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Preferential attachment (PA) models are a common class of graph models which have been used to explain
why power-law distributions appear in the degree sequences of real network data. Among other properties
of real-world networks, they commonly have non-trivial clustering coefficients due to an abundance of
triangles as well as power laws in the eigenvalue spectra. Although there are triangle PA models and
eigenvalue power laws in specific PA constructions, there are no results that existing constructions have
both. In this article, we present a specific Triangle Generalized Preferential Attachment Model that, by
construction, has non-trivial clustering. We further prove that this model has a power law in both the degree
distribution and eigenvalue spectra.
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1. Introduction

The idea of preferential attachment (PA) has a lengthy history in explaining ‘rich-get-richer’ models [1, 2].
In the context of networks, a PA model suggests that when agents join a network, they form links to existing
nodes with large degrees. These models offer a simple local rule that helps explain the presence of highly
skewed or power-law degree distributions in real-world networks [3]. While a simple and compelling
mathematical model, there are weaknesses in the relationship between PA models and real-world data.
One of the most striking is the lack of clustering in PA network models. Consequently, there has been a line
of work on generalized PA models that include ways to address the lack of clustering. First, Holme and
Kim [4] proposed a triangle PA model, where agents arrive and link to a node based on its degree and also
link to a neighbour of that node to form a triangle. Later, Ostroumova et al. [5] generalized a family of PA
models and showed that they had power-law degree distributions and in some cases high clustering. We
note that clustering coefficients and degree distributions reflect intrinsically different properties as there
are networks such as a barbell graph (extremely high clustering) and a bipartite network (no clustering)
which both have the same degree distribution, but radically different clustering coefficients, this has also
been observed in graph models [6].
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2 N. EIKMEIER AND D. F. GLEICH

Our work follows in this vein, and in this article, we analyse a specific set of PA networks. The specific
Triangle Generalized Preferential Attachment (TGPA) model will be introduced formally in Section 3.
Informally, the networks grow by inserting two edges that form an idealized triangle (with an already
existing 3rd edge) at each step, where the endpoints are chosen via PA. Our novel analysis of the model
shows that it will produce networks with power-law degree distributions (Theorem 6.1, Corollary 7.2),
and power-law spectral distributions (Theorem 6.2). In our design and analysis of TGPA, we also proved
that the models presented by Avin et al. [7] and the Holme—Kim model [4] have power laws in the spectra
as well. The result on the Holme—Kim model we get for free from our proof of the power law on TGPA.
We prove the result on the Avin et al. model separately, in a similar method as in TGPA.

Our interest in the TGPA model stems from our recent finding on the reliable presence of power
laws in the eigenvalue spectrum of the adjacency matrix [8]. Specifically, in [8], we found that real-
world networks of a variety of types were more likely to have a statistically significant power law in the
eigenvalues of the adjacency matrix than in the degree distribution. The focus on the existence of power
laws in graph models has been primarily focused on the degree distribution in the past. While standard
PA models have been shown to have power laws in the eigenvalue spectra [9, 10], this model does not
have significant clustering coefficients as already mentioned.

For a few decades, power laws, or highly skewed degree distributions, were commonly accepted
properties of real-world networks. As the diversity of data studied continues to grow, alternative dis-
tributions that provide superior characterizations of degree distributions of real-world networks have
emerged [11, 12]. Our point with this article is not the power law results necessarily, but rather the
study of simple models for networks, and an understanding of what contributes to properties of these
networks reminiscent of real-world data. That is, our goal is to understand driving factors underlying
simple generative mechanisms for networks and to characterize the emergent properties of those models.

In summary, the primary contributions of this manuscript are:

1. We present the TGPA model: A model which imposes higher-order structure directly into the network
(Section 3).

2. We show that TGPA produces graphs with significant clustering (Section 4).

3. We extend the results presented on the Generalized Preferential Attachment (GPA) model (in [7]),
to show the eigenvalues follow a power-law distribution (Section 5).

4. We conduct extensive analysis of TGPA to show that the degrees follow a power-law distribution
with an exponent which can range between (1, 00) (Section 7), and that the eigenvalues follow a
power-law distribution (Section 6).

5. We extend the results presented on the model presented by Holme and Kim [4] to show the
eigenvalues follow a power-law distribution (Section 6.1).

In our experience establishing these results, one technical challenge involved the ideas in Lemma 6.2,
where the existing approach fundamentally assumed that edges were not added in small groups. The code
to reproduce our experiments is available online at https://github.com/eikmeier/TGPA.

2. Preliminaries and related work

Denote a graph G by its set of vertices V and edges E. A graph with n vertices can be represented as
an n x n adjacency matrix A, where A; = 1 if edge (i,j) is in the graph, and A; = 0 otherwise. The
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TGPA 3

TABLE 1 Notation in our article

G, = (V,,E;) A graph at time step ¢ with vertices V and edges E

A The adjacency matrix

d,(v) The degree of vertex v at time ¢

e The number of edges at time ¢

My The number of nodes at time 7 with degree k

degree of vertex i is the number of vertices j such that A; = 1. In this manuscript, we will be primarily
concerned with undirected, simple, graphs, meaning A;; = Aj; for all 7, j, and A;; = O for all i.

We will be concerned with graph models that evolve over time. There are a huge diversity of graph
generation schemes, many of which have been analysed in theory and in practice. For example, latent
space graphs [13] and GPA [14]. Define a non-empty initial graph G, with vertices, V), and edges, E,.
At each time step t = 1,2, ... perform some action on G,_; (such as adding new vertices or edges) to
obtain G, = (V,, E;). Continue until the graph is sufficiently large. Denote the degree of vertex v at time
t to be d,(v). Let e, denotes the number of edges at time ¢, and let m;, be the number of nodes at time ¢
with degree k.

2.1 Preferential attachment

PA describes a mechanism of graph evolution in which nodes with higher degree tend to continue gaining
neighbours. When a new node u is added to the graph at time ¢, choose another existing vertex v with
probability proportional to its degree. Formally, choose vertex v with probability

d,.
y(v) = = ) @.1)

di (W) .

weV;_

Then add an edge connecting u to v. PA is meant to model the power-law behaviour that is often seen
in real-world networks [15—-17], that is a few vertices tend to have very large degree while most vertices
have fairly low degree. A set of values xy, x,, . . . x; satisfies a power law if it is drawn from a probability
distribution p(x) o x~# for some B.

The PA graph model is found in a few different forms. In the model by Barabasi and Albert [3], often
called the BA model, at every new time step a new vertex is formed with m edges. Each of the edges is
then connected to an existing node chosen using PA, that is based on their degrees.

In a slight variation found in [ 18, 19], at each time step ¢, a new node is added with probability p. Along
with the new node is an edge between the new node and an existing node picked via PA. With probability
1 — p anew edge is added between two existing nodes, both chosen via PA. These two models generate
slightly different distributions, but fundamentally give very similar graphs. We present our model TGPA
in two forms matching these differences (Section 3).

In Sections 2.2 and 2.3, we discuss a few variations of the PA model. There exist other variations of
PA [5, 20-22] which we will not detail here.

1Z0Z 1snBny | uo 1senb Aq 986209S/00ZUd/t/g/o10IIE/18UW0/W0d dno olwapede//:sdiy Woll papeojuMo(]



4 N. EIKMEIER AND D. F. GLEICH

2.2 Generalized preferential attachment

The GPA model was defined by Avin et al. [7]. In this model, in addition to adding new vertices and
edges, there is also an option in each time step of adding a new component. Furthermore, the parameters
may change over time, if desired. Start with an arbitrary initial non-empty graph Gy. For time 7 > 1, the
graph G; is constructed by performing either a node event with probability p, € [0, 1], an edge event with
probability r, € [0, 1 — p,], or a component event with probability g, = 1 — p, — r,. In anode event, a new
vertex v is added to the graph, along with an edge (u, v) where u is chosen from G,_, with probability
y:(1). In an edge event, a single new edge (u,w) is added, with # and w both nodes in G,_,. The edge
endpoint u is chosen with probability y,(«) and the endpoint w is chosen with probability y;(w), so the
edge itself is chosen with probability y,(u) - y;(w), which gives a full probability distribution over edges
(recall that multiedges and self-loops are allowed). And in a component event, two new nodes vy, v, are
added along with edge (v, v,). Exactly one edge is added at each time step, so the number of edges in
G, is equal to ey + .

The key difference in GPA over the PA model discussed in Section 2.1 is the ability to add new
components to the graph. In [7], it is proved that the degree distribution follows a power law. In this
manuscript, we further prove that the eigenvalues follow a power-law distribution (see Section 5).

We will also work with a slight variation of the GPA model, along the lines of the alternate ver-
sion of the PA model defined in [3, 9] and discussed in Section 2.1. Start with an empty graph. Note:
this model need not start as an empty graph, we just follow the convention of [3, 9]. Since all of our
analysis is in asymptotics, it should have no impact. At time = 1,2, ... do one of the following: with
probability p add a new vertex v, and an edge from v, to some other vertex in u where u is chosen with
probability

dr(vj) :
, ifv,#v
Prlu=v] = { 21 if vl 7_évf
i = V:

2t—1°

; 2.2)

and with probability 1 — p add two new vertices and an edge between them. For some constant m, every
m steps contract the most recent m vertices added through the PA step to form a super vertex. Notice
that Equation (2.2) is not quite the same as y, in Equation (2.1). Equation (2.2) allows for nodes to be
added with self-loops. In both versions, loops are allowed in the edge step. Regardless, the allowance of
self-loops has little effect as the graph becomes large, and we remove all self-loops in our final graph for
experimental analysis.

