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Abstract

Resolution parameters in graph clustering control the size and structure of clusters formed by solving

a parametric objective function. Typically there is more than one meaningful way to cluster a graph,

and solving the same objective function for different resolution parameters produces clusterings at

different levels of granularity, each of which can be meaningful depending on the application. In

this paper, we address the task of efficiently solving a parameterized graph clustering objective for

all values of a resolution parameter. Specifically, we consider a new analysis-friendly objective we

call LambdaPrime, involving a parameter λ ∈ (0, 1). LambdaPrime is an adaptation of LambdaCC,

a significant family of instances of the Correlation Clustering (minimization) problem. Indeed,

LambdaPrime and LambdaCC are closely related to other parameterized clustering problems,

such as parametric generalizations of modularity. They capture a number of specific clustering

problems as special cases, including sparsest cut and cluster deletion. While previous work provides

approximation results for a single value of the resolution parameter, we seek a set of approximately

optimal clusterings for all values of λ in polynomial time.

More specifically, we show that when a graph has m edges and n nodes, there exists a set of

at most m clusterings such that, for every λ ∈ (0, 1), the family contains an optimal solution to

the LambdaPrime objective. This bound is tight on star graphs. We obtain a family of O(log n)

clusterings by solving the parametric linear programming (LP) relaxation of LambdaPrime at

O(log n) λ values, and rounding each LP solution using existing approximation algorithms. We

prove that this is asymptotically tight: for a certain class of ring graphs, for all values of λ, Ω(log n)

feasible solutions are required to provide a constant-factor approximation for the LambdaPrime

LP relaxation. To minimize the size of the clustering family, we further propose an algorithm that

yields a family of solutions of a size no more than twice of the minimum LP-approximating family.
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1 Introduction

Graph clustering is a task of grouping nodes of a graph into sets of nodes that share more

edges with each other than the rest of the graph. This often involves, implicitly or explicitly,

a trade-off between cluster size and edge-density. Hence there are a number of objective

functions for graph clustering that rely on a tunable resolution parameter that controls this

trade-off when optimizing the objective. Solving such an objective for a range of parameters

reveals different types of clustering structure in the same graph. Applications include

hierarchical clustering [17] and the detection of robust clusterings that remain optimal over

a range of parameter settings [1].

1.1 Parametric Graph Clustering

Our work specifically considers a simple parametric clustering objective we call LambdaPrime.

This objective can be viewed as a slight variation of the LambdaCC graph clustering

framework [23], which is itself a parameterized variant of Correlation Clustering [2], with

resolution parameter λ ∈ (0, 1). Formally, for a graph G = (V, E), resolution parameter λ,

and a clustering C, the LambdaCC objective cost for C can be written as:

LamCC(C, λ) =
∑

S∈C





1

2
(1− λ) cut(S) + λ

[

(|S|
2

)

− |ES |
]



 , (1)

where S ∈ C denotes an individual cluster in C, cut(S) is the number of edges incident on

exactly one node in S and ES is the set of edges in E whose both end vertices are in S.

Intuitively, the value λ controls the size and density of clusters formed by optimizing

the objective. When λ = 1, an optimal clustering is the one consisting of only singletons

while when λ = 0, an optimal clustering groups all nodes into one cluster. Since both of

these cases result in trivial clusterings, we focus on the parameter range of (0, 1). Several

other well-studied objective functions for graph-clustering are captured as special cases of

LambdaCC for particular values of λ. These include sparsest cut [11], cluster deletion [19],

and modularity clustering [15].

In our work we focus on a slight variant of the LambdaCC objective, which we call

LambdaPrime. For a clustering C, the LambdaPrime objective is given by

LamPrime(C, λ) =
∑

S∈C

(

1

2
cut(S) + λ

(|S|
2

)

)

. (2)

This is exactly λ|E| greater than the LambdaCC objective, which is constant with respect

to the cluster assignment. Therefore, these two objectives share the same set of optimal

solutions for the same λ. We focus on proving results for the LambdaPrime objective, as

it leads to the cleanest exposition of our techniques and main results for parametric graph

clustering, without fundamentally changing the nature of these results. We discuss the

relationship between LambdaPrime and LambdaCC in more depth in Section 2.
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A number of other closely related graph clustering objective functions also rely on tunable

resolution parameters [1, 5, 17, 18, 20]. Many of these can be viewed as generalizations of

the popular modularity clustering objective [15]. In this paper we broadly refer to these as

parametric graph clustering objective functions. The modularity objective is NP-hard to

approximate to within any multiplicative factor [7], and thus techniques typically used for

optimizing generalizations of modularity are heuristics with no approximation guarantee [1,

5, 10, 17, 20, 18, 21]. However, LambdaPrime corresponds to a linear transformation of the

modularity objective with a resolution parameter, and permits several algorithmic guarantees

by techniques developed originally for Correlation Clustering [2]. In particular, on an n-node

graph, for every value of λ, a standard weighted Correlation Clustering algorithm [4, 6]

finds an O(log n) approximation of LambdaPrime. Several other linear programming based

algorithms for the related LambdaCC problem have been developed as well for different

parameter regimes [9, 23], and are transferable to LambdaPrime as well.

