adopted this strategy so that the final proposal is well justified

because some of the transformations require additional context to

appreciate. Computing the final sweepcut is straightforward for

hypergraph conductance, and so we do not focus on that step.

3.1 Hypergraph-to-graph reductions

Minimizing conductance is NP-hard even in the case of simple

graphs, though numerous techniques have been designed to ap-

proximate the objective in theory and practice [3, 4, 9]. A common

strategy for searching for low-conductance sets in hypergraphs

is to first reduce a hypergraph to a graph, and then apply exist-

ing graph-based techniques. This sounds łhackyž or least ład-hocž

but this idea is both principled and rigorous. The most common

approach is to apply a clique expansion [1, 5, 26, 43, 46], which

explicitly models splitting functions of the form fe (A) ∝ |A| |e\A|.
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For instance Benson et al. [5] showed that clique expansion can be

used to convert a 3-uniform hypergraph into a graph that preserves

the all-or-nothing conductance values. For larger hyperedge sizes,

all-or-nothing conductance is preserved to within a distortion factor

depending on the size of the hyperedge. Later, Li et al. [26] were the

first to introduce more generalized notions of hyperedge splitting

functions, focusing specifically on submodular functions.

Definition 3.1. A splitting function fe is submodular if

fe (A) + fe (B) ≥ fe (A ∪ B) + fe (A ∩ B) ∀A,B ⊆ e . (2)

These authors showed that for this submodular case, clique ex-

pansion could be used to define a graph preserving conductance to

within a factor O(ζ ) (ζ is the largest hyperedge size).

More recently, Veldt et al. [32] introduced graph reduction tech-

niques that exactly preserve submodular hypergraph cut functions

which are cardinality-based.

Definition 3.2. A splitting function fe is cardinality-based if

fe (A) = fe (B) whenever |A| = |B |. (3)

Cardinality-based splitting functions are a natural choice for

many applications, since node identification is typically irrelevant

in practice, and the cardinality-based model produces a cut func-

tion that is invariant to node permutation. Furthermore, most pre-

vious research on applying generalized hypergraph cut penalties

implicitly focused on cut functions are that are naturally cardinality-

based [5, 15, 20, 25, 27, 46]. Because of their ubiquity and flexibility,

in this work we also focus on hypergraph cut functions that are

submodular and cardinality-based. We briefly review the associated

graph transformation and then we build on previous work by show-

ing that these hypergraph reductions can be used to preserve the

hypergraph conductance objective, and not just hypergraph cuts.

Reduction for Cardinality-Based Cuts. Veldt et al. [32] gave

results that show the cut properties of a submodular, cardinality-

based hypergraph could be preserved by replacing each hyperedge

with a set of directed graph gadgets. Each gadget for a hyperedge

e is constructed by introducing a pair of auxiliary nodes a and b,

along with a directed edge (a,b)with weight δe > 0. For eachv ∈ e ,

two unit-weight directed edges are introduced: (v,a) and (b,v).

The entire gadget is then scaled by a weight ce ≥ 0. The resulting

gadget represents a simplified splitting function of the following

form:

fe (A) = ce ·min{|A|, |e\A|,δe }. (4)

Figure 2(b) illustrates the process of replacing a hyperedge with

a gadget. The cut properties of any submodular cardinality-based

splitting function can be exactly modeled by introducing a set of

O(|e |) or fewer such splitting functions [32]. If an approximation

suffices, only O(log |e |) gadgets are required [6].

An important consequence of these reduction results is that in or-

der to develop reduction techniques for any submodular cardinality-

based splitting functions, it suffices to consider hyperedges with

splitting functions of the simplified form given in (4). In the remain-

der of the text, we focus on splitting functions of this form, with the

understanding that all other cardinality-based submodular splitting

functions can be modeled by introducing multiple hyperedges on

the same set of nodes with different edge weights.

In Figure 2, we illustrate the procedure of reducing a small hy-

pergraph to a directed graph, where we introduce a single gadget

per hyperedge. Formally, for a hypergraph H = (V ,E), this pro-

cedure produces a directed graph G = (V̂ , Ê), with directed edge

set Ê, and node set V̂ = V ∪Va ∪Vb , where V is the set of original

hypergraph nodes. Sets Va ,Vb store auxiliary nodes, in such a way

that for each pair of auxiliary nodes a,b where (a,b) is a directed

edge, we have a ∈ Va and b ∈ Vb . This reduction technique was

previously developed as a way of preserving minimum cuts and

minimum s-t cuts for the original hypergraph. Here, we extend

this result to show that for a certain choice for node degree, this

reduction also preserves hypergraph conductance.

Theorem 3.3. Define a degree vector d for the reduced graph

G = (V̂ , Ê) such that d(v) = dv is the out-degree for each nodev ∈ V ,

and d(u) = du = 0 for every auxiliary node u ∈ Va ∪Vb . If T
∗ is the

minimum conductance set inG for this degree vector, then S∗ = T ∗∩V

is the minimum hypergraph conductance set inH = (V ,E).

Proof. From previous work on these reduction techniques [6,

32], we know that the cut penalty for a set S ⊆ V inH equals the

cut penalty in the directed graph, as long as auxiliary nodes are

arranged in a way that produces the smallest cut penalty subject to

the choice of node set S ⊆ V . Formally, for S ⊆ V ,

cutH(S) = minimize
T ⊂V̂ : S=T∩V

cutG (T ), (5)

where cutG denotes the weight of directed out-edges originating

inside S that are cut in G. By our choice of degree vector, the vol-

ume of nodes inG equals the volume of the non-auxiliary nodes in

H . That is, for all T ⊆ V̂ , volG (T ) =
∑
v ∈V dv +

∑
u ∈Va∪Vb du =

volG (T ∩ V ) = volH(T ∩ V ). Let T
∗ ⊆ V̂ be the minimum con-

ductance set in G, and S∗ = T ∗ ∩ V . Without loss of generality

we can assume that volG (T
∗) ≤ volG (T̄

∗). Since T ∗ minimizes

conductance, and auxiliary nodes have no effect on the volume of

this set, cutG (T
∗) = minimize

T ⊂V̂ : T∩S∗ cutG (T ) = cutH(S
∗), and

so cutG (T
∗)/volG (T

∗) = cutH(S
∗)/volH(S

∗). Thus, minimizing

conductance in G minimizes conductance inH . □

3.2 Localized Quadratic Hypergraph Diffusions

Having established a conductance-preserving reduction from a

hypergraph to a directed graph, we now present a framework for

detecting localized clusters in the reduced graphG. To accomplish

this, we first define a localized directed cut graph, involving a source

and sink nodes and new weighted edges. This approach is closely

related to previously defined localized cut graphs for local graph

clustering and semi-supervised learning [4, 7, 12, 28, 34, 44], and a

similar localized cut hypergraph used for flow-based hypergraph

clustering [33]. The key conceptual difference is that we apply this

construction directly to the reduced graphG , which by Theorem 3.3

preserves conductance of the original hypergraphH . Formally, we

assume we are given a set of nodes R ⊆ V around which we wish to

find low-conductance clusters, and a parameterγ > 0. The localized

directed cut graph is defined by applying the following steps to G:

• Introduce a source node s , and for each r ∈ R define a directed

edge (s, r ) of weight γdr
• Introduce a sink node t , and for each v ∈ R̄ define a directed

edge (v, t) with weight γdv .

