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Microcontroller Fingerprinting Using Partially Erased NOR

Flash Memory Cells
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Electronic device fingerprints, unique bit vectors extracted from device’s physical properties, are used to dif-
ferentiate between instances of functionally identical devices. This article introduces a new technique that
extracts fingerprints from unique properties of partially erased NOR flash memory cells in modern microcon-
trollers. NOR flash memories integrated in modern systems-on-a-chip typically hold firmware and read-only
data, but they are increasingly in-system-programmable, allowing designers to erase and program them dur-
ing normal operation. The proposed technique leverages partial erase operations of flash memory segments
that bring them into the state that exposes physical properties of the flash memory cells through a digital
interface. These properties reflect semiconductor process variations and defects that are unique to each mi-
crocontroller or a flash memory segment within a microcontroller. The article explores threshold voltage
variation in NOR flash memory cells for generating fingerprints and describes an algorithm for extracting
fingerprints. The experimental evaluation utilizing a family of commercial microcontrollers demonstrates
that the proposed technique is cost-effective, robust, and resilient to changes in voltage and temperature as
well as to aging effects.
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1 INTRODUCTION

Device identification is one of the key security primitives in integrated circuits, including mi-
crocontrollers. A device identifier, also known as a fingerprint, is a bit vector that can be used
to differentiate between instances of functionally identical devices. A straightforward approach
to device identification is to store a unique device identifier in a dedicated non-volatile memory
implemented in either EPROM, EEPROM, flash memory, or programmable fuse. While such identi-
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fiers are reliable and remain stable over time, they can easily be cloned by adversaries. In addition,
their implementation increases the device cost due to additional on-chip area required for identi-
fier’s storage and interface circuitry. The costs of additional process steps during manufacturing
should also be factored in for certain types of non-volatile memories.
A number of alternatives to stored identifiers have been introduced recently. Broadly, they can

be classified as either physical fingerprints or semiconductor physical unclonable functions (PUFs)
[8]. Whereas physical fingerprints use inherent process variations of integrated circuits to distin-
guish instances of logically identical chips, PUFs use inherent process variations as a key in map-
ping input challenges to responses (CR pair) [7]. Gassend et al. introduced the notion of physical
unclonable functions in integrated circuits (ICs) and proposed several implementations based on
self-oscillating loop with a non-monotonic delay circuit that are tested on FPGAs [4]. Lee et al.
fabricated an arbiter-based PUF that exploits inherent delay characteristics of wires and transis-
tors in ICs [14]. Suh and Devadas demonstrated device authentication and secret key generation
using ring-oscillator-based PUFs [24]. Whereas these pioneering efforts relied on custom circuits
to extract PUFs, a number of alternative approaches emerged that use components that are al-
ready in ICs. Thus, Holcomb et al. utilize the states of static random access memory (SRAM) cells
after power-up to extract identifying fingerprints of discrete SRAM chips and embedded SRAM
modules [8]. Similarly, Liu et al. utilize SRAM cells for creating a PUF using data remanence effect
[15]. Bacha and Teodorescu leverage on-chip error correction logic already built into higher-end
processor caches [1]. A number of PUF designs leverage unique properties of dynamic RAMmem-
ories (DRAMs), including power-up states [27], latency variations [12], write failures [6], refresh
pausing [25], or decay [23].Wang et al. demonstrate that partially programmed commercial NAND
flash memory chips can reveal differences in threshold voltages of individual memory cells that
are caused by process variations and are unique for each chip [28]. Jia et al. extract keys from
NAND flash memory chips using partial erase, partial program, and program disturb techniques
[11]. Sakib et al. [22] propose an aging resistant PUF for NAND flash memory utilizing a pro-
gram disturb method to extract inherent process variations unique to each chip. As for NOR flash
memories, Clark et al. leverage erase speed variability in 1.5-transistor flash memory cells for cir-
cuit identification [2]. Nguyen et al. [17] propose the use of repeated erase suspend operation for
true random number generation and fingerprint extraction using a NOR memory similar to Clark
et al. Mandadi [16] relies on repeated partial programming to identify flash memory cells with
the minimum threshold voltage in a memory location. The index of the first cell to switch in the
memory location is used as a response; responses frommultiple consecutive memory locations are
concatenated to create a PUF.
Whereas these proposals represent a great advancement in the field of device identification

and/or authentication, several important technical problems remain open. First, some of the pro-
posed solutions require dedicated on-chip resources, thus increasing the system cost due to in-
creased chip area and new masks. In addition, they are not applicable to the existing devices. An-
other class of techniques that utilizes the existing resources often require privileged operations not
typically exposed to regular users (e.g., powering cycles, resets, lowering voltage, changing con-
troller parameters) or they require cost-prohibitive computational or storage resources not readily
available in low-end computing platforms. Emerging Internet-of-Things applications often rely on
resource- and cost-constrained microcontrollers that do not include built-in support for chip iden-
tification. However, they often provide high value information and ensuring their authenticity at
minimal cost is critical. Unfortunately, the existing proposals for extracting fingerprints from flash
memories [2, 16, 17, 22, 28] require computational and RAM memory resources that exceed the
capacity of typical low-end microcontrollers.
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This article introduces a new method for generating fingerprints in lower-end microcontrollers
using partially erased cells of embedded NOR flash memories. Embedded NOR flash memories in
microcontrollers are typically used for storing code and data and they are treated as read-only
memories. However, modern microcontrollers support in-system programmable flash memories
that can be erased and programed internally by running programs. In the proposed method, a
flash memory segment erase operation is aborted prematurely after a predefined time, so that its
state reflects physical cell-to-cell variations, which are unique for each device or a segment within
a flash memory. The proposed method for extracting a flash memory fingerprint that can serve as
a device fingerprint is highly reliable, requires lightweight compute and modest storage resources,
and is thus highly suitable for low-end microcontrollers. It does not require error detection and
correction algorithms, thus minimizing compute requirements, and maps one bit of flash memory
to one bit of fingerprint.
The key contributions of this article are as follows: (a) it characterizes behavior of embedded

NOR flash memories when subjected to partial erase operations; (b) it introduces a technique for
extracting device fingerprints during enrollment and authentication phases; (c) it explores the
robustness of the proposed technique as a function of the operating conditions and state of the
chip.
The rest of the article is organized as follows. Section 2 gives background on device fingerprints

and discusses NOR flash memory preliminaries. Section 3 describes NOR flash memory character-
ization and how to extract physical properties of flash memory cells through a digital interface.
Section 4 describes a method for creating NOR flash fingerprints using a partial erase operation.
Section 5 describes the proposed algorithms for device enrollment and authentication. Section 6
presents the setup used in the experimental evaluation and the results of the experimental evalu-
ation. Section 7 gives a brief overview of the related work and Section 8 concludes the article.