1.2 Clustering in All Parameter Regimes

Optimizing a parametric clustering objective over a wide range of resolution parameters is a

useful approach for detecting different types of clustering structure in the same network [1,

5, 23]. Although approximation algorithms for LambdaPrime can be directly derived from

existing work on LambdaCC and Correlation Clustering, these only provide approximation

guarantees for a single fixed value of λ. In this paper, we focus on finding families of

clusterings that come with rigorous optimality guarantees for an entire range of parameter

values of a parametric graph clustering objective. More precisely, we say that a family of

clusterings solves (or approximates) a parametric objective in all parameter regimes if, for

every value of the resolution parameter, the family contains a solution (or approximate

solution) to the objective. In our work, we seek families satisfying guarantees both in terms

of the approximation factor, as well as in terms of the number of clusterings needed to attain

such an approximation factor for all values of a resolution parameter.

1.3 Our Contributions

We provide new lower bounds and techniques for exactly or approximately solving the

LambdaPrime objective in all parameter regimes. Section 2 formally introduces the objective

and outlines the region of parameters that is not trivial to find an optimal clustering. We

then tackle the task of finding a small family of clusterings that contains an approximately

optimal clustering to every parameter, in a reasonable amount of time. We begin in Section 3

by examining the objective itself and proving that for any graph with n nodes and m edges,

there exists a set of m or fewer clusterings that contains an optimal LambdaPrime clustering

for every value of λ. However, since obtaining an optimal clustering for a particular λ is

NP-hard, our primary contributions pertain to finding approximately optimal clusterings

for the LambdaPrime framework using linear programming relax-and-round techniques. We

show that for the relaxed LP objective, we can produce a family of solutions of size O(log n)

by solving an LP at each of the O(log n) λ values. One of our central results is to show that

this bound is tight on ring graphs, presented at Section 3.3. Although this result indicates

that a logarithmic number of clusterings is needed in the worst case, our O(log n) upper

bound is not tight in all cases. Therefore, in Section 4 we introduce a technique which, for

any input graph, returns a family of clusterings that contains at most two times the minimum

number of LP solutions needed to obtain a (1 + ε)-approximation in all parameter regimes.

MFCS 2020
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2 The LambdaPrime Objective

LambdaPrime is an objective function for clustering graphs based on a tunable resolution

parameter, λ ∈ (0, 1). The objective seeks to minimize the number of edges crossing between

clusters, subject to a regularization term that controls cluster size. The LambdaPrime

minimization problem can be expressed formally as an integer linear program (ILP):

minimize OPT(λ) =
∑

(i,j)∈E xij+
∑

i<j λ(1− xij)

subject to xij ≤ xik + xjk for all i, j, k

xij ∈ {0, 1} for all i, j .

(3)

The variable xij represents the binary distance between nodes in a clustering. If xij = 1,

nodes i and j are in different clusters, whereas xij = 0 indicates they are clustered together.

In this way, clusterings of a graph are in one-to-one correspondence with feasible solutions to

the ILP. The number of clusters to form is not determined ahead of time, but is implicitly

controlled by λ and which (i, j) ∈ E.

An instance of LambdaPrime corresponds specifically to a signed graph in which some

node pairs (those in E) share a positive edge with weight 1, and all node pairs share a

negative edge with weight λ. A pair of nodes could share two edges. Consistent with the

minimization variant of Correlation Clustering [2], separating nodes that have a positive

edge results in a penalty of 1, while placing a pair of nodes in the same cluster results in a

penalty of λ. The LambdaCC objective can also be expressed by an ILP with the same set

of constraints and the following slightly different objective:

minimize
∑

(i,j)∈E(1− λ)xij+
∑

(i,j) 6∈E λ(1− xij). (4)

Since the LambdaPrime objective is greater than LambdaCC by an additive term λ|E|, these

objectives will differ in terms of approximation factors. Although LambdaCC is the harder

objective to approximate, all of our results can also be adapted to apply to LambdaCC. In

some cases the analogous results for LambdaCC involve slighty different constants, though

this does not change the fundamental nature of our results, since our approximation factors

and the size of clustering families we produce are both logarithmic. We focus here on on

the LambdaPrime objective for ease of exposition. In particular, unlike LambdaCC, the

LambdaPrime score is monotonically increasing with λ, which simplifies several explanations

and proof details. In the full version of this paper [8], we provide further details for how to

adjust our results so that they apply to LambdaCC.

2.1 Relation to Other Clustering Objectives

The optimal solutions of LambdaCC (and thus the optimal solutions of LambdaPrime)

interpolate between solutions to the sparsest cut and cluster deletion objectives [23]. The

scaled sparsest cut of a graph G = (V, E) is the bipartition {S, S̄} that minimizes the ratio

cut objective cut(S)/(|S||S̄|). Cluster deletion is the problem of partitioning G into cliques

in a way that minimizes the number of edges between cliques. Deriving from previous work on

LambdaCC [23], we formalize the relationship between these two objectives for LambdaPrime

in the following theorem.