2.3 Triad formation

Holme and Kim [4] introduced a Triad Formation step into the BA version of the PA model (see Section
2.1). After each PA step in which a new vertex v is added and some edge is added (v, u), a triangle
is closed with probability p, by choosing a neighbour of u, u,, and adding edge (v,u,). An example
network is shown in Figure 1 under ‘Holme’. The average number of triad closures per added vertex is
m, = (m — 1)p,. It is shown in [4] that the network follows a power law in the degrees with an exponent
of 3 and has clustering coefficients which can be tuned by the parameter m,. Our model incorporates
something very similar to this triad formation, but with less regular structure due to an added component
step, and with a larger range of possible power-law exponents. See Section 3 for the description of our
model, and Lemma 7.2 for the result on the range of degree power-law exponents.
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2.4 Higher-order features in graphs

Recently, there has been interest in analysing the higher-order features in graphs [23-28]. One of the
earlier motivations for this direction is the famous paper by Milo er al. [29] on the presence of motifs
in real-world networks. Likewise, there are new models which aim to match these higher-order features.
For example, the triad formation model described in Section 2.3 [4], and the family of PA models [5]
discussed in Section 1. Another model, HyperKron, places a distribution over hyperedges and inserts
motifs instead of edges [30] and is specifically shown to have higher-order clustering. The study of
higher-order features is growing and complex, it is also studied in multi-layer networks, temporal data,
and components of graphs. See [31] for a nice overview of work in higher-order network analysis.

3. TGPA

In this section, we present our model which we call TGPA. This model is motivated by the purpose of
adding higher-order structure into the resulting graph as discussed in Section 2.4, and a recent paper [7]
which shows a model of PA with any power-law exponent (Section 2.2). We present two different versions
of the model. The first, in Section 3.1 follows the PA model as described by [3, 9], and the second in
Section 3.2 follows the PA model as described in [7, 18]. Though these models are not the same, they
share similar properties. In Sections 6 and 7, we will see each formulation is useful for the analysis of
the models. Figure 1 shows some example graphs generated by TGPA compared to existing models.

3.1 TGPA(p,q)

Start with an empty graph. At time t = 1,2, ... do one of the following:

1. (node event) With probability p, add a new vertex v;, and an edge from v, to some other vertex u
where u is chosen with probability

dr(vi) :
if vi v,
Pr[u:vi]={4’22’ " P 7
T2 HMVi=W

3.1

Then pick a neighbour of u, call it w, and also add an edge from v, to w. We pick w with probability

# edges between u,w’ lf Vi # u
Priw = vil = { 24 wcifiobpe (3:2)
riw ="Vl =324 self-loops of u : . .
—_— if Vi=1u
dp 1 ()

2. (component event) With probability ¢ = 1 — p add a wedge to the graph (3 new nodes with 2 edges).

3. For some constant m, every m steps contract the most recently added vertices through the PA steps
(in step 1) to form a super vertex.

Note that vertex w (chosen in step 1) is also chosen via PA. The probability of picking w is the
probability of picking u as a neighbour of w times the probability of picking w:

> wenow di-1()  num edges between u, w _di(w)
4t —2 d,_i(u) T

Priw =v] =
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6 N. EIKMEIER AND D. F. GLEICH

GPA TGPA(p,r,q)

'

Holme TGPA(p,q)

FiG. 1. Examples of 50 node graphs. The top two figures were generated using p = 0.8, = 0.1, g = 0.1. The graphs on the bottom
were generated using m = 2, and TGPA(p, ¢) used p = 0.85. See the text for the details on these parameters.

3.2 TGPA(p;, 1., q:)

Start with a graph with ey edges. At time t = 1,2,. .. do one of the following:

1. (Node event) With probability p,, add a new vertex v,, and an edge from v, to some other vertex u
where u is chosen with probability given in Equation (3.1). Then pick a neighbour of u, call it w, as
in Equation (3.2). Add edge an edge from v, to w.

2. (Wedge event) With probability r, add a wedge to the graph by picking two nodes using PA: v, v;.
Pick the third node uniformly from a neighbour of v,, call it w. Add edges (v{,v,) and (v{, w).

3. (Component event) With probability ¢, add a wedge to the graph (3 new nodes with 2 edges).
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TABLE 2 Clustering coefficients for three real-world networks, and generated models. TGPA is able to
generate data with much larger clustering coefficients, compared to GPA

Network name Edges Global clust Local clust HO global HO local
Auburn (18k vertices) 974k 0.137 0.223 0.107 0.172
TGPA(18k,0.987,10,150): 640k 0.25 0.22 0.118 0.03
GPA(18k,0.001,0.999,2): 906k 0.021 0.030 0.005 0.014
Berkeley (13k vertices) 852k 0.114 0.207 0.0876 0.156
TGPA(13k,0.99, 10, 58) 502k 0.104 0.185 0.034 0.025
GPA(13k,0.001,0.999,2) 502k 0.024 0.034 0.005 0.015
Princeton (7k vertices) 293k 0.237 0.164 0.091 0.146
TGPA(7k,0.987,10,100): 207k 0.298 0.251 0.148 0.053
GPA(7k,0.001,0.999,2): 255k 0.038 0.054 0.009 0.025

4. Significant clustering coefficients

We analysed three networks from the Facebook 100 dataset [32], each of which is a set of users at a
particular university. We computed the global clustering coefficient: 6|K3|/|W|, where |K3| is the number
of triangles and |W| is the number of wedges, and average local clustering coefficient: the average
of 2|K5(u)|/|W (u)| for all nodes u, where K;(u) denotes triangles for which u is a member. We also
considered higher-order clustering coefficients, defined in [28] to be the fraction of appropriate motifs
which are closed into 4-cliques.

To fit the TGPA(p, g) model (Section 3.1) to the real-world networks, we noted that the average
degree of our model, the total degrees divided by the number of nodes, is approximately (2m(1 — p) +
2m)/(m(1 — p) + 1). Choosing the average degree gives a relationship between parameters m and p. We
tested various sets of parameters to obtain the best possible fit. We started both TGPA and GPA with
a k-node clique. Table 2 lists the parameters we chose for the TGPA model as TGPA(n, p, k, m), which
produces an n node graph starting from a k node clique. For comparison, we also fit the GPA model
(Section 2.2). The parameters in Table 2 are GPA(n, p, r, k). Notice that TGPA maintains much more
significant clustering coefficients across all measures.

5. Eigenvalue power law in GPA

In this section, we present results for the GPA model presented in [7] and discussed in Section 2.2,
relating to the distribution of the eigenvalues of a graph formed in the model. Note that in order to get
our desired result (Theorem 5.2), we also prove that the degree distribution has a power-law distribution
(Theorem 5.1). This was already proven in [7], but the version of our proof is useful in order to obtain
Theorem 5.2. The results and proofs mirror those in [9], but provide a useful step towards the results on
the TGPA model in Section 6. All proofs are included in Appendix A.

Fix parameter p. Denote G as the GPA Graph at time ¢ with contractions of size m.

LEMMA 5.1 Let d,(s) be the degree of vertex s in G7', for any time ¢ after s has been added to the graph.
Let a® = a(a + 1)(@+2)---(a+ k — 1) be the rising factorial function. Let s’ be the time at which
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8 N. EIKMEIER AND D. F. GLEICH

node s arrives in the graph. Then for any positive integer &,

E[(d,())¥] < (2m)®27+/2 (5)pk/2.
S/

Now define a supernode to be a collection of nodes viewed as one. The degree of a supernode is the
sum of the degrees of the vertices in the supernode.

LEMMA 5.2 Let S = (51,5,...,5)) be a disjoint collection of supernodes at time #,. Assume that the
degree of S; at time 1, is d,,(S;) = d;. Let ¢ be a time later than #,. Let ps(r;d, fy, ) be the probability
that each supernode S; has degree r; + d; at time ¢. Let d = Zle di,r = Zi:l r. If d = o(t'/?) and
r = o(t*?), then

! d/2
) rit+di—1 o+ 1Y}’ pd  3pr
PS(T,d,toJ)S(H< d 1 ))( . ) exp{2+to—7+ﬂ77 i

i=1

THEOREM 5.1 Let m, k be fixed positive integers, and let f(¢) be a function with f () — oo as t — 0.
Let A} > A, > ... > Ay denote the degrees of the k highest degree vertices of G/". Then

12 2
o) < A; < "’f(1) and 0 <A <AL =PPf()

fori=1,2,...,k whp.

The factor of #”/? in Theorem 5.1 implies a power-law distribution in the largest degrees with exponent
B = (24 p)/p. This can be seen by using a martingale argument, as described in [33] for instance. Notice
that depending on the value chosen for p, we can obtain a power law fit with exponents ranging between
3 and oo.

The next result relates maximum eigenvalues and maximal degrees in the GPA model. It is similar to
results found in [9, 10, 34, 35]. It says that if the degrees follow a power law with exponent 8, then the
spectra follows a power law as well, with exponent 23 — 1.

THEOREM 5.2 Let k be a fixed integer, and let f(¢) be a function with f(f) — oo as t — oo. Let
A1 > Ay > ... > A be the k largest eigenvalues of the adjacency matrix of G!". The fori =1,...,k, we
have A; = (1 + o(l))A;/z, where A; is the ith largest degree.

6. Analysis of TGPA(p, q)

In this section, we present results on the degrees and spectra of the TGPA (p, ¢) model, which was defined
in Section 3.1. The proofs follow the proof techniques presented in Section 5. The key difference in these
proofs is the fact that two edges may be added in each time step. This makes the PA much more tedious to
track through graph generation. In Lemma 6.2 for example, we consider disjoint (but not disconnected)
sets of supernodes; the probability of the supernodes increasing in degree is not independent from one
other. The full proofs are in Appendix B.

