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Preferential attachment (PA) models are a common class of graph models which have been used to explain

why power-law distributions appear in the degree sequences of real network data. Among other properties

of real-world networks, they commonly have non-trivial clustering coefficients due to an abundance of

triangles as well as power laws in the eigenvalue spectra. Although there are triangle PA models and

eigenvalue power laws in specific PA constructions, there are no results that existing constructions have

both. In this article, we present a specific Triangle Generalized Preferential Attachment Model that, by

construction, has non-trivial clustering. We further prove that this model has a power law in both the degree

distribution and eigenvalue spectra.

Keywords: power law; preferential attachment; spectra.

1. Introduction

The idea of preferential attachment (PA) has a lengthy history in explaining ‘rich-get-richer’ models [1, 2].

In the context of networks, a PA model suggests that when agents join a network, they form links to existing

nodes with large degrees. These models offer a simple local rule that helps explain the presence of highly

skewed or power-law degree distributions in real-world networks [3]. While a simple and compelling

mathematical model, there are weaknesses in the relationship between PA models and real-world data.

One of the most striking is the lack of clustering in PA network models. Consequently, there has been a line

of work on generalized PA models that include ways to address the lack of clustering. First, Holme and

Kim [4] proposed a triangle PA model, where agents arrive and link to a node based on its degree and also

link to a neighbour of that node to form a triangle. Later, Ostroumova et al. [5] generalized a family of PA

models and showed that they had power-law degree distributions and in some cases high clustering. We

note that clustering coefficients and degree distributions reflect intrinsically different properties as there

are networks such as a barbell graph (extremely high clustering) and a bipartite network (no clustering)

which both have the same degree distribution, but radically different clustering coefficients, this has also

been observed in graph models [6].

© The authors 2019. Published by Oxford University Press. All rights reserved.
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2 N. EIKMEIER AND D. F. GLEICH

Our work follows in this vein, and in this article, we analyse a specific set of PA networks. The specific

Triangle Generalized Preferential Attachment (TGPA) model will be introduced formally in Section 3.

Informally, the networks grow by inserting two edges that form an idealized triangle (with an already

existing 3rd edge) at each step, where the endpoints are chosen via PA. Our novel analysis of the model

shows that it will produce networks with power-law degree distributions (Theorem 6.1, Corollary 7.2),

and power-law spectral distributions (Theorem 6.2). In our design and analysis of TGPA, we also proved

that the models presented by Avin et al. [7] and the Holme–Kim model [4] have power laws in the spectra

as well. The result on the Holme–Kim model we get for free from our proof of the power law on TGPA.

We prove the result on the Avin et al. model separately, in a similar method as in TGPA.

Our interest in the TGPA model stems from our recent finding on the reliable presence of power

laws in the eigenvalue spectrum of the adjacency matrix [8]. Specifically, in [8], we found that real-

world networks of a variety of types were more likely to have a statistically significant power law in the

eigenvalues of the adjacency matrix than in the degree distribution. The focus on the existence of power

laws in graph models has been primarily focused on the degree distribution in the past. While standard

PA models have been shown to have power laws in the eigenvalue spectra [9, 10], this model does not

have significant clustering coefficients as already mentioned.

For a few decades, power laws, or highly skewed degree distributions, were commonly accepted

properties of real-world networks. As the diversity of data studied continues to grow, alternative dis-

tributions that provide superior characterizations of degree distributions of real-world networks have

emerged [11, 12]. Our point with this article is not the power law results necessarily, but rather the

study of simple models for networks, and an understanding of what contributes to properties of these

networks reminiscent of real-world data. That is, our goal is to understand driving factors underlying

simple generative mechanisms for networks and to characterize the emergent properties of those models.

In summary, the primary contributions of this manuscript are:

1. We present the TGPA model: A model which imposes higher-order structure directly into the network

(Section 3).

2. We show that TGPA produces graphs with significant clustering (Section 4).

3. We extend the results presented on the Generalized Preferential Attachment (GPA) model (in [7]),

to show the eigenvalues follow a power-law distribution (Section 5).

4. We conduct extensive analysis of TGPA to show that the degrees follow a power-law distribution

with an exponent which can range between (1, ∞) (Section 7), and that the eigenvalues follow a

power-law distribution (Section 6).

5. We extend the results presented on the model presented by Holme and Kim [4] to show the

eigenvalues follow a power-law distribution (Section 6.1).

In our experience establishing these results, one technical challenge involved the ideas in Lemma 6.2,

where the existing approach fundamentally assumed that edges were not added in small groups. The code

to reproduce our experiments is available online at https://github.com/eikmeier/TGPA.

2. Preliminaries and related work

Denote a graph G by its set of vertices V and edges E. A graph with n vertices can be represented as

an n × n adjacency matrix A, where Aij = 1 if edge (i, j) is in the graph, and Aij = 0 otherwise. The
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TGPA 3

Table 1 Notation in our article

Gt = (Vt , Et) A graph at time step t with vertices V and edges E

A The adjacency matrix

dt(v) The degree of vertex v at time t

et The number of edges at time t

mk,t The number of nodes at time t with degree k

degree of vertex i is the number of vertices j such that Aij = 1. In this manuscript, we will be primarily

concerned with undirected, simple, graphs, meaning Aij = Aji for all i, j, and Aii = 0 for all i.

We will be concerned with graph models that evolve over time. There are a huge diversity of graph

generation schemes, many of which have been analysed in theory and in practice. For example, latent

space graphs [13] and GPA [14]. Define a non-empty initial graph G0 with vertices, V0, and edges, E0.

At each time step t = 1, 2, . . . perform some action on Gt−1 (such as adding new vertices or edges) to

obtain Gt = (Vt , Et). Continue until the graph is sufficiently large. Denote the degree of vertex v at time

t to be dt(v). Let et denotes the number of edges at time t, and let mk,t be the number of nodes at time t

with degree k.

2.1 Preferential attachment

PA describes a mechanism of graph evolution in which nodes with higher degree tend to continue gaining

neighbours. When a new node u is added to the graph at time t, choose another existing vertex v with

probability proportional to its degree. Formally, choose vertex v with probability

γt(v) =
dt−1(v)

∑

w∈Vt−1
dt−1(w)

. (2.1)

Then add an edge connecting u to v. PA is meant to model the power-law behaviour that is often seen

in real-world networks [15–17], that is a few vertices tend to have very large degree while most vertices

have fairly low degree. A set of values x1, x2, . . . xk satisfies a power law if it is drawn from a probability

distribution p(x) ∝ x−β for some β.

The PA graph model is found in a few different forms. In the model by Barabási and Albert [3], often

called the BA model, at every new time step a new vertex is formed with m edges. Each of the edges is

then connected to an existing node chosen using PA, that is based on their degrees.

In a slight variation found in [18, 19], at each time step t, a new node is added with probability p. Along

with the new node is an edge between the new node and an existing node picked via PA. With probability

1 − p a new edge is added between two existing nodes, both chosen via PA. These two models generate

slightly different distributions, but fundamentally give very similar graphs. We present our model TGPA

in two forms matching these differences (Section 3).

In Sections 2.2 and 2.3, we discuss a few variations of the PA model. There exist other variations of

PA [5, 20–22] which we will not detail here.
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4 N. EIKMEIER AND D. F. GLEICH

2.2 Generalized preferential attachment

The GPA model was defined by Avin et al. [7]. In this model, in addition to adding new vertices and

edges, there is also an option in each time step of adding a new component. Furthermore, the parameters

may change over time, if desired. Start with an arbitrary initial non-empty graph G0. For time t ≥ 1, the

graph Gt is constructed by performing either a node event with probability pt ∈ [0, 1], an edge event with

probability rt ∈ [0, 1−pt], or a component event with probability qt = 1−pt − rt . In a node event, a new

vertex v is added to the graph, along with an edge (u, v) where u is chosen from Gt−1 with probability

γt(u). In an edge event, a single new edge (u, w) is added, with u and w both nodes in Gt−1. The edge

endpoint u is chosen with probability γt(u) and the endpoint w is chosen with probability γt(w), so the

edge itself is chosen with probability γt(u) · γt(w), which gives a full probability distribution over edges

(recall that multiedges and self-loops are allowed). And in a component event, two new nodes v1, v2 are

added along with edge (v1, v2). Exactly one edge is added at each time step, so the number of edges in

Gt is equal to e0 + t.

The key difference in GPA over the PA model discussed in Section 2.1 is the ability to add new

components to the graph. In [7], it is proved that the degree distribution follows a power law. In this

manuscript, we further prove that the eigenvalues follow a power-law distribution (see Section 5).

We will also work with a slight variation of the GPA model, along the lines of the alternate ver-

sion of the PA model defined in [3, 9] and discussed in Section 2.1. Start with an empty graph. Note:

this model need not start as an empty graph, we just follow the convention of [3, 9]. Since all of our

analysis is in asymptotics, it should have no impact. At time t = 1, 2, . . . do one of the following: with

probability p add a new vertex vt and an edge from vt to some other vertex in u where u is chosen with

probability

Pr[u = vi] =

{
dt (vi)

2t−1
, if vi �= vt

1

2t−1
, if vi = vt

; (2.2)

and with probability 1 − p add two new vertices and an edge between them. For some constant m, every

m steps contract the most recent m vertices added through the PA step to form a super vertex. Notice

that Equation (2.2) is not quite the same as γt in Equation (2.1). Equation (2.2) allows for nodes to be

added with self-loops. In both versions, loops are allowed in the edge step. Regardless, the allowance of

self-loops has little effect as the graph becomes large, and we remove all self-loops in our final graph for

experimental analysis.

2.3 Triad formation

Holme and Kim [4] introduced a Triad Formation step into the BA version of the PA model (see Section

2.1). After each PA step in which a new vertex v is added and some edge is added (v, u), a triangle

is closed with probability pt by choosing a neighbour of u, u2, and adding edge (v, u2). An example

network is shown in Figure 1 under ‘Holme’. The average number of triad closures per added vertex is

mt = (m − 1)pt . It is shown in [4] that the network follows a power law in the degrees with an exponent

of 3 and has clustering coefficients which can be tuned by the parameter mt . Our model incorporates

something very similar to this triad formation, but with less regular structure due to an added component

step, and with a larger range of possible power-law exponents. See Section 3 for the description of our

model, and Lemma 7.2 for the result on the range of degree power-law exponents.
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TGPA 5

2.4 Higher-order features in graphs

Recently, there has been interest in analysing the higher-order features in graphs [23–28]. One of the

earlier motivations for this direction is the famous paper by Milo et al. [29] on the presence of motifs

in real-world networks. Likewise, there are new models which aim to match these higher-order features.

For example, the triad formation model described in Section 2.3 [4], and the family of PA models [5]

discussed in Section 1. Another model, HyperKron, places a distribution over hyperedges and inserts

motifs instead of edges [30] and is specifically shown to have higher-order clustering. The study of

higher-order features is growing and complex, it is also studied in multi-layer networks, temporal data,

and components of graphs. See [31] for a nice overview of work in higher-order network analysis.

3. TGPA

In this section, we present our model which we call TGPA. This model is motivated by the purpose of

adding higher-order structure into the resulting graph as discussed in Section 2.4, and a recent paper [7]

which shows a model of PA with any power-law exponent (Section 2.2). We present two different versions

of the model. The first, in Section 3.1 follows the PA model as described by [3, 9], and the second in

Section 3.2 follows the PA model as described in [7, 18]. Though these models are not the same, they

share similar properties. In Sections 6 and 7, we will see each formulation is useful for the analysis of

the models. Figure 1 shows some example graphs generated by TGPA compared to existing models.