◮ Theorem 1. Let G = (V, E) be a graph, and define λ∗ = minS⊂V cut(S)/(|S||S̄|).
For any λ ≤ λ∗, placing all nodes in one cluster optimizes the LambdaPrime objective.

For any λ ∈ (λ∗, 1), the optimal LambdaPrime clustering will contain at least two clusters.

There exists some λ > λ∗ such that the optimal LambdaPrime clustering will be the

bipartition {S∗, S̄∗} which minimizes cut(S)/(|S||S̄|).
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For any λ ∈ (|E|/(1 + |E|), 1), the optimal LambdaPrime clustering will be optimal for

the cluster deletion problem. In other words, all clusters will be cliques, and the number

of edges crossing between clusters will be minimized.

For any connected graph, λ∗ ≥ 4/n2, with equality for a graph that can be split into two

equal-sized sets, with a single edge between the sets. Thus, when searching for clusterings that

optimize LambdaPrime, it suffices to consider λ ∈
(

4
n2 , 1

)

. LambdaPrime is also related to

other generalized clustering objectives that rely on tunable resolution parameters, including

the constant Potts model [20], and generalizations of the modularity objective that include a

resolution parameter [1, 18]. For the appropriate parameter settings, these objectives are

equivalent at optimality, though different in terms of approximations.

2.2 Approximations via Linear Programming

Since LambdaPrime corresponds to a special weighted variant of Correlation Clustering, there

is a O(log n) approximation guarantee for the objective for any value of the parameter λ [6].

This is obtained by solving and rounding the LP relaxation of (3), where we replace the binary

constraint xij ∈ {0, 1} with the linear constraint 0 ≤ xij ≤ 1. Although better approximation

guarantees exist for λ ≥ 1/2, in the worst case, the LP relaxation has an Ω(log n) integrality

gap, which can be shown by slightly adapting the integrality-gap proof for LambdaCC [9].

In this paper, our goal is not to obtain new approximation guarantees for fixed values of λ.

Instead, we show how to obtain a family of solutions that is approximately optimal, for all

values of the parameter, via a small number of LP solves.

If we do not treat λ as a fixed value, objective (3) corresponds to a parametric integer

linear program in λ. Let OPT(λ) denote the optimal ILP score at a certain value of λ: the

OPT function is known to be concave and piecewise-linear in λ [3]. The breakpoints of a

parametric ILP are values of the parameter λ at which a slope change occurs. In this context,

a slope change corresponds to a parameter λ where the optimal clustering for LambdaPrime

changes. Similarly, the LP relaxation of (3) is a parametric linear program, whose solution

we denote by LP(λ). Since for a fixed LP solution the objective value is linear in λ, same as

the ILP, LP(λ) is also concave and piecewise linear in terms of λ.

Breakpoints for the parametric LP are places at which the optimal feasible solution

changes. Previous work on parametric programming has shown that in the worst case,

parametric integer programs and parametric linear programs may have an exponential

number of breakpoints [3, 14]; we prove here that this is not the case for LambdaPrime ILP,

but the upper bound on LambdaPrime LP objective is still open.

2.3 Concave Function Approximation

Finding an optimal solution for either OPT or LP at a single value of λ corresponds to

evaluating a function at a single point. Approximating either function over a range of λ

values can be achieved by approximating a concave, piecewise-linear function with another

concave and piecewise-linear function constructed from a set of clusterings (or feasible LP

solutions in the case of the LP relaxation).

Figure 1 displays the OPT(λ) function for a small synthetic graph. Each linear piece

in the plot corresponds to a clustering that remains optimal over a range of λ values. In

addition to being concave and piecewise linear, note that OPT is strictly increasing in λ,

which will be the case for the LambdaPrime objective (3) and its LP relaxation on every

graph. Due to the size and structure of the graph in Figure 1, solutions to the LambdaPrime

ILP and LP are in fact the same, i.e., OPT(λ) = LP(λ) for all λ ∈ (0, 1). Typically this

MFCS 2020
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(a) A small graph.
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(b) LambdaPrime OPT(λ).
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(c) Clusterings → linear pieces.

Figure 1 The concave, piecewise-linear OPT(λ) of objective costs for a small synthetic graph.

The linear pieces form an approximation of OPT(λ).

will not be the case in practice. For larger graphs, it will be prohibitively expensive to

compute ILP solutions, but solving the LP relaxation can still be accomplished in polynomial

time, which is more reasonable in practice. In recent work, a subset of the current authors

showed how the linear programming relaxation of Correlation Clustering (and by extension

LambdaPrime) can be solved in practice using memory-efficient projection methods [22].