Fix parameter p. Denote G (p, q) as the TGPA Graph at time ¢ with contractions of size m.
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LeEMMA 6.1 Let d,(s) be the degree of vertex s in G}*(p, ¢), for any time ¢ after s has been added to the

graph. Let a® = aa+2)(a+4)---(a+ k — 2) be a modified rising factorial function. Let 5" be the
time at which node s arrives in the graph. Then for any positive integer k,

_ _ pk
E[(d(s)®] < (4m) P2 (L) .
S

LEMMA 6.2 Let S = (81, 5,,...,S)) be a disjoint collection of supernodes at time #,. Assume that the
degree of S; at time 1, is d,,(S;) = d;. Let ¢ be a time later than #,. Let ps(r;d, fy, ) be the probability
that each supernode S; has degree r; + d; at time t. Let d = Zﬁ:l d,r = Zﬁzl r.. If d = o(t'/?) and
r = o(t*?), then

! d
I ritdi—1 o\’ 19pr
ps(tdifo. 1) < ( < d—1 )) <ﬁ> exp{3+2t0 —pd + 45) }

i=1

THEOREM 6.1 Let m, k be fixed positive integers, and let f(¢) be a function with f(r) — oo as t — oo.
Let Ay > A, > ... > Ay denote the degrees of the k highest degree vertices of G} (p, ¢). Then,

> »
miﬁlffpf(f) andm A < Ay = PF (D)

fori=1,2,...,k whp.

The factor of #’ in Theorem 6.1 implies a power-law distribution with exponent « = (1 + p)/p. This
can be seen by using a martingale argument, which has been done a number of times. See for instance [33].
Notice that depending on the value chosen for p, we can obtain a power law fit with exponents ranging
between 2 and oo.

THEOREM 6.2 Let k be a fixed integer, and let f(¢#) be a function with f(tf) — oo as t — oo. Let
A1 > Ay > ... > A be the k largest eigenvalues of the adjacency matrix of G/ (p, ¢). The fori =1, ...k,
we have A; = (1 + 0(1))A;/2, where A; is the ith largest degree.

In the analysis of this proof, we restrict p to be greater than 9/32. This comes in Claim B.7, and
constrains the exponent in the power law to be between 2 and 5. For the proof, we will show that with
high probability G contains a star forest F', with stars of degree asymptotic to the maximum degree vertices
of G. Then we show that G\ F' has small eigenvalues. Finally, we can use Rayleigh’s principle to say that
the large eigenvalues of G cannot be too different than the large eigenvalues of F. See Appendix B for
the full proof.

6.1 Spectral power law in Holme—Kim model

The model which we have defined as TGPA(p,q) is equivalent to the model defined by Holme and Kim [4]
with ¢ = 0. We note here that then we get for free that the model by Holme and Kim also has a power
law in the spectrum, by using the same analysis with g = 0 and p = 1.
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10 N. EIKMEIER AND D. F. GLEICH

7. Analysis of TGPA (p;, 11, q;)

Consider TGPA(p,, 1, q,), which was described in Section 3.2. The parameters p,, r;, g; can change over
time, though we will restrict the ways in which the parameters can evolve in Section 7.2.

7.1 Recursive relation for my,

Recall that my, is the number of nodes at time ¢ with degree k. We wish to write down a relationship for
My 11 in terms of my, for k' < k. Recall also that the number of edges at time ¢ is ¢, = ¢y + 2¢, and
the total sum of degrees at any time ¢ is 2e,. Note that for this reason, we need only focus on my, for
1 <k <2e.

Let .7, denote the o-algebra generated by the graphs Gy, Gy, . . ., G; (%, holds the history of events
up until time 7). We wish to calculate the expected value of m ,,, conditioned on the previous time steps,
held in .%,. Fix k > 2. Since 0 < d,,(v) — d,(v) < 4 for every node v and time ¢, we have

Elme | Fl= Y Pldyi(v) =kl (7.1)

{vik—4=d; (v)<k}

Recall y,(v) from Equation (2.1). Denote 6,(v) as 2 times the number of self-loops in which v is involved
divided by Zwevl_l d;_(w). (i.e. the proportion of edges which are self-loops on v). If d,,(v) = 4, then
there are at most 5 possible values for d,(v) when k > 4:

(1) d,(v) = k. In this case, there must have either been a node event not involving v (this occurs
with probability p,41(1 — 2y,.1(v) + 6,41 (v))), or a wedge event not involving v (with probability
(1 =y (M) —2y,,1(v) + 6,51(v))), or a component event (with probability g, ).

(i) d,(v) = k — 1. In this case, there must have either been a node event where v is involved as the
first node (probability p;1; « Y41 (V) - (1 — 6,41(v))), or where v is involved as the second node
(probability p, .1 (41 (v) — 6,.1(v))), or a wedge event in which v is involved as the first node (with
probability 7,4 (41 (V) — Vi1 (V)2 — 0,11 (V) + Y441 (V) - O,41(v))) or as the third node (probability
Tt (1 = Vi1 ) Vi1 (V) — 611(0))).

(iii) d;(v) = k — 2. In this case, there must have either been a node event in which v is picked as both
nodes involved (with probability p,,; - 6,,,(v)) or there must have been a wedge event in which v
is involved as the second node (with probability 7, - 6,11 (vV)(1 — y,41(v))) or as the first and third
nodes (with probability 7,41 - Y11 (V) (1 = Y1 (V) + 614.1(0)).

(iv) d,(v) = k — 3. In this case, there must have been a wedge event where v was involved as the first
and second nodes or there was a wedge event where v was involved as the second and third nodes
(these events occur in combination with probability 27,1 y,411 (V) (Yi1 (V) — G010 (V) ) ).

(v) d,(v) = k — 4. In this case, there must have been a wedge event where v is picked for all three
wedges, which happens with probability 7,1 - ¥4 (V) - 6,41 (V)

Let oy, = k/(2e,). Then for every v such that d,(v) = i, y,+1(v) = «;,. In order to ease the exposition,
and for short hand, we define values A, B, C, D, E for each of the probabilities calculated above:

Ay =P =200, + 6,1 (V) + 1 (1 — e ) (1 — 200, + 6,11(V) + Gy
By, = 2pr+1(ak,z — 01 (V) + 211 (1 — ak,z)(ak,r —0,11(v)),
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Cry = P10 (V) + 1 (o, — Ol;i, + 01 (v),

Dk,t = 2rt+lak,t(ak,t — 0,41(v)), and Ek,t = rt+lak,t0t+l ).

Then Ay, + By, + Cys + Dy, + Er, = 1 and Ay, Biys Crys Diss Ex; > 0 for every 0 < k < 2e,. Also, by
Equation (7.1), for every k > 4

Elnmy 1| F1 = mu, Ay + myg—1 Bi1, + My, Coooy 4+ my_3,Di_s + My_a Eg_s. (7.2)
And for remaining values of k, we have

E[ms, 1|71 = m3,As, + my, By, +my,Cy,
Elmy 1| F1 = mayAzy + my,Biy + Pt + s (7.3)
E[my 1| F 1 = my A, + 24,41

Define

M1 Bi_1y +my_0,Cony + 3, Dy_3, +my_a By, k>4

Xe, = my By, +my,Cy, k=3 . 7.4)
miBi + Pt + G k=2
2G4 k=1

Then, Equations (7.2) and (7.3) can be re-written as

Elmy 1] = Elme,] - Age + E[X . (1.5)

7.2 Degree power law in TGPA

The following lemma is presented in [7] and is a quick generalization of a result in [18].

LemMA 7.1 ([7]) Suppose that a sequence satisfies the recurrence relation a,.; = (1 —b,/(t +t)))a;, + ¢,
for ¢ > to. Furthermore, let {s;} be a sequence of real numbers with lim S/ = L, dy = t(1 — s,/8:11),

lim b, = b, hm ¢ -t/s, =c, 11m d, =dandb+d > 1. Then hm at/s, exists and hm a;/s, =c/(b+4d).

1—00

The following theorem and corollary prove that TGPA(p,, r;,q;) has a power law in the degree
distribution, which we can analyse.

THEOREM 7.1 Consider TGPA(p,, 11, ;). Let y, = p, + 3q,. Assume that limy, =y <3, Y~ y, = 00
1—00
and lim ¢ -y, / Z]t.:l y; =T > 0. Then letting 8 = 1 4 2I'/(3 — y), the limit M; = lim E[m, ]/ E[n,]
—00 1—00
exists for every k > 1 and

k—1

M = r+3/2 y Ly ﬁ‘ (7.6)

J=1
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12 N. EIKMEIER AND D. F. GLEICH

Proof. This proof will be an induction on k. For k = 1, we use Lemma 7.1 setting (¢, s, a,, b,,¢;) =
(eo, E[n, ], E[m,,],e,(1 — Ay,),y.+1). Using Equation (7.5), this gives the limits » = 3/2 — y/2 and
¢ = d = T', which concludes the base case. Now assume the theorem holds for k — 1, we now prove
it for k. Again use Lemma 7.1, this time with (¢, s,,a,,b;,¢c;) = (eo, E[n,], E[my ], Br—1; E[my_1,] +
Ck—l,t E[mk_zyt] + Dk_3q, E[mk_l,] + Ek_4’, E[mk_4,,]). Then we get d= F, b=k- (3/2 — y/2), and using
the inductive hypothesis,

Therefore, M, exists and

_ k=DG2—y/DMy _ k-1
kB2 —y/2)+T k—1+8

k—1-

O

The proof of the following corollary follows exactly from [7]. We include the proof here for
completeness.

COROLLARY 7.1 Under the assumptions in Theorem 7.1, M, is proportional to k.

Proof. Consider Equation (7.6). It is a fact that a differentiable function f is convex if and only if
f(2) = f(x1) +f'(x1)(x2 —x1) for every x, and x, [36]. Applying this with (f(2), x1,x2) = (2%, 1, 1+ 1/)),
we get

k—1

o
[1555=1

-1
j=1 Jj=1

k—1
A+ /)" = 1_[ A+1/H7F =k". (1.7
Jj=1

Also though, applying this with (f(z), x1,x,) = (z%, 1,1 — 1/j) we obtain

—1 . k-1 k-1 B
J ; -1 ; -8 P ) B B

_J 1— + < 1-1/G+ =—) < k7P 7.8

7% E( B/G+B)) _E< /G+B) (k—1+ﬂ <A (7.8)

Therefore, ¢ k% < M, < c,k~"*" for some positive constants ¢y, ¢; and every k > 1. OJ

Finally, we can state which power-law exponents are obtainable.