2 BACKGROUND

This subsection first gives a brief overview of fingerprint-based authentication. Then, it discusses
organization and operation of embedded NOR flash memories necessary for understanding of the
proposed mechanism.

2.1 Device Fingerprints

PUFs are one-way functions that respond to an input challenge by providing an output response.
CR pairs, used to uniquely identify and authenticate devices, are derived from different physical
properties, including timing delays in oscillating loops [4], delays in transistors and wires [14],
delays in oscillators [24], power-up state of SRAMs [8], remanence effect of SRAM [15], different
properties of DRAMs [6, 12, 20, 22, 24–26], and threshold voltage variation of flash memories [2,
11, 16, 19, 21, 27]. All of these reflect unintended manufacturing variations in functionally identical
devices. Since these variations among the devices are inherent, they cannot be cloned or induced
intentionally into the devices in question.
Device fingerprints are also derived from the physical properties of the electronic devices. How-

ever, unlike PUFs, extraction of device fingerprints requires fewer resources; but at the same time,
they are affected by environmental factors like temperature and noise. Thus, fingerprint-based
authentication relies on similarity within a range of an established metric, such as Hamming Dis-
tance [6, 8, 16, 21, 22, 24, 26], Jaccard Index [12], and Correlation Value [19, 27]. The term PUFs
and device fingerprints are sometimes used interchangeably in the open literature.
Figure 1 illustrates a system view of the fingerprint-based device authentication. It includes

two phases, enrollment and authentication. The enrollment is typically conducted at the manu-
facturer’s site before devices are shipped. The manufacturer characterizes devices and extracts
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Fig. 1. System view of a fingerprint-based authentication system.

fingerprints—bit vectors unique to each device extracted from a chosen physical property. The
fingerprints generated in the enrollment phase are called Enrollment Fingerprint (EF). These fin-
gerprints are stored in a secure database in a manufacturer’s server as shown in Figure 1. Secure
authentication services are built on top of the secure database and are used by customers during
authentication phase.
The authentication involves steps performed at the customer’s site and the manufacturer’s site.

Before integrating devices into their products, the customer extracts a device fingerprint using
a known algorithm publicized by the manufacturer. This fingerprint is known as Authentication
Fingerprint (AF). A secure communication channel is established between the customer and the
manufacturer’s device authentication service. The customer sends the authentication fingerprint
that is verified at the manufacturer’s site by comparing the authentication fingerprint to the en-
rollment fingerprints in the database. The fingerprint matching relies on one of the metrics, such
as Hamming Distance, Jaccard Index, or Correlation Value. Based on the matching criteria, the
manufacturer’s authentication service generates a response to the customer to either confirm or
deny authenticity of the device.
Whereas the scenario described above discusses the use of fingerprints to ensure authenticity

of semiconductor devices and thus prevent counterfeits, it can also be used in other scenarios.
For example, an IoT platform vendor can build an authentication service using fingerprints of
individual physical devices of each platform to control access to its service. This way only genuine
platforms can access a service such as firmware update.

2.2 Flash Memory Cell: A Physical View

Flash memories are non-volatile memories that store information in an array of memory cells
made from floating gate transistors. A floating-gate transistor is an NMOS transistor that consists
of two stacked gates – the regular control gate (CG) that sits on the top and the floating gate (FG)
that is sandwiched between the control gate and the transistor’s conductive channel formed be-
tween source (S) and drain (D) terminals in substrate (Figure 2(a)). Figure 2(b) shows a symbol for a
floating-gate transistor. The floating gate, surrounded by oxide and electrically insulated from the
transistor terminals, can trap negative charge that stays on it even when power supply is turned
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Fig. 2. (a) Cross-section of split-gate flash memory cell [4]. (b) Floating-gate transistor symbol. (c) Current-

voltage characteristics of a split-gate/flash memory cell (VTHE–threshold voltage for the erased state, VTHP–

threshold voltage for the programmed state, VREF–reference threshold voltage); (d) Probability density func-

tion of the threshold voltage for erased, programmed, and unstable cells.

off. Trapped negative charge on the floating gate effectively increases the transistor’s threshold
voltage. A flash memory cell typically keeps one bit of information (single-level cells or SLCs),
though multi-level (MLCs) and triple-level cells (TLCs) are used in high-density flash memories
for storing two and three bits in a single cell, respectively. An SLC flash memory cell is in a so-
called erased state (reads as a logic “1”) when there is no trapped negative charge on the floating
gate, whereas it is in a programmed state (reads as a logic “0”) when there is negative charge.
Figure 2(a) shows a cross-section of a split-gate flash memory cell that keeps one bit of informa-
tion [4]. This arrangement slightly differs from a traditional stacked flash memory cell. Here, the
floating gate occupies a portion of the area between the drain and source. The control gate has a
unique shape that covers a portion of the area between the drain and source as well as a portion
of space above the floating gate [3, 9].
To change the state of a flash memory cell, two operations are performed: program and erase.

The program operation charges the floating gate with electrons, whereas the erase operation re-
moves the charge from the floating gate. These operations require high voltages and are carried
out through the oxide as shown in Figure 2(a). To program a split-gate flash memory cell, a large
voltage is applied to the source terminal (VS∼10V, VCG∼2V, VD∼0.5V), inducing source-side hot
carrier injection (SSI) that traps electrons on the floating gate (“Program” arrow). The negative
charge on the floating gate reduces the voltage between the control gate and the source, thus in-
creasing the threshold voltage (VTH=VTHP) as shown in Figure 2(c). To erase flash memory cells,
a large positive voltage is applied on the control gate (VCG∼12V, VS=VD=0V) to remove electrons
from the floating gate via Fowler-Nordheim tunneling (“Erase” arrow). The removal of electrons
decreases the threshold voltage (VTH=VTHE) as shown in Figure 2(c). A read operation from flash
memory involves applying a read voltage on the control gate, VCG=VREAD∼3V, and a sense volt-
age on the drain, VD=VSENSE∼2V, and sensing the threshold voltage. An erased cell conducts the
current and that is sensed as a logic “1.” A programmed cell does not conduct the current and that
is sensed as a logic “0.”