Given a family of clusterings, C , we can define a new piecewise-linear function that

approximates the LambdaPrime objective by identifying the clustering in C that best

approximates LambdaPrime for a certain range of λ values. In Figure 1 we illustrate this

idea by extracting a sub-family of the optimal clusterings for the same small synthetic graph.

The new approximate function has a smaller number of linear pieces, since we have selected

a strict sub-family of clusterings, and upper bounds the function OPT. In general, the

same principle holds for approximating the LambdaPrime LP relaxation. We will typically

approximate the LP relaxation of a graph for all λ’s by finding a subfamily of feasible

solutions, each of which exactly minimizes the LP for some λ, and corresponds to one of the

linear pieces of the function LP. Done carefully, the resulting piecewise-linear curve remains

a good approximation for LP, despite containing far fewer linear pieces.

3 Approximate Solutions in All Parameter Regimes

In this section, we provide a detailed discussion on our approach of obtaining a set family of

clusterings that contains an approximately optimal solution to the LambdaPrime objective

for every value of λ in (4/n2, 1) (a range justified in Section 2.1). We begin by exploring the

characteristics of the concave and piecewise-linear function we wish to approximate, first for

the ILP objective and then for the LP relaxation.

Algorithmically, our approach to the task is to first compute a family of solutions for the

LambdaPrime LP, and then round those solutions to clusterings. In obtaining the solutions,

we wish to control both the size of the clustering family and the runtime. In general, an

exponential number of solutions may be needed to optimally solve a parametric LP in all

parameter regimes [14]. In Theorem 3 we obtain an approximating family of clusterings of

size O(log n) by solving O(log n) LPs.

3.1 Bounding the Size of Optimal Solution Families

We begin with a bound on the number of clusterings needed to optimally solve LambdaPrime

in all parameter regimes.
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◮ Theorem 2. Given a graph G = (V, E), there exists a family of |E| or fewer clusterings

which, for every value of λ ∈ (0, 1), contains an optimal LambdaPrime clustering for that λ.

On star graphs, this bound is tight.

Proof. Let 0 < λ1 < λ2 < · · · < λk < 1 denote the breakpoints of the ILP, and also let

λ0 = 0 and λk+1 = 1. For t = 0, 1, 2, . . . , k, let x
t = (xt

ij) denote the feasible ILP solution

that is optimal in the range λ ∈ [λt, λt+1]. Each x
t encodes a clustering Ct of G that is

optimal in this range and corresponds to a linear piece of OPT. For each clustering Ct,

define the total number of positive and negative mistakes, respectively,

Pt =
∑

(i,j)∈E

xt
ij =

1

2

∑

S∈Ct

cut(S), Nt =
∑

i<j

(1− xt
ij) =

∑

S∈Ct

(|S|
2

)

,

so that the LambdaPrime objective for an arbitrary λ is LamPrime(Ct, λ) = Pt + λNt. We

then show Pt < Pt+1 for t = 0, 1, . . . (k − 1). Since Ct is optimal over λ ∈ [λt, λt+1] and Ct+1

is optimal for λ ∈ [λt+1, λt+2], both clusterings are optimal at λt+1, and therefore

Pt + λt+1Nt = Pt+1 + λt+1Nt+1.

If Pt = Pt+1, then Nt = Nt+1, contradicting the fact that these clusterings are optimal

for different parameter ranges. If Pt > Pt+1, then Nt < Nt+1, which would imply that for

λ > λt+1, Ct would be a better approximation than Ct+1, a contradiction to the fact that

OPT is a concave, increasing, and piecewise-linear function. Thus, Pt < Pt+1. Since the

graph is unweighted, there are at most |E| possible values for Pt for t = 0, 1, . . . , k, and

therefore at most |E| clusterings in an optimal family. This concludes the upper bound proof.

We then show that the bound is tight for star graphs. Consider an n-node star graph

where the node connecting to every other node is the central node, and we refer to all other

nodes as outer nodes. The optimal sparsest cut solution places one outer node with the

central node, and all other nodes in a second cluster. For cluster deletion, the optimal

solution places one outer node with the central node, and each other node in a singleton

cluster. The LambdaPrime ILP interpolates between two solutions. The minimum scaled

sparsest cut of the star graph is λ∗ = 1
n−1 , so this will be the first breakpoint of the ILP.

The final breakpoint is at λ = 1
2 , above which point the cluster deletion solution is optimal.

As λ decreases from λ = 1
2 to λ = 1

n−1 , the optimal solution will add outer nodes one by

one to the cluster containing the central node. There will be exactly |E| such clusterings,

counting down until all outer nodes have been merged with the central node. ◭

Theorem 2 tells us that even though there are an exponential number of ways to cluster

a graph, a linear number of clusterings characterizes an optimal family for LambdaPrime.