3.1 TGPA(p, q)

Start with an empty graph. At time t = 1, 2, . . . do one of the following:

1. (node event) With probability p, add a new vertex vt , and an edge from vt to some other vertex u

where u is chosen with probability

Pr[u = vi] =

{
dt (vi)

4t−2
, if vi �= vt

2

4t−2
, if vi = vt

. (3.1)

Then pick a neighbour of u, call it w, and also add an edge from vt to w. We pick w with probability

Pr[w = vi] =

{
# edges between u,w

dt−1(u)
, if vi �= u

2·# self-loops of u

dt−1(u)
, if vi = u

. (3.2)

2. (component event) With probability q = 1−p add a wedge to the graph (3 new nodes with 2 edges).

3. For some constant m, every m steps contract the most recently added vertices through the PA steps

(in step 1) to form a super vertex.

Note that vertex w (chosen in step 1) is also chosen via PA. The probability of picking w is the

probability of picking u as a neighbour of w times the probability of picking w:

Pr[w = vi] =

∑

u∈N(w) dt−1(u)

4t − 2
·

num edges between u, w

dt−1(u)
=

dt(w)

4t − 2
.
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6 N. EIKMEIER AND D. F. GLEICH

Fig. 1. Examples of 50 node graphs. The top two figures were generated using p = 0.8, r = 0.1, q = 0.1. The graphs on the bottom

were generated using m = 2, and TGPA(p, q) used p = 0.85. See the text for the details on these parameters.

3.2 TGPA(pt , rt , qt)

Start with a graph with e0 edges. At time t = 1, 2, . . . do one of the following:

1. (Node event) With probability pt , add a new vertex vt , and an edge from vt to some other vertex u

where u is chosen with probability given in Equation (3.1). Then pick a neighbour of u, call it w, as

in Equation (3.2). Add edge an edge from vt to w.

2. (Wedge event) With probability rt add a wedge to the graph by picking two nodes using PA: v1, v2.

Pick the third node uniformly from a neighbour of v1, call it w. Add edges (v1, v2) and (v1, w).

3. (Component event) With probability qt add a wedge to the graph (3 new nodes with 2 edges).
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TGPA 7

Table 2 Clustering coefficients for three real-world networks, and generated models. TGPA is able to

generate data with much larger clustering coefficients, compared to GPA

Network name Edges Global clust Local clust HO global HO local

Auburn (18k vertices) 974k 0.137 0.223 0.107 0.172

TGPA(18k,0.987,10,150): 640k 0.25 0.22 0.118 0.03

GPA(18k,0.001,0.999,2): 906k 0.021 0.030 0.005 0.014

Berkeley (13k vertices) 852k 0.114 0.207 0.0876 0.156

TGPA(13k,0.99, 10, 58) 502k 0.104 0.185 0.034 0.025

GPA(13k,0.001,0.999,2) 502k 0.024 0.034 0.005 0.015

Princeton (7k vertices) 293k 0.237 0.164 0.091 0.146

TGPA(7k,0.987,10,100): 207k 0.298 0.251 0.148 0.053

GPA(7k,0.001,0.999,2): 255k 0.038 0.054 0.009 0.025

4. Significant clustering coefficients

We analysed three networks from the Facebook 100 dataset [32], each of which is a set of users at a

particular university. We computed the global clustering coefficient: 6|K3|/|W |, where |K3| is the number

of triangles and |W | is the number of wedges, and average local clustering coefficient: the average

of 2|K3(u)|/|W(u)| for all nodes u, where K3(u) denotes triangles for which u is a member. We also

considered higher-order clustering coefficients, defined in [28] to be the fraction of appropriate motifs

which are closed into 4-cliques.

To fit the TGPA(p, q) model (Section 3.1) to the real-world networks, we noted that the average

degree of our model, the total degrees divided by the number of nodes, is approximately (2m(1 − p) +

2m)/(m(1 − p) + 1). Choosing the average degree gives a relationship between parameters m and p. We

tested various sets of parameters to obtain the best possible fit. We started both TGPA and GPA with

a k-node clique. Table 2 lists the parameters we chose for the TGPA model as TGPA(n, p, k, m), which

produces an n node graph starting from a k node clique. For comparison, we also fit the GPA model

(Section 2.2). The parameters in Table 2 are GPA(n, p, r, k). Notice that TGPA maintains much more

significant clustering coefficients across all measures.

5. Eigenvalue power law in GPA

In this section, we present results for the GPA model presented in [7] and discussed in Section 2.2,

relating to the distribution of the eigenvalues of a graph formed in the model. Note that in order to get

our desired result (Theorem 5.2), we also prove that the degree distribution has a power-law distribution

(Theorem 5.1). This was already proven in [7], but the version of our proof is useful in order to obtain

Theorem 5.2. The results and proofs mirror those in [9], but provide a useful step towards the results on

the TGPA model in Section 6. All proofs are included in Appendix A.

Fix parameter p. Denote Gm
t as the GPA Graph at time t with contractions of size m.

Lemma 5.1 Let dt(s) be the degree of vertex s in Gm
t , for any time t after s has been added to the graph.

Let a(k) = a(a + 1)(a + 2) · · · (a + k − 1) be the rising factorial function. Let s′ be the time at which
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8 N. EIKMEIER AND D. F. GLEICH

node s arrives in the graph. Then for any positive integer k,

E[(dt(s))
(k)] ≤ (2m)(k)2pk/2

(
t

s′

)pk/2

.

Now define a supernode to be a collection of nodes viewed as one. The degree of a supernode is the

sum of the degrees of the vertices in the supernode.

Lemma 5.2 Let S = (S1, S2, . . . , Sl) be a disjoint collection of supernodes at time t0. Assume that the

degree of Si at time t0 is dt0
(Si) = di. Let t be a time later than t0. Let pS(r; d, t0, t) be the probability

that each supernode Si has degree ri + di at time t. Let d =
∑l

i=1 di, r =
∑l

i=1 ri. If d = o(t1/2) and

r = o(t2/3), then

pS(r; d, t0, t) ≤

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)
(

t0 + 1

t

)pd/2

exp

{

2 + t0 −
pd

2
+

3pr

tp/2

}

.

Theorem 5.1 Let m, k be fixed positive integers, and let f (t) be a function with f (t) → ∞ as t → ∞.

Let �1 ≥ �2 ≥ . . . ≥ �k denote the degrees of the k highest degree vertices of Gm
t . Then

tp/2

f (t)
≤ �1 ≤ tp/2f (t) and

tp/2

f (t)
≤ �i ≤ �i−1 − tp/2f (t)

for i = 1, 2, . . . , k whp.

The factor of tp/2 in Theorem 5.1 implies a power-law distribution in the largest degrees with exponent

β = (2+p)/p. This can be seen by using a martingale argument, as described in [33] for instance. Notice

that depending on the value chosen for p, we can obtain a power law fit with exponents ranging between

3 and ∞.

The next result relates maximum eigenvalues and maximal degrees in the GPA model. It is similar to

results found in [9, 10, 34, 35]. It says that if the degrees follow a power law with exponent β, then the

spectra follows a power law as well, with exponent 2β − 1.

Theorem 5.2 Let k be a fixed integer, and let f (t) be a function with f (t) → ∞ as t → ∞. Let

λ1 ≥ λ2 ≥ . . . ≥ λk be the k largest eigenvalues of the adjacency matrix of Gm
t . The for i = 1, . . . , k, we

have λi = (1 + o(1))�
1/2

i , where �i is the ith largest degree.

6. Analysis of TGPA(p, q)

In this section, we present results on the degrees and spectra of the TGPA(p, q) model, which was defined

in Section 3.1. The proofs follow the proof techniques presented in Section 5. The key difference in these

proofs is the fact that two edges may be added in each time step. This makes the PA much more tedious to

track through graph generation. In Lemma 6.2 for example, we consider disjoint (but not disconnected)

sets of supernodes; the probability of the supernodes increasing in degree is not independent from one

other. The full proofs are in Appendix B.

Fix parameter p. Denote Gm
t (p, q) as the TGPA Graph at time t with contractions of size m.
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TGPA 9

Lemma 6.1 Let dt(s) be the degree of vertex s in Gm
t (p, q), for any time t after s has been added to the

graph. Let a(k) = a(a + 2)(a + 4) · · · (a + k − 2) be a modified rising factorial function. Let s′ be the

time at which node s arrives in the graph. Then for any positive integer k,

E[(dt(s))
(k)] ≤ (4m)(k)2pk

(
t

s′

)pk

.

Lemma 6.2 Let S = (S1, S2, . . . , Sl) be a disjoint collection of supernodes at time t0. Assume that the

degree of Si at time t0 is dt0
(Si) = di. Let t be a time later than t0. Let pS(r; d, t0, t) be the probability

that each supernode Si has degree ri + di at time t. Let d =
∑l

i=1 di, r =
∑l

i=1 ri. If d = o(t1/2) and

r = o(t2/3), then

pS(r; d, t0, t) ≤

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)
(

t0

t − 1

)pd

exp

{

3 + 2t0 − pd +
19pr

4tp

}

.

Theorem 6.1 Let m, k be fixed positive integers, and let f (t) be a function with f (t) → ∞ as t → ∞.

Let �1 ≥ �2 ≥ . . . ≥ �k denote the degrees of the k highest degree vertices of Gm
t (p, q). Then,

tp

f (t)
≤ �1 ≤ tpf (t) and

tp

f (t)
≤ �i ≤ �i−1 − tpf (t)

for i = 1, 2, . . . , k whp.

The factor of tp in Theorem 6.1 implies a power-law distribution with exponent α = (1 + p)/p. This

can be seen by using a martingale argument, which has been done a number of times. See for instance [33].

Notice that depending on the value chosen for p, we can obtain a power law fit with exponents ranging

between 2 and ∞.

Theorem 6.2 Let k be a fixed integer, and let f (t) be a function with f (t) → ∞ as t → ∞. Let

λ1 ≥ λ2 ≥ . . . ≥ λk be the k largest eigenvalues of the adjacency matrix of Gm
t (p, q). The for i = 1, . . . , k,

we have λi = (1 + o(1))�
1/2

i , where �i is the ith largest degree.

In the analysis of this proof, we restrict p to be greater than 9/32. This comes in Claim B.7, and

constrains the exponent in the power law to be between 2 and 5. For the proof, we will show that with

high probability G contains a star forest F, with stars of degree asymptotic to the maximum degree vertices

of G. Then we show that G\F has small eigenvalues. Finally, we can use Rayleigh’s principle to say that

the large eigenvalues of G cannot be too different than the large eigenvalues of F. See Appendix B for

the full proof.

6.1 Spectral power law in Holme–Kim model

The model which we have defined as TGPA(p,q) is equivalent to the model defined by Holme and Kim [4]

with q = 0. We note here that then we get for free that the model by Holme and Kim also has a power

law in the spectrum, by using the same analysis with q = 0 and p = 1.
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10 N. EIKMEIER AND D. F. GLEICH

7. Analysis of TGPA(pt , rt , qt)

Consider TGPA(pt , rt , qt), which was described in Section 3.2. The parameters pt , rt , qt can change over

time, though we will restrict the ways in which the parameters can evolve in Section 7.2.

7.1 Recursive relation for mk,t

Recall that mk,t is the number of nodes at time t with degree k. We wish to write down a relationship for

mk,t+1 in terms of mk′ ,t for k′ ≤ k. Recall also that the number of edges at time t is et = e0 + 2t, and

the total sum of degrees at any time t is 2et . Note that for this reason, we need only focus on mk,t for

1 ≤ k ≤ 2et .