2.3 Flash Memory Organization

Depending on the way memory cells are organized in arrays of cells, we distinguish between NOR
and NAND flash memories. NOR flash memories are designed to allow random access through
full address and data buses. Fast reads, low standby power, and robust operation make them an
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Fig. 3. (a) NOR flash memory block architecture. (b) Flash memory organization: blocks; segments, and

banks.

ideal choice for storing code and data in embedded systems and systems-on-a-chip. However, cells
in NOR flash memories are larger than those in NAND flash memories, resulting in lower density
and higher cost per bit and longer erase and program times. In contrast, NAND flash memories are
designed for high-capacity and low-cost storage solutions (e.g., solid-state disk drives), but they
do not provide a random-access address bus. In systems that use NAND flash for storing program
code, programs are typically executed by shadowing the contents to a RAMmemory. In this article,
we focus on NOR flash memories, specifically NOR flash memories embedded in modern SoCs.
NOR flashmemory cells are organized in two-dimensional arrays known as flashmemory blocks

as shown in Figure 3(a) [9]. The control gates of cells in each row are electrically connected through
a line called Word Line (WL). The drains of all cells in a single column are electrically connected
through a single line called Bit Line (BL). The source terminals of all cells are also electrically
connected to a common source terminal. The number of cells in each row defines a word size;
here, we assume 16-bit words. Thus, a flash memory block illustrated in Figure 3(a) has capacity of
64 16-bit words or 128 bytes. Blocks are further organized into segments. In our example shown in
Figure 3(b), a segment includes four blocks for a total of 256 words (i.e.,Nwords = 256). Segments are
further organized into flashmemory banks, e.g., a 64 KB flashmemory bank includes 128 segments.
Flash memory reads are performed at a byte or a word granularity as all the bits in a word

share the same WL. The sensing process involves application of a sense voltage VSENSE∼2V on the
bit lines and a read voltage VCG∼3V on the selected word line (the common source is grounded,
VS=0V). All other unselected WLs are biased at low voltage so that unselected memory cells are
turned off.With this biasing arrangement, current will flow from the bit line to the ground through
the bits whose threshold voltage is less than the read voltage. The read reference voltage (VREF) is
set between the erased state and programmed state threshold voltage distributions, so that there
is enough of noise margin to correctly identify the bit states as shown in Figure 2(d).

2.4 Flash Memory in Microcontrollers

Modern microcontrollers targeting low-cost and low-power applications are typically designed as
a system-on-a-chip that integrates a processor core, flash memory, RAM memory, clock subsys-
tems, and a number of input/output peripherals, such as parallel ports, timers, serial communica-
tion interfaces, ADCs, DACs, and others. As non-volatile microcontroller memories, flash mem-
ories are used to store code and data constants. In the default mode of operation, the microcon-
troller flash memory behaves as a ROM, allowing instruction fetches and data reads at a byte or
word level. However, flash memories are often in-system programmable through a flash memory
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Fig. 4. (a) Block diagram of a flash memory module. (b) Program Cycle Time. (c) Erase Cycle Time.

controller that supports programming individual bits, bytes, or words. Each flash memory bit
can be programmed from logic “1” to logic “0” individually, but an erase operation is required to
reprogram a bit from logic “0” to logic “1.” In other words, overwriting an existing flash content
does not work without an intermediate erase operation. Flash memory controllers typically sup-
port an erase operation that will erase an entire flash segment and often a mass erase operation
that will erase an entire flash memory bank.
Figure 4(a) shows a block diagram of a flash memory module in a microcontroller that includes

a flash memory with one or more banks and a flash memory controller. The controller includes
voltage generators that supply voltage levels needed for program and erase operations, as well
as timing generators that control duration of operations that span multiple clock cycles. A flash
memory program (write) operation can be initiated by a microcontroller code that is running from
within the flash memory itself or from RAM. When initiating a write operation from within the
flash memory, the processor is typically halted until the program operation completes. When a
flash operation is initiated from RAM memory, the processor can continue executing the code
from the RAM, provided it does not interact with the flash memory bank that contains a location
currently being programmed.
Figure 4(b) shows a typical program cycle that encompasses times to bring up voltage genera-

tors, perform the program operation, and remove programming voltages to allow flash memory
to resume operation in its default mode. The total programming time in a microcontroller used
in our study is TPROG≈64–85 μs [26]. Similar to program operations, erase operations can be ini-
tiated from within the flash memory halting the processor, or from within the RAM allowing the
processor to continue execution. Figure 4(c) shows a typical erase cycle that encompasses times to
bring up voltage generators, perform segment erase operation, and remove programming voltages
to allow flash memory to resume operations in its default mode. The total segment erase time in a
microcontroller used in this study is TERASE≈23–35 ms [10].

2.5 Partial Flash Erase

As in-system flash program and erase operations take multiple processor clock cycles, flash mem-
ory controllers often allow for issuing an emergency exit that cancels ongoing flash operations,
leaving flash cells in an unknown state. The emergency exit during flash program/erase operations,
i.e., partial program/erase operations, may result in unstable states of flash memory cells. Poudel
et al. used partial program operations to induce perturbed states of memory cells [19], that are in
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Fig. 5. C subroutine for partially erasing a flash memory segment.

Fig. 6. Partially erased flash memory segment.

turn used as a source of randomness in generating true random numbers. However, in this article,
we utilize partial erase operations of flash memory segments to create unique device fingerprints
by distinguishing flash memory cells that quickly change their state from programmed to erased
from those that require more time. Although partial program operations can also be used for this
purpose, this method is not optimal as it requires more time and a greater precision in timing
partial flash operations. A NOR flash program operation is carried out on bytes or 16-bit words.
To generate long bit vectors, a partial program operation needs to be repeated on multiple words
to achieve desired fingerprint length. On the other side, a NOR flash erase operation is carried
out over an entire segment (4 Kbits in our case), thus providing a sufficient number of bits for ex-
tracting a fingerprint. In addition, flash erase operations take more time than program operations,
making it easier to find an optimal duration of the partial operation.
Let us first describe how a partial erase operation is carried out. A chosen flash segment is

first erased and then fully programmed, so all memory bits within the segment will read as “0.”
Next, a subroutine for partial erase of the segment is invoked (Figure 5). It initializes the flash
controller for the erase operation (lines 4 and 5 in Figure 5). Any memory writes to any of the
addresses that belong to the segment will initiate an erase operation (line 6). Typically, during
the erase operation the flash memory is not responsive, stalling program execution. However,
if the code is executed from the RAM memory or a different flash bank, then the processor can
continue execution. Line 7 invokes parametrized software delay before aborting the ongoing erase
operation. In themicrocontroller used in this study, the erase operation is aborted by simply setting
the emergency exit bit (EMEX) in the control register of the flash controller (line 8). By tuning the
parameter TPERASE, we can control the duration of the partial erase down to the granularity of a
single processor clock cycle.
To create a unique fingerprint from a memory segment, we need to abort the erase operation

at the point where the number of bits in the erased state is roughly equal to the number of bits
in the programmed state (Figure 6). We argue that a fingerprint created this way captures the
physical properties of the flash memory segment due to manufacturing variations that are unique
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Fig. 7. Characterization of partial erase operations of a segment.

for each segment, i.e., there are no two segments on the same chip or different chips that will have
identical or similar fingerprints. The next section describes characterization of partially erased
flash memory segments that supports the above argument.