LEMMA 7.2 Forany x € (1, 00), there exists a choice of p;, 1, g, such that in TGPA(p;, ;, q,) the resulting
network follows a power law in the degree distribution with exponent 8 = x.

Proof. We can use three separate cases:

(i) Forx € (5/3,00),settingy, =3 —2/(x — 1) givesexponent 8 = 14+2/3—-3—-2/(x—1))) = x.
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(ii) Forx € (1,5/3), sety, = t3/*¢=5/3 Then

. V1ot ()RS Ly ) 312232
I'=1lim ——— = lim YT = lim —— .
t—>00 Zj:l v t—00 Zj:l (]/ (x— /~)) t—00 ‘/}:0]3/2(X—5/3)d]
. (3/2)6 — 3/2)t3/2x—3/2 ’
o zllglo JREET =3/2x-3/2

andB=1+Q2N/B—-y)=1+23/2x—-3/2)/3—-0) = x.
(iii)) Forx =5/3,sety, = 1/In(t + 2) for every . Then we have

. Vit . t/In(t 4 3) . t/In(t+3)
I'=lim —; = lim —; - = lim =1
=00 Zj:l i =00 Zj:l 1/In( +2) t—oo  t/Int

Then TGPA(p,, 1, q,) follows a power-law degree distribution with exponent § = 1 4+2I'/(3—y) =
1+2/3-0)=5/3.

O

For a final analysis, we show that the component portion is necessary to obtain the full power-law
exponent range (1, 00). Lemma 7.3 comes directly from [7].

LEMMA 7.3 [7] Assume lim y, = y and lim y,,{ - ¢/ ) ;:ljj = TI'. Then fory > O we have I' = 1, and
=00 —00
fory=0wehave " < 1.

COROLLARY 7.2 Consider TGPA(p;, r;, q,). Assume that lim ¢, = 0, lim y, = y and y,, ¢/ 2;21 V=
11— 00

—00

I' > 0. Then the resulting graph follows a power-law degree distribution with exponent 8 € (1, 3].

Proof. By Corollary 7.1, TGPA(p;, r, q,) follows a power law in the degree distribution with exponent
B=14+2T'/3—y) > 1.ByLemma 7.3, for0 <y < 1,wehave 8 =1+42/(3 —y) € (5/3,3] and for
y=0,wehave § =142I'/3 <5/3. O

8. Conclusions and discussion

In this article, we presented a graph model called TGPA, which incorporates direct triangle formulation
into a GPA model that includes possibly disconnected components. Furthermore, we provided extensive
analysis of this model, showing that the degree and spectral distributions fit power-law distributions. We
also extended the results for the GPA model found in [7] as well as the model defined in [4].

Our new model provides a useful platform for studying real-world network data. The importance of
power laws in the spectra of real-world networks has been shown [8]; however, an explanation for why
this feature occurs remains to be found. We hope that by introducing a model with this feature along with
realistic clustering coefficients will lead to further explanation for the presence of highly skewed spectra.
In the future, we plan to study further generalizations of higher-order PA graphs.
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Appendix A. GPA proofs

In this appendix, we provide proofs for theoretical results from Section 5.

Proof of Lemma 5.1. Denote G!" as the graph at time ¢ with contractions of size m. Let Z, = d}"(s) be the
degree of vertex s at time ¢, and Y, an indicator for the event that the edge added at time ¢ is incident to s.
Then,

E[Z"] = E[E[(Z + Y)“11Z 1]

/e Z,_
=E |:Zt(f)1 <1 -pP 2tt—_ll) + (Z + DH® (P' 2tt—_ll)]

k
= Ez%] <1 + %)

Next we apply this relationship iteratively, down to the time when node s was added. Denote this as time
s’, and also note that the degree of s at time s’ is bounded by 2m (if all m edges were added as self-loops)
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16 N. EIKMEIER AND D. F. GLEICH

to get

t t

EzM) =] (1 + 2fi 1) =em® [] (1 + 2t’pf 1>'

=y '=s'+1

Use 1 + x < e to write the product as a sum, and bound

d 1 ' 1 t—1/2
Z =< dx = log .
=12~ Jieyx—1/2 s —1/2

t'=s'+1
So finally,
tr—1/2 pk/2 ¢ pk/2 21/t pk/2 ¢ pk/2
EZ®) < 2m™® k7L =Cm® (- / em® (=) 272
s —1/2 s’ 2—1/s s 0
Proof of Lemma 5.2. Lett® = (", .. .7\, where 1: ) is the time when we add an edge incident to S;
and increase the degree from d; 4 j — 1 to d +J. Deﬁne T = (7, T1,...,T41) to be the ordered union

of @, with ty = t, and 7,4, = t. Let p(t; d, #y, t) be the probability that S; increases in degree at exactly
the times specified by t. Then

Lo ro Tkr—l
s = (T4 (T ( -pﬂ)

i=1 k=1 k=0 j=73+1

i=1 k=0 j=7;+1

We can bound the inner most sum of the exponential term using a simple inequality
Ty~ 1 Tep1—1
d+k p(d+k)
1 l—-pl—/——)) = 1 1——-),

pa Og( p<21—1>>—.z °g< 2 )

Jj=t+1 J=1+1

which is less than or equal to

Tk+1 d+k
/ log (1 — u) dx = —144 logryyy) + (v + 1) log(2t + 2)
T +1 2x

—1/2Q041 — p(d + k) log(27441 — p(d + k))
—1/2Qu +2 — p(d + k) log2te + 2 — p(d + k).

Note that 7y = 7y and 7,,; = ¢. Then we can write

r

Tkt 1 pd+k) "

k=0 ¢ &+l k=1
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where
A = (fo + 1) log(2ty + 2) — 1/2(21t9 + 2 — pd) log(2ty + 2 — pd) A
— tlog(2t) + 1/2(2t — p(d + r)) log(2t — p(d + 1)) '
and
2—p
B, =t log(l + 1/7) + log (Rt +2) — log(2t +p — p(d + k)
(A.2)

2—p
+1/2Qtu +2—p(d+k)log|1— .
/227 +2 = p(d + k) g( ztk+2_p(d+k))

Bound each of A and By, starting with By. Since 1 +x < e*, 7, log(1 + 1/7;) < 1 and %(21,( +2—pd+
k)) log (1 - m) < —p/2. Rearranging the other two terms of Equation (A.2), we get

2- d+k) +2—
B, §glog(21k+2)—7plog <1—w>+g.

2Tk+2

Rearranging terms of A from Equation (A.1) and taking the exponential,

d O\ ot d ! —pldtr
A = (1 _ Zt”+ 2) Q1o + 2 — pd)y/? (1 - ’%) Q1 — p(d +r) 27
0

pd *(I—#‘{H))Uoﬂ) pd+r) e to+ 1 2 —pr
_(1_ ey 2n7.
240 + 2 2 !

Using the bound 1 — x < e for0 < x < 1,

pd + )\ pd+r  pPd+r? pPd+r)’
] ——— <expj)— +
2t 2 8t 1612

Putting the bounds on A and By, together, we get

pd O\~ pd+r) pPA+r?  pPd+r)
AEB < (1 - > exp {— + }

2t +2 2 8t 1612
1 pd/2 r d+k) +2 —@2-p)/2 (A.3)
o + _ pd+k)+2—p
21) P72 l-—— 2 2)P/2 ) ePr/2,
x( . ) @) E(( P ) 27 +2) )e

Define err(r,d, ty, 1)

pd )“z«‘é‘in)(fﬁ')exp{ pd  p*(d+r) p3(d+r)3}

,d, to,t) =1 —
err(r,d, ty, t) < ST +

2 8t 16¢2
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18 N. EIKMEIER AND D. F. GLEICH

then we can rewrite Equation (A.3) as

- -2=p)
+1 o pd+k)y+2—p\ 2 4
Jd to, ) [ 2 21 A AL N 27, +2)5
err(r 0)<t>() g( T ) Qt +2)

So, we finally finish with the bound on p(t;d, #y, ) by substituting Equation (A.3) into Equation (A.1)
and rearranging terms:

1 d/2

rd —1)! fo+ 1Y

P(T;d,to,t)=<n%> el‘r(”,d,fo,f)<0_: ) 20"
i=1 ! ’

d 3
<1 (p(Zrk +p—pd+k) PP (1 + 5 1))

k=1

Now sum p(t;d, fy, t) over all ordered choices of 7 to get

prdto,t) < Y plrid,io,1)

(M, D

pd
r (r1+d t0+1 5
= (”1,---,7”1) Z 1_[ d — 1)‘ err(r d, fo,t)< . >

to+1<t)<..<7r<t i=1

—pr d 3
2077 2 —p(d+k) P21
x @07 p[]Cu+p—pd+h) M

k=1

i d/2
i+ di— 1 fo+1\"
— 7 (H <r Z O )) err(r,d, t, 1) ( 0 :_ ) (21)~P7?
i=1 !