Let Ft denote the σ -algebra generated by the graphs G0, G1, . . . , Gt (Ft holds the history of events

up until time t). We wish to calculate the expected value of mk,t+1, conditioned on the previous time steps,

held in Ft . Fix k ≥ 2. Since 0 ≤ dt+1(v) − dt(v) ≤ 4 for every node v and time t, we have

E[mk,t+1|F ] =
∑

{v:k−4≤dt (v)≤k}

P[dt+1(v) = k]. (7.1)

Recall γt(v) from Equation (2.1). Denote θt(v) as 2 times the number of self-loops in which v is involved

divided by
∑

w∈Vt−1
dt−1(w). (i.e. the proportion of edges which are self-loops on v). If dt+1(v) = 4, then

there are at most 5 possible values for dt(v) when k ≥ 4:

(i) dt(v) = k. In this case, there must have either been a node event not involving v (this occurs

with probability pt+1(1 − 2γt+1(v) + θt+1(v))), or a wedge event not involving v (with probability

rt+1(1 − γt+1(v))(1 − 2γt+1(v) + θt+1(v))), or a component event (with probability qr+1).

(ii) dt(v) = k − 1. In this case, there must have either been a node event where v is involved as the

first node (probability pt+1 · γt+1(v) · (1 − θt+1(v))), or where v is involved as the second node

(probability pt+1(γt+1(v) − θt+1(v))), or a wedge event in which v is involved as the first node (with

probability rt+1(γt+1(v) − γt+1(v)
2 − θt+1(v) + γt+1(v) · θt+1(v))) or as the third node (probability

rt+1(1 − γt+1(v))(γt+1(v) − θt+1(v))).

(iii) dt(v) = k − 2. In this case, there must have either been a node event in which v is picked as both

nodes involved (with probability pt+1 · θt+1(v)) or there must have been a wedge event in which v

is involved as the second node (with probability rt+1 · θt+1(v)(1 − γt+1(v))) or as the first and third

nodes (with probability rt+1 · γt+1(v)(1 − γt+1(v) + θt+1(v))).

(iv) dt(v) = k − 3. In this case, there must have been a wedge event where v was involved as the first

and second nodes or there was a wedge event where v was involved as the second and third nodes

(these events occur in combination with probability 2rt+1γt+1(v)(γt+1(v) − θt+1(v) ) ).

(v) dt(v) = k − 4. In this case, there must have been a wedge event where v is picked for all three

wedges, which happens with probability rt+1 · γt+1(v) · θt+1(v)

Let αk,t = k/(2et). Then for every v such that dt(v) = i, γt+1(v) = αi,t . In order to ease the exposition,

and for short hand, we define values A, B, C, D, E for each of the probabilities calculated above:

Ak,t = pt+1,k(1 − 2αk,t + θt+1(v)) + rt+1(1 − αk,t)(1 − 2αk,t + θt+1(v)) + qt+1,

Bk,t = 2pt+1(αk,t − θt+1(v)) + 2rt+1(1 − αk,t)(αk,t − θt+1(v)),
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TGPA 11

Ck,t = pt+1θt+1(v) + rt+1(αk,t − α2
k,t + θt+1(v)),

Dk,t = 2rt+1αk,t(αk,t − θt+1(v)), and Ek,t = rt+1αk,tθt+1(v).

Then Ak,t + Bk,t + Ck,t + Dk,t + Ek,t = 1 and Ak,t , Bk,t , Ck,t , Dk,t , Ek,t ≥ 0 for every 0 ≤ k ≤ 2et . Also, by

Equation (7.1), for every k ≥ 4

E[mk,t+1|F ] = mk,tAk,t + mk−1,tBk−1,t + mk−2,tCk−2,t + mk−3,tDk−3,t + mk−4,tEk−4,t . (7.2)

And for remaining values of k, we have

E[m3,t+1|F ] = m3,tA3,t + m2,tB2,t + m1,tC1,t

E[m2,t+1|F ] = m2,tA2,t + m1,tB1,t + pt+1 + qt+1

E[m1,t+1|F ] = m1,tA1,t + 2qt+1

. (7.3)

Define

Xk,t =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

mk−1,tBk−1,t + mk−2,tCk−2,t + mk−3,tDk−3,t + mk−4,tEk−4,t k ≥ 4

m2,tB2,t + m1,tC1,t k = 3

m1,tB1,t + pt+1 + qt+1 k = 2

2qt+1 k = 1

. (7.4)

Then, Equations (7.2) and (7.3) can be re-written as

E[mk,t+1] = E[mk,t] · Ak,t + E[Xk,t]. (7.5)

7.2 Degree power law in TGPA

The following lemma is presented in [7] and is a quick generalization of a result in [18].

Lemma 7.1 ([7]) Suppose that a sequence satisfies the recurrence relation at+1 = (1 − bt/(t + t1))at + ct

for t ≥ t0. Furthermore, let {st} be a sequence of real numbers with lim
t→∞

st/st+1 = 1, dt = t(1 − st/st+1),

lim
t→∞

bt = b, lim
t→∞

ct · t/st = c, lim
t→∞

dt = d and b+d > 1. Then lim
t→∞

at/st exists and lim
t→∞

at/st = c/(b+d).

The following theorem and corollary prove that TGPA(pt , rt , qt) has a power law in the degree

distribution, which we can analyse.

Theorem 7.1 Consider TGPA(pt , rt , qt). Let yt = pt + 3qt . Assume that lim
t→∞

yt = y < 3,
∑∞

t=1 yt = ∞

and lim
t→∞

t · yt+1/
∑t

j=1 yj = Ŵ > 0. Then letting β = 1 + 2Ŵ/(3 − y), the limit Mk = lim
t→∞

E[mk,t]/ E[nt]

exists for every k ≥ 1 and

Mk =
Ŵ

Ŵ + 3/2 − y/2

k−1
∏

j=1

j

j + β
. (7.6)
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12 N. EIKMEIER AND D. F. GLEICH

Proof. This proof will be an induction on k. For k = 1, we use Lemma 7.1 setting (t1, st , at , bt , ct) =

(e0, E[nt], E[m1,t], et(1 − A1,t), yt+1). Using Equation (7.5), this gives the limits b = 3/2 − y/2 and

c = d = Ŵ, which concludes the base case. Now assume the theorem holds for k − 1, we now prove

it for k. Again use Lemma 7.1, this time with (t1, st , at , bt , ct) = (e0, E[nt], E[mk,t], Bk−1,t E[mk−1,t] +

Ck−1,t E[mk−2,t] + Dk−3,t E[mk−3,t] + Ek−4,t E[mk−4,t]). Then we get d = Ŵ, b = k · (3/2 − y/2), and using

the inductive hypothesis,

c = lim
t→∞

ct · t

st

= (k − 1)

(
3

2
−

y

2

)

Mk−1.

Therefore, Mk exists and

Mk =
(k − 1)(3/2 − y/2)Mk−1

k(3/2 − y/2) + Ŵ
=

k − 1

k − 1 + β
Mk−1.

�

The proof of the following corollary follows exactly from [7]. We include the proof here for

completeness.

Corollary 7.1 Under the assumptions in Theorem 7.1, Mk is proportional to k−β .

Proof. Consider Equation (7.6). It is a fact that a differentiable function f is convex if and only if

f (x2) ≥ f (x1)+ f ′(x1)(x2 −x1) for every x1 and x2 [36]. Applying this with (f (z), x1, x2) = (zβ , 1, 1+1/j),

we get

k−1
∏

j=1

j

j + β
=

k−1
∏

j=1

(1 + β/j)−1 ≥

k−1
∏

j=1

(1 + 1/j)−β = k−β . (7.7)

Also though, applying this with (f (z), x1, x2) = (zβ , 1, 1 − 1/j) we obtain

k−1
∏

j=1

j

j + β
=

k−1
∏

j=1

(1 − β/(j + β))
−1 ≤

k−1
∏

j=1

(1 − 1/(j + β))
−β =

(
β

k − 1 + β

)β

≤ ββ · k−β . (7.8)

Therefore, c1k−beta ≤ Mk ≤ c2k−beta for some positive constants c1, c2 and every k ≥ 1. �

Finally, we can state which power-law exponents are obtainable.

Lemma 7.2 For any x ∈ (1, ∞), there exists a choice of pt , rt , qt such that in TGPA(pt , rt , qt) the resulting

network follows a power law in the degree distribution with exponent β = x.

Proof. We can use three separate cases:

(i) For x ∈ (5/3, ∞), setting yt = 3 − 2/(x − 1) gives exponent β = 1 + 2/(3 − (3 − 2/(x − 1))) = x.
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(ii) For x ∈ (1, 5/3), set yt = t3/2(x−5/3). Then

Ŵ = lim
t→∞

yt+1 · t
∑t

j=1 yj

= lim
t→∞

(t + 1)3/2(x−5/3) · t
∑t

j=1(j
3/2(x−5/3))

= lim
t→∞

·t3/2x−3/2

∫ t

j=0
j3/2(x−5/3)dj

= lim
t→∞

(3/2x − 3/2)t3/2x−3/2

j3/2x−3/2|tj=0

= 3/2x − 3/2

,

and β = 1 + (2Ŵ)/(3 − y) = 1 + 2(3/2x − 3/2)/(3 − 0) = x.

(iii) For x = 5/3, set yt = 1/ ln(t + 2) for every t. Then we have

Ŵ = lim
t→∞

yt+1 · t
∑t

j=1 yj

= lim
t→∞

t/ ln(t + 3)
∑t

j=1 1/ ln(j + 2)
= lim

t→∞

t/ ln(t + 3)

t/ ln t
= 1.

Then TGPA(pt , rt , qt) follows a power-law degree distribution with exponent β = 1+2Ŵ/(3−y) =

1 + 2/(3 − 0) = 5/3.

�

For a final analysis, we show that the component portion is necessary to obtain the full power-law

exponent range (1, ∞). Lemma 7.3 comes directly from [7].

Lemma 7.3 [7] Assume lim
t→∞

yt = y and lim
t→∞

yt+1 · t/
∑t

j=1 jj = Ŵ. Then for y > 0 we have Ŵ = 1, and

for y = 0 we have Ŵ ≤ 1.

Corollary 7.2 Consider TGPA(pt , rt , qt). Assume that lim
t→∞

qt = 0, lim
t→∞

yt = y and yt+1t/
∑t

j=1 yj =

Ŵ > 0. Then the resulting graph follows a power-law degree distribution with exponent β ∈ (1, 3].

Proof. By Corollary 7.1, TGPA(pt , rt , qt) follows a power law in the degree distribution with exponent

β = 1 + 2Ŵ/(3 − y) > 1. By Lemma 7.3, for 0 < y ≤ 1, we have β = 1 + 2/(3 − y) ∈ (5/3, 3] and for

y = 0, we have β = 1 + 2Ŵ/3 ≤ 5/3. �

8. Conclusions and discussion

In this article, we presented a graph model called TGPA, which incorporates direct triangle formulation

into a GPA model that includes possibly disconnected components. Furthermore, we provided extensive

analysis of this model, showing that the degree and spectral distributions fit power-law distributions. We

also extended the results for the GPA model found in [7] as well as the model defined in [4].

Our new model provides a useful platform for studying real-world network data. The importance of

power laws in the spectra of real-world networks has been shown [8]; however, an explanation for why

this feature occurs remains to be found. We hope that by introducing a model with this feature along with

realistic clustering coefficients will lead to further explanation for the presence of highly skewed spectra.

In the future, we plan to study further generalizations of higher-order PA graphs.
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Appendix A. GPA proofs

In this appendix, we provide proofs for theoretical results from Section 5.

Proof of Lemma 5.1. Denote Gm
t as the graph at time t with contractions of size m. Let Zt = dm

t (s) be the

degree of vertex s at time t, and Yt an indicator for the event that the edge added at time t is incident to s.

Then,

E[Z (k)
t ] = E[E[(Zt−1 + Yt)

(k)]|Zt−1]

= E

[

Z
(k)

t−1

(

1 − p ·
Zt−1

2t − 1

)

+ (Zt−1 + 1)(k)

(

p ·
Zt−1

2t − 1

)]

= E[Z
(k)

t−1]

(

1 +
pk

2t − 1

)

.