Furthermore, since the theorem is specifically proven for optimal clusterings, the same

result also holds for related parametric clustering objectives that correspond to linear

transformations of LambdaPrime and its weighted variants, including LambdaCC [23], Potts

models from statistical mechanics [20, 17], and variants of modularity clustering with a

resolution parameter [1, 18]. Finally, this theorem proves that the parametric integer linear

program (ILP) corresponding to the LambdaPrime objective, a piecewise-linear function,

has a linear number of breakpoints. This is significant given that in general, parametric ILPs

may contain an exponential number of breakpoints [3].

MFCS 2020
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3.2 Obtaining Approximate Solutions

Although we have shown that the LambdaPrime ILP has at most |E| breakpoints, this

proof does not hold for the LP relaxation, and we have no guarantee that the number of

LP breakpoints is not exponential [14]. Without a polynomial bound on the number of

breakpoints, any algorithm which relies on a family of optimal solutions for the LP relaxation

for all values of λ is not guaranteed to run in polynomial time. We overcome this challenge

by bounding the number of solutions needed to approximate the LP in all regimes.

◮ Theorem 3. For any ε > 0, there exists a (poly-time computable) family of O(log1+ε n)

feasible LP solutions which, for every value of λ, contains a (1 + ε)-approximate solution to

the LambdaPrime LP relaxation.

We can round each LP solution in the family obtained in Theorem 3 using existing tech-

niques [4], which guarantees we have an O(log n)-approximation to the LambdaPrime

objective. This theorem can be viewed as an application of the results of Magnanti and

Stratila [13] on concave function approximation, specifically to the problem of parametric

graph clustering. We first prove a lemma showing how well an optimal solution for the LP at

one value of λ approximates the LP when a nearby resolution parameter is used. A solution

to a minimization problem is a δ-approximate if the objective cost of it is no more than δ

times the cost of the optimal.

◮ Lemma 4. Let (xt
ij) and (xt+1

ij ) be optimal solutions to the LambdaPrime ILP (respectively

the LP relaxation) for resolution parameters λt < λt+1. Let δ = λt+1/λt. Then (xt
ij)

is a δ-approximate solution for the LambdaPrime LP when λt+1 is used, and (xt+1
ij ) is a

δ-approximate solution for the LP when λt is used.

Proof. For k ∈ {t, t + 1}, define Pk =
∑

(i,j)∈E xk
ij , total weights on positive violations

and Nk =
∑

i<j(1−xk
ij), total weights on negative violations, so that the LambdaPrime score

for (xk
ij) at an arbitrary value of λ is Pk + λNk, a quantity we denote by Ak(λ). Since (xt+1

ij )

and (xt
ij) are optimal for their respective resolution parameters, and λt < λt+1, we have the

following sequence of inequalities:

At+1(λt) ≤ At+1(λt+1) ≤ At(λt+1) <
λt+1

λt

(

At(λt)
)

<
λt+1

λt

(

At+1(λt+1)
)

.

Thus, both (xt
ij) and (xt+1

ij ) are at worst a δ-approximation across the entire interval [λt, λt+1],

where δ = λt+1/λt. ◭

We use Lemma 4 to construct a sequence of λ values and corresponding optimal LP solutions,

to approximate the LambdaPrime objective in all parameter regimes.

Proof of theorem 3. For λ < 4/n2, the optimal clustering will place all nodes in a single

cluster, so we do not need to consider LP solutions below this threshold. Set λ1 = 4/n2 and

let q =
⌊

log(1+ε)2(n2/4)
⌋

+ 1. For k = 2, 3, . . . , q, recursively define a sequence of λ values by

setting λk = (1+ε)2λk−1, and let λq+1 = 1/(1+ε). Evaluate the LambdaPrime LP relaxation

at each of these λ values to obtain solutions (x1
ij), (x2

ij), . . . , (xq+1
ij ). By Lemma 4, (x1

ij) is a

(1 + ε)-approximate solution for all λ ∈ [λ1, (1 + ε)λ1], (xq+1
ij ) is a (1 + ε)-approximation for

λ ∈ [(1 + ε)λq, 1) and for any k ∈ {2, 3, . . . , q}, (xk
ij) is a (1 + ε)-approximate solution for all

λ ∈
[

(1 + ε)λk−1, (1 + ε)λk

]

. Thus, using q + 1 < ⌊2 log(1+ε)2(n)⌋+ 2 feasible solutions, we

obtain a (1 + ε)-approximate solution for every λ ∈ [4/n2, 1). ◭
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Figure 2 Ring graph G3 with n = 23 nodes. Each pair of nodes shares a negative edge of weight λ.

For simplicity, only the negative edges adjacent to Node 1 are shown, with red dashed lines; all other

negative edges are omitted.

Theorem 3 shows that as ε tends to 0, the number of clusterings in our computed family

is O( 1
ε log n). However, given that our aim is simply to round LambdaPrime LP solutions to

produce clusterings that are within O(log n) of optimal, it suffices to treat ε as a constant

(e.g., ε = 1 or larger). Thus, in practice, the size of the approximating family is O(log n).