2095



Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19ś23, 2021, Ljubljana, Slovenia

1
2

3 5

6

7

8

4

(a) original hypergraph

5

6

7

8

5

6

7

8

D

d

(b) single hyperedge
reduction gadget

1
2

3
5

6

7

8

4

A a

E

D

C

B

e

d

c

b

(c) expanded graph

1
2

3
5

6

7

8

4

A a

E

D

C

B

e

d

c

b

s

t

γ

2γ

2γ

γ

2γ3γ

2γ

2γ

(d) localized directed cut graph

Figure 2: A simple illustration of hypergraph reduction (Section 3.1) and localization (Section 3.2). (a) A hypergraph with

8 nodes and 5 hyperedges. (b) An illustration of the hyperedge transformation gadget for δ-linear splitting function. (c) The

hypergraph is reduced to a directed graph by adding a pair of auxiliary nodes for eachhyperedge and this preserves hypergraph

conductance computations (Theorem 3.3). (d) The localized directed cut graph is created by adding a source node s, a sink node

t and edges from s to hypergraph nodes or from hypergraph nodes to t to localize a solution.

We do not connect auxiliary nodes to the source or sink, which is

consistent with the fact that their degree is defined to be zero in

order for Theorem 3.3 to hold. We illustrate the construction of the

localized directed cut graph in Figure 2(d). It is important to note

that in practice we do not in fact form this graph and store it in

memory. Rather, this provides a conceptual framework for finding

localized low-conductance sets in G, which in turn correspond to

good clusters inH .

Definition: Local hypergraph quadratic diffusions. Let B

and w be the incidence matrix and edge weight vector of the lo-

calized directed cut graph with γ . The objective function for our

hypergraph clustering diffusion, which we call local hypergraph

quadratic diffusion or simply local hypergraph PageRank, is

minimize
x

1
2w

T (Bx)2
+
+ κγ

∑
i ∈V xidi

subject to xs = 1,xt = 0, x ≥ 0.
(6)

We use the function (x)+ = max{x , 0}, applied element-wise to Bx,

to indicate we only keep the positive elements of this product. This

is analogous to the fact that we only view a directed edge as being

cut if it crosses from the source to the sink side; this is similar to

previous directed cut minorants on graphs and hypergraphs [39].

The first term in the objective corresponds to a 2-norm minorant of

the minimum s-t cut objective on the localized directed cut graph.

(In an undirected regular graph, the term wT (Bx)+ turns into an

expression with the Laplacian, which can in turn be formally related

to PageRank [12]). If instead, we replace exponent 2 with a 1 and

ignore the second term, this would amount to finding a minimum

s-t cut (which can be solved via a maximum flow). The second term

in the objective is included to encourage sparsity in the solution,

where κ ≥ 0 controls the desired level of sparsity. With κ > 0 we

are able to show in the next section that we can compute solutions

in time that depends only on κ,γ , and vol(R), which allows us to

evaluate solutions to (6) in a strongly local fashion.

3.3 A strongly local solver for LHQD (6)

In this section, we will provide a strongly local algorithm to approx-

imately satisfy the optimality conditions of (6). We first state the

optimality conditions in Theorem 3.4, and then present the algo-

rithm to solve them. The simplest way to understand this algorithm

is as a generalization of the Andersen-Chung-Lang push procedure

for PageRank [3], which we will call ACL as well as the more recent

nonlinear push procedure [28]. Two new challenges about this new

algorithm are: (1) the new algorithm operates on a directed graph,

which means unlike ACL there is no single closed form update at

each iteration and (2) there is no sparsity regularization for aux-

iliary nodes, which will break the strongly local guarantees for

existing analyses of the push procedure.

We begin with the optimality conditions for (6).

Theorem 3.4. Fix a seed set R, γ > 0, κ > 0, define a residual

function r(x) = − 1
γ B

T diag((Bx)+)w. A necessary and sufficient con-

dition to satisfy the KKT conditions of (6) is to find x∗ where x∗ ≥ 0,

r(x∗) = [rs , g
T , rt ]

T with дi ≤ κdi (where d reflects the graph before

adding s and t but does include the 0 degree nodes), (κdi −дi )
T x∗i = 0

for i ∈ V and дi = 0 for all auxilary nodes added.

It is a straightforward application of determining optimality

conditions for convex programs. Detailed proof of this would be

included in a longer version of this material. We further note that

solutions x∗ are unique because the problem is strongly convex due

to the quadratic.

In ğ3.1, we have shown that the reduction technique of any car-

dinality submodular-based splitting function suffices to introduce

multiple directed graph gadgets with different δe and ce . In order

to simplify our exposition, we assume that each hyperedge has a

δ -linear threshold splitting function [33] fe = min{|A|, |e\A|,δ }

with δ ≥ 1 to be a tunable parameter. This splitting function can

be exactly modeled by replacing each hyperedge with one directed

graph gadget with ce = 1 and δe = δ . (This is what is illustrated

in Figure 2.) Also when δ = 1, it models the standard unweighted

all-or-nothing cut [14, 18, 22] and when δ goes to infinity, it models

star expansion [46]. Thus this splitting function can interpolate

these two common cut objectives on hypergraphs by varying δ .

By assuming that we have a δ -linear threshold splitting function,

this means we can associate exactly two auxiliary nodes with each

hyperedge. We call these a and b for simplicity. We also let Va be

the set of all a auxilary nodes and Vb be the set of all b nodes.

At a high level, the algorithm to solve this proceeds as follows:

whenever there exists a graph node i ∈ V that violates optimality,

i.e. ri > κdi , we first perform a hyperpush at i to increase xi so

that the optimality condition is approximately satisfied, i.e., ri =
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Algorithm1 LHQD(γ ,κ, ρ) for setR and hypergraphH withδ -linear

penalty where 0 < ρ < 1 determines accuracy

1: Let x=0 except for xs =1 and set r=−γ
−1BT diag((Bx)+)w(δ ,γ).

2: While there is any vertex i ∈ V where ri > κdi , or stop if none

exists (find an optimality violation)

3: Perform LHQD-hyperpush at vertex i so that ri = ρκdi , up-

dating x and r. (satisfy optimality at i)

4: For each pair of adjacent auxiliary nodes a, b where a ∈ Va ,

b ∈ Vb and a → b, perform LHQD-auxpush at a and b so that

ra = rb = 0, then update x and r after each auxpush.