Next we apply this relationship iteratively, down to the time when node s was added. Denote this as time

s′, and also note that the degree of s at time s′ is bounded by 2m (if all m edges were added as self-loops)
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16 N. EIKMEIER AND D. F. GLEICH

to get

E(Z (k)
t ) =

t
∏

t′=s′

(

1 +
pk

2t′ − 1

)

≤ (2m)(k)

t
∏

t′=s′+1

(

1 +
pk

2t′ − 1

)

.

Use 1 + x ≤ ex to write the product as a sum, and bound

t
∑

t′=s′+1

1

t′ − 1/2
≤

∫ t

x=s′

1

x − 1/2
dx = log

t − 1/2

s′ − 1/2
.

So finally,

E(Z (k)
t ) ≤ (2m)(k)

(
t − 1/2

s′ − 1/2

)pk/2

= (2m)(k)

(
t

s′

)pk/2 (
2 − 1/t

2 − 1/s′

)pk/2

(2m)(k)

(
t

s′

)pk/2

2pk/2.
�

Proof of Lemma 5.2. Let τ (i) = (τ
(i)

1 , . . . , τ (i)
ri

), where τ
(i)

j is the time when we add an edge incident to Si

and increase the degree from di + j − 1 to di + j. Define τ = (τ0, τ1, . . . , τr+1) to be the ordered union

of τ (i), with τ0 = t0 and τr+1 = t. Let p(τ ; d, t0, t) be the probability that Si increases in degree at exactly

the times specified by τ . Then

p(τ ; d, t0, t) =

(
l

∏

i=1

ri∏

k=1

p
di + k − 1

2τ
(i)

k − 1

)
⎛

⎝

r
∏

k=0

τk+1−1
∏

j=τk+1

(

1 − p
d + k

2j − 1

)
⎞

⎠

=

(
l

∏

i=1

(ri + di − 1)!

(di − 1)!

)(
r

∏

k=1

p

2τk − 1

)

exp

⎧

⎨

⎩

r
∑

k=0

τk+1−1
∑

j=τk+1

log

(

1 − p

(
d + k

2j − 1

))
⎫

⎬

⎭
.

We can bound the inner most sum of the exponential term using a simple inequality

τk+1−1
∑

j=τk+1

log

(

1 − p

(
d + k

2j − 1

))

≤

τk+1−1
∑

j=τk+1

log

(

1 −
p(d + k)

2j

)

,

which is less than or equal to

∫ τk+1

τk+1

log

(

1 −
p(d + k)

2x

)

dx = −τk+1 log(2τk+1) + (τk + 1) log(2τk + 2)

− 1/2(2τk+1 − p(d + k)) log(2τk+1 − p(d + k))

− 1/2(2τk + 2 − p(d + k)) log(2τk + 2 − p(d + k)).

Note that τ0 = t0 and τr+1 = t. Then we can write

r
∑

k=0

∫ τk+1

τk+1

log

(

1 −
p(d + k)

2x

)

dx = A +

r
∑

k=1

Bk ,
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TGPA 17

where

A = (t0 + 1) log(2t0 + 2) − 1/2(2t0 + 2 − pd) log(2t0 + 2 − pd)

− t log(2t) + 1/2(2t − p(d + r)) log(2t − p(d + r))
(A.1)

and

Bk = τk log(1 + 1/τk) + log(2τk + 2) −
2 − p

2
log(2τk + p − p(d + k))

+ 1/2(2τk + 2 − p(d + k)) log

(

1 −
2 − p

2τk + 2 − p(d + k)

)

.

(A.2)

Bound each of A and Bk , starting with Bk . Since 1 + x ≤ ex, τk log(1 + 1/τk) ≤ 1 and 1

2
(2τk + 2 − p(d +

k)) log
(

1 −
2−p

2τk+2−p(d+k)

)

≤ −p/2. Rearranging the other two terms of Equation (A.2), we get

Bk ≤
p

2
log(2τk + 2) −

2 − p

2
log

(

1 −
p(d + k) + 2 − p

2τk + 2

)

+
p

2
.

Rearranging terms of A from Equation (A.1) and taking the exponential,

eA =

(

1 −
pd

2t0 + 2

)−(t0+1)

(2t0 + 2 − pd)pd/2

(

1 −
p(d + r)

2t

)t

(2t − p(d + r))
−p(d+r)

2

=

(

1 −
pd

2t0 + 2

)−(1−
pd

2(t0+1)
)(t0+1) (

1 −
p(d + r)

2t

)t−
p(d+r)

2
(

t0 + 1

t

) pd
2

(2t)
−pr

2 .

Using the bound 1 − x ≤ e−x−x2/2 for 0 < x < 1,

(

1 −
p(d + r)

2t

)t−p(d+r)/2

≤ exp

{

−
p(d + r)

2
+

p2(d + r)2

8t
+

p3(d + r)3

16t2

}

.

Putting the bounds on A and Bk together, we get

eA+
∑

Bk ≤

(

1 −
pd

2t0 + 2

)−(1−
pd

2(t0+1)
)(t0+1)

exp

{

−
p(d + r)

2
+

p2(d + r)2

8t
+

p3(d + r)3

16t2

}

×

(
t0 + 1

t

)pd/2

(2t)−pr/2

r
∏

k=1

(
(

1 −
p(d + k) + 2 − p

2τk + 2

)−(2−p)/2

(2τk + 2)p/2

)

epr/2.

(A.3)

Define err(r, d, t0, t)

err(r, d, t0, t) =

(

1 −
pd

2t0 + 2

)−(1−
pd

2(t0+1)
)(t0+1)

exp

{

−
pd

2
+

p2(d + r)2

8t
+

p3(d + r)3

16t2

}

,
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18 N. EIKMEIER AND D. F. GLEICH

then we can rewrite Equation (A.3) as

err(r, d, t0, t)

(
t0 + 1

t

) pd
2

(2t)
−pr

2

r
∏

k=1

⎛

⎝

(

1 −
p(d + k) + 2 − p

2τk + 2

)−(2−p)
2

(2τk + 2)
p
2

⎞

⎠.

So, we finally finish with the bound on p(τ ; d, t0, t) by substituting Equation (A.3) into Equation (A.1)

and rearranging terms:

p(τ ; d, t0, t) =

(
l

∏

i=1

(ri + di − 1)!

(di − 1)!

)

err(r, d, t0, t)

(
t0 + 1

t

)pd/2

(2t)−pr/2

×

r
∏

k=1

(

p(2τk + p − p(d + k))−(2−p)/2

(

1 +
3

2τk − 1

))

.

Now sum p(τ ; d, t0, t) over all ordered choices of τ to get

p(r; d, t0, t) ≤
∑

τ (1) ,...,τ (l)

p(τ ; d, t0, t)

≤

(
r

r1, . . . , rl

)
∑

t0+1≤τ1<...<τr≤t

l
∏

i=1

(ri + di − 1)!

(di − 1)!
err(r, d, t0, t)

(
t0 + 1

t

) pd
2

× (2t)
−pr

2 p

r
∏

k=1

(2τk + p − p(d + k))−(2−p)/2

(

1 +
3

2τk − 1

)

= r!

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)

err(r, d, t0, t)

(
t0 + 1

t

)pd/2

(2t)−pr/2

×
∑

t0+1≤τ1<...<τr≤t

p

r
∏

k=1

(2τk + p − p(d + k))−(2−p)/2

(

1 +
3

2τk − 1

)

. (A.4)

Now let τ ′
k = τk −⌈p(d + k)/2⌉. Since d ≥ 1 and k ≥ 1, we have 2⌈p(d + k)/2⌉ ≥ 2. So Equation (A.4)

is less than or equal to

∑

(t0−p⌈d/2⌉+1)≤τ ′
1
≤...≤τ ′

r≤(t−p⌈(d+r)/2⌉)

(

p

r
∏

k=1

(2τ ′
k + p)−(2−p)/2

(

1 +
3

2τ ′
k + 1

)
)

≤
p

r!

⎛

⎝

t−p⌈(d+r)/2⌉
∑

τ ′=(t0−p⌈d/2⌉+1)

(

2τ ′ + p)−(2−p)/2 + 3(2τ ′ + 1)−(4−p)/2
)

⎞

⎠

r
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TGPA 19

=
1

r!
(2t)pr/2

(

1 −
p(d + r) − p

2t

)pr/2

︸ ︷︷ ︸

≤exp
{

−
rp(p(d+r)−p)

4t

}

(

1 +
3p

(2t − p(d + r) + p)p/2

)r

︸ ︷︷ ︸

≤exp

{

3pr

(2t−p(d+r)+p)p/2

}

.

Where the last inequalities come from 1 + x ≤ ex. So finally,

pS(r; d, t0, t) ≤

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)

err(r, d, t0, t)

(
t0 + 1

t

)pd/2

exp

{
−rp((d + r) − p)

4t
+

3pr

(2t − p(d + r) + p)p/2

}

.

Using d = o(t1/2) and r = o(t2/3) gives the final bound, and this concludes the proof. �

Proof of Theorem 5.1. Partition the vertices into those added before time t0, before time t1, and after t1,

with t0 = log log log f (t), t1 = log log f (t). We will argue about the maximum degree vertices in each

set.

Claim A.1 In Gm
t , the degree of the supernode of vertices added before time t0 is at least t

1/3

0 tp/2 whp.

Proof. Consider all vertices added before time t0 as a supernode. Let A1 denote the event that this

supernode has degree less than t
1/3

0 tp/2 at time t. Use Lemma 5.2 with l = 1, and d = 2t0 to bound

Pr[A1] ≤

t
1/3
0

tp/2−2t0
∑

r1=0

(
r1 + 2t0 − 1

2t0 − 1

)(
t0 + 1

t

)pd/2

e2+t0−pd/2+3pr/tp/2
.

Then, since r ≤ t
1/3

0 t1/2 − 2t0,

Pr[A1] ≤

t
1/3
0

tp/2−2t0
∑

r1=0

(
t

1/3

0 tp/2 − 1

2t0 − 1

)(
t0 + 1

t

)pt0

e2+t0−pt0+3pt
1/3
0

−6pt0/tp/2
.

Replacing the sum with (t
1/3

0 tp/2 − 2t0), and the using the definition of the combination,

Pr[A1] ≤ (t
1/3

0 tp/2 − 2t0)
(t

1/3

0 tp/2 − 1)!

(2t0 − 1)!(t
1/3

0 tp/2 − 2t0)!

(
t0 + 1

t

)pt0

e2+t0(1−p)+3pt
1/3
0

−6pt0/tp/2
.

And finally, by writing out (t
1/3

0 tp/2 − 1)!/(t
1/3

0 tp/2 − 2t0)!, we can reduce the expression further as

Pr[A1] ≤ t
1/3

0 tp/2 (t
1/3

0 tp/2)2t0−1

(2t0 − 1)!

(
t0 + 1

t

)pt0

e2+t0(1−p)+3pt
1/3
0

−6pt0/tp/2
.
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20 N. EIKMEIER AND D. F. GLEICH

Using 1/x ≤ ex/xx and rearranging terms, P[A1] goes to 0

Pr[A1] ≤
e1+(3−p)t0+3pt

1/3
0

−6pt0/tp/2

(2t0 − 1)t0(4/3−p)−1
.

�

Claim A.2 In Gm
t , no vertex added after time t1 has degree exceeding t−2

0 tp/2 whp.