3 FLASH MEMORY PARTIAL ERASE CHARACTERIZATION

To characterize the process of partially erasing a flash memory segment, we perform the following
steps, illustrated in Figure 7. First, the segment is fully erased (line 3) and fully programmed (line 4).
Next, the partial erase operation is initiated. To observe its effects, the flash memory is repeatedly
read a certain number of times (NR). The state of individual bits is tracked; the bits are classified to
those that are stable programmed (“0” bits), stable erased (“1” bits), and those that are unstable, i.e.,
their value sometimes reads as a logic “0” and sometimes as a logic “1.” The state of the partially
erased segment can be described by a vector of bits with values “0” for stable programmed bits, “1”
for stable erased bits, and “x” for unstable bits. Stable “0” and “1” bits as well as unstable bits are
counted, and these numbers are reported. Finally, the partial erase time is increased for a certain
period (Δt) and the process is repeated until the partial erase time matches the nominal erase time
specified for the given flash memory. The initial duration of the partial erase operation is set to
TPERASE=0 s.
Figure 8 shows the results of the characterization for 12 flash memory segments that are

collected from 3 sample microcontrollers. The red lines show the percentage of the stable pro-
grammed bits, the blue lines show the percentage of stable erased bits, and the green lines show
the percentage of unstable bits as a function of the partial erase time (TPERASE). We can identify
three distinct regions. In the first region where TPERASE is very small, all bits remain in the pro-
grammed state (red lines are at 100% and blue lines are at 0%). The second region is characterized
by a steep slope where a small change in the partial erase time dramatically impacts the state of
the flash cells. We can identify a partial erase time window where the number of stable “0”s and
the number of stable “1”s intersects. Please note that the number of unstable bits peaks in this
region too, but their share never exceeds 2% of all bits. Finally, in the third region, the majority
of bits are in the erased state (>85%), and the number of erased bits is slowly approaching 100%
as we increase TPERASE. Please note that Figure 8 shows the state of the flash memory cells for
the first 0.2 ms of the partial erase time, whereas the total measured segment erase time with no
emergency exit is ∼25 ms.
From this analysis, we can conclude that by carefully tuning the partial erase time, we can bring

the flash memory cells into the state where approximately half of the bits are stable “0”s and other
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Fig. 8. The frequency of programmed, erased and unstable bits as a function of the partial erase time.

(TPERASE).

Fig. 9. State of partially erased flash segments.

half are stable “1”s, with a tiny percentage of unstable cells. In the next section, we will describe
why these properties are suitable for generating fingerprints.

4 FLASH MEMORY FINGERPRINTS

Let us consider a flash segment that is partially erased using steps described in Figure 5 so that the
number of stable “0”s is approximately equal to the number of stable “1”s. Figure 9(a) illustrates
the state of such a flash memory segment (S1) with 256 16-bit words. The distribution of the stable
programmed and erased cells appears to be random and the number of unstable cells is relatively
small. If we repeat the characterization procedure of the segment S1 (erase the segment, fully
program it, partially erase it using the same or similar TPERASE, and then characterize the cells by
repeated reading), then we get a new state of the flash segment shown in Figure 9(b) (let us call this
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Fig. 10. States of flash memory cells as a function of partial erase time.

state S1’). Figure 9(c) shows the result of xoring two states of the same segment. A vast majority
of the bits has the same state after a repeated partial erase (the area is predominantly blue).
On the other side, by repeating these steps on a different flash segment in the same chip or in

a different chip, we will get the flash state that is remarkably different from the ones observed in
Figures 9(a) and 9(b). For example, Figure 9(d) shows the state of a partially erased flash segment
S2. To underscore its difference relative to the segment S1, Figure 9(e) shows the result of xoring
the states of segments S1 and S2.
Whereas Figure 9 shows that the state of flash memory segments for a given TPERASE is

repeatable and unique, we would like to see how the state of the flash cells within a seg-
ment changes as a function of TPERASE. To examine this property, multiple experiments are
conducted by repeating the characterization procedure while the partial erase time is in-
creased in each round of the experiment. Figure 10 illustrates the state of a 32-bit dou-
ble word in a flash segment as we increase TPERASE step-by-step from 13.5 to 19.5 μs. We
can observe that each flash cell changes its state from programmed to erased at a particular
erase time. The transitions exhibit monotonicity – the memory cells typically remain in the
erased state once they change the state. Exceptions are possible, but they are rare, e.g., bit
13 in Figure 10. Let us consider the state of this 32-bit double word for TPERASE=17.375 μs.
The number of erased cells is 17 out of 32 (53.125%), the number of programmed cells is 15, and
there are no unstable cells. Let us consider this bit vector as a portion of the established device
fingerprint or enrollment fingerprint. Any future identification process that repeats the steps to
bring the flash segment into a partially erased state with TPEARSE ≈ 17.375 μs should yield a similar
fingerprint. Likewise, a fingerprint captured on a different logical device should be quite different
from this fingerprint.
Let us develop a metric for comparing the enrollment fingerprint (EF) and authentication finger-

prints (AF). Let us further assume that during authentication slightly different TPEARSE= 17.0 μs is
used (TPEARSE.AUTH < TPERASE.ENROL). In this case, we expect that any programmed bit that was ob-
served in the enrollment fingerprint should remain programmed in the authentication fingerprint,
because TPERASE.AUTH < TPERASE.ENROL. Similarly, any erased bit in the authentication fingerprint
should be found erased in the enrollment fingerprint. To capture these properties, we can define
the following parameters:

(a) Matching “0”s: Matching “0”s (or programmed bits) in EF and AF should be a subset of
“0”s in EF, i.e., the ratio of the number of matching 0s in EF and AF to the number of 0s
in EF should be close to 1 in an ideal case.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 26. Publication date: March 2021.