5: Return x

ρκdi where 0 < ρ < 1 is a given parameter that influences the

approximation. This changes the solution x only at the current node

i and residuals at adjacent auxiliary nodes. Then we immediately

push on adjacent auxiliary nodes, which means we increase their

value so that the residuals remain zero. After pushing each pair (a,b)

of associated auxiliary nodes, we then update residuals for adjacent

nodes in V . Then we search for another optimality violation. (See

Algorithm 1 for a formalization of this strategy.) When ρ < 1,

we only approximately satisfy the optimality conditions; and this

approximation strategy has been repeatedly and successfully used

in existing local graph clustering algorithms [3, 12, 28].

Notes on optimizing the procedure. Algorithm 1 formalizes

a general strategy to approximately solve these diffusions. We now

note a number of optimizations that we have found to greatly

accelerate this strategy. First, note that x and r can be kept as

sparse vectors with only a small set of entries stored. Second, note

that we can maintain a list of optimality violations because each

update to x only causes r to increase, so we can simply check if each

coordinate increase creates a new violation and add it to a queue.

Third, to find the value that needs to be łpushedž to each node, a

general strategy is to use a binary search procedure as we will use

for the p-norm generalization in ğ6. However, if the tolerance of

the binary search is too small, it will slow down each iteration. If

the tolerance is too large, the solution will be too far away from

the true solution to be useful. In the remaining of this section, we

will show that in the case of quadratic objective (6), we can (i)

often avoid binary search and (ii) when it is still required, make

the binary search procedure unrelated to the choice of tolerance

in those iterations where we do need it. These detailed techniques

will not change the time complexity of the overall algorithm, but

make a large difference in practice.

We will start by looking at the expanded formulations of the

residual vector. When i ∈ V , ri expands as:

ri =
1

γ

∑

b ∈Vb

wbi (xb−xi )+−
1

γ

∑

a∈Va

wia (xi−xa )++di [Ind(i ∈ R)−xi ].

(7)

Similarly, for each a ∈ Va , b ∈ Vb where a → b, they will share the

same set of original nodes and their residuals can be expanded as:

ra = −wab (xa − xb ) +
∑
i ∈V wia (xi − xa )+

rb = wab (xa − xb ) −
∑
i ∈V wbi (xb − xi )+

(8)

Note here we use a result that xa ≥ xb (Lemma A.1).

Algorithm 2 LQHD-hyperpush(i,γ ,κ, x, r, ρ)

1: Solve ∆xi with s
(i)
a , s

(i)

b
, a
(i)
min and b

(i)
min using (9). (assume the

order of i doesn’t change among its adjacent nodes)

2: if (10) doesn’t hold (adding ∆xi changed the order of i) then

3: Binary search on ∆xi until we find the smallest interval

among all adjacent nodes of i that will include xi + ∆xi ,

update s
(i)
a , s

(i)

b
, a
(i)
min and b

(i)
min .

4: Solve ∆xi with the found interval by setting ri = ρκdi in (7).

5: end if

6: Update x and r, xi ← xi + ∆xi , ri ← ρκdi

The goal in each hyperpush is to first find∆xi such that r
′
i = ρκdi

and then in auxpush, for each pair of adjacent auxiliary nodes (a,b),

find ∆xa and ∆xb such that r ′a and r ′
b
remain zero. (∆xi , ∆xa and

∆xb are unique because the quadratic is strongly convex.) Observe

that ri , ra and rb are all piecewise linear functions, which means

we can derive a closed form solution once the relative ordering

of adjacent nodes is determined. Also, in most cases, the relative

ordering won’t change after a few initial iterations. So we can first

reuse the ordering information from last iteration to directly solve

∆xi , ∆xa and ∆xb and then check if the ordering is changed.

Given these observations, we will record and update the fol-

lowing information for each pushed node. Again, this information

can be recorded in a sparse fashion. When the pushed node i is a

original node, for its adjacent a ∈ Va and b ∈ Vb , we record:

• s
(i)
a : the sum of edge weightswia where xa < xi

• s
(i)

b
: the sum of edge weightswbi where xb > xi

• a
(i)
min : the minimum xa where xa ≥ xi

• b
(i)
min : the minimum xb where xb > xi

Now assume the ordering is the same, r ′i can be written as r ′i =

ri −
1
γ (s
(i)
a + s

(i)

b
)∆xi = ρκdi , so

∆xi = γ (ri − ρκdi )/(s
(i)
a + s

(i)

b
). (9)

Then we need to check whether the assumption holds by checking

xi + ∆xi ≤ min
(
a
(i)
min ,b

(i)
min

)
(10)

If not, we need to use binary search to find the new location of

xi + ∆xi (Note ∆xi here is the true value that is still unknown),

update s
(i)
a , s

(i)

b
, a
(i)
min and b

(i)
min and recompute ∆xi . This process is

summarized in LQHD-hyperpush.

Similarly, when the pushed nodes a ∈ Va , b ∈ Vb where a → b,

are a pair of auxiliary nodes, for its adjacent nodes i ∈ V , we record:

• za : the sum of edge weightswia where xa < xi
• zb : the sum of edge weightswbi where xb > xi

• x
(a)
min : the minimum xi where xa < xi

• x
(b)
min : the minimum xi where xb < xi
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Algorithm 3 LQHD-auxpush(i,a,b,γ , x, r,∆xi )

1: Solve ∆xa , ∆xb with za , zb , x
(a)
min and x

(b)
min using (11).

2: if (12) doesn’t hold. (adding ∆xa ,∆xb altered the order) then

3: Binary search on ∆xa until we find the smallest interval

among all adjacent original nodes of a that will include xa +

∆xa , update za , x
(a)
min , similarly for zb , x

(b)
min .

4: Solve ∆xa ,∆xb with the found intervals by setting ra = rb =

0 in (8).

5: end if

6: Change the following entries in x and r to update the solution

and the residual

7: (a) xa ← xa+ ∆xa and xb ← xb+ ∆xb
8: (b) For each neighboring node i → a where i ∈ V , ri ←

ri+
1
γ wia (xi−xa )+−

1
γ wia (xi− xa−∆xa )+ −

1
γ wbi (xb− xi )++

1
γ wbi (xb+∆xb− xi )+

Then we solve ∆xa , ∆xb by solving the following linear system

(here we assume xb ≥ xi )




−wab (∆xa − ∆xb ) +
wia

γ
((x ′i − xa )+ − (xi − xa )+) − za∆xa = 0

wab (∆xa − ∆xb ) −
wbi

γ
((xb − x

′
i )+ − (xb − xi )+) + zb∆xb = 0

(11)

where x ′i refers to the updated xi after applying LQHD-hyperpush

at node i . And the assumption will hold if and only if the following

inequalities are all satisfied:

x ′i ≤ xb , xa + ∆xa ≤ x
(a)
min , xb + ∆xb ≤ x

(b)
min (12)

If not, we also need to use binary search to update the locations of

xa + ∆xa and xb + ∆xb , update za , zb , x
(a)
min , x

(b)
min and recompute

∆xa and ∆xb .