Proof. Let A2 denote the event that some vertex added after time t1 has degree exceeding t−2
0 tp/2. Write

the probability of A2 occurring as

Pr[A2] ≤

t
∑

s=t1

Pr[dt(s) ≥ t−2
0 tp/2] =

t
∑

s=t1

Pr[(dt(s))
(l) ≥ (t−2

0 tp/2)(l)]

≤

t
∑

s=t1

t2l
0 t−lp/2

E[(dt(s))
(l)] =

t
∑

s=t1

t2l
0 t−lp/2(2m)(l)2lp/2

(
t

s

)lp/2

= 2lp/2(2m)(l)t2l
0

∫ t

t1−1

x−lp/2 dx. (A.5)

Compute the integral in Equation (A.5)

∫ t

t1−1

x−lp/2 dx =
x−lp/2+1

−lp/2 + 1

∣
∣
∣
∣

t

t1−1

= (−lp/2 + 1)−1
(

t−lp/2+1 − (t1 − 1)−lp/2+1
)

. (A.6)

Choose l > 2/p. Then the integral in Equation (A.6) is less than or equal to (lp/2 − 1)−1(t1 − 1)−lp/2+1,

and plugging in the computation from Equation (A.6) into Equation (A.5),

Pr[A2] ≤
2lp/2(2m)(l)t2l

0

(lp/2 − 1)(t1 − 1)lp/2−1

which goes to 0 as t increases. �

Claim A.3 In Gm
t , no vertex added before time t1 has degree exceeding t

1/6

0 tp/2 whp.

Proof. Use same technique as in Claim A.2. �

Claim A.4 The k highest degree vertices of Gm
t are added before time t1 and have degree �i bounded by

t−1
0 tp/2 ≤ �i ≤ t

1/6

0 tp/2.

Proof. If the lower bound does not hold, then one of the top k vertices has degree less than t−1
0 tp/2 and

the total degree of vertices added before time t0 is bounded by

(k − 1)t
1/6

0 tp/2 +

(
t0

m
− k + 1

)
(

t−1
0 tp/2

)

≤ kt
1/6

0 tp/2 + t0(t
−1
0 tp/2)

= kt
1/6

0 tp/2 + tp/2 = tp/2(kt
1/6

0 + 1) ≤ tp/2(2kt
1/6

0 ) ≤ tp/2t
1/3

0 .
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TGPA 21

Since we have the lower bound, and we know that tp/2/t0 ≥ tp/2/t2
0 , none of the largest degree vertices

could be added after time t1. �

Claim A.5 The k highest degree vertices have �i ≤ �i−1 − tp/2

f (t)
whp.

Proof. Let A4 denote the event that there are two vertices among the first t1 time steps with degrees

exceeding t−1
0 tp/2 and within tp/2/f (t) of each other. Let A3 be the opposite of event A3 from Claim A.3.

Let

pl,s1 ,s2
= Pr

[

dt(s1) − dt(s2) = l | A3

]

, for |l| ≤ tp/2/f (t). (A.7)

Then,

Pr
[

A4|A3

]

≤
∑

1≤s1<s2≤t1

tp/2/f (t)
∑

l=−tp/2/f (t)

pl,s1 ,s2

pl,s1 ,s2
≤

t
1/6
0

tp/2

∑

r1=t−1
0

tp/2

2t1∑

d1 ,d2=1

p(s1 ,s2) ((r1, r1 − l); (d1, d2), t1, t)
Notation from Lemma 5.2.

≤

t
1/6
0

tp/2

∑

r1=t−1
0

tp/2

2t1∑

d1 ,d2=1

(
r1 + d1 − 1

d1 − 1

)(
r1 − l + d2 − 1

d2 − 1

)(
t1 + 1

t

) p(d1+d2)

2

e

{

2+t1−
p(d1+d2)

2
+

3p(r1−l)

tp/2

}

≤ t
1/6

0 tp/2

2t1∑

d1 ,d2=1

(2t
1/6

0 tp/2)d1+d2−2(t1 + 1)2pt1 t−p(d1+d2)/2e2+t1+3pt
1/6
0

= t−p/2t
1/6

0 (2t1)
224t1 t

2t1/3

0 (t1 + 1)2pt1e2+t1+3pt
1/6
0 .

Denote the last equation as h(t) and note h(t) is a polynomial in log(f (t)) times a factor of t−p/2. Then

going back to Equation (A.7),

Pr
[

A4|A3

]

≤

(
t1

2

)

2
tp/2

f (t)
h(t) =

(
t1

2

)

2
poly(log(f (t)))

f (t)
,

which goes to 0 as t increases. �

Finishing that final Claim finishes the proof of the theorem. �

Proof of Theorem 5.2. Let G = Gm
t . We will show that with high probability G contains a star forest F,

with stars of degree asymptotic to the maximum degree vertices of G. Then show that G\F has small

eigenvalues. Then we can use Rayleigh’s principle to say that the large eigenvalues of G cannot be too

different than the large eigenvalues of F.

Let Si be the vertices added after time ti−1 and at or before time ti, for t0 = 0, t1 = t1/8, t2 = t9/16, t3 = t.

We start by finding bounds on the degrees of G.
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22 N. EIKMEIER AND D. F. GLEICH

Claim A.6 For any ε > 0, and any f (t) with f (t) → ∞ as t → ∞ the following holds whp: for all s

with f (t) ≤ s ≤ t, for all vertices v ∈ Gs, if v was added at time r, then ds(v) ≤ sp/2+εr−p/2.

Proof. We prove this by contradiction. Bound the probability that dm
s (r) is greater than sp/2+εr−p/2:

Pr
[

∪t
s=f (t) ∪s

r=1

{

dm
s (r) ≥ sp/2+εr−p/2

}]

≤

t
∑

s=f (t)

s
∑

r=1

Pr
[

dm
s (r) ≥ sp/2+εr−p/2

]

=

t
∑

s=f (t)

s
∑

r=1

Pr
[

(dm
s (r))(l) ≥ (sp/2+εr−p/2)(l)

]

,

which is bounded using Markov:

≤

t
∑

s=f (t)

s
∑

r=1

s−l(p/2+ε)rpl/2
E
[

(dm
s (r))(l)

]

,

and which we can bound using Lemma 5.1

≤

t
∑

s=f (t)

s
∑

r=1

s−l(p/2+ε)rlp/2(2m)(l)2lp/2
( s

r

)lp/2

= (2m)(l)2lp/2

t
∑

s=f (t)

s1−εl.

Take l ≥ 3/ε. Then we can bound the sum by an integral,

t
∑

s=f (t)

s1−εl ≤

∫ ∞

f (t)−1

x1−εl dx =
1

2 − εl
x2−εl

∣
∣
∣
∣

∞

f (t)−1

=
1

εl − 2
(f (t) − 1)2−εl,

which goes to zero as t increases, since l ≥ 3/ε. �

Claim A.7 Let S′
3 be the set of vertices in S3 that are adjacent to more than one vertex of S1 in G. Then

|S′
3| ≤ t7p/16 with high probability.

Proof. Let B1 be the event that the conditions of Claim A.6 hold with f (t) = t2 and ε = 1/16. Then for

a vertex v ∈ S3 added at time s, the probability that v picks at least one neighbour in S1 is less than or

equal to

∑

w∈S1
ds(w)

2s − 1
≤

∑

w∈S1
sp/2+ε

2s − 1
=

t1sp/2+ε

2s − 1
.

Then the probability of having two or more neighbours in S1 can be bounded by

Pr [ |N(v) ∩ S1| ≥ 2 | B1] ≤

(
t1sp/2+ε

2s − 1

)2

·

(
m

2

)

≤ m2t1/4s(−15+8p)/8.
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Let X denote the number of v ∈ S3 adjacent to more than one vertex of S1. Then

E[X|B1] ≤

t
∑

t2+1

m2s(−15+8p)/8t1/4 ≤ m2t1/4

∫ t

t2

x(−15+8p)/8 dx

= m2t1/4

[

8

7 + 8p
x(−7+8p)/8

∣
∣
∣
∣

t

t2

]

≤
8m2t1/4

−7 + 8p
t(−7+8p)/8.

Then by Markov,

Pr
[

X ≥ t7p/16|B1

]

≤
E[X|B1]

t7p/16
≤

8m2

8p − 7

tp−5/8

t7p/16
=

8m2

8p − 7

t−5/8

t−9p/16
,

and t−5/8

t−9p/16 = t9p/16

t5/8 ≤ t9/16

t5/8 which goes to zero. �

Let F ⊆ G be the star forest consisting of edges between S1 and S3\S′
3.

Claim A.8 Let �1 ≥ �2 ≥ . . . ≥ �k denote the degrees of the k highest degree vertices of G. Then

λi(F) = (1 − o(1))�
1/2

i .

Proof. Denote K1,di
to be a star of degree di. Let H be the star forest H = K1,d1

∪ . . . ∪ K1,dk
with

d1 ≥ d2 ≥ . . . ≥ dk . Then for i = 1, . . . , k, λi(H) = d
1/2

i . So it will be sufficient to show that

�i(F) = (1 − o(1))�i(G). Within the proof of Theorem 5.1, we show that the k highest degree vertices

G are added before time t1 (specifically in Claim A.4). So these vertices are all in F. The only edges to

those vertices that are not in F are those added before time t2 and those incident to S′
3.

By Theorem 5.1, we can choose f (t) such that �1(G
m
t2
) ≤ t

p/2

2 f (t) ≤ t7p/16. Additionally by Theorem

5.1, we get �i(G) ≥ tp/2/ log t. Finally, Claim A.7 says that |S′
3| ≤ t7p/16 whp. So with high probability,

�i(F) ≥ �i(G) − t7p/16 − mt7p/16 ≥
tp/2

log t
− t7p/16(1 + m) =

tp/2

log t

[

1 − t7p/16(1 + m)
log t

tp/2

]

=
tp/2

log t

[

1 − (1 + m)
log t

tp/2−7p/16

]

=
tp/2

log t

[

1 − (1 + m)
log t

tp/16

]

= (1 − o(1))�i(G).
�

Let H = G\F. Denote AG, AF and AH to be the adjacency matrices for graphs G, F and H . In the

following claim, we’ll show that λ1(AH) is o(λk(AF)). Consider the fact that if A and A+E are symmetric

n by n matrices, then λk(A) + λn(E) ≤ λk(A) + λ1(E) (see for instance [37]). That implies that for any

subspace L,

max
x∈L,x �=0

x⊤
AGx

x⊤x
= max

x∈L,x �=0

x⊤
AFx

x⊤x
± O

(

max
x �=0

xT
AHx

x⊤x

)

.

This is enough to finish the proof because by the Courant–Fischer Minimax Theorem ([37], Theorem

8.1.2), λi(AG) = λi(AF)(1 ± o(1)).
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24 N. EIKMEIER AND D. F. GLEICH

Claim A.9 λ1(AH) ≤ 6mt15/64 whp.

Proof. Let Hi denotes the subgraph of H induced by Si, and let Hij denotes the subgraph of H containing

only edges with one vertex in Si and the other in Sj. That is, write AH in the following way:

AH =

⎡

⎣

H1 H12 H13

H21 H2 H23

H31 H32 H3

⎤

⎦,

and use this to bound the maximal eigenvalue of AH as

λ1(AH) = λ1

⎛

⎝

⎡

⎣

H1 H12 H13

H21 H2 H23

H31 H32 H3

⎤

⎦

⎞

⎠

≤ λ1(H1) + λ1(H2) + λ1(H3) + λ1(H12) + λ1(H23) + λ1(H13).

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim A.6

with f (t) = t1 and ε = 1/64,

λ1(H1) ≤ �1(H1) = max
v≤t1

{dm
t1
(v)} ≤ t

p/2+ε

1 ≤ t33/512

λ1(H2) ≤ �1(H2) ≤ max
t1≤v≤t2

{dm
t2
(v)} ≤ t

p/2+ε

2 /t
p/2

1 ≤ t233/1024

λ1(H3) ≤ �1(H3) ≤ max
t2≤v≤t3

{dm
t3
(v)} ≤ t

p/2+ε

3 /t
p/2

2 ≤ t15/64.