3.3 Asymptotic Tightness of the Set Family

One of the central contributions of our work is a proof that our logarithmic upper bound for

approximating the LP relaxation in all parameter regimes is in fact asymptotically tight for

the class of ring graphs, Gk = (V, E) with n = 2k nodes (k ∈ N and k ≥ 3). Without loss of

generality, we assume that the nodes in a ring graph are always ordered so that node i is

adjacent to node i + 1 for i = 1, 2, . . . , n− 1, and nodes 1 and n are adjacent. Specifically for

a ring graph, every edge (i, j) ∈ E is viewed as a positive edge (i, j) ∈ E+ with weight one,

and for every (i, j) ∈ V × V there is a negative edge (i, j) ∈ E− with weight λ. Figure 2

displays a picture of G3, the smallest graph in this class.

◮ Theorem 5. For the class of ring graphs with n = 2k nodes (k ∈ N and k ≥ 3), for

every ε > 0, at least Ω(log n) feasible LP solutions are needed in order to approximate the

LP relaxation of LambdaPrime in all parameter regimes to within a factor (1 + ε).

The proof of this result relies on several connections between our parametric clustering

problem and concave function approximation [12]. The optimal solution curve for the

LambdaPrime LP relaxation corresponds to an increasing, concave, and piecewise-linear

function of λ [3]. Approximating the LP relaxation in all parameter regimes with a small

number of feasible solutions is therefore equivalent to finding another piecewise-linear curve

with a small number of linear pieces. Previously, Magnanti and Stratila [13, 12] demonstrated

that in order to approximate the square root function sqrt(x) =
√

x via a piecewise-linear

upper bound over an interval [a, b], at least Ω(log b
a ) linear pieces are needed. Although this

bound does not immediately imply any result for parametric clustering, we use this as a step

in proving a similar lower bound for the LambdaPrime LP relaxation. In particular, the

proof of Theorem 5 follows from the following observations and theorems.
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◮ Observation 1. The sparsest cut of a ring graph is induced by a set S of n
2 nodes which

are connected via a path: the cut ratio is λ∗ = cut(S)

|S||S̄|
= 2

(n/2) (n/2) = 8
n2 .

◮ Observation 2. For any λ ≥ 1/2, pairing up the n nodes of a ring graph Gk into n/2

disjoint edges optimizes the LambdaPrime objective.

By Observation 1 and according to the first bullet point in Theorem 1, for any λ ≤ λ∗ = 8
n2 ,

placing all nodes in one cluster optimizes LambdaPrime objective on a ring graph. Combining

with Observation 2, it suffices to consider λ ∈
[

8
n2 , 1

2

]

. Below is a crucial theorem for showing

the lower bound, which is arguably one of the most interesting results in this paper.

◮ Theorem 6. For any λ ∈
[

8
n2 , 1

2

]

the optimal value of the LambdaPrime LP relaxation for

the ring graph is

LP(λ) = min
t∈N

n

t

(

1 + λ

(

t

2

)

)

. (5)

Proof. To express the optimal value of the LP solutions, we deploy an alternative LP

relaxation, originally considered by Wirth [24] for the unweighted version of Correlation

Clustering. Each constraint in LP (6) corresponds to a Negative Edge with Positive Path Cycle

(NEPPC), where NEPPC (i1, i2, . . . , im) represents a sequence (i.e., a path) of (positive) edges,

{(i1, i2), (i2, i3), . . . , (im−1, im)} ⊆ E , with a single non-edge (i.e., negative edge) completing

the cycle: (i1, im) ∈ E−.

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)

subject to xi1,im
≤∑m−1

j=1 xij ,ij+1
for all NEPPC (i1, i2, . . . , im)

xij ≤ 1 for all (i, j) /∈ E

0 ≤ xij for all (i, j) .

(6)

Wirth [24] proved that the set of optimal solutions to the NEPPC LP (6) is exactly the same

as the set of optimal solutions to the canonical LP. Via the NEPPC LP, we show that the

optimal value of the LP solution on ring graphs for any λ ∈ [8/n2, 1/2] is expression (5). We

start with two straightforward observations about the NEPPC objective (on ring graphs). In

the following, we assume all subscripts are computed modulo n. For example, we express

the positive-edge LP distances as xi,i+1, for i = 1, . . . , n, with the understanding that,

xn,n+1 ≡ xn,1 ≡ x1,n.

◮ Observation 3 (Wirth [24]). Every negative edge (i, j) ∈ E− is either involved in a tight

NEPPC constraint, or xij = 1.

◮ Observation 4. If we assign xi,i+1 = c for all i = 1, 2, . . . , n for some constant 0 ≤ c ≤ 1,

then for this fixed assignment, the LP will be minimized if xij = min{1, c · dist(i, j)} for each

(i, j) ∈ E−, where dist(i, j) is the shortest-path distance (in terms of the number of positive

edges) between nodes i and j in the ring graph.

Step 1: All positive-edge LP distances are equal

Let x
1 = (x1

ij) be an arbitrary solution to the NEPPC LP relaxation (6). Construct n−1 other

optimal solutions, x
2, x

3, . . . , x
n, by setting xt

i,j = x1
i+t,j+t, for all i < j and t = 2, 3, . . . , n.