Establishing a runtime bound. The key to understand the

strong locality of the algorithm is that after each LQHD-hyperpush,

the decrease of ∥vд∥1 can be lower bounded by a value that is inde-

pendent of the total size of the hypergraph, while LHQD-auxpush

doesn’t change ∥g∥1. Formally, we have the following theorem:

Theorem 3.5. Given γ > 0, κ > 0, δ > 0 and 0 < ρ < 1.

Suppose the splitting function fe is submodular, cardinality-based and

satisfies 1 ≤ fe ({i}) ≤ δ for any i ∈ e . Then calling LQHD-auxpush

doesn’t change ∥g∥1 while calling LQHD-hyperpush on node i ∈ V

will decrease ∥g∥1 by at least γκ(1 − ρ)di/(γκ + δ ).

Suppose LHQD stops after T iterations and di is the degree of the

original node updated at the i-th iteration, then T must satisfy:
∑T
i=1 di ≤ (γκ + δ )vol(R)/γκ(1 − ρ) = O(vol(R)).

The proof is in the appendix. This theorem only upper bounds

the number of iterations Algorithm 1 requires. Each iteration will

also take O(
∑
e ∈E,i ∈e |e |) amount of work. This ignores the binary

search, which only scales it by log(max{di ,maxe ∈E,i ∈e {|e |}}) fac-

tor in the worst case. Putting these pieces together shows that if

we have a hypergraph with independently bounded maximum hy-

peredge size, then we can treat this additional work as a constant.

Consequently, our solver is strongly local for graphs with bounded

maximum hyperedge size; this matches the interpretation in [33].

4 LOCAL CONDUCTANCE APPROXIMATION

We give a local conductance guarantee that results from solving (6).

Because of space, we focus on the case κ = 0. We prove that a

sweepcut on the solution x of (6) leads to a Cheeger-type guarantee

for conductance of the hypergraphH even when the seed-set size

|R | is 1. It is extremely difficult to guarantee a good approximation

property with an arbitrary seed node, and so we first introduce a

seed sampling strategy P with respect to a set S∗ that we wish to

find. Informally, the seed selection strategy says that the expected

solution mass outside S∗ is not too large, and more specifically, not

too much larger than if you had seeded on the entire target set S∗.

Definition 4.1. Denote x(γ ,R) as the solution to (6) with κ = 0.

A good sampling strategy P for a target set S∗ is

Ev ∈P



1

dv

∑

u ∈V \S∗

duxu (γ , {v})


≤

c

vol(S∗)

∑

u ∈V \S∗

duxu (γ , S
∗)

for some positive constant c .

Note that vol(S∗) is just to normalize the effect of using different

numbers of seeds. For an arbitrary S∗, a good sampling strategy P

for the standard graph case with c = 1 is to sample nodes from S∗

proportional to their degree. Now, we provide our main theorem

and show its proof in Appendix B .

Theorem 4.2. Given a set S∗ of vertices s.t. vol(S∗) ≤
vol(H)

2

and ϕH(S
∗) ≤

γ
8c for some positive constant γ , c . If we have a seed

sampling strategy P that satisfies Def. 4.1, then with probability at

least 1
2 , sweepcut on (6) with find Sx with

ϕ(Sx) ≤

√
32γδ̄ ln (100vol(S∗)/dv ),

where δ̄ = maxe ∈∂Sx min{δe , |e |/2} where ∂Sx = {e ∈ E|e ∩ Sx ,

∅, e ∩ S̄x , ∅} and v is the seeded node.

The proof is in the appendix. This implies that for any set S∗, if

we have a sampling strategy that matches S∗, our method can find a

node set with conductance O(
√
ϕH(S

∗)δ̄ log(vol(S∗))) after tuning

γ . The term δ̄ is the additional cost that we pay for performing

graph reduction. The dependence on δ̄ essentially generalizes the

previous works that analyzed the conductance with only all-or-

nothing penalty [25, 31], as our result matches these when δ̄ = 1.

But our method gives the flexibility to choose other values δe and

while δ̄ in the worst case could be as large as |e |/2, in practice, δ̄

can be chosen much smaller (See ğ7). Also, although we reduce

H into a directed graphG, the previous conductance analysis for

directed graphs [25, 39] is not applicable as we have degree zero

nodes in G. Those degree zero nodes introduce challenges.

5 DIRECTLY RELATED WORK

We have discussed most related work in-situ throughout the paper.

Here, we address a few related hypergraph PageRank vectors di-

rectly. First, Li et al. [25] defined a quadratic hypergraph PageRank

by directly using Lovász extension of the splitting function fe to

control the diffusion instead of a reduction. Both Li et al. [25] and

Takai et al. [31] simultaneously proved that this PageRank can be

used to partition hypergraphs with an all-or-nothing penalty and a
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Cheeger-type guarantee. Neither approach gives a strongly local al-

gorithm and they have complexity O(|E | |V |min{|E |, |V |}poly(ζ ))

or in terms of Euler integration or subgradient descent.

6 GENERALIZATION TO P-NORMS

In the context of the local graph clustering, the quadratic cut ob-

jective can sometimes łover-expandž or łbleed outž over natural

boundaries in the data. (This is the opposite problem to themaxflow-

based clustering.) To solve this issue, [28] proposed a more general

p-norm based cut objective, where 1 < p ≤ 2. The corresponding

p-norm diffusion algorithm can not only grow from small seed set,

but also capture the boundary better than 2-norm cut objective.

Moreover, [37] proposed a related p-norm flow objective that shares

similar characteristics. Our hypergraph diffusion framework easily

adapts to such a generalization.

Definition: p-norm local hypergraph diffusions. Given a

hypergraph H = (V , E), seeds R, and values γ ,κ. Let B,w again

be the incidence matrix and weight vector of the localized reduced

directed cut graph. A p-norm local hypergraph diffusion is:

minimize
x

wT ℓ((Bx)+) + κγ
∑
i ∈V xidi

subject to xs = 1,xt = 0, x ≥ 0.
(13)

Here ℓ(x) = 1
p x

p , 1 < p ≤ 2. And the corresponding residual

function is r(x) = − 1
γ B

T diag(ℓ′((Bx)+))w.

The idea of solving (13) is similar to the quadratic case, where

the goal is to iteratively push values to xi as long as node i violates

the optimality condition, i.e. ri > κdi . The challenge of solving

a more general p-norm cut objective is that we no longer have

a closed form solution even if the ordering of adjacent nodes is

known. Thus, we need to use binary search to find ∆xi , ∆xa and

∆xb up to ε accuracy at every iteration. This means that in the

worst case, the general push process can be slower than 2-norm

based push process by a factor of O(log(1/ε)). We defer the details

of the algorithm to a longer version of the paper, but we note that

a similar analysis shows that this algorithm is strongly local.