To bound λ1(Hij), start with m = 1. For i < j, this implies that each vertex in Sj has at most one edge in

Hij, that is Hij is a star forest. Then we have a bound on Hij by Claim A.8. For m > 1, let G′ be one of our

generated graphs with t edges and m = 1. Think now of contracting vertices in G′ (only the ones added

using PA) into a single vertex. We can write AG in terms of A
′
G: AG = C

⊤
A

′
GC, where C is a contraction

matrix with t rows and the number of columns equal to the number of vertices in AG (at most t/m). The

ith column is equal to 1 at indices j in which (i, j) are identified. Similarly, we can write Hij in terms of

H
′
ij.

Note that if y = Cx, then y⊤y = x⊤
C

⊤
Cx, where C

⊤
C is a diagonal matrix with 1′s and m′s on the

diagonal. So x⊤x ≤ y⊤y ≤ mx⊤x which we use to bound λ1(Hij) as

λ1(Hij) = max
x �=0

x⊤
Hijx

x⊤x
= max

x �=0

x⊤
C

⊤
H

′
ijCx

x⊤x
= max

x �=0,y=Cx

y⊤
H

′
ijy

x⊤x

= max
x �=0,y=Cx

my⊤
H

′
ijy

mx⊤x
≤ max

x �=0,y=Cx

my⊤
H

′
ijy

y⊤y
.

(A.7)

Now using Claim A.6 with f (t) = t1 and ε = 1/64,

�1(H
′
12) = max

v≤t2

{d ′
t2
(v)} ≤ t

p/2+ε

2 ≤ t297/1024

�1(H
′
23) = max

t1≤v≤t3

{d ′
t3
(v)} ≤ t

p/2+ε

3 /t
p/2

1 ≤ t29/64.
(A.8)
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Finally, all edges in H
′
13 are between S1 and S′

3, so Claim A.7 shows �1(H
′
13) ≤ tp−9/16 ≤ t7/16 whp.

Putting together Equations (A.7) and (A.8), we get λ1(Hij) ≤ mλ1(H
′
ij) ≤ m�1(H

′
ij)

1/2 ≤ mt15/64. And

so we get the final bound

λ1(AH) ≤

3
∑

i=1

λ1(Hi) +
∑

i<j

λ1(Hij) ≤ 6mt15/64.

This shows that λi(AH) is o(λk(AF)), which implies λi(AG) = λi(AG) = λi(AF)(1±o(1)). This concludes

the final claim. �

And this concludes the proof. �

Appendix B. TGPA spectral power law proofs

In this appendix, we provide proofs for theoretical results from Section 6.

Proof of Lemma 6.1. Denote Gm
t as the graph at time t with contractions of size m. Let Zt = dm

t (s) be

the degree of vertex s at time t. Let Yt be an indicator for the event that only one edge added at time t is

incident to s, and let Xt be an indicator variable for the event that both of the edges added at time t are

incident to s. First, let us calculate the probability of placing exactly one edge incident to node s at time t:

p

⎡

⎢
⎢
⎢
⎣

dt(s)

4t − 2

(

1 −
2(num of self-loops)

dt(s)

)

probability of picking s first, and then not picking it
second

+

∑

u∈N(s),u �=s dt(u)

4t − 2

(
num edges btwn u, s

dt(u)

)

probability of not picking s first, but picking a neighbour, and
then picking s second

⎤

⎥
⎥
⎥
⎦

= p

[
dt(s)

2t − 1
−

2(num self-loops)

2t − 1

]

.

Also the probability of placing two (both) edges incident to node s at time t:

p
dt(s)

4t − 2
· Pr

[

picking it second | picked it first
]

=
dt(s)

4t − 2
·

2(num self-loops)

dt(s)
=

num self-loops

2t − 1
.

Then, we can write the expectation of Zt in terms of Zt−1 using the above calculations:

E[Z (k)
t ] = E[E[(Zt−1 + Yt + 2Xt)

(k)]|Zt−1]

= E

[

(Zt−1 + 2)(k)p ·

(
num self-loops

2t − 1

)

+ (Zt−1 + 1)(k)p ·

(
dt(s)

2t − 1
−

2(num self-loops)

2t − 1

)

+Z
(k)

t−1

(

1 − p
dt(s)

2t − 1
+ p

num self-loops

2t − 1

)]

≤ E

[

(Zt−1 + 2)(k)p ·

(
num self-loops

2t − 1

)

+ (Zt−1 + 2)(k)p ·

(
dt(s)

2t − 1
−

2(num self-loops)

2t − 1

)
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26 N. EIKMEIER AND D. F. GLEICH

+Z
(k)

t−1

(

1 − p
dt(s)

2t − 1
+ p

num self-loops

2t − 1

)]

= E

[

(Zt−1 + 2)(k)p ·

(
dt(s)

2t − 1
−

num self-loops

2t − 1

)

+ Z
(k)

t−1

(

1 − p
dt(s)

2t − 1
+ p

num self-loops

2t − 1

)]

= E

[

Z
(k)

t−1

(

1 − p
Zt−1

2t − 1
+ p

num self-loops

2t − 1
+

Zt−1 + k

Zt−1

(

p
Zt−1

2t − 1
− p

num self-loops

2t − 1

))]

= E

[

Z
(k)

t−1

(

1 − p
Zt−1 − num self-loops

2t − 1
+

Zt−1 + k

Zt−1

(

p
Zt−1 − num self-loops

2t − 1

))]

≤ E

[

Z
(k)

t−1

(

1 − p
Zt−1 − num self-loops

2t − 1
+ p

Zt−1 + k

2t − 1

)]

= E

[

Z
(k)

t−1

(

1 +
p

2t − 1
(k + num self-loops)

)]

.

Now if k ≥ number self-loops we can move on to:

E[Z (k)
t ] ≤ E

[

Z
(k)

t−1(1 +
2pk

2t − 1
).

]

(B.1)

Apply this relationship iteratively, down to the time when node s was added (recall we denoted that time

as s′). Also note that the degree of s at time s′ is bounded by 4m (if all m edges were added as self-loops).

Thus:

E(Z (k)
t ) =

t
∏

t′=s′

(

1 +
2pk

2t′ − 1

)

≤ (4m)(k)

t
∏

t′=s′+1

(

1 +
2pk

2t′ − 1

)

. (B.2)

Use 1 + x ≤ ex to write the product as a sum, and bound the sum with an integral:

t
∑

t′=s′+1

1

t′ − 1/2
≤

∫ t

x=s′

1

x − 1/2
dx = log

t − 1/2

s′ − 1/2
. (B.3)

So finally,

E(Z (k)
t ) ≤ (4m)(k)

(
t − 1/2

s′ − 1/2

)pk

= (4m)(k)

(
t

s′

)pk/2 (
2 − 1/t

2 − 1/s′

)pk

≤ (4m)(k)

(
t

s′

)pk

2pk .

(B.4)

�
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Proof of Lemma 6.2. Let τ (i) = (τ
(i)

1 , . . . , τ (i)
ri

), where τ
(i)

j is the time when we add an edge incident to Si

and increase the degree of Si from di + j−1 to di + j. Note that we could have repeated times in τ (i). Define

τ = (τ0, τ1, . . . , τr+1) to be the ordered union of τ (i), with τ0 = t0 and τr+1 = t. Again, there may be up to

two moves per time step. Let p(τ ; d, t0, t) be the probability that supernodes Si increase in degree at exactly

the times specified by τ between time t0 and t. Define all time steps to be T := {t0, t1, t1, t2, t2, . . . , tr , tr}.

Time steps involving the sets Si we defined to be τ . So the remaining time steps are T − τ . Then

p(τ ; d, t0, t) ≤

(
l

∏

i=1

ri∏

k=1

2p
di + k − 1

4τ
(i)

k − 2

)

for each supernode Si , the prob.

of τ aligning with τ (i) .

⎛

⎜
⎜
⎜
⎜
⎝

r
∏

k=0

∏

j∈T−τ
j≥τk
j<τk+1

(

1 − 2p
d + k

4j − 2

)

⎞

⎟
⎟
⎟
⎟
⎠

for each time step in between the relevant ones,
the probability of picking any edge outside of
S1 , . . . , Sl .

=

(
l

∏

i=1

(ri + di − 1)!

(di − 1)!

)(
r

∏

k=1

p

2τk − 1

)

exp

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

r
∑

k=0

∑

j∈T−τ
j≥τk
j<τk+1

log

(

1 − p

(
d + k

2j − 1

))

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

.

(B.5)

Now we can bound the inner most sum of the exponential term as

∑

j∈T−τ
j≥τk
j<τk+1

log

(

1 − p

(
d + k

2j − 1

))

≤ 2

τk+1−1
∑

j=τk+1

log

(

1 −
p(d + k)

2j

)

, (B.6)

which is less than or equal to

2

∫ τk+1

τk+1

log

(

1 −
p(d + k)

2x

)

dx = −2τk+1 log(2τk+1) + 2(τk + 1) log(2τk + 2)

+ (2τk+1 − p(d + k)) log(2τk+1 − p(d + k))

− (2τk + 2 − p(d + k)) log(2τk + 2 − p(d + k)).

(B.7)

Note that τ0 = t0 and τr+1 = t. Then we can write

r
∑

k=0

∫ τk+1

τk+1

log

(

1 −
p(d + k)

2x

)

dx = A +

r
∑

k=1

Bk , (B.8)

where

A = 2(t0 + 1) log(2t0 + 2) − (2t0 + 2 − pd) log(2t0 + 2 − pd)

− 2t log(2t) + (2t − p(d + r)) log(2t − p(d + r))
(B.9)
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28 N. EIKMEIER AND D. F. GLEICH

and

Bk = 2τk log(1 + 1/τk) + 2 log(2τk + 2) − (2 − p) log(2τk + p − p(d + k))

+ (2τk + 2 − p(d + k)) log

(

1 −
2 − p

2τk + 2 − p(d + k)

)

.
(B.10)

We will bound each of A and Bk , starting with Bk . Since 1 + x ≤ ex, 1τk log(1 + 1/τk) ≤ 2 and

(2τk + 2 − p(d + k)) log
(

1 −
2−p

2τk+2−p(d+k)

)

≤ p − 2. Rearranging the other two terms of Equation (B.10)

and combining with these inequalities we get

Bk ≤ p log(2τk + 2) − (2 − p) log

(

1 −
p(d + k) + 2 − p

2τk + 2

)

+ p. (B.11)

Now rearranging terms of A from Equation (B.9),

A = −2(t0 + 1) log

(

1 −
pd

2t0 + 2

)

+ pd log (2t0 + 2 − pd)

+ 2t log

(

1 −
p(d + r)

2t

)

− p(d + r) log(2t − p(d + r))

eA =

(

1 −
pd

2t0 + 2

)−2(t0+1)

(2t0 + 2 − pd)pd

(

1 −
p(d + r)

2t

)2t

(2t − p(d + r))−p(d+r)

=

(

1 −
pd

2t0 + 2

)−2(1−
pd

2(t0+1)
)(t0+1) (

1 −
p(d + r)

2t

)2t−p(d+r) (
t0 + 1

t

)pd

(2t)−pr .

(B.12)

Using the bound 1 − x ≤ e−x−x2/2 for 0 < x < 1,

(

1 −
p(d + r)

2t

)2t−p(d+r)

≤ exp

{

−p(d + r) +
p2(d + r)2

4t
+

p3(d + r)3

8t2

}

. (B.13)

Putting the bounds on A and Bk together, we get

eA+
∑

Bk ≤

(

1 −
pd

2t0 + 2

)−2(1−
pd

2(t0+1)
)(t0+1)

exp

{

−p(d + r) +
p2(d + r)2

4t
+

p3(d + r)3

8t2

}

×

(
t0 + 1

t

)pd

(2t)−pr

r
∏

k=1

(
(

1 −
p(d + k) + 2 − p

2τk + 2

)−(2−p)

(2τk + 2)p

)

epr .