In other words, we exploit the symmetry in the ring graph and rotate LP distances around

the ring, one node at a time, to produce each new optimal solution. Then, let

x
∗ =

1

n

n
∑

j=1

x
j .
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Since x
∗ is a convex combination of optimal LP solutions, it is itself an optimal LP solution.

Furthermore, for every i = 1, 2, . . . , n,

x∗
i,i+1 =

1

n

n
∑

j=1

xj
i,i+1 =

1

n

n
∑

j=1

x1
i+j−1,i+j .

The right-hand side is the sum of all positive-edge distances in the LP solution x
1. Therefore,

all x∗
i,i+1 have the same value, denoted by c∗ ≥ 0. By Observation 4, for each (i, j) /∈ E,

x∗
ij = min{1, c∗ · dist(i, j)}. Let LP(λ, c) denote the value of the LP relaxation for the given

value of λ, with all positive edges having distance c. As a result, we have:

LP(λ) = LP(λ, c∗) = min
c≥0

LP(λ, c) .

Step 2: Bounding c∗ from below

Next, we show that when λ ≥ 8/n2, the constant c∗ satisfies 2
n ≤ c∗ ≤ 1. First, consider the

value of LP(λ, c). By symmetry, it suffices to focus on the LP cost associated with node 1,

and then multiply by n. In particular, we charge three types of costs to node 1:

the LP cost of the clockwise positive edge, x1,2 = c (the cost of the counter-clockwise

positive edge is charged to node n);

the LP cost of the clockwise negative edges, i.e., λ · (1 − x1,(i+1)), for i = 1, . . . , n
2 − 1:

since x1,(i+1) = min{1, c · dist(1, (i + 1))}, this is, λ ·max{0, 1− c · i};
half of the LP cost of the negative edge (1, n/2 + 1), i.e., 1

2 λ · (1 − x1,(n/2+1)) = 1
2 λ ·

max{0, (1− n·c
2 )}, sharing the cost of this diameter between nodes 1 and n/2 + 1.

Therefore, we have:

LP(λ, c) = n



c + λ

n/2−1
∑

i=1

max{0, (1− ci)}+
1

2
λ ·max{0,

(

1− nc

2

)

}



 . (7)

If 0 ≤ c ≤ 2
n , then 1− n·c

2 ≥ 0, and Equation (7) equals

LP(λ, c) = n · c ·
(

1− λn2

8

)

+ λ

(

n

2

)

. (8)

Because λ ≥ 8
n2 , expression (8) is a strictly decreasing function of c on [0, 2/n]. Since we are

seeking the value of c∗, we henceforth assume c ≥ 2/n.

Step 3: Proving existence of integral 1/c∗

If 2
n ≤ c ≤ 1, then ⌊ 1

c ⌋+ 1 ≤ i ≤ n
2 , implies 1− ci ≤ 0 and Equation (7) equals

LP(λ, c) = n



c + λ

⌊

1

c

⌋

− λc

2

⌊

1

c

⌋

(

⌊

1

c

⌋

+ 1

)



 . (9)

We prove the existence of an integral 1/c∗ value by contradiction: suppose that 1/c∗ is not

an integer. Put t =
⌊

1
c∗

⌋

. Since n/2 is an integer, 1/c∗ < n/2, hence t ≤ n/2− 1. Therefore,

for all c such that
⌊

1
c

⌋

= t, i.e., c ∈ (1/(t + 1), 1/t], expression (9) becomes

LP(λ, c) = n

(

c + λt− λc

2
t (t + 1)

)

= nc

(

1− λ
t(t + 1)

2

)

+ λnt . (10)
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We select two new values, cℓ and cr, satisfying:

2

n
≤ 1

t + 1
< cℓ < c∗ < cr ≤

1

t
.

Not only do values cℓ and cr bound c∗ below and above, but also applying the floor function

to all three reciprocals yields the same integer, t.

If 1− λt(t + 1)/2 < 0, then expression (10) shows that LP(λ, cr) < LP(λ, c∗). Likewise,

if 1− λt(t + 1)/2 > 0, then LP(λ, cℓ) < LP(λ, c∗). In each of these cases, c∗ would not be

the optimum setting of c.

However, if 1−λt(t+1)/2 = 0, then LP(λ, c) is constant for c ∈ (1/(t+1), 1/t]. Hence 1/c∗

can be assumed to be the integer t. Substituting into the middle part of Equation (10), the

LambdaPrime LP relaxation optimum is

LP(λ) = min
t∈N

n

(

1

t
+ λt− λ

(t + 1)

2

)

= min
t∈N

n

t

(

1 + λ

(

t

2

)

)

.

Theorem 6 follows. ◭

Based on Theorem 6, Lemma 7, proved in the full version [8], shows that LP(λ) and OPT(λ)

are bounded below and above by a square root function of λ.