7 EXPERIMENTS

In the experiments, we will investigate both the LHQD (2-norm)

and 1.4-norm cut objectives with the δ -linear threshold as the split-

ting function (more details about this function in ğ3.3). Our focus in

the experiments is on the use of the methods for semi-supervised

learning. Consequently, we consider how well the algorithms iden-

tify łground truthž clusters that represent various known labels

in the datasets when given a small set of seeds. (We leave detailed

comparisons of the conductances to a longer version.)

In the plots and tables, we use LH-2.0 to represent our LHQD or

LHPR method and LH-1.4 to represent the 1.4 norm version from

ğ6. The other four methods we compare are:

(i) ACL [3], which is initially designed to compute approximated

PageRank on graphs. Here we transform each hypergraph to a

graph using three different techniques, which are star expansion

(star+ACL), unweighted clique expansion (UCE+ACL) andweighted

clique expansion (WCE+ACL) where a hyperedge e is replaced by a

clique where each edge has weight 1/|e | [43]. ACL is known as one

of the fastest andmost successful local graph clustering algorithm in

several benchmarks [28, 34] and has a similar quadratic guarantee

on local graph clustering [3, 45].

(ii) flow [33], which is the maxflow-mincut based local method

designed for hypergraphs. Since the flow method has difficulty

growing from small seed set as illustrated in the yelp experiment

in ğ1, we will first use the one hop neighborhood to grow the seed

set. (OneHop+flow) To limit the number of neighbors included,

we will order the neighbors using the BestNeighbors as introduced

in [33] and only keep at most 1000 neighbors. (Given a seedset R,

BestNeighbors orders nodes based on the fraction of hyperedges

incident to v that are also incident to at least one node from R.)

(iii) LH-2.0+flow, this is a combination of LH-2.0 and flow where we

use the output of LH-2.0 as the input to the flow method to refine.

(iv) HGCRD [17], this is a hypergraph generalization of CRD [36],

which is a hybrid diffusion and flow.1

In order to select an appropriate δ for different datasets, Veldt et

al. found that the optimal δ is usually consistent among different

clusters in the same dataset [33]. Thus, the optimal δ can be visually

approximated by varying δ for a handful of clusters if one has access

to a subset of ground truth clusters in a hypergraph. We adapt the

same procedure in our experiments and report the results in App. C.

Other parameters are in the reproduction details footnote.2

7.1 Detecting Amazon Product Categories

In this experiment, we use different methods to detect Amazon

product categories [30]. The hypergraph is constructed from Ama-

zon product review data where each node represents a product and

each hyperedge is set of products reviewed by the same person. It

has 2,268,264 nodes and 4,285,363 hyperedges. The average size of

hyperedges is around 17. We select 6 different categories with size

between 100 and 10000 as ground truth clusters used in [33]. We

set δ = 1 for this dataset (more details about this choice in ğC). We

select 1% nodes (at least 5) as seed set for each cluster and report

median F1 scores and median runtime over 30 trials in Table 1 and 2.

Overall, LH-1.4 has the best F1 scores and LH-2.0 has the second

best F1. The two fastest methods are LH-2.0 and star+ACL. While

achieving better F1 scores, LH-2.0 is 20x faster than HyperLocal

(flow) and 2-5x faster than clique expansion based methods.

7.2 Detecting Stack Overflow Question Topics

In the Stack Overflow dataset, we have a hypergraph with each

node representing a question on łstackoverflow.comž and each

hyperedge representing questions answered by the same user [33].

Each question is associated with a set of tags. The goal is to find

questions having the same tag when seeding on some nodes with a

given target tag. This hypergraph is much larger with 15,211,989

1Another highly active topic for clustering and semi-supervised learning involves
graph neural networks (GNN). Prior comparisons between GNNs and diffusions shows
mixed results in the small seed set regime we consider [16, 28] and complicates doing a
fair comparison. As such, we focus on comparing with the most directly related work.
2Reproduction details. The full algorithm and evaluation codes can be found here
https://github.com/MengLiuPurdue/LHQD. We fix the LH locality parameter γ to be
0.1, approximation parameter ρ to be 0.5 in all experiments. We set κ = 0.00025 for
Amazon and κ = 0.0025 for Stack Overflow based on cluster size. For ACL, we use
the same set of parameters as LH. For LH-2.0+flow, we set the flow method’s locality
parameter to be 0.1. For OneHop+flow, we set the locality parameter to be 0.05, 0.0025
on Amazon and Stack Overflow accordingly. For HGCRD, we setU = 3 (maximum
flow that can be send out of a node), h = 3 (maximum flow that an edge can handle),
w = 2 (multiplicative factor for increasing the capacity of the nodes at each iteration),
α = 1 (controls the eligibility of hyperedge), τ = 0.5 and 6 maximum iterations.
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Table 1: Median F1 scores on detecting Amazon product cat-

egories over 30 trials, the small violin plots show variance.seed set,

objective.

that shares

ork easily

Given a

w again

reduced

is:

(13)

Alg 12 18 17 25 15 24

F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

LH-2.0 0.77 0.65 0.25 0.19 0.22 0.62

LH-1.4 0.9 0.79 0.32 0.22 0.27 0.77

LH-2.0+flow 0.95 0.82 0.15 0.16 0.16 0.87

star+ACL 0.64 0.51 0.19 0.15 0.2 0.49

WCE+ACL 0.64 0.51 0.2 0.14 0.21 0.51

UCE+ACL 0.27 0.09 0.06 0.05 0.11 0.14

OneHop+flow 0.52 0.6 0.16 0.12 0.09 0.22

HGCRD 0.56 0.4 0.05 0.06 0.07 0.17

Table 2: Median runtime in seconds on detecting Amazon

product categories

Alg 12 18 17 25 15 24

LH-2.0 0.9 0.7 2.8 1.0 5.6 13.3

LH-1.4 8.0 6.3 32.3 9.8 53.8 127.3

LH-2.0+flow 3.5 5.1 421.1 17.8 34.9 151.5

star+ACL 0.2 0.2 0.3 0.2 0.5 0.8

WCE+ACL 18.6 17.2 19.0 16.5 21.5 20.1

UCE+ACL 9.8 10.9 11.2 10.7 13.3 15.5

OneHop+flow 308.8 141.7 359.2 224.9 81.5 82.4

HGCRD 120.3 56.4 78.1 21.2 239.4 541.3

Table 3: This table summarizes the median of median run-

times in seconds for the Stack Overflow experiments as well

as median Precision, Recall and F1 over the 40 clusters.