! 3
x Z pl—[(Z‘Ck +p—p(d + k)~ P2 (1 + - 1). (A.4)

to+1<ty<..<tr<t k=1

Now let 1] = 7y — [p(d + k)/2].Since d > 1 and k > 1, we have 2[p(d + k) /2] > 2. So Equation (A.4)
is less than or equal to

3
> (p]_[(zr +p) <1+2 +1))

(to—pld/21+D)<t| <...<t/<(t—p[(d+r)/2]) k=1

t=p[(d+r)/2]
<= Z (2.[/ +p)f(27p)/2 +3027 + 1)*(4*17)/2)

o' =(tg—p[d/2]+1)

1Z0Z 1snBny | uo 1senb Aq 986209S/00ZUd/t/g/o10IIE/18UW0/W0d dno olwapede//:sdiy Woll papeojuMo(]



TGPA 19

1 d _ pr/2 3 r
= —@y” (1 _pdrn=p p) <1 + P ) .
r! 2t 2t —p(d + 1)+ p)r?

rp(p(d+r)—p) 3
<expy——"———4—~——~ < Pr
=) *e"p{ @—pld+r)+pP/2 }

Where the last inequalities come from 1 4+ x < e*. So finally,

! d/2
i +di— 1 to+ 1\”
ps(r;d, 10,1) < <| | (r ;_1 )) err(r,d, to, 1) (%)

i=1

—rp(d+71)—p) 3pr
exp + .
4 (2t —pd +r) +p)”?
Using d = o(t'/?) and r = o(¢*?) gives the final bound, and this concludes the proof. O

Proof of Theorem 5.1. Partition the vertices into those added before time 7y, before time #,, and after ¢,
with #, = logloglogf(#),t; = loglogf (). We will argue about the maximum degree vertices in each
set.

CLaM A.1 In G}, the degree of the supernode of vertices added before time 7, is at least té/ 3yp/2 whp.

Proof. Consider all vertices added before time 7, as a supernode. Let A; denote the event that this
supernode has degree less than té/ 31P/2 at time 7. Use Lemma 5.2 with [ = 1, and d = 24, to bound

1/3 p/272
t() t 10 pd)2
Pr[A|] < Z r + 21‘0 -1 to + 1 82+1()—[1d/2+317r/fp/2
- 2l0 -1 t
r1=0
Then, since r < 1,"°1"/* — 21,
13p/2_
1yt 2to 1/3 /2 pio
PrA] < Z 1, e — 1 to+ 1 ez+t07pto+3pt(l)/3761”0/#,/2.
a 21() —1 t
r1=0
Replacing the sum with (z)”°7/> — 21,), and the using the definition of the combination,
130/2 _ 1)1 plo
PriAll < (1P — 210) (1,1 ! (ro + 1) oo+ o712
- 2t — Dty w2 =210t \ 1

And finally, by writing out (z)”*#7/> — 1)!/(t* "/ — 21,)!, we can reduce the expression further as

1/3 .p/2\219—1 J20)

t, "t/ =)"o o+ 1 1/3 2

Pr[A,] < t(;/3tp/2 (ty ) ' ( 0 20 (=p)+3p1g —6pig )P/ .
2ty — 1)! t
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20 N. EIKMEIER AND D. F. GLEICH

Using 1/x < e*/x* and rearranging terms, P[A;] goes to 0

o113 +3pté/3 —6piy /P12

PriA]l = 2ty — D@31 O

CLamM A2 In GV, no vertex added after time #; has degree exceeding #, 21712 whp.

Proof. Let A, denote the event that some vertex added after time ¢, has degree exceeding ¢, 22 Write
the probability of A, occurring as

PriAy] <) Prldi(s) = 1,21 = > " Pri(di () = (15°17%)"]

s=1] s=1

t t Ip/2
t
< t2l[—lp/2]E d () — t2]l,—lp/2 2 (l)2[p/2 -
= § 0 [(d,(5)"] E 0 (2m) s

s=1] s=t]

t
_ 21p/2(2m)(1)tgl/ x /2 gx. (A.5)

-1

Compute the integral in Equation (A.5)

t /21
/ x PP dx= —
-1 —Ip/2 +1

t

= (=lp/24+ D)7 (TP — 1 — )T (A.6)

-1

Choose [ > 2/p. Then the integral in Equation (A.6) is less than or equal to (Ip/2 — 1)~1(t; — 1)~P/>1
and plugging in the computation from Equation (A.6) into Equation (A.5),

2122y 2!
Pr[A;] < 0
(Ip/2 = 1)(t; — DT

which goes to 0 as ¢ increases. 0
CLaM A.3 In GV, no vertex added before time #, has degree exceeding té/ 65012 whp.
Proof. Use same technique as in Claim A.2. O

CLamM A4 The k highest degree vertices of G are added before time ¢, and have degree A; bounded by
' < A< 100

Proof. If the lower bound does not hold, then one of the top k vertices has degree less than #;'#/? and
the total degree of vertices added before time #, is bounded by

/f
(k= Dry/ 172 + (n—j —k+ 1) (1g'172) < ka1 + 101517

= kty/ " 1 = PP (key/® + 1) < P2 (2k1)%) < 1)
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TGPA 21

Since we have the lower bound, and we know that #”/?/t; > /> /12, none of the largest degree vertices
could be added after time ¢,. O

CLAaM A.5 The k highest degree vertices have A; < A;_| — ’fp(—/j whp.
Proof. Let A, denote the event that there are two vertices among the first 7, time steps with degrees
exceeding ;' #7/> and within /2 /f (f) of each other. Let A; be the opposite of event A; from Claim A.3.

Let

Praysy = Pr[di(s) — di(s2) = 1 | A3, for |1] < #"/f (@), (A7)
Then,
P12 /f ()
Pr [A4 |A3] < Z Z pl,sl,sz
1<sy<82=01 1=—tP/2 Jf (1)
/(I)/ﬁt/’/z 21

Plsisy = Z Z Pispsy) (ri, = D)5 (dy, dy), 1, 1)

—1p/2 dy.dy=1 Notation from Lemma 5.2.

r1=t0
1/6,p/2 (d)+dp)
1 21 pld+dy _
_ LR A R R e AN T A
= E E e
d —1 d, — 1 t
r :to—ltp/Z dy,dy=1

2t
1/6 1/6 — _ 1
< to/ e Z (2t0/ tp/Z)d1+d2 2(1‘1 + 1)2pt1t Py +d2)/2 2+ +3p1y
dydy=1

/6

1/6
— t—p/2t5/6(2t1)22411 tgtl/:; (tl + 1)21)1‘1 62+t1+3pt0 )

Denote the last equation as h(¢) and note h(z) is a polynomial in log(f (r)) times a factor of +~7/2. Then
going back to Equation (A.7),

/2
Pr[A4l4;] < <t1)2ih(t) _ (">zw’
2) f@® 2 )

which goes to 0 as ¢ increases. g
Finishing that final Claim finishes the proof of the theorem. O

Proof of Theorem 5.2. Let G = G*. We will show that with high probability G contains a star forest F,
with stars of degree asymptotic to the maximum degree vertices of G. Then show that G\F has small
eigenvalues. Then we can use Rayleigh’s principle to say that the large eigenvalues of G cannot be too
different than the large eigenvalues of F.

Let S; be the vertices added after time #,_, and at or before time f;, forty = 0, ¢, = t'/8, 1, = °/1°,t; = 1.
We start by finding bounds on the degrees of G.
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22 N. EIKMEIER AND D. F. GLEICH

CLAM A.6 For any ¢ > 0, and any f(¢) with f(f) — oo as t — oo the following holds whp: for all s

with f(t) < s < t, for all vertices v € G, if v was added at time r, then d,(v) < sP/>T¢r=F/2,

Proof. We prove this by contradiction. Bound the probability that d"(r) is greater than s”/*¢ /2

t

Pr(U_, Uy {dr() = 2072 < 37N " Pr[dl(r) = 7777

s=f (1) r=1

- Z ipr[(d:”('”))(l) > (sP/rerrH 0],

s=f (1) r=1

which is bounded using Markov:
t s
< Z Z S—l(p/2+8)rpl/2]E [(d‘:n (r))(l)]’
s=f(1) r=1
and which we can bound using Lemma 5.1
t s N t
< Z Z 51025 /2 () (102 (_) — (2m)D2l Z sl-el.

s=f(t) r=1 r s=f (1)

Take [ > 3/¢. Then we can bound the sum by an integral,

t 00 1
Z Slfsl S/ xlfsl dx = x27£l
F 2 —¢l

5=/ (1) -1

[.]

_ 1 _ 2—¢l
= (=D,

f(—-1

which goes to zero as ¢ increases, since [ > 3/¢.

O

CLamM A.7 Let S} be the set of vertices in S5 that are adjacent to more than one vertex of S; in G. Then

IS4 < #7P/1° with high probability.

Proof. Let B, be the event that the conditions of Claim A.6 hold with f(¢) = ¢, and ¢ = 1/16. Then for
a vertex v € S3 added at time s, the probability that v picks at least one neighbour in S is less than or

equal to

Zwesl d,(w) - ZweSl sP/re B tlsp/2+$
25—1 — 2s—1 — 2s—1°

Then the probability of having two or more neighbours in S can be bounded by

tlsp/2+s 2 m
Pr[INWv)NS| =2 |Bi] < (2 1 ) . <2) < mg/4g-15+8p)/8
5§ —
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TGPA 23

Let X denote the number of v € S5 adjacent to more than one vertex of S;. Then

! t
E[X]B:] < Zmzs(’”*gp)/g;l/“ < m2t1/4/ (158 g

t+1 2
t 2,1/4
— 2\ 8 xCTHs| | < Bm’t [THED/S
7T+ 8p 5 —748p
Then by Markov,
E[X|B 8m?> /8 8m? 18
PT[X>I7P/16|BI] < [ | 1] < _ .
- - t7p/16 - Sp -7 t7p/16 8p -7 t—9p/16
—5/8 9p/16 9/16 .
and % = ’:5’% < ’ts% which goes to zero. O

Let F C G be the star forest consisting of edges between S and S3\S5.

CLaiM A.8 Let A > A, > ... > A; denote the degrees of the k highest degree vertices of G. Then
M(F) = (1—o(1)A;”.

Proof. Denote K4 to be a star of degree d;. Let H be the star forest H = K4 U... U K4 with
di > dy > ... > d.Then fori = 1,...,k, ;(H) = d,”*. So it will be sufficient to show that
A;(F) = (1 —o(1))A;(G). Within the proof of Theorem 5.1, we show that the k highest degree vertices
G are added before time ¢, (specifically in Claim A.4). So these vertices are all in F. The only edges to
those vertices that are not in F' are those added before time #, and those incident to Sj.