◮ Lemma 7. Let q(λ) = 3n
4

√
2λ. For all λ ∈

[

8
n2 , 1

2

]

,

q(λ) ≤ LP(λ) ≤ OPT(λ) ≤ 4
√

2

3
q(λ). (11)

This lemma shows that the LambdaPrime LP relaxation on the ring graph behaves very

similarly to the square root function. In the full version [8], we prove that Theorem 5 follows

by combining this bound with the lower bound results of Mangnanti and Stratila [13] on

approximating the square root function.

4 Towards Overcoming the Logarithmic Barrier

While in the worst case, Ω(log n) feasible solutions are required to approximate the LP

relaxation in all parameter regimes, this is not necessarily the case for every graph. In the

full version [8], we show that on star graphs, a single LP solution suffices to optimize the LP

relaxation in all non-trivial parameter regimes. Thus, an algorithm that can obtain a family

of solutions with an instance-specific size bound would be interesting and more practical.

Motivated by this observation, we propose an algorithm which can possibly find a smaller

family than that returned by the method in Theorem 3. The main idea of our algorithm

is to carefully select the λ values for which we solve LP relaxation, and then actually

compute, rather than just bound, the range of λ values for which the resulting LP solution is

approximately optimal. In this way, we will need to evaluate the LP relaxation at fewer λ

values. As we show shortly, the family returned by our new algorithm is nearly optimal (i.e.,

at most twice) in terms of size, compared to the minimum family of solutions that contains

an (1 + ε)-approximation for every λ.

4.1 The Frontier Extension Algorithm

Next we introduce the Frontier Extension (FE) algorithm that can return a valid family to

(1 + ε)-approximate all λ with size at most twice of the minimum valid family.
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The key observation in the design of the FE algorithm is that, given an optimal solution

to the LP relaxation at a value λ0, we can in fact exactly compute values (θ−, θ+) such that

the LP solution is a (1 + ε) approximation exactly on the interval [λ0 + θ−, λ0 + θ+]. We refer

to this as the (1 + ε)-Approximate Covering Range (for short, (1 + ε)-ACR) of λ0. According

to the framework of Nowozin and Jegelka [16], given an optimal LambdaPrime LP relaxation

solution at λ0, the (1 + ε)-ACR of λ0 can be computed by solving two “dual-like” LP’s: one

for computing θ− and the other for θ+. We discuss the details in the full version. Based on

this, starting from λ0 = 4/n2, the FE algorithm solves the LP relaxation at λ0, and then

computes the right endpoint of the (1 + ε)-ACR of λ0. It then updates λ0 to be this right

endpoint, and repeats this process until a point where the right endpoint of the (1 + ε)-ACR

of the latest λ0 is greater than or equal to 1. This procedure is shown in Algorithm 1.

Algorithm 1 Frontier Extension (FE) Algorithm (High Level).

1: function FE(G, ε)

2: λ0 ← 4/n2

3: while λ0 < 1 do

4: Compute the optimal LP solution x
∗ ← LP(λ0)

5: Update λ0 to the right end of the (1 + ε)-ACR of λ0

6: return C , set of all the computed x
∗ solutions.

After running Algorithm 1, it is possible for some λ values to be covered by more than

one (1 + ε)-ACR of the λ values at which we evaluated the LP. The size of the returned

LP solution family could be further reduced by a post-processing step that removes any

redundant solution. Done carefully, the size of the resulting family will be at most twice the

size of the minimum LP solution family. We formalize this result in the following theorem.

◮ Theorem 8. For ε > 0, let Mε be the minimum number of LP solutions needed to

approximate the LambdaPrime LP relaxation in all parameter regimes to within a factor (1+ε).

We obtain a family of 2Mε or fewer LP solutions that contains a (1 + ε)-approximate solution

to the LP in every parameter regime.

It should be noted that the above bound applies to the size of the family of LP solutions.

In practice, however, we may need to evaluate the LP relaxation more than 2Mε times to

actually obtain this family. Furthermore, in the worst case, we may still need to evaluate

the LP up to O(log n) times. Nevertheless, this result shows that, without changing our

worst-case asymptotic runtime, we can find a family of LP solutions that is nearly optimal in

terms of output size.

5 Discussion and Future Work

In this work we demonstrate how to find a family of clusterings that contains, for every

resolution parameter value, an approximate solution to the LambdaPrime (ILP) objective.

Our results come with rigorous guarantees both in terms of the approximation factor and

in terms of the number of clusterings needed to approximate the objective in all parameter

regimes. We provide a means to obtain a family of clusterings of size O(log n), by solving

O(log n) LPs. The size of the family is asymptotically tight as shown by a lower bound

established for the ring graphs.
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In the future, building on the FE algorithm, we seek techniques for finding provably

small approximating families without having to evaluate the LP relaxation a logarithmic

number of times. We also seek to better understand upper and lower bounds on the number

of clusterings needed to approximate or exactly solve the LambdaPrime objective on other

special classes of graphs.
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