Alg. LH2 LH1.4 LH2 ACL ACL ACL Flow HG-

+flow +star +WCE +UCE +1Hop CRD

Time 3.69 39.89 43.84 1.54 15.25 13.71 48.28 72.31

Pr 0.65 0.66 0.74 0.66 0.65 0.66 0.83 0.46

Rc 0.67 0.67 0.59 0.6 0.66 0.65 0.11 0.01

F1 0.66 0.66 0.66 0.63 0.65 0.65 0.19 0.02

nodes and 1,103,243 edges. The average hyperedge size is around 24.

We select 40 clusters with 2,000 to 10,000 nodes and a conductance

score below 0.2 using the all-or-nothing penalty. (There are 45

clusters satisfying these conditions, 5 of them are used to select δ .)

In this dataset, a large δ can give better results. For diffusion based

methods, we set the δ -linear threshold to be 1000 (more details

about this choice in App. ğC), while for flow based method, we

set δ = 5000 based on Figure 3 of [33]. In Table 3, we summarize

some recovery statistics of different methods on this dataset. In

Figure 3, we report the performance of different methods on each

cluster. Overall, LH-2.0 achieves the best balance between speed

and accuracy, although all the diffusion based methods (LH, ACL)

have extremely similar F1 scores (which is different from the last

experiment). The flow based method still has difficulty growing

from small seed set as we can see from the low recall in Table 3.

7.3 Varying Number of Seeds

In this section, we vary the ratio of seed set from 0.1% to 10%. At

each seed ratio, denoted as r , we set κ = 0.025r . And for each of
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Figure 3: The upper plot showsmedian F1 scores of different

methods over 40 clusters from the Stack Overflow dataset.

The lower plot showsmedian running time. LH-2.0 achieves

the best balance between speed and accuracy; LH-1.4 can

sometimes be slower than the flow method when the target

cluster contains many large hyperedges.
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Figure 4: This plot shows themedian of median F1 scores on

detecting those 6 clusters in the Amazon data when varying

the seed size. The envelope represents 1 standard error over

the 6 median F1 scores.

the 6 clusters, we take the median F1 score over 10 trials. To have a

global idea of how different methods perform on this dataset, we

take another median over the 6 median F1 scores. For the flow-

based method, we also consider removing the OneHop growing

procedure. The results are summarized in Figure 4. We can see

our hypergraph diffusion based method (LH-1.4, LH-2.0) performs

better than alternatives for all seed sizes especially for small seed

sets, although flow dramatically improves for large seed sizes.

8 DISCUSSION

This paper studies the opportunities for strongly local quadratic

and p-norm diffusions in the context of local clustering and semi-

supervised learning.

One of the distinct challenges we encountered in preparing this

manuscript was comparing against the ideas of others. Clique ex-

pansions are often problematic because they can involve quadratic

memory for each hyperedge if used simplistically. For running the

baseline ACL PageRank diffusion on the clique expansion, we were

able to use the linear nature of this algorithm to implicitly model

the clique expansion without realizing the actual graph in mem-

ory. (We lack space to describe this though.) For others the results
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were less encouraging. We, for instance, were unable to set integra-

tion parameters for the Euler scheme employed by QHPR [31] to

produce meaningful results in ğ7.

Consequently, we wish to discuss the parameters of our method

and why they are reasonably easy to set. The values γ and κ both

control the size of the result. Roughly, γ corresponds to how much

the diffusion is allowed to spread from the seed vertices and κ

controls how aggressively we sparsify the diffusion. To get a bigger

result, then, set γ or κ a little bit smaller. The value of ρ corresponds

only to how much one of our solutions can differ from the unique

solution of (6). Fixing ρ = 0.5 is fine for empirical studies unless

the goal is to compare against other strategies to solve that same

equation. The final parameter is δ , which interpolates between the

all-or-nothing penalty and the cardinality penalty as discussed in

ğ3.2. This can be chosen based on an experiment as we did here,

or by exploring a few small choices between 1 and half the largest

hyperedge size.

In closing, flow-based algorithms have often been explained or

used as refinement operations to the clusters produced by spectral

methods [21] as in LH-2.0+flow. As a final demonstration of this

usage on the Yelp experiment from ğ1, we have precision, recall, and

F1 result of 0.87, 0.998, 0.93, respectively, which demonstrates how

these techniques may be easily combined to even more accurately

find target clusters.
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A PROOF OF THEOREM 3.5

First we have the following observations on r and x.

Lemma A.1. At any iteration of Algorithm 1, for each pair of

auxiliary nodes, a ∈ Va , b ∈ Vb and a → b, xa ≥ xb .

Lemma A.2. At any iteration of Algorithm 1, for any i ∈ V ∪Va ∪

Vb , дi will stay nonnegative and 0 ≤ xi ≤ 1.

Both lemmas can be easily proved by contradiction. More de-

tailed proof would be included in a longer version of this material.

Proof of Theorem 3.5. By using Lemma A.2, ∥g∥1 becomes

∥g∥1 =
∑
i ∈V∪Va∪Vb дi =

∑
i ∈R di (1 − xi ) −

∑
i ∈R̄ dixi

This implies that any change to the auxiliary nodes will not affect

| |g| |1. Thus calling LHQD-auxpush doesn’t change | |g| |1.When there

exists i ∈ V such that дi > κdi , then hyper-pushwill find ∆xi such
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that д′i = ρκdi . Then the new д′i can be written as

д′i =
1

γ

∑

b ∈Vb

wbi (xb −xi −∆xi )+ −
1

γ

∑

a∈Va

wia (xi +∆xi −xa )++

κdi (Ind[i ∈ R] − xi − ∆xi ) (14)

Note д′i is a decreasing function of ∆xi and д
′
i > 0 when ∆xi = 0,

д′i < 0 when ∆xi = 1 by using Lemma A.2. This suggests that there

exists a unique ∆xi that satisfies д
′
i = ρκdi . Moreover, (xb − xi −

∆xi )+ ≥ (xb − xi )+ −∆xi and (xi +∆xi − xa )+ ≤ (xi − xa )+ +∆xi ,

thus we have

ρκdi = д
′
i ≥ дi −

1
γ (

∑
b ∈Vb wbi +

∑
a∈Va wia )∆xi − κdi∆xi

From equation (4.9) of [32],
∑
b ∈Vb wbi =

∑
a∈Va wai =

∑
e ∈E,i ∈e fe ({i}) ≤ δdi

Thus, we have di∆xi ≥
дi−д

′
i

κ+δ/γ
>

γκ(1−ρ)
γκ+δ

di So the decrease of

| |g| |1 will be at least γκ(1 − ρ)di/(γκ + δ ). Since | |g| |1 = vol(R)

initially, we have
∑T
i=1 di ≤ (γκ + δ )vol(R)/γκ(1 − ρ) = O(vol(R)).

B PROOF OF THEOREM 4.2

We first introduce some simplifying notation. We use 1v to denote

the canonical basis with vth component as 1 and others as 0 and

1S =
∑
v ∈S 1v . Without loss of generality, we assume each gadget

reduced from a hyperedge has weight ce = 1. Otherwise one can

simply add ce as the coefficients and nothing needs to change.