26:12 P. Poudel et al.

Fig. 11. Algorithm for generating enrollment fingerprint.

(b) Matching “1”s: Matching “1”s (or erased bits) in EF and AF should be a subset of “1”s in
AF, i.e., the ratio of the number of matching “1”s in EF and AF to the number of “1”s in
AF should be close to 1 in an ideal case.

Thus, by combining these two parameters, we derive the Similarity Index, SI, as follows:

SI =

(
#Matchinд 0s in EF and AF

#0s in EF
+

#Matchinд 1s in EF and AF

#1s in AF

)

2
(1)

In the example from Figure 10, the enrollment fingerprint has 17 “1”s and 15 “0”s, whereas the au-
thentication fingerprint has 14 “1”s and 18 “0”s. Between the fingerprints, the number of matching
“1”s is 14, and the number of matching “0”s is 15. Thus, the similarity metric is (14/14+ 15/15)/2= 1.
Thus, these two fingerprints are considered fully matching.

5 DEVICE IDENTIFICATION USING FLASH MEMORY FINGERPRINTS

In this section, we describe how flash-memory fingerprints derived using the method described
above can be used to verify authenticity of devices. The protocol involves two steps: (a) device
enrollment and (b) device authentication similar to the system view presented in Section 2.1. Here,
we elaborate the protocol specific to the proposal presented in this article.
Device enrollment phase that is carried out by either the device manufacturer (chip maker) or

the manufacturer of the product (e.g., IoT platform vendor) results in the enrollment device finger-
print that is stored in a database. The algorithm for fingerprint enrollment is shown in Figure 11.
It is remarkably similar to the algorithm used to characterize the flash segment shown in Figure
7. Instead of walking through all partial erase times, the algorithm searches for a suitable TPERASE

within a time window [TPERASE.MIN, TPERASE.MAX], most likely to result in evenly split number of
programmed and erased bits. The selected flash segment is first fully erased and fully programmed
(lines 6 and 7), partially erased (line 8), and then characterized by repeated reading (lines 11–
14). The parameter NR represents the number of consecutive reads. The flash segment bits are
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classified as either programmed or erased using majority voting (lines 15–19). For the bit posi-
tion value read as a logic 1 for more than NR/2 times, the corresponding fingerprint bit is set to
1 (line 17). Since the vector fingerprint is initialized to all “0”s, no action is need for bit position
that is classified as programmed. The ratio of the number of erased bits to the total number of bits
in the segment is also determined (line 22), and if it is in the range [50%, 55%], the current value
of bit vector fingerprint is recorded as enrollment fingerprint. Optionally, the enrollment finger-
print descriptor could include the address of the flash segment, if multiple segments are used. If
the number of erased bits is outside the desired range, then the partial erase time is increased or
decreased, depending on its observed value (lines 24 and 25), and the steps are repeated with the
new partial erase time. In case of a microcontroller used in this research, the partial erase time can
be tuned with the resolution of a single processor clock cycle, though course-grained time steps
would suffice. The algorithm efficiency improves by minimizing the number of tries to get a valid
fingerprint. Please note that in the interest of simplicity, the proposed algorithm does not consider
unstable bits, because they are remarkably rare, as discussed in Section 3.
It should be noted that multiple fingerprints can be created for a single microcontroller, one

per each flash memory segment. Alternatively, only a portion of a flash segment can be deemed
sufficient for creating fingerprints. At the moment, we assume that all 4,096 bits in a segment are
used as a fingerprint. However, later we will analyze shorter fingerprints with 2,048, 1,024, 512,
and 256 bits.
The device authentication is initiated by the customer side. We assume that the lower boundary

of the Ratio parameter used in creating enrollment fingerprints (0.5 in Figure 11) as well as typical
TPERASE.ENROLL for given family of devices are publicly disclosed and known to the customers.
Alternatively, the customer may place an authentication request for the given type of devices
and the manufacturer responds by providing these parameters. In case that multiple enrollment
fingerprints exist for a single device, the manufacturer may also send the starting address of a
flashmemory segment to be used for generating the authentication fingerprint. Then the customer
extracts the authentication fingerprint from the desired segment by executing the following steps:
(a) fully erase and program it; (b) partially erase the segment using TPERASE= TPERASE.ENROLL – dT;
(c) obtain the authentication fingerprint by using the repeated reading of the flash segment – the
same steps used in the enrollment (lines 9–21 in Figure 11); (d) if the 0.45 ≤ RatioAUTHENTICATE ≤
0.5, then use the fingerprint from (c); otherwise, adjust the partial erase time and repeat the steps
until this condition is satisfied. The authentication fingerprint is then sent to the manufacturer
that compares the enrollment and authentication fingerprints. If they meet the similarity metric
(e.g., SI > 0.85), then the device is deemed authentic. Otherwise, the device fails the authentication.

6 RESULTS

6.1 Experimental Setup

Our experimental setup is based on MSP430, a mixed-signal microcontroller family from Texas
Instruments. The MSP430 microcontrollers are built as a system-on-a-chip, integrating a 16-bit
processor core, flash memory, SRAM memory, clock oscillators, and a wide range of 8-bit and
16-bit input/output peripherals, including parallel ports, timers, comparators, analog-to-digital
and digital-to-analog converters, serial communication interfaces, LCD controllers, and DMAs.
MSP430 devices differ in processor speed, size of memories, and the number and type of peripher-
als. The clock subsystem is controllable from software and supports several clock signals that can
be changed or selectively turned on and off to allow for a low power operation. The flash memory
is in-system programmable and its architecture corresponds to the one described in Sections 2.3
and 2.4.
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Fig. 12. Fingerprint enrollment characterization.

In this study, we use MSP430F5438 that includes 256 KB of flash memory (4 banks with
64 KB each), 16 KB of SRAM memory, timers, serial communication interfaces, parallel ports, and
an ADC controller. The experiments are conducted using the Experimenter Development Board,
EXP430F5438. It features a 100-pin drop-in socket for microcontrollers allowing for quick changes
of microcontroller chips. Three physical devices are used in the experiments, each with 50 flash
memory segments, for a total of 150 logical devices.

