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Abstract

High-dimensional logistic regression is widely used in analyzing data with binary outcomes.
In this paper, global testing and large-scale multiple testing for the regression coefficients are
considered in both single- and two-regression settings. A test statistic for testing the global null
hypothesis is constructed using a generalized low-dimensional projection for bias correction and
its asymptotic null distribution is derived. A lower bound for the global testing is established,
which shows that the proposed test is asymptotically minimax optimal over some sparsity range.
For testing the individual coefficients simultaneously, multiple testing procedures are proposed
and shown to control the false discovery rate (FDR) and falsely discovered variables (FDV)
asymptotically. Simulation studies are carried out to examine the numerical performance of
the proposed tests and their superiority over existing methods. The testing procedures are also
illustrated by analyzing a data set of a metabolomics study that investigates the association
between fecal metabolites and pediatric Crohn’s disease and the effects of treatment on such

associations.

KEY WORDS: False discovery rate; Global testing; Large-scale multiple testing; Minimax lower
bound.

1 INTRODUCTION

Logistic regression models have been applied widely in genetics, finance, and business analytics. In
many modern applications, the number of covariates of interest usually grows with, and sometimes
far exceeds, the number of observed samples. In such high-dimensional settings, statistical problems
such as estimation, hypothesis testing, and construction of confidence intervals become much more

challenging than those in the classical low-dimensional settings. The increasing technical difficulties



usually emerge from the non-asymptotic analysis of both statistical models and the corresponding
computational algorithms.

In this paper, we consider testing for high-dimensional logistic regression model:

log < i ) =X, 5, fori=1,...,n. (1.1)
1—7Ti

where 8 € RP? is the vector of regression coefficients. The observations are i.i.d. samples Z; =

(yi, X;) for i =1,..,n, and we assume y;|X; ~ Bernoulli(;) independently for each i =1, ..., n.

1.1 Global and Simultaneous Hypothesis Testing

It is important in high-dimensional logistic regression to determine 1) whether there are any as-
sociations between the covariates and the outcome and, if yes, 2) which covariates are associated
with the outcome. The first question can be formulated as testing the global null hypothesis
Hy : p = 0; and the second question can be considered as simultaneously testing the null hy-
potheses Hy; : 8; = 0 for ¢ = 1,...,p. Besides such single logistic regression problems, hypothesis
testing involving two logistic regression models with regression coefficients 3 and 2 in RP is
also important. Specifically, one is interested in testing the global null hypothesis Hy : 31 = g2,
or identifying the differentially associated covariates through simultaneously testing the null hy-
potheses Ho; : Bi(l) = ,6’7;(2) for each i =1,...,p.

Estimation for high-dimensional logistic regression has been studied extensively. van de Geer
(2008) considered high-dimensional generalized linear models (GLMs) with Lipschitz loss functions,
and proved a non-asymptotic oracle inequality for the empirical risk minimizer with the Lasso
penalty. Meier et al. (2008) studied the group Lasso for logistic regression and proposed an efficient
algorithm that leads to statistically consistent estimates. Negahban et al. (2010) obtained the rate
of convergence for the ¢;-regularized maximum likelihood estimator under GLMs using restricted
strong convexity property. Bach (2010) extended tools from the convex optimization literature,
namely self-concordant functions, to provide interesting extensions of theoretical results for the
square loss to the logistic loss. Plan and Vershynin (2013) connected sparse logistic regression
to one-bit compressed sensing and developed a unified theory for signal estimation with noisy
observations.

In contrast, hypothesis testing and confidence intervals for high-dimensional logistic regression
have only been recently addressed. van de Geer et al. (2014) considered constructing confidence
intervals and statistical tests for single or low-dimensional components of the regression coefficients
in high-dimensional GLMs. Mukherjee et al. (2015) studied the detection boundary for minimax
hypothesis testing in high-dimensional sparse binary regression models when the design matrix is
sparse. Belloni et al. (2016) considered estimating and constructing the confidence regions for a

regression coefficient of primary interest in GLMs. More recently, Sur et al. (2017) and Sur and



Candes (2019) considered the likelihood ratio test for high-dimensional logistic regression under the
setting that p/n — k for some constant x < 1/2, and showed that the asymptotic null distribution
of the log-likelihood ratio statistic is a rescaled x? distribution. Cai et al. (2017) proposed a
global test and a multiple testing procedure for differential networks against sparse alternatives
under the Markov random field model. Nevertheless, the problems of global testing and large-scale
simultaneous testing for high-dimensional logistic regression models with p 2 n remain unsolved.