We omit the degree regularization term in (6). Furthermore, we

normalize the seeds to guarantee
∑
v ∈V dvxv = 1 and group terms

in (6) to remove the source xs = 1 and sink xt = 0

minimize
x

Q(x) ≜ γ
∑

v ∈V

dv

(
xv −

1

vol(S)
1S

)2
+

∑

e ∈E

Qe (x)

(15)

where

Qe (x) ≜ min
x
(e )
a ,x

(e )
b

∑

v∈e

[
(xv − x

(e )
a )

2
+
+ (x

(e )

b
− xv )

2
+

]
+ δe (x

(e )
a − x

(e )

b
)2
+
. (16)

We denote M = vol(H) =
∑
v ∈V dv . We denote the solution x

with the parameter γ and the seed set S of the optimization (15)

as x(γ , S) and its component for node v as xv (γ , S). We also define

another degree weighted vector p = Dx, where D is the diagonal

degree matrix. For a vector p and a node set S ′, we use p(S ′) to

denote p(S ′) =
∑
v ∈S ′ pv . It is easy to check that p(γ , S)(V ) = 1 for

any S . For a node set S , define ∂S = {e ∈ E|e ∩ S , ∅, e ∩V \S , ∅}.

We now define our main tool: the Lovász-Simonovits Curve.

Definition B.1 (Lovász-Simonovits Curve (LSC)). Given an x, we

order its components from large to small by breaking equality

arbitrarily, say x1,x2, ....,xn w.l.o.g, and define Sxj = {x1, ...,x j }.

LSC defines a corresponding piece-wise function Ix : [0,M] → R

s.t Ix(0) = 0, Ix(vol(G)) = 1 and I (vol(Sxj )) = p(Sxj ). And for any

k ∈ [vol(Sxj ), vol(S
x
j+1)],

Ix(k) = Ix(vol(S
x
j )) + (k − vol(S

x
j ))x j .

Our proof depends on the following two Lemma B.2 and B.3 that

will characterize the upper and lower bound of Ix, which finally

leads to the main theorem.

Lemma B.2. For a set S , given an x = x(γ , S), let ϕx and Sx be the

minimal conductance and the node set obtained through a sweep-cut

over x. For any integer t > 0 and k ∈ [0,M], the following bound

holds

Ix(k) ≤
k

M
+

γt

2 + γ
+

√
min(k,M − k)

mini ∈S di
(1 −

σ 2
xϕ

2
x

8
)t

where σx = (2maxe ∈∂Sx min{δe , |e |/2} + 1)
−1.

Lemma B.3. For a set S , if a node v ∈ S is sampled according to a

distribution P s.t

Ev∼P[p(γ , {v})(S̄)] ≤ cp(γ , S)(S̄), (17)

where c is a constant, then with probability at least 1
2 , one has

p(γ , {v})(S) ≥ 1 − 2cϕ(S)/γ .

Lemma B.3 gives the lower bound Ix(γ , {v })(vol(S)) as this value

is no less than p(γ , {v})(S). Note that the sampling assumption of

Lemma B.3 is natural in the standard graph case, when P samples

each node proportionally to its degree, we have an equality with

c = 1 in (17). Combining Lemma B.2 and B.3, we arrive at

Theorem B.4. Given a set S∗ of vertices s.t. vol(S∗) ≤ M
2 and

ϕ(S∗) ≤
γ
8c for some positive constants γ , c . If there exists a distribu-

tion P s.t. Ev∼P[p(γ , {v})](S̄
∗) ≤ cp(γ , S∗)(S̄∗), then with probability

at least 1
2 , the obtained conductance satisfies

ϕx ≤

√

32γ max
e ∈∂Sx

min

{
δe ,
|e |

2

}
ln

(
100

vol(S∗)

dv

)
,

where x = x(γ , {v}) and v is sampled from P. Sx is the node set

obtained via the sweep-cut over x.

Proof. We combine Lemma B.3 and B.2 and use the same tech-

nique as Thm. 17 in [25] (Sec. 7.7.3). □

By removing the normalizing on the number of seeded nodes,

Thm. B.4 becomes Thm. 4.2.

B.1 Proof of Lemma B.2

Define Le (x) ≜ ∇x
1
2Qe (x) (16) and with some algebra, we have

Le (x) =
∑

v ∈e

[
(xv − x

(e)∗
a )+ − (x

(e)∗

b
− xv )+

]
1v ,

where x
(e)∗
a and x

(e)∗

b
are the optimal values in (16). In the following,

we will first prove Lemma B.5 and further use it to prove Lemma B.6.

The same proof in Thm. 16 in [25] (Sec. 7.7.2) can be used to leverage

Lemma B.6 to prove Lemma B.2.

Lemma B.5. Given an x, we order its components from large to

small, say x1,x2, ....,xn w.l.o.g., and define Sxj = {x1, ...,x j }. Define

σx
j = (1 + 2maxe ∈∂Sx

j
min {δe , |e |/2})

−1, and we have

2Ix(vol(S
x
j )) − ⟨

∑

e ∈E

Le (x), 1Sx
j
⟩ ≤

Ix(vol(S
x
j ) − σ

x
j cut(S

x
j )) + Ix(vol(S

x
j ) + σ

x
j cut(S

x
j )).
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Lemma B.6. Suppose x = x(γ , S), x0 = 1S /vol(S) and σ
x
j = (1 +

2maxe ∈∂Sx
j
min{δe , |e |/2})

−1. We have

Ix(vol(S
x
j )) ≤

γ

2 + γ
Ix0 (S

x0
j ) +

1

2 + γ
(Ix(vol(S

x
j ) − σ

x
j cut(S

x
j ))+

Ix(vol(S
x
j ) + σ

x
j cut(S

x
j ))). (18)

Furthermore, for k ∈ [0,M], Ix(k) ≤ Ix0 (k).

Proof of Lemma B.5. Given a hyperedge e , we order {xv | v ∈

e} from large to small by breaking equality arbitrarily and obtain

x
(e)
1 ,x

(e)
2 , ...,x

(e)
e . Suppose x

(e)

k
∈ Sxj and x

(e)

k+1
< Sxj . Then,

⟨Le (x), 1Sx
j
⟩ =

k∑
i=1

[
(x
(e)
i − x

(e)∗
a )+ − (x

(e)∗

b
− x
(e)
i )+

]
(19)

Next, we will bound (19) by analyzing three cases. We only focus

on x
(e)∗
a > x

(e)∗

b
and otherwise xv ’s are constant for all v ∈ e . Also

denote k+ = max{i | x
(e)
i > x

(e)∗
a }, k− = min{e + 1 − i | x

(e)
i <

x
(e)∗

b
}, and k− = |e | + 1 − k−. By the optimality of x

(e)∗
a , x

(e)∗

b
, we

have

x
(e)∗
a = (k− + δe )X

k+
1 + δeX

|e |

k−
, x

(e)∗

b
= δeX

k+
1 + (k+ + δe )X

|e |

k−
,

where X
i2
i1
= (k+k− + δe (k+ + k−))

−1 ∑i2
i=i1

x
(e)
i .