(B.14)

Using

err(r, d, t0, t) =

(

1 −
pd

2t0 + 2

)−2(1−
pd

2(t0+1)
)(t0+1)

exp

{

−pd +
p2(d + r)2

4t
+

p3(d + r)3

8t2

}

, (B.15)
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we can write Equation (B.14) as

eA+
∑

Bk ≤ err(r, d, t0, t)

(
t0 + 1

t

)pd

(2t)−pr

r
∏

k=1

(
(

1 −
p(d + k) + 2 − p

2τk + 2

)−(2−p)

(2τk + 2)p

)

. (B.16)

So, we finally finish with the bound on p(τ ; d, t0, t) by substituting Equation (B.16) into Equation (B.5):

p(τ ; d, t0, t) ≤

(
l

∏

i=1

(ri + di − 1)!

(di − 1)!

)

err(r, d, t0, t)

(
t0 + 1

t

)pd

(2t)−pr

×

r
∏

k=1

(
(

1 −
p(d + k) + 2 − p

2τk + 2

)−(2−p)

(2τk + 2)p p

2τk − 1

)

,

(B.17)

which can be rearranged as

=

(
l

∏

i=1

(ri + di − 1)!

(di − 1)!

)

err(r, d, t0, t)

(
t0 + 1

t

)pd

(2t)−pr

×

r
∏

k=1

(

p(2τk + p − p(d + k))−(2−p)

(

2τk + 5 +
9

2τk − 1

))

.

(B.18)

Now we will sum p(τ ; d, t0, t) over all ordered choices of τ :

p(r; d, t0, t) ≤
∑

τ (1) ,...,τ (l)

p(τ ; d, t0, t)

≤

(
r

r1, . . . , rl

)
∑

t0+1≤τ1<...<τr≤t

l
∏

i=1

(ri + di − 1)!

(di − 1)!
err(r, d, t0, t)

(
t0 + 1

t

)pd

× (2t)−prp

r
∏

k=1

(2τk + p − p(d + k))−(2−p)

(

2τk + 5 +
9

2τk − 1

)

= r!

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)

err(r, d, t0, t)

(
t0 + 1

t

)pd

(2t)−pr

×
∑

t0+1≤τ1<...<τr≤t

p

r
∏

k=1

(2τk + p − p(d + k))−(2−p)

(

2τk + 5 +
9

2τk − 1

)

.

(B.19)

Now let τ ′
k = τk − ⌈p(d + k)/2⌉. Since d ≥ 1 and k ≥ 1, we have 2⌈p(d + k)/2⌉ ≥ 2. Then the last term

in Equation (B.19) is less than or equal to

∑

(t0−p⌈d/2⌉+1)≤τ ′
1
≤...≤τ ′

r≤(t−p⌈(d+r)/2⌉)

(

p

r
∏

k=1

(2τ ′
k + p)−(2−p)

(

2τ ′
k + 5 +

9

2τ ′
k + 1

)
)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

n
e
t/a

rtic
le

/8
/4

/c
n
z
0
4
0
/5

6
0
2
9
8
6
 b

y
 g

u
e
s
t o

n
 1

0
 A

u
g
u
s
t 2

0
2
1



30 N. EIKMEIER AND D. F. GLEICH

≤
p

r!

⎛

⎝

t−p⌈(d+r)/2⌉
∑

τ ′=(t0−p⌈d/2⌉+1)

(

9(2τ ′ + p)−(3−p) + (2τ ′
k + 5)(2τ ′

k + p)−(2−p)
)

⎞

⎠

r

≤
p

r!

(∫ t−p(d+r)/2

0

(

9(2x + p)−(3−p) + (2τ ′
k + 5)(2x + 1)−(2−p)

)

dx

)r

≤
p

r!

(
9

2(2 − p)p2−p
+

5

(1 − p)p1−p
+

2

(1 − p)p
(2t − p(d + r) + 1)p

)r

(B.20)

≤
2p

r!(1 − p)p2−p

(
19

4
+ (2t − p(d + r) + p)p

)r

=
2

r!(1 − p)p1−p

(

(2t)p

(

1 −
p(d + r) − p

2t

)p (

1 +
19p

4(2t − p(d + r) + p)p

))r

≤=
2

r!(1 − p)p1−p
(2t)pr

(

1 −
p(d + r) − p

2t

)pr

︸ ︷︷ ︸

≤exp
{

−
pr(p(d+r)−p)

2t

}

(

1 +
19p

4(2t − p(d + r) + p)p

)r

︸ ︷︷ ︸

≤exp
{

19pr

4(2t−p(d+r)+p)p

}

,

where the last inequalities come from 1 + x ≤ ex. So finally,

pS(r; d, t0, t) ≤

(
l

∏

i=1

(
ri + di − 1

di − 1

)
)

err(r, d, t0, t)

(
t0 + 1

t

)pd

× exp

{
−pr((d + r) − p)

2t
+

19pr

4(2t − p(d + r) + p)p

}

.

Since d = o(t1/2) and r = o(t2/3),

err(r, d, t0, t)exp

{
−rp((d + r) − p)

2t
+

19pr

4(2t − p(d + r) + p)p

}

≤

(

1 −
pd

2(t0 + 1)

)−2(1−pd/2(t0+1))(t0+1)

exp

{

1 − pd −
r2

4t
+

19pr

4tp

}

≤ e2(t0+1)

since x−x ≤ e

exp

{

1 − pd +
19pr

4tp

}

= exp

{

3 + 2t0 − pd +
19pr

4tp

}

This concludes the proof. �

Proof of Theorem 6.1. Partition the vertices into those added before time t0, before time t1 and after t1,

with t0 = log log log f (t), t1 = log log f (t). We will argue about the maximum degree vertices in each

set.

Claim B.1 In Gm
t , the degree of the supernode of vertices added before time t0 is at least t

(1−p)/2

0 tp whp.
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Proof. Consider all vertices added before time t0 as a supernode. Let A1 denote the event that this

supernode has degree less than t
(1−p)/2

0 tp at time t. We will use Lemma 6.2 with l = 1, and d = 4t0

(because the supernode has all edges at time t0). Calculate Pr[A1] as

Pr[A1] ≤

t
(1−p)/2
0

tp−4t0
∑

r1=0

(
r1 + 4t0 − 1

4t0 − 1

)(
t0 + 1

t

)pd

e3+2t0−pd+19pr/4tp

≤

t
(1−p)/2
0

tp−4t0
∑

r1=0

(
t
(1−p)/2

0 tp − 1

4t0 − 1

)

By substituting r1 =

t
(1−p)/2
0

tp

(
t0 + 1

t

)4pt0

e
3+2t0−4pt0+(19/4)pt

1/3
0

−
19pt0

tp

because r = r1 and d = 4t0

= (t
(1−p)/2

0 tp − 4t0)
(t

(1−p)/2

0 tp − 1)!

(4t0 − 1)!(t
(1−p)/2

0 tp − 4t0)!

(
t0 + 1

t

)4pt0

e
3+2t0(1−2p)+(19/4)pt

1/3
0

−
19pt0

tp

≤ t
(1−p)/2

0 tp (t
(1−p)/2

0 tp)4t0−1

(4t0 − 1)!

(
t0 + 1

t

)4pt0

e3+2t0(1−2p)+(19/4)pt
1/3
0

−19pt0/tp

≤ t
2(1−p)t0
0

e4t0−1

(4t0 − 1)4t0−1

since 1/x! ≤ ex/xx

(t0 + 1)4pt0 e3+2t0(1−2p)+(19/4)pt
1/3
0

−19pt0/tp

≤
e2+2t0(3−2p)+(19/4)pt

1/3
0

−19pt0/tp

(4t0 − 1)2t0(1−p)−1
,

(B.21)

which goes to 0 as t goes to infinity. Thus A1 does not hold with high probability, and the claim is proved.�

Claim B.2 In Gm
t , no vertex added after time t1 has degree exceeding t−2

0 tp whp.

Proof. Let A2 denote the event that some vertex added after time t1 has degree exceeding t−2
0 tp. Bound

Pr[A2] as

Pr[A2] ≤

t
∑

s=t1

Pr[dt(s) ≥ t−2
0 tp] =

t
∑

s=t1

Pr[(dt(s))
(l̄) ≥ (t−2

0 tp)(l̄)] ≤

t
∑

s=t1

t2l
0 t−lp

E[(dt(s))
(l̄)]

by Markov

=

t
∑

s=t1

t2l
0 t−lp(4m)(l̄)2lp

(
t

s

)lp

by Lemma 6.1

= 2lp(4m)(l̄)t2l
0

∫ t

t1−1

x−lp dx,

(B.22)

and compute the integral in Equation (B.22),

∫ t

t1−1

x−lp dx =
x−lp+1

−lp + 1

∣
∣
∣
∣

t

t1−1

= (−lp + 1)−1
(

t−lp+1 − (t1 − 1)−lp+1
)

. (B.23)

We want to choose l so that −lp+1 is less than 0. So choose l > 1/p. Then the integral in Equation (B.23)

is less than or equal to (lp − 1)−1(t1 − 1)−lp+1, and plugging in the computation from Equation (B.23)
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32 N. EIKMEIER AND D. F. GLEICH

into Equation (B.22),

Pr[A2] ≤
2lp(4m)(l̄)t2l

0

(lp − 1)(t1 − 1)lp−1
, (B.24)

which goes to 0 as t increases. �

Claim B.3 In Gm
t , no vertex added before time t1 has degree exceeding t

(1−p)/4

0 tp whp.

Proof. Let A3 denote the event that some vertex added before time t1 has degree exceeding t
(1−p)/4

0 tp.

Using the exact argument as in Claim B.2, Pr[A3] goes to 0 as t increases. �

Claim B.4 The k highest degree vertices of Gm
t are added before time t1 and have degree �i bounded by

t−1
0 tp ≤ �i ≤ t

(1−p)/4

0 tp.

Proof. First lets summarize the results of the last three claims:

• Bound on degrees of vertices added after time t1: t−2
0 tp

• Bound on degrees of vertices added before time t1: t
(1−p)/4

0 tp

• Sum of all degrees added before time t0 is at least: t
(1−p)/2

0 tp

So the upper bound of the claim is immediately clear from the second item. Suppose that the lower bound

does not hold. Then one of the top k vertices has degree less than t−1
0 tp and the total degree of vertices

added before time t0 is bounded by

(k − 1)t
(1−p)/4

0 tp

︸ ︷︷ ︸

largest possible degrees of (k −1)
vertices

+

(
t0

m
− k + 1

)
(

t−1
0 tp

)

︸ ︷︷ ︸

largest possible degrees of
remaining vertices

≤ kt
(1−p)/4

0 tp + t0(t
−1
0 tp)

= kt
(1−p)/4

0 tp + tp = tp(kt
(1−p)/4

0 + 1) ≤ tp(2kt
(1−p)/4

0 ) ≤ tpt
(1−p)/2

0 ,

(B.25)

which contradicts the third bulleted item. Finally, since we have the lower bound, and we know that

tp/t0 ≥ tp/t2
0 , then none of the largest degree vertices could be added after time t1. �

Claim B.5 The k highest degree vertices of Gm
t have �i ≤ �i−1 − tp

f (t)
whp.

Proof. Let A4 denote the event that there are two vertices among the first t1 time steps with degrees

exceeding t−1
0 tp and within tp/f (t) of each other. Define

pl,s1 ,s2
= Pr

[

dt(s1) − dt(s2) = l | A3

]

, for |l| ≤ tp/f (t),

where A3 is defined to be the opposite of event A3 from Claim B.3. Then

Pr
[

A4|A3

]

≤
∑

1≤s1<s2≤t1

tp/f (t)
∑

l=−tp/f (t)

pl,s1 ,s2
. (B.26)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

n
e
t/a

rtic
le

/8
/4

/c
n
z
0
4
0
/5

6
0
2
9
8
6
 b

y
 g

u
e
s
t o

n
 1

0
 A

u
g
u
s
t 2

0
2
1



TGPA 33

Now

pl,s1 ,s2
≤

t
(1−p)/4
0

tp

∑

r1=t−1
0

tp

4t1∑

d1 ,d2=1

p(s1 ,s2) ((r1, r1 − l); (d1, d2), t1, t )
Notation from Lemma 6.2.