6.2 Evaluation

Figure 12 shows the results of enrollment characterization. Figure 12(a) shows the distribution of
the ratio of the erased cells (“1”) to the total cells in a segment. The target ratio is between 50%
and 55% (see Figure 11). As our logical devices showed rather similar characteristics, the successful
enrollment can be found with a minimum number of tries. There is a trade-off between the min-
imum change of the partial erase time (Δt parameter in Figure 11) and the ability to achieve the
target ratio. Though our setup allows to control the partial erase time with resolution of a single
clock cycle (∼16 MHz) and thus achieve the ratio of ∼1 (the number of 1s is roughly equal to the
number of 0 s), we used a relatively coarse grained Δt to minimize the number of steps during
enrollment phase. As our logical devices had remarkably similar characteristics (see Figure 8), our
enrollment typically takes place on a first try. For each enrollment fingerprint, we ensure that the
number of unstable bits is below a certain threshold (2%). Figure 12(b) shows the distribution of
the stable bits in a segment—more than 98% of all bits in fingerprints are characterized to be stable.
This experiment confirms that the number of unstable bits during the partial erase process does
not exceed the given threshold.
Figure 13 shows the results of the similarity index evaluation. In this experiment, we determine

authentication fingerprints for all logical devices. The authentication fingerprints are compared
against all other enrollment fingerprints. Figure 13(a) shows the distribution of the similarity in-
dex when an authentication fingerprint for the given logical device is compared to enrollment
fingerprints of all other logical devices (inter similarity index as a measure for Uniqueness). The
inter similarity index peaks at 0.5 and ranges between 0.47 and 0.53, which ought to be adequate.
Similarly, Figure 13(b) shows the similarity index determined by pairing the corresponding au-
thentication and enrollment fingerprints of all logical devices (self-similarity index as a measure
of Reliability). The self-similarity index ranges between 0.89 and 0.97. Consequently, we can es-
tablish threshold for authentication process—if the similarity index of the given authentication
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Fig. 13. Evaluation of Similarity Index.

Fig. 14. Impact of power-supply on Similarity Index (a) and impact of ambient temperature on Similarity

Index (b).

fingerprints is at least 0.89 to the one of the enrolment fingerprints in the database, then the de-
vice passes the authentication. Otherwise, the authentication fails.

6.3 Environmental Factors

For the proposed method to be a viable solution for device authentication, it needs to be resilient to
environmental conditions, namely, to the changes in the power supply and ambient temperature.
To evaluate impact of these two, we conduct experiments where authentication fingerprints are
collected under different environmental factors. We assume that the enrollment fingerprints are
created under default power supply at room temperature (VS=3.3 V, T=25°C).

Figure 14(a) shows the inter- (bottom) and self- (top) similarity index distributions as a function
of power supply voltage varied between 3.0 and 2.0 V (lowest recommended voltage for the flash
memory operations to work reliably). The plot shows the median (orange horizontal line), Q1–
Q3 quantiles, and the minimum and maximum of the similarity indices. The results show that
changes in the power supply voltage during authentication have relatively little impact on the
inter-similarity index if we are in the recommended operating range. Whereas the changes in
the self-similarity index are noticeable, they are still not significant to impact the viability of the
proposed mechanism, the distance between two distributions remain high. More importantly, we
have not observed any trends in the similarity index as a function of the power supply. The reason
for this is that the internal charge pumps are providing relatively stable voltage to the flashmemory
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Fig. 15. Similarity Index evaluation for sub-segment fingerprints.

regardless of the power supply, as long as it is in a given range. It should be noted that changes in
the power supply may impact the frequency of internally generated processor clocks that in turn
impacts the partial erase time. However, the proposed authentication method allows for adjusting
the partial erase time, so that the authentication fingerprint meets qualification criteria.
Figure 14(b) shows the inter- (bottom) and self- (top) similarity index distributions as a func-

tion of ambient temperature. The experiments are conducted on a subset of logical devices. The
results of experiments conducted at the room temperature are in the first column (median, Q1–Q3,
range). Again, the authentication fingerprints collected at different ambient temperatures (at 0°C
and 50°C) are compared against the corresponding enrollment fingerprints collected at the room
temperature. We can see that the impact of temperature on the inter-similarity index is minimal.
It does reduce the median of the self-similarity index and its distribution widens, but again the
distance between the inter- and self-similarity indices remains healthy. Our setup is not conducive
to testing wider temperature ranges, but we do not expect them to impact viability of the proposed
mechanism.
Overall, we find these results acceptable as authentication conditions are typically known when

going through the authentication step. Specifically, the authentication may be modified to include
information about the current operating conditions (the voltage and temperature) that are then
used when making decision whether to accept or reject a fingerprint. For example, we may de-
cide to accept a fingerprint with self-similarity index of 80%, providing that the environmental
conditions during authentication are significantly different from those during enrollment.

6.4 Sub-segment Fingerprints

The experiments so far assumed that the state of an entire flash segment is used as a logical device
fingerprint. Figure 9 indicates that the state bits after a partial erase appear to be uniformly ran-
domly distributed, i.e., there is no spatial deviations within a segment. Consequently, we consider
using n consecutive bits within a flash segment as a device fingerprint.
A series of experiments is conducted using fingerprints of n = 2,048, 1,024, 512, and 256 bits.

In this analysis, a single 4,096-bit segment’s enrollment fingerprint is divided into 4,096/n enroll-
ment fingerprints. Likewise, the segment’s fingerprint derived during authentication is divided
into 4,096/n logical device fingerprints and the inter- and self- similarity indices are evaluated.
Figure 15 shows the inter- and self-similarity indices as a function of the fingerprint length. The
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Fig. 16. Effect of PE cycles on Similarity Index (a) and partial erase time needed to generate a qualified

fingerprint (b).

results show that even 256-bit fingerprints provide a healthy margin between the inter- and self-
similarity indices without use of any encoding or compute intensive error correction techniques.
This is true even for shorter fingerprints, but in the case of 128-bit and 64-bit fingerprints statistical
outliers (marked in red and green dots) would overlap.
Assuming a 256-bit fingerprint is sufficient for identifying a logical device, the total number of

logical devices considered in our experiment is 2,400 (three chips with 50 segments, each segment
with 16 fingerprints). The number of bits needed for a unique identifier is thus �log22400� = 11.22
bits, or 11.22/256=0.0438 bits of the identifier per a single flash bit. Using this metric, a 512-bit
fingerprint can uniquely identify ∼5.6 million of devices and a 1,024-bit fingerprint 31.37 trillion
of devices.