Thus, we have

⟨Le (x ), 1Sx
j
⟩=




[(k+ − k )(k− + δe ) + k−δe ]X
k
1 ifk ≤ k+

−k (k− + δe )X
k+
k+1
− kδeX

|e |

k−
,

k−δeX
k+
1 − k+δeX

|e |

k−
, ifk+ ≤ k ≤ k

−

( |e | − k )δeX
k+
1 + ( |e | − k )(k+ + δe )X

k
k−

ifk ≥ k− .

−[k+δe + (k − k
−)(k+ + δe )]X

|e |

k
(20)

By using the definition of X
i2
i1
, noticing that all coefficients on

x
(e)
i ≤ 1 in the left hand side of (20), and a good deal of algebra, we

can further show



k (k+−k )(k−+δe )+k−δe
k+k−+δe (k++k−)

≥ 2
δ ′e+2

min{k, |e | − k, δe } ifk ≤ k+
k+k−δe

k+k−+δe (k++k−)
≥ 1

2δ ′e+1
min{k, |e | − k, δe }, ifk+ ≤ k ≤ k

−

k−[k+δe+(k−k
−)(k++δe )]

k+k−+δe (k++k−)
≥ 2

δ ′e+2
min{k, |e | − k, δe }, ifk ≥ k− .

where δ ′e = min{δe , |e |/2}. In each case of (20), the sum of positive

coefficient before each x
(e)
i equals to the sum of negative coeffi-

cients, which are both lower bounded by 1
2δ ′e+1

times the splitting

cost of e . Therefore,

2Ix(vol(S
x
j )) −

∑

e ∈E

⟨Le (x), 1Sx
j
⟩ ≤

Ix(vol(S
x
j ) − σ

x
j cut(S

x
j )) + Ix(vol(S

x
j ) + σ

x
j cut(S

x
j )),

where σx
j = 1/(2maxe ∈∂Sx

j
δ ′e + 1), which concludes the proof.

Proof of Lemma B.6. Compute the derivative ofQ(x) (15) w.r.t.

x and use the optimality of x = x(γ , S) to get 0 = γD(x−x0)+Le (x).

Therefore,the inner product with 1Sx
j

0 = γ (Ix(vol(S
x
j )) − Ix0 (vol(S

x0
j ))) + ⟨Le (x), 1Sx

j
⟩.

Plug in Lemma B.5 and we achieve (18). By using the concavity of Ix,

we obtain Ix(vol(S
x
j )) ≤ Ix0 (vol(S

x0
j )) and therefore Ix(k) ≤ Ix0 (k)

for any k ∈ [0,M].

B.2 Proof of Lemma B.3

If the following LemmaB.7 is true, thenwe haveEv∼P[p(γ , {v})(S̄)] ≤

cp(γ , S)(S̄) = c(1 − p(γ , S)(S)) ≤ cϕ(S)/γ . By using Markov’s in-

equality, with probability 1
2 , we will sample a node v such that

p(γ , {v})(S̄) ≤ 2cϕ(S)/γ , which concludes the proof.

Lemma B.7. For any S ⊂ V , p(γ , S)(S) ≥ 1 − ϕ(S)/γ .

Proof. This mass from the nodes in S to the nodes in S̄ naturally

diffuses from the auxiliary nodes v
(e)
a to v

(e)

b
for e ∈ ∂S . As need to

lower bound p(γ , S)(S), we may consider fixing xv = 0,∀v ∈ S̄ of

Q(x) and the obtained solution x̃ naturally satisfies

p(γ , S)(S) ≥
∑

v ∈S
dv x̃v , where x̃ ≜ argmin

x
Q(x)|xv=0,∀v ∈S̄ .

The optimality of x̃
(e)
a , x̃

(e)

b
for e ∈ ∂S in this case implies

−
∑
v ∈e (x̃v − x̃

(e)
a )+ + δe (x̃

(e)
a − x̃

(e)

b
)+ = 0,

∑
v ∈e (−x̃v + x̃

(e)

b
)+ − δe (x̃

(e)
a − x̃

(e)

b
)+ = 0

As x̃v = 0 for v ∈ e\S and x̃v ≤
1

vol(S )
for v ∈ e ∩ S , we have

x̃
(e)

b
≥

δe

δe + |e\S |
x̃
(e)
a , x̃

(e)
a ≤

|e ∩ S |

δe + |e ∩ S |

1

vol(S)
,

and further, ∀e ∈ ∂S ,
∑
v ∈e∩S (x̃v − x̃

(e)
a )+ = δe (x̃

(e)
a − x̃

(e)

b
)+ (21)

≤
|e ∩ S | |e\S |δe

(δe + |e ∩ S |)(δe + |e\S |)

1

vol(S)
≤

min{|e ∩ S |, |e\S |,δe }

vol(S)
.

The optimality of x̃ implies

∑

v ∈S

γdv

(
x̃v −

1

vol(S)

)
+

∑

e ∈∂S

∑

v ∈e∩S

(x̃v − x̃
(e)
a )+ = 0. (22)

Here we use that
∑
e⊂S

∑
v ∈e [(x̃v − x̃

(e)
a )++ (x̃

(e)

b
− x̃v )+] = 0. Plug

(21) into (22) and we have which concludes the proof.
∑ ∑

0≤γ

(
∑

v ∈S

dv x̃v − 1

)

+

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✿

ϕ(S)∑

e ∈∂S

min{|e ∩ S |, |e\S |, δe }

vol(S)
,

which concludes the proof.

C SELECTING δ .

To select δ for each dataset, we run LH-2.0 on a handful of alter-

native clusters as we vary δ . Below, we show F1 scores on those

clusters and pick δ = 1 for Amazon and δ = 1000 for Stack Over-

flow.

of x,
flow.
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0.2

0.4

0 .6

0 .8

F
1

Amazon

10 0 10 1 10 2 10 3 10 4

0.2

0.4

0 .6

F
1

Stack Overflow

2103


	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Method
	3.1 Hypergraph-to-graph reductions 
	3.2 Localized Quadratic Hypergraph Diffusions
	3.3 A strongly local solver for LHQD (6)

	4 Local conductance approximation
	5 Directly Related work
	6 Generalization to p-norms
	7 Experiments
	7.1 Detecting Amazon Product Categories
	7.2 Detecting Stack Overflow Question Topics
	7.3 Varying Number of Seeds

	8 DISCUSSION
	References
	A Proof of Theorem 3.5
	B Proof of Theorem 4.2
	B.1 Proof of Lemma B.2
	B.2 Proof of Lemma B.3

	C Selecting .