By Theorem 5.1, we can choose f (7) such that A,(G}) < 27f(t) < 1%, Additionally by Theorem
5.1, we get A;(G) > 1%/ log t. Finally, Claim A.7 says that |S;| < ¢77/! whp. So with high probability,

P/ P2 logt
AiF) > A(G) — 17P/16 — 16 = L oneq oy = L o6 (g 4o

logt logt tr/?
LA PR logr 1 _ I 4 m 8 Z 1 syane
= g |1~ M | = g [T 0 m | = (oA .

Let H = G\F. Denote Ag, Ar and Ay to be the adjacency matrices for graphs G, F and H. In the
following claim, we’ll show that A; (Ay) is o(At(AFr)). Consider the fact that if A and A + E are symmetric
n by n matrices, then A (A) + A,(E) < A, (A) + 1 (E) (see for instance [37]). That implies that for any
subspace L,

max = max max
X€L,x#0 XTX xeL,x#0 XTX x#0 XTX

xTAgx xTApx ( XTAHX>

This is enough to finish the proof because by the Courant-Fischer Minimax Theorem ([37], Theorem
8.1.2), Ai(Ag) = Ai(Ar)(1 £ o(1)).

1Z0Z 1snBny | uo 1senb Aq 986209S/00ZUd/t/g/o10IIE/18UW0/W0d dno olwapede//:sdiy Woll papeojuMo(]



24 N. EIKMEIER AND D. F. GLEICH
CLAIM A9 A (Ay) < 6mt'>/®* whp.

Proof. Let H; denotes the subgraph of H induced by §;, and let H;; denotes the subgraph of H containing
only edges with one vertex in S; and the other in §;. That is, write A in the following way:

H, H, H
Ay=|H, H, Hy|,
H;, H;, H;

and use this to bound the maximal eigenvalue of Ay as

H, H, H
MAp) =i | |Hy H, Hpy
H;, H;, H;

S AHY) A+ A Hy) + A (Hz) + A (H ) + A (Hos) + A (H ).

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim A.6
with f(#) =t and ¢ = 1/64,

M(H) < A(H)) = max{d] (n)} < 4777 < 7P
V=t

M(Hy) < Ay(Hy) < max {d)(v)} < /77 /7 < 310
1 <v<ty

M(Hs) < Ay(Hs) < max {d(v)} < 477 /57 < 115/,
1 <v=t3 ~

To bound A, (H ), start with m = 1. For i < j, this implies that each vertex in S; has at most one edge in
H ;, that is Hj; is a star forest. Then we have a bound on H; by Claim A.8. For m > 1, let G’ be one of our
generated graphs with 7 edges and m = 1. Think now of contracting vertices in G’ (only the ones added
using PA) into a single vertex. We can write A in terms of A;: A = CTA;C, where C is a contraction
matrix with # rows and the number of columns equal to the number of vertices in A (at most t/m). The
ith column is equal to 1 at indices j in which (i, ) are identified. Similarly, we can write H; in terms of
H,.

Note that if y = Cx, then y'y = x"CTCx, where C'C is a diagonal matrix with 1’s and m's on the
diagonal. So x"x < y'y < mx"x which we use to bound A, (H;) as

x"H ;x XTCTH;]»CX yTH;j
A1 (H ) = max = max = max
x#£0 XX x#0 xTx x£0,y=Cx XX
. o (A7)
= max ———— < max =
x#0,y=Cx mXx'X x#0y=Cx y'y
Now using Claim A.6 with f(¢) = t; and ¢ = 1/64,
Ai(H')) = max{d] (v)} < #5/*7* < 710
V<t
’ (A8)

Ai(Hy) = max {d; () <77 /7 < 2%,
f<vs<tz -
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TGPA 25

Finally, all edges in H; are between S, and S}, so Claim A.7 shows A;(H);) < #7916 < {7/16 whp.
Putting together Equations (A.7) and (A.8), we get A, (Hj;) < ma,(H}) < mA(H})'? < mt™/*. And
so we get the final bound

3
AMAg) < Z)“(Hi) + Z)‘I(Hij) < 6mt'S/%*,

i=1 i<j

This shows that A;(Ay) is 0(At(AF)), which implies A;(Ag) = A;(Ag) = A;(Ar)(1x0(1)). This concludes
the final claim. O

And this concludes the proof. O

Appendix B. TGPA spectral power law proofs

In this appendix, we provide proofs for theoretical results from Section 6.

Proof of Lemma 6.1. Denote G as the graph at time ¢ with contractions of size m. Let Z, = d"(s) be
the degree of vertex s at time ¢. Let Y, be an indicator for the event that only one edge added at time ¢ is
incident to s, and let X, be an indicator variable for the event that both of the edges added at time ¢ are
incident to s. First, let us calculate the probability of placing exactly one edge incident to node s at time ¢:

d,(s) ( 2(num of self—loops)) N ZMEN(A_)## d,(u) (num edges btwn u, s >

4t —2 d,(s) 4t —2 d, ()
probability of picking s first, and then not picking it probability of not picking s first, but picking a neighbour, and
second then picking s second

. d,(s) 2(num self-loops)
U2t -1 2t — 1 '

Also the probability of placing two (both) edges incident to node s at time ¢:

d(s)
4t -2

d,(s) 2(num self-loops) __num self-loops

- Prpicking it second | picked it first] = Y 70 = 1
_ (s _

p

Then, we can write the expectation of Z, in terms of Z,_; using the above calculations:
E[ZP] = E[E[(Z-, + Y, +2X)®11Z,_,]

num self-loops
2t —1

T d,(s) num self-loops
25 (1 BT e v

=E|Z_ +2)%p-
[(’”L)p( 21 20— 1

) +(Z_ + 1)@)17 . ( di(s) _ 2(num self—loops))

num self-loops
2t—1

<E [(z,l +2)®p. (

) +Za+ 2% ( di(s) _ 2(oum Self-loops>>

2t —1 2t —1
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26 N. EIKMEIER AND D. F. GLEICH

= d,(s) num self-loops
z® (1= p=
+’—‘( T

=E<a4+w%'<

d,(s) num self-loops +Z® ) d,(s) num self-loops
e L PO R R PR

L 2r—1 2t —1
[z Z_ num self-loops  Z,_| +k Z_ num self-loops
=E|z® (1 -p=-t d _
-1 Py P z, =17 P
[« Z — 1f-1 k - 1f-1
—-F Zt(ﬁ)l 1 —pZ 1 — hum seli-loops i Zi1+ » Z,_; — num self-loops
L 2t —1 Z;_y 2r—1

<E 'ZE)I (1 _pZ,_l — nzutm sclalf-loops pZ;l —l—lk)}

2t —1

=E ZE)I (1 + —(k + num self- loops))]
Now if k£ > number self-loops we can move on to:
&) (®) 2pk
E[Z"]1 <E|Z~Z (1 + —) (B.1)

Apply this relationship iteratively, down to the time when node s was added (recall we denoted that time
as s'). Also note that the degree of s at time s’ is bounded by 4m: (if all m edges were added as self-loops).
Thus:

t t

_ 2 - 2
Ez®) =[] (1 + Zﬂp_k 1) <@m® T] (1 + 2t,p_kl>. (B.2)

=5 '=s'+1

Use 1 + x < ¢* to write the product as a sum, and bound the sum with an integral:

t

1 Co 1—1/2
> < dx = log . (B.3)
r—1/2 = )y x—1/2 s —1/2

'=s"+1

So finally,

® ®(1=1/2 >pk
E(Z®) < (4m) (y—uz

e (1) (22
s’ 2—1/8

_ Pk
< (4m)® (-) 20k, .
N

(B.4)
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TGPA 27

Proof of Lemma 6.2. Lett® = (¢”, .. -, T\), where ‘L’ ) is the time when we add an edge incident to S;
and increase the degree of S; fromd; +j—1tod;+j. Note that we could have repeated times in (. Define
T = (7, T4, - - . » Tr41) to be the ordered union of T, with 7y = #, and 7,,, = ¢. Again, there may be up to
two moves per time step. Let p(t; d, £y, ) be the probability that supernodes S; increase in degree at exactly
the times specified by t between time #, and ¢. Define all time steps to be T := {to, 11, t1, 2, 12, . . ., Lrs 11}
Time steps involving the sets S; we defined to be t. So the remaining time steps are 7 — 7. Then

7

p(t;d, to, 1) < (HHZ d4—i;)k ) 1_[ 1_[ < —2de];>

i=1 k=1 k=0 jeT—1
for each supernode S;, the prob. J=T
of  aligning with r(i). J<Tg41
for each time step in between the relevant ones,
the probability of picking any edge outside of (B 5)
Styeens 1 .
r
(ri +di — 1! d + k
~ (T [T5 =)o > Y e
, (d; — D! 2 —1
i=1 k=1 k=0 jeT—t
JZTk
/<Ik+l

Now we can bound the inner most sum of the exponential term as

Th1—1
Z log <1 —p(;ij%kl)) <2 Z log <1 —’%;Lk)) (B.6)

JjeT—t j=T+1
J=T
J<Tt1

which is less than or equal to

Tk+1 d+k
2/ log (1 — M) dx = 27441 log(27iy 1) + 2(7 + 1) log(27, 4 2)

11 2x
B.7
+ Qtier — pld + 0 logQis — p(d + ) B

— Q2u +2—pld+k)log(2t + 2 — p(d + k)).
Note that 7y = 7y and 7, ; = ¢. Then we can write

Z/w log(l p(d+k)> dx _A—i—ZBk, (B.8)

k=0 Y &kt
where

A =2(tg + 1) log(2ty + 2) — (2t + 2 — pd) log(2ty + 2 — pd)

(B.9)
— 2tlog(2t) + 2t — p(d + r)) log(2t — p(d + 1))
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28 N. EIKMEIER AND D. F. GLEICH

and

By =2n log(1 4+ 1/7) + 21og2t +2) — (2 — p) logCty + p — p(d + k))
2—p ) (B.10)
20, 4+2—pd+k))