6.5 Wear-out Considerations

One important concern is related to the robustness of the proposed fingerprint method in presence
of segment aging. NOR flash memories can typically sustain 100,000 program-erase (PE) cycles be-
fore they may permanently fail. If we dedicate a flash segment to fingerprinting, then each authen-
tication request results in one full PE cycle and one partial erase, so at least 50,000 authentication
requests can be made before the segment is worn out if we assume that a single pass (steps 4–6
in Figure 11) is sufficient to generate AF. Figure 16(a) shows the self-similarity and intra-segment
indices for two flash memory segments from two different chips as a function of the number of PE
cycles. The authentication fingerprints derived after a certain number of PE cycles are compared
to their enrollment counterparts that are retrieved before the segment is stressed. The stressing
changes characteristics of the flash memory cells and has a negative impact on the self-similarity
indices in both chips. The self-similarity indices drop somewhat sharply for the first 500 PE cycles,
but further stresses result in mild degradation. Still, even after 30,000 PE cycles the self-similarity
index is ∼0.8. For the two sample chips presented in Figure 16(a), we use a linear fit to model
the self-similarity index as a function of the number of PE cycles. The modeled changes of the
self-similarity index are described as follows:

Sel fSIStress = Sel fSI0 − (k ∗ 10−6 ∗ Stress ), (2)

where Stress is the number of PE cycles, and k is the parameter capturing degradation of the sim-
ilarity index relative to the index of the fresh memory block, Self_SI0. We find that the parameter
k ranges between 4 and 5. Thus, k = 5 can be used to assess the minimum acceptable value of the
self-similarity index in presence of stress.
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The impact of stressing on inter-similarity, however, index is modest. The upper tail of the inter-
similarity index distribution is below 0.57, leaving enough margin between the self-similarity and
the inter-similarity indices. This confirms the robustness of the proposed fingerprint in presence
of aging.
Another important aspect of aging is that it impacts the partial erase time needed to create a

qualified fingerprint. Figure 16(b) shows the partial erase time needed to produce a qualified fin-
gerprint as a function of the stress level. The partial erase time steadily increases with an increase
in the stress level. However, the proposed algorithm for deriving fingerprints (see Figure 11) al-
ready includes provisions for modulating the partial erase time until a qualifying fingerprint is
found. The only possible downside is that multiple attempts for finding authentication fingerprint
may be needed.

6.6 Performance Considerations

Ideally, generating fingerprints should take as little time as possible. The proposed algorithm
achieves a very good performance and can be implemented on a low-end microcontroller
requiring as little as 4 KB of RAMmemory. The majority of time is spent in full segment erase that
takes ∼25 ms on the microcontroller used in this study. In addition, the full segment programming
(all bits are set to 0) takes ∼3 ms, the partial erase less than 50 μs, and reading the state bits
∼50 to 150 μs, depending on the number of reads (parameter NR in Figure 11). In total, deriving
a qualifying fingerprint on a first try takes ∼30 ms. If multiple tries are needed (e.g., fingerprint
fails a qualifying test because the erase time has shifted due to aging), then the time increases in
multiples of ∼30 ms. In our experiments, we were able typically to find a qualified fingerprint on
the first try, but even with multiple tries the achieved performance compares favorably to other
techniques that may require seconds and even minutes to derive a fingerprint [28]. The proposed
method does not require any helper data [16] or helper functions [2].
Table 1 gives a summary of fingerprinting techniques in flash memories. It reports the type of

flash memory used, throughput achieved in generating fingerprints/PUFs, size of the fingerprint in
bits, and the memory overhead required by the extraction algorithm. The overhead is reported in
the number of bits needed to extract one fingerprint bit. The throughput reported for our proposal
is 136/n Kbits/s, where n indicates the number of retries. However, in our experiments n = 1 was
sufficient in generating the authentication fingerprint. Thus, the best-case latency for generating
and reading the fingerprint is 136 Kbits/s. The extraction algorithm requires one bit of memory
per one bit of generated fingerprint, thus significantly outperforming other algorithms. The size of
the fingerprint, memory overhead, and throughput achieved make the proposed method suitable
for resource-constrained low-end microcontrollers.

7 RELATEDWORK

Storing device identifiers and/or cryptographic keys in non-volatile memories, programmable
fuses, or battery-backed RAMs are straightforward but costly approaches to device identification
and authentication. However, the key issue with these approaches is that they can be easily cloned
by motivated adversaries. Alternative approaches rely on deriving physical unclonable functions
and fingerprints that are unique to each device, and difficult or impossible to clone.
Efforts to extract device PUFs and fingerprints have gained a lot of attention from the research

community in the past two decades. These efforts focus on extracting physical properties of a
device or its component that are unique to the device. One of the first PUFs known under the
name physical one-way function is proposed by Pappu et al. [18]. It relies on non-integrated optical
system with randomly distributed light scatters inside. Although it proved robust and resilient to
modeling and cloning attacks, it requires an optical precision mechanism with exact positioning
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Table 1. Summary of Fingerprinting Methods in flash Memories, Their

Throughputs, and Memory Overheads

Method Flash Type Throughput

Evaluation: fingerprint size [bits],
memory overhead per bit of
fingerprint, latency, and
implementation cost

Applies multiple partial
programs to extract
threshold variations in flash
memory cells [28]

NAND Flash
Memory

Not reported Size: 16 Kbits
Overhead: 1+size of (unit)
Latency: High, requires repeated
partial program operations

Applies multiple partial
erases, partial program, and
program disturbances pulses
to induce disturbances [11]

NAND Flash
Memory

1364.1 bits/s Size: 128 bits,
Overhead: ∼142 (Bit-map method),
∼16 (Position-map method)
Latency: High, requires repeated
flash operations

Lowers supply voltage to
suspend erase operation and
expose threshold voltage
variation [2]

1.5T Superflash
Memory

Not reported Size: 512 Kbits
Overhead: 2
Latency: Small
Special: Requires lowering power
supply

Repeatedly applies program
operations with selected data
to achieve program disturb
[22]

NAND Flash
Memory

9.09 Kbits/s Size: 20 Kbits
Overhead: ∼1
Latency: High, requires repeated
program operations

Applies repeated partial
program operations to
induce disturbances [16]

NOR Flash
Memory

Not reported Size: 3n bits
Overhead: 8
Latency: High, requires repeated
program operations
Special: Requires BCH encoding

Applies repeated erase
suspend operation for
fingerprint generation [17]

Superflash Memory 266 bits/s Size: 16 bits
Overhead: 256
Latency: High, requires repeated
partial erase operations

This work: applies simple
partial erase operation to
expose threshold voltage
variation