(B.27)

Using Lemma 6.2,

≤

t
(1−p)/4
0

tp

∑

r1=t−1
0

tp

4t1∑

d1 ,d2=1

(
r1 + d1 − 1

d1 − 1

)(
r1 − l + d2 − 1

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e

{

3+2t1−p(d1+d2)+
19p(r1−l)

4tp

}

(B.28)

≤ t
(1−p)/4

0 tp

4t1∑

d1 ,d2=1

(
t
(1−p)/4

0 tp + d1 − 1

d1 − 1

)(
t
(1−p)/4

0 tp − l + d2 − 1

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e

⎧

⎨

⎩
3+2t1−p(d1+d2)+

19pt
(1−p)/4
0

tp

4tp

⎫

⎬

⎭

≤ t
(1−p)/4

0 tp

4t1∑

d1 ,d2=1

(
2t

(1−p)/4

0 tp

d1 − 1

)(
2t

(1−p)/4

0 tp

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e3+2t1+(19/4)pt
(1−p)/4
0

≤ t
(1−p)/4

0 tp

4t1∑

d1 ,d2=1

(2t
(1−p)/4

0 tp)d1+d2−2(t1 + 1)8pt1 t−p(d1+d2)e3+2t1+(19/4)pt
(1−p)/4
0

= t−pt
(1−p)/4

0 (4t1)
228t1 t

2t1(1−p)

0 (t1 + 1)8pt1e3+2t1+(19/4)pt
(1−p)/4
0 .

(B.29)

Denote the last equation as h(t) and note h(t) is a polynomial in log(f (t)) times a factor of t−p. Then

going back to Equation (B.26),

Pr
[

A4|A3

]

≤

(
t1

2

)

2
tp

f (t)
h(t) =

(
t1

2

)

2
poly(log(f (t)))

f (t)
, (B.30)

which goes to 0 as t increases. This concludes the proof of this final claim. �

And this concludes the proof of the theorem. �

Proof of Theorem 6.2. Let Si be the vertices added after time ti−1 and at or before time ti, for t0 = 0, t1 =

t1/8, t2 = t9/16, t3 = t. Let G = Gt . We start by finding bounds on the degrees and co-degrees of G.
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34 N. EIKMEIER AND D. F. GLEICH

Claim B.6 For any ε > 0, and any f (t) with f (t) → ∞ as t → ∞ the following holds whp: for all s

with f (t) ≤ s ≤ t, for all vertices v ∈ Gs, if v was added at time r, then ds(v) ≤ sp+εr−p.

Proof.

Pr
[

∪t
s=f (t) ∪s

r=1

{

dm
s (r) ≥ sp+εr−p

}]

≤

t
∑

s=f (t)

s
∑

r=1

Pr
[

dm
s (r) ≥ sp+εr−p

]

=

t
∑

s=f (t)

s
∑

r=1

Pr
[

(dm
s (r))(l̄) ≥ (sp+εr−p)(l̄)

]
(B.31)

which is bounded using Markov:

≤

t
∑

s=f (t)

s
∑

r=1

s−l(p+ε)rpl
E

[

(dm
s (r))(l̄)

]

.

We can bound the preceding equation using Lemma 6.1

≤

t
∑

s=f (t)

s
∑

r=1

s−l(p+ε)rlp(4m)(l̄)2lp
( s

r

)lp

= (4m)(l)2lp

t
∑

s=f (t)

s1−εl.

Take l ≥ 3/ε. Then we can bound the sum by an integral,

t
∑

s=f (t)

s1−εl ≤

∫ ∞

f (t)−1

x1−εl dx =
1

2 − εl
x2−εl

∣
∣
∣
∣

∞

f (t)−1

=
1

εl − 2
(f (t) − 1)2−εl, (B.32)

which goes to zero as t increases, since l ≥ 3/ε. �

Claim B.7 Let S′
3 be the set of vertices in S3 that are adjacent to more than one vertex of S1 in G. Then

|S′
3| ≤ t2p−9/16 with high probability.

Proof. Let B1 be the event that the conditions of Claim B.6 hold with f (t) = t2 and ε = 1/16. Then for

a vertex v ∈ S3 added at time s, the probability that v picks at least one neighbour in S1 is less than or

equal to

2
∑

w∈S1
ds(w)

4s − 2
≤

∑

w∈S1
sp+ε

2s − 1
=

t1sp+ε

2s − 1
. (B.33)

So, the probability of having two or more neighbours in S1 can be bounded by

Pr [ |N(v) ∩ S1| ≥ 2 | B1] ≤

(
t1sp+ε

2s − 1

)2

·

(
2m

2

)

≤ m2t1/4s(16p−15)/8. (B.34)
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Let X denote the number of v ∈ S3 adjacent to more than one vertex of S1. Then

E[X|B1] ≤

t
∑

t2+1

m2s(−15+16p)/8t1/4 ≤ m2t1/4

∫ t

t2

x(−15+16p)/8 dx

= m2t1/4

[

8

−7 + 16p
x(−7+16p)/8

∣
∣
∣
∣

t

t2

]

≤
8m2t1/4

−7 + 16p
t(−7+16p)/8.

(B.35)

Then by Markov,

Pr
[

X ≥ t2p−9/16|B1

]

≤
E[X|B1]

t2p−9/16
≤

8m2

16p − 7

t2p−5/8

t2p−9/16
=

8m2

16p − 7

t−5/8

t−9/16
, (B.36)

and t−5/8

t−9/16 = t9/16

t10/16 which goes to zero. �

Let F ⊆ G be the star forest consisting of edges between S1 and S3\S′
3.

Claim B.8 Let �1 ≥ �2 ≥ . . . ≥ �k denote the degrees of the k highest degree vertices of G. Then

λi(F) = (1 − o(1))�
1/2

i .

Proof. Denote K1,di
to be a star of degree di. Let H be the star forest H = K1,d1

∪ . . . ∪ K1,dk
with

d1 ≥ d2 ≥ . . . ≥ dk . Then for i = 1, . . . , k, λi(H) = d
1/2

i . So, it will be sufficient to show that

�i(F) = (1 − o(1))�i(G). Claim B.4 shows that the k highest degree vertices G are added before time

t1. So these vertices are all in F. The only edges to those vertices that are not in F are those added before

time t2 and those incident to S′
3.

By Theorem 6.1, we can choose f (t) such that, �1(G
m
t2
) ≤ t

p

2 f (t) ≤ t7p/16. Also by Theorem 6.1,

�i(G) ≥ tp/ log t. Finally, Claim B.7 says that |S′
3| ≤ t7p/16 whp. And so, with high probability,

�i(F) ≥ �i(G) − t7p/16 − mt7p/16 ≥
tp

log t
− t7p/16(1 + m) =

tp/2

log t

[

1 − t7p/16(1 + m)
log t

tp

]

=
tp

log t

[

1 − (1 + m)
log t

tp−7p/16

]

=
tp

log t

[

1 − (1 + m)
log t

t9p/16

]

= (1 − o(1))�i(G) .

(B.37)

�

Let H = G\F. Denote AG, AF and AH to be the adjacency matrices for graphs G, F and H . In the

following claim, we’ll show that λ1(AH) is o(λk(AF)). Consider the fact that AF and AF + AH = AG are

symmetric matrices, which implies λk(AG) ≤ λk(AF) + λ1(AH) (see for instance theorem 8.1.5 in [37]).

That implies that for any subspace L,

max
x∈L,x �=0

x⊤
AGx

x⊤x
= max

x∈L,x �=0

x⊤
AFx

x⊤x
± O

(

max
x �=0

x⊤
AHx

x⊤x

)

.
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We will use the Courant–Fischer Minimax Theorem, which states

λi(H) = min
S

max
x∈S,x �=0

x⊤
AHx

x⊤x
,

where S ⊂ R
i (see, e.g. [37] Theorem 8.1.2). That will be enough to finish the proof with λi(AG) =

λi(AF)(1 ± o(1)).

Claim B.9 λ1(AH) ≤ 6mt29/64 whp.

Proof. Let Hi denotes the subgraph of H induced by Si, and let Hij denotes the subgraph of H containing

only edges with one vertex in Si and the other in Sj. That is, write AH in the following way:

AH =

⎡

⎣

H1 H12 H13

H21 H2 H23

H31 H32 H3

⎤

⎦.

We will use this to bound the maximal eigenvalue of AH as

λ1(AH) = λ1

⎛

⎝

⎡

⎣

H1 H12 H13

H21 H2 H23

H31 H32 H3

⎤

⎦

⎞

⎠

≤ λ1(H1) + λ1(H2) + λ1(H3) + λ1(H12) + λ1(H23) + λ1(H13).

(B.38)

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim B.6

with f (t) = t1 and ε = 1/64,

λ1(H1) ≤ �1(H1) = max
v≤t1

{dm
t1
(v)} ≤ t

p+ε

1 ≤ t65/512,

λ1(H2) ≤ �1(H2) ≤ max
t1≤v≤t2

{dm
t2
(v)} ≤ t

p+ε

2 /t
p

1 ≤ t457/1024,

λ1(H3) ≤ �1(H3) ≤ max
t2≤v≤t3

{dm
t3
(v)} ≤ t

p+ε

3 /t
p

2 ≤ t29/64.

(B.39)

To bound λ1(Hij), start with m = 1. For i < j, this implies that each vertex in Sj has at most one edge in

Hij, that is Hij is a star forest. Then we have a bound on Hij by Claim B.8. For m > 1, let G′ be one of our

generated graphs with t edges and m = 1. Think now of contracting vertices in G′ (only the ones added

using PA) into a single vertex. We can write AG in terms of A
′
G: AG = C

⊤
A

′
GC, where C is a contraction

matrix with t rows and the number of columns equal to the number of vertices in AG (at most t/m). The

ith column is equal to 1 at indices j in which (i, j) are identified. Similarly, we can write Hij in terms

of H
′
ij.

Note that if y = Cx, then y⊤y = x⊤
C

⊤
Cx, where C

⊤
C is a diagonal matrix with 1′s and m′s on the

diagonal. So x⊤x ≤ y⊤y ≤ mx⊤x. We use this inequality to bound the largest eigenvalue as

λ1(Hij) = max
x �=0

x⊤
Hijx

x⊤x
= max

x �=0

x⊤
C

⊤
H

′
ijCx

x⊤x
= max

x �=0,y=Cx

y⊤
H

′
ijy

x⊤x

= max
x �=0,y=Cx

my⊤
H

′
ijy

mx⊤x
≤ max

x �=0,y=Cx

my⊤
H

′
ijy

y⊤y
.

(B.40)
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Now using Claim B.6 with f (t) = t1 and ε = 1/64,

�1(H
′
12) = max

v≤t2

{d ′
t2
(v)} ≤ t

p+ε

2 ≤ t37/64,

�1(H
′
23) = max

t1≤v≤t3

{d ′
t3
(v)} ≤ t

p+ε

3 /t
p

1 ≤ t29/64.
(B.41)

Finally, all edges in H
′
13 are between S1 and S′

3, so Claim B.7 shows �1(H
′
13) ≤ tp−9/16 ≤ t7/16 whp.

Putting together Equations (B.40) and (B.41), we get λ1(Hij) ≤ mλ1(H
′
ij) ≤ m�1(H

′
ij)

1/2 ≤ mt29/64. And

so we get the final bound,

λ1(AH) ≤

3
∑

i=1

λ1(Hi) +
∑

i<j

λ1(Hij) ≤ 6mt29/64.

This shows that λ1(AH) is o(λk(AF)), which implies λi(AG) = λi(AF)(1 ± o(1)). �

With the completion of the proof of Claim B.9, that finishes the proof. �
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