+ Qu +2—p(d+k))log (1

We will bound each of A and By, starting with By. Since 1 + x < ¢, I log(1 + 1/7) < 2 and

2t +2—p(d+k))log (1 — m) < p — 2. Rearranging the other two terms of Equation (B.10)

and combining with these inequalities we get

d+k)+2—
By < plog(2t, +2) — (2 — p) log (1 —w) +p (B.11)
27:]( +2
Now rearranging terms of A from Equation (B.9),
pd
A=-2(+ 11 1 - dlog (2ty + 2 — pd
(o + )0g< 2t0+2>+l7 og (2t +2 — pd)
d+r
+ 2tlog (1 — l%) —p(d +r)log(2t — p(d +r))
. B.12)
d 2(tp+1) p(d+ V) 2t (
Ao (1- 2 21 +2 — pdy (1= 228 (21 — p(d + ) e
4 < 0 12 (210 +2 — pd) o (2t —p(d + 7))
_{( od ~20— 52D | p(d 4 )\ (o 1\ -
- 260+ 2 2t ¢ '
Using the bound 1 — x < e for0 < x < 1,
pd+ )\ P+’ pd+r)’
1 - —" < —p(d . B.13
( 2 ) sexp P+ T B
Putting the bounds on A and By, together, we get
d
d *M'*%)(@‘H) p2(d+ 7‘)2 p3(d+ r)3
A+ By <[1= p —pn(d
¢ _< 2t0+2) eXp{ pld )+ 4t + 82
(B.14)

n+1\ pd+k) +2—p\ 7 ,
X < p > (2t) 7 l_[ <<1 — T) (2Tk+2)p e,

k=1

Using

d
d O\ 202 oD 2(d 2 3(d 3
p ) 0 exp{—pd—{-p( +7r) +P( +7r) }’ (B.15)

,d, to,) = 1—
ert(r. d. 1o, 1) ( 2 +2 41 812
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we can write Equation (B.14) as

t 1 pd r d k 2 —(2-p)
MEB < err(r.d, 10,1) ( i ) e [1] (1 - w) Qu+27 ). (B.16)
t Pl 2‘L'k +2

So, we finally finish with the bound on p(t;d, #y, f) by substituting Equation (B.16) into Equation (B.5):

l ) o pd
p(rid,t, 1) < <| |—(r’(;‘i 1),1)!> ert(r, d, 1o, ) (mj 1) @n™
i=1 ! ’

o (B.17)
- pd+k) +2—p\ 7 p
- 2 2)" ,
XE(( 20, +2 Cu+ 2
which can be rearranged as
it di— 1! doo (Y o
= _— fo, t H—"r
1;[ G ) ertrdso. )( t ) 20
= (B.18)
: 9
X ]_[ (p(ZIk +p—pd+k) =P <2rk +5+ >>
el 2Tk — 1
Now we will sum p(t;d, #y, ) over all ordered choices of t:
prdto,t) < Y plrid,io,1)
NOTR)
r (rl + d lO + 1 r
< err(r d, 1y, 1) ( )
<r1,...,r1> 10+1<TIX<:<I,<:!—1[ (d; — 1)' 0 t
9
@ p @5 +p —pld + 1) <2rk +5+ 5 ) (B.19)

k=1

1 d
ri-l—d,-—l t0+1 P _
=r! ,d, to, t 21)7P"
r<1:[< g ))err(r 0 >< . ) 1)

- 9
-2-p)
X E p||(2tk+p—p(d+k)) ”(ZTk—i—S—i—zrk_l).

tp+l<t)<..<7r=t k=1

Now let 7, =ty — [p(d + k)/2]. Sinced > 1 and k > 1, we have 2[p(d + k)/2] > 2. Then the last term
in Equation (B.19) is less than or equal to

- 9
’ —(2-p) /
> (pn(21k+p) ’ <2rk+5+ 2r,g+1))

(to—pld/21+D<t{ <. <7 <(t—p[(d+r)/2])) \ k=1
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30 N. EIKMEIER AND D. F. GLEICH

t=p[(d+r)/2]

b ! W / ’ —(2—
= > (0@ +p) " + QY+ 52y +p) ")
v'=(tg—p[d/2]+1)
p t—p(d+r)/2 f
=n ( / (9@x +p) " + 27 +52x + 1)) dx)
: 0
p 9 5 2 r
= + + @t —pd+1) + 1)P) (B.20)
r! (2(2 —pp*r (A —=pp'»  (1A-pp
2p 19 r
<———(—+Q—-pd P
- r!(l_p)pzp<4 +( p( +r)+p)>

_ 2 <(2t)p <1 _pd+n) —p)” (1 N 19p ))
il =pp'r 21 421 —p(d +r) +py

_ pr r
<= ;(Zt)pr (1_p(d+r) P) <1+ 19p ) ’
r'(1 —p)p'—» 2t 42t — p(d + r) + p)?

_pr(pd+r—p) ]
2t

19pr

SeXp{ Sexp{ W}

where the last inequalities come from 1 + x < ¢*. So finally,

1 d
4 di — 1 to+ 1\’
PS(erato,t)f (l | <r Z—l )) err(r9d’t09t)<0-: >

i=1

 ex —pr((d+r) —p) 19pr
P 21 42 —pd+r+pr|

Since d = o(¢t'/?) and r = o(t*/3),

err(r,d, ty, t)exp —rpd+n) —p) 19pr
e 2 42t —pd +1) +py
d —2(1—pd/2(ig+D) (tg+1) 2 19
_<1—p—) exp{l—pd—r——i- pr}
2(t+ 1) 4t 4t
19
= ez_(x"):l) exp {1 —pd + _4;1;r}
19
:exp{3+2t0—pd+ 457;"}
This concludes the proof. g

Proof of Theorem 6.1. Partition the vertices into those added before time 7y, before time ¢, and after 7,
with t, = logloglogf(#),t; = loglogf(z). We will argue about the maximum degree vertices in each
set.

CLamM B.1 In G, the degree of the supernode of vertices added before time {1, is at least tél_p 24 whp.
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Proof. Consider all vertices added before time #, as a supernode. Let A; denote the event that this
supernode has degree less than télf” 21 at time 7. We will use Lemma 6.2 with [ = 1, and d = 41,
(because the supernode has all edges at time #,). Calculate Pr[A,] as

rél P2y

d
}’1+4t0—1 l()—‘rl p _
Pr[A;] < Z ( o210 —pd-+19pr/4iP
— 4t — 1 t
r1=0
(1-p)/2 D
Y P —4ty (1-p)/2 4pi
< Z fo =1 fo+ 1\ e3+2l074pt0+(19/4)pt(1)/37 19[’]’,’0
a 4t0 -1 1 because r = ry and d = 41y
=0 By substituting r; =
(P12
(1-p)/2 api
=@ — 4 G~ —1)! fot+1 34210(1-2p)+(19/4)pry 250
- ( 0 - 0) 1-p)/2 e (B.Z])
(41, — D!(z, tr — 41y)! t
(1=p)/2 .p\arg—1 4pry
< 0P (19 7)™ o+ 1 32000 -2p)+(19/4)pt5/ ~19p1 /17
- 41y — 1)! t
e4t071 13
<200 T (g 4 1)¥0g320(=2p)19/4ptg " —19pio /i
-0 (41y — 1)40-!1
since 1/x! < &' /x*
62+210(372[7)+(19/4)pl(1)/ 3 _1optg /P
<
= (4ty — 1)200-p)~1 ’

which goes to 0 as 7 goes to infinity. Thus A does not hold with high probability, and the claim is proved.[]
CLamM B.2 In G, no vertex added after time #, has degree exceeding ¢ 2t whp.

Proof. Let A, denote the event that some vertex added after time #, has degree exceeding #, %t?. Bound
Pr[A,] as

Pridy] <) Prld,(s) = ;7" = Y Pr{(d,(s)? = (152" P < " 2 PE(d ()]

s=1] s=1] s=1

by Markov (B 22)
! ~ ¢ Ip B t
= 't @am)®2r (_) =27 4m) V1! / X7 dx,
N —
s=h by Lemma 6.1 1t
and compute the integral in Equation (B.22),
— t
/I o AL (—lp+ )7 (77 = (1 — 1)), (B.23)
-1 —lp+1 -1

We want to choose [ so that —Ip+ 1 is less than 0. So choose [ > 1/p. Then the integral in Equation (B.23)
is less than or equal to (Ip — 1)~'(t; — 1)~*!, and plugging in the computation from Equation (B.23)
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32 N. EIKMEIER AND D. F. GLEICH

into Equation (B.22),

2 (4 0) 2!
Prids) < — om0 (B.24)
(Ip — D1, — D!
which goes to 0 as ¢ increases. O
CLAM B.3 In GV, no vertex added before time #; has degree exceeding télf" g whp.
Proof. Let A; denote the event that some vertex added before time #; has degree exceeding t(()lf” W,
Using the exact argument as in Claim B.2, Pr[A;] goes to O as ¢ increases. g

CLAamM B.4 The k highest degree vertices of G/ are added before time ¢, and have degree A; bounded by
' < A <P
Proof. First lets summarize the results of the last three claims:

+ Bound on degrees of vertices added after time #,: 7, *#”

* Bound on degrees of vertices added before time ¢,: t((,lfp i
«  Sum of all degrees added before time 7, is at least: £; ”/ w

So the upper bound of the claim is immediately clear from the second item. Suppose that the lower bound
does not hold. Then one of the top k vertices has degree less than #;'#” and the total degree of vertices
added before time f, is bounded by

- i1 _
(k=D "+ (_0 —k+ 1) (t5'17) < ket "0 + 19257 7)
— m

largest possible degrees of (k — 1)
vertices largest possible degrees of (B 25)
remaining vertices

= kel P 47 = ) TP 1) < Qb TP < TP,

which contradicts the third bulleted item. Finally, since we have the lower bound, and we know that
)ty > 1"/ tg, then none of the largest degree vertices could be added after time ¢,. OJ

CLAamM B.5 The k highest degree vertices of G have A; < A;_; — % whp.

Proof. Let A, denote the event that there are two vertices among the first #; time steps with degrees
exceeding ¢, '#7 and within #” /f (f) of each other. Define

Plsy.s, = Pr [dt(sl) —di(s2) =1] Za],fOT 1 </f @),
where Aj; is defined to be the opposite of event A; from Claim B.3. Then

P /f (1)

Priddds] < Y D i (B.26)

1<sy<sp<ty I=—1P [f (1)
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Now
P,
Piosy = D D Peysy ((r1or = D3 (dr,do), 1, 1)
rlztaltp dy.dr=1 Notation from Lemma 6.2.
Using Lemma 6.2,
A=p)/4p 4t dtd
- OZ 21: nd =1\ (rn—1+d—1\ (1 + 1\
- d—1 d, — 1 t
r=ilp d1da=1

I
{z+2t1 —p(dﬁ—dz)-%—m}

4[1

< [P/ té""’/“ﬂ’ +d —1 t(()l P 1y d —1 41 pdy+dy)
= E
di—1 dy — 1 t

dydy=1

l9pt(()1 P/ p
342t —p(d; +d2)+T

X e
4ty (1-p)/4 (1-p)/4 p(di+dp)
< tél—l))/“ﬂ’ Z (2t0 tp) <2t0 tp) <t1 + 1)
e d —1 d, — 1 t

(1-p)/4
x 3 t21+019/4)pr

4

t(l P/ p Z (21(1 DAY= (f | ])8h i) 3+2t|+(l9/4)pt(1 P4
dydy=1

_ (1-p)/4
— (1 17)/4(4t )228t1 t2t1(1 p)(t + 1)8[Jtle3+2t1+(19/4)p1

33

(B.27)

(B.28)

(B.29)

Denote the last equation as h(#) and note h(z) is a polynomial in log(f(¢)) times a factor of 7. Then

going back to Equation (B.26),

_ poly (log(f (1))
PI[A”A‘“]S()Z% ®= (2) o

which goes to 0 as ¢ increases. This concludes the proof of this final claim.

And this concludes the proof of the theorem.

(B.30)

O

O

Proof of Theorem 6.2. Let S; be the vertices added after time #,_; and at or before time #;, fortp = 0, #; =
'8, 1, = /15, 13 = t. Let G = G,. We start by finding bounds on the degrees and co-degrees of G.
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34 N. EIKMEIER AND D. F. GLEICH

CrLAaM B.6 For any ¢ > 0, and any f(¢) with f(#) — 0o ast — oo the following holds whp: for all s

with () < s <1, for all vertices v € G, if v was added at time r, then d,(v) < s"**r7".

Proof.

t s

PrU_, U {dl () = s+ r )] < Z ZPr [d"(r) = s7r77]
s=f (1) r=1

— Y Yk [@ren® = ]

s=f(1) r=1

which is bounded using Markov:
t N ~
= 3 Y s [@ren®].
s=f(t) r=1
We can bound the preceding equation using Lemma 6.1
t s _ s lp t
< Z Z 57O+ b () Dl (_) = (4m)02P Z el
s=f(t) r=1 r s=f (1)

Take I > 3/¢. Then we can bound the sum by an integral,

o] 1 9]

t
§ Slfe[ < / xlfsl dx = x27e[
2 —¢l

5=/ (1) fo-1

_ 1 _1)\2-¢l
= 5O =1,

f(H-1

which goes to zero as ¢ increases, since [ > 3/¢.

(B.31)

(B.32)

O

CLAamM B.7 Let S be the set of vertices in S5 that are adjacent to more than one vertex of S, in G. Then

S5 < 179/ with high probability.

Proof. Let B be the event that the conditions of Claim B.6 hold with f(t) = ¢, and ¢ = 1/16. Then for
a vertex v € S3 added at time s, the probability that v picks at least one neighbour in S is less than or

equal to

ZZWESI dﬁ(w) < ZweSl Sp+€ - t15p+£
45 — 2 - 2s—1  25s—1°

So, the probability of having two or more neighbours in S; can be bounded by

hste N (2m 2,1/4 (16p—15)/8
PrIN0W) NS | =2 [B] < w—1) \» < m?t'/4 g1 .
5 —

(B.33)

(B.34)
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Let X denote the number of v € S5 adjacent to more than one vertex of S;. Then

! t
E[X|B,] < Zmzs(_w“@’)/stl/“ < m2t1/4/ L1568 g

1 n
* (B.35)
t
— 2 8 crmes| | o 8 g
7+ 16p ) T
Then by Markov,
E[X|B,] 8m> 8 8m? /8
2p—9/16 —
PrX > 7B, < p o6 = 16p — 7725716~ 16p — 7 19116 (B.36)
and ’:95//186 = 1’190//1166 which goes to zero. 0

Let F' C G be the star forest consisting of edges between S, and S3\Sj.

CrLamm B.8 Let A} > A, > ... > A; denote the degrees of the k highest degree vertices of G. Then
L(F) = (1 —o(1)A)>.

Proof. Denote K 4, to be a star of degree d;. Let H be the star forest H = K4 U ... U K4 with
di > d, > ... > d. Then fori = 1,...,k, };(H) = d!’*. So, it will be sufficient to show that
A;(F) = (1 —o(1))A;(G). Claim B.4 shows that the k highest degree vertices G are added before time
t1. So these vertices are all in F. The only edges to those vertices that are not in F' are those added before
time #, and those incident to Sj.

By Theorem 6.1, we can choose f(f) such that, A;(G}}) < £f(t) < 1’715, Also by Theorem 6.1,
Ai(G) > t”/logt. Finally, Claim B.7 says that |S;| < ¢”7/'® whp. And so, with high probability,

P p/2
AF) 2 ALG) — (11— i€ = L 0181 gy = [1 P51 4 ) & gt]
log ¢ log ¢ v
(B.37)

P

- lOgt—tll et _ (1 —opaG
~ logt I=a+ ) /16 | ~ logt = +m )9[,/16 = —0o(1)Ai(G)

O

Let H = G\F. Denote Ag, Ar and Ay to be the adjacency matrices for graphs G, F and H. In the
following claim, we’ll show that A, (Ay) is 0(A;(Af)). Consider the fact that Ar and Ap + Ay = Ag are
symmetric matrices, which implies A, (Ag) < A (Ar) + A (Ay) (see for instance theorem 8.1.5 in [37]).
That implies that for any subspace L,

xTAgx xTApx TALx
max = max + O | max .
xeL,x#0 XTX xeL,x#0 XTX x#0 XTX
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36 N. EIKMEIER AND D. FE. GLEICH

We will use the Courant—Fischer Minimax Theorem, which states

) xTAgx
A;(H) = min max s
S xeSx#0 XX

where S C R’ (see, e.g. [37] Theorem 8.1.2). That will be enough to finish the proof with A;(Ag) =
ri(Ap)(1 £ o(1)).

CLAIM B.9 X (Ay) < 6mt*/% whp.

Proof. Let H; denotes the subgraph of H induced by §;, and let H}; denotes the subgraph of H containing
only edges with one vertex in S; and the other in §;. That is, write Ay in the following way:

H, H, H;
Ay=|Hy H, Hpy
H; Hi; H;

We will use this to bound the maximal eigenvalue of Ay as

H, H, Hj;
AMAg)=A | |Hy H, Hpy
H; Hi; H; (B.38)

S MH) A+ M H) + A (H3) + A (H ) + A (Hyp) + A (Hiz).

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim B.6
with f (1) = t, and ¢ = 1/64,

M(H ) < Ay(H)) = max{d]' ()} < 7 <1970,

V=i
J(H2) = Ay(H2) = max {d () = 67 /] < 5710, (B.39)
M(H3) < Ay(Hz) < max {d(v)} < 857/ <2/,

I =v=t3

To bound A, (H ), start with m = 1. For i < j, this implies that each vertex in S; has at most one edge in
H ;, that is Hj is a star forest. Then we have a bound on H;; by Claim B.8. For m > 1, let G’ be one of our
generated graphs with 7 edges and m = 1. Think now of contracting vertices in G’ (only the ones added
using PA) into a single vertex. We can write A¢ in terms of A;;: Ag = CTA;C, where C is a contraction
matrix with # rows and the number of columns equal to the number of vertices in A (at most t/m). The
ith column is equal to 1 at indices j in which (i, ) are identified. Similarly, we can write H;; in terms
of H.

Note that if y = Cx, then y'y = x"CTCx, where C"C is a diagonal matrix with 1’s and m’'s on the
diagonal. So x"x < y'y < mx"x. We use this inequality to bound the largest eigenvalue as

xTH ;jx x"CTH};Cx y'H
A1 (H ;) = max = max : = max :
x£0 XX X#£0 xTx x£0y=Cx XX
S S (B.40)
my Hy my Hy
= max =< .

—T < X T
x#0,y=Cx mX'X x#0,y=Cx y y
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Now using Claim B.6 with f(#) = ¢, and ¢ = 1/64,
AV(H},) = max{d] ()} < 7 < £7/%,
V=iy

/ ' pte 29/64 (B.41)
A(Hy) = max {d} ()} < €7/ < /%,

Finally, all edges in H/; are between S, and S}, so Claim B.7 shows A;(H};) < #79/' < {7/1% whp.
Putting together Equations (B.40) and (B.41), we get A, (Hy) < mA,(H}) < mA(H})'* < m*/*. And
so we get the final bound,

3
M(Ap) < Z)‘I(Hi) + Z’\I(Hij) < 6mt/5,
i=1 i<j

This shows that 1, (Ay) is o(Ar(Ar)), which implies A;(Ag) = A;(Ar)(1 £ o(1)). O

With the completion of the proof of Claim B.9, that finishes the proof. g
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