Embedded NOR
Flash Memory

136/n Kbits/s Size: 4 Kbits
Overhead: 1
Latency: Small

of the laser beam and CCD camera for readouts. In addition, it does not render itself suitable for
integration and miniaturization that are desirable in integrated circuits.
Gassend et al. in their seminal work introduced silicon random functions that can be used to

identify and authenticate individual integrated circuits [4]. They propose several implementations
based on a parameterized self-oscillating circuit with a delay block whose transient response de-
pends on manufacturing process variations unique to each IC. They demonstrate that the pro-
posed circuits implemented on Field Programmable Gate Arrays are robust in presence of signifi-
cant environmental variations. Lee et al. introduced arbiter-based PUF circuits [14] that use delay
variations in symmetric racing paths through a series of switching elements. Suh and Devadas in-
troduce ring oscillator-based PUF in Reference [24]. Named RO PUF, this circuit does not depend
on a multiplexer or an arbiter, but on delay loops and counters, thereby paving way for an easy
implementation in FPGA and ASICs. All these proposed circuits can be utilized for identification,
authentication, and key generation. However, they require custom circuits solely dedicated to this
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function to be added to ICs, thus increasing their cost. In addition, they do not solve the problem
of identification and authentication of the existing ICs.
To address the cost concerns associated with prior proposals, many research groups have turned

their attention to using the existing system components for identification and key-generation. A
number of techniques relies on SRAM, DRAM, and non-volatile flash memories to extract device
fingerprints.
Holcomb et al. [8] propose using the state of power-up SRAMmemory cells to create device fin-

gerprints. The stable state that an SRAM cell transitions to after power up depends on manufactur-
ing variations and thus can uniquely identify an SRAM chip. This solution has been demonstrated
to be reliable in both stand-alone SRAM chips and embedded SRAM blocks. However, it requires
supervisory access to the SRAM memory as it relies on powering-up SRAMs to generate finger-
prints. Closely related to this work is a method that utilizes SRAM power-up states to generate a
secret key to an algorithmic one-way hash function that is used for IP protection in FPGAs [5].
Bacha and Teodorescu utilize SRAMs in high-end processor cache memories to identify devices
[1]. This technique is based on lowering the supply voltage to the cache memory to induce errors.
The distribution of errors in cache lines is used to authenticate the chip.
A number of research proposals for DRAM-based PUFs that utilize properties of DDR3 and

DDR4 memories has recently emerged [6, 12, 13, 20, 22, 24–26] These techniques use different
properties of DRAMmemories to extract unique identifiers, such as: (a) write-failures where write-
duty cycles are selected to induce failure in write operations [6]; (b) access-latency variations of
individual cells based on their location [13]; state of DRAM cells after power-up [27]; refresh-
pausing [25]; read latency variation to induce errors [12]; and decay based on disable/postpone
refresh cycles to induce decays [23]. Whereas these solutions are of great interest in computer
platforms with DRAM chips, they are not useful in embedded platforms that do not include DRAM
modules.
Flash memories, especially high-density NAND flash memories, have been utilized for creat-

ing device fingerprints. Prabhu et al. [20] summarize seven ways of extracting fingerprints from
NAND flash memories. These techniques are based on program disturb, read disturb, per bit pro-
gram operation latency variation (single page and multi-page), erase latency, read latency, whole
page program latency, and susceptibility of cells to program/erase induced wear. The authors show
that the program disturb and the program operation latency variation give quality PUFs that can
be generated relatively quickly, whereas the read disturb is also adequate but very slow. Other
techniques are deemed inadequate. Wang et al. [28] propose a NAND-based solution that utilizes
repeated partial program operations to generate fingerprint as well as true random numbers. The
number of partial program operations needed to turn each cell into the programmed state is used
to create a unique device fingerprint. Jia et al. [11] propose three techniques for PUF-based key
generator using NAND flash memory, namely, partial erasure, partial programming, and program
disturbance. These techniques are suitable for high-density NAND flash memories, require signifi-
cant storage and compute resources, and are relatively slow, thus not directly applicable to embed-
ded systems. Sakib et al. [22] propose an aging-resistant PUF for NAND flash memory utilizing a
program disturb method to extract inherent process variations unique to each chip. To counter ag-
ing effect, the authors propose a tunable algorithm for extraction of authentication PUFs, ensuring
high accuracy for 1,000 authentication requests.
Mandadi [16] proposes a PUF generation in standalone NOR flash memories that utilizes par-

tial program operations of individual memory locations, using a memory address as a request.
The position of a flash bit that flips first is recorded and encoded as a 3-bit PUF response (in
case of byte locations). Responses from a range of consecutive memory locations are stitched to-
gether to create a PUF. One drawback of this approach is that it may require multiple partial
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program operations if several flash memory bits flip concurrently. Alternately, multiple flash bit
positions can be used depending on the length of PUF response desired. However, the compu-
tational and storage requirements of this approach may also exceed capability of low-end mi-
crocontrollers. Clark et al. propose a fingerprinting scheme in 1.5-T standalone NOR Superflash
memories using partial erase operation [2]. The scheme relies on partially erasing flash memory at
a reduced voltage supply; if the percentage of the erased cells reaches ≥ 50%, then it represents a
fingerprint.

8 CONCLUSIONS

This article introduces a new technique for generating device fingerprints that exploits proper-
ties of partially erased NOR flash memory cells. In-system programmable NOR flash memories,
a standard part in all modern microcontrollers, are typically used for storing firmware and read-
only data, but they can be erased and programmed during normal system operation. The proposed
technique utilizes the state of partially erased flash memory segments to reveal unique physical
properties of flash memory cells through a standard digital interface. These physical properties
are artifacts of semiconductor process variations that are unique for each flash memory segment
and each physical device. We provide an in-depth characterization of NOR flash memory behavior
when using partial erase operations and introduce the algorithms for generating the enrollment
and authentication fingerprints.
The proposed technique is thoroughly evaluated to prove that it produces fingerprints that are

unique, repeatable, and robust in presence of changes in ambient temperature and variations in
operating voltage. In addition, we show that the proposed method can tolerate effects of aging.
The proposed technique offers a number of advantages over the existing approaches: (a) it re-

quires no additional hardware support, (b) it is solely implemented in software and can be easily
implemented in modern microcontrollers, (c) it produces unique robust fingerprints that are re-
silient to changes in the operating conditions, (d) it has good performance, and (e) the algorithm
self-adapts to changes due to flash memory aging effects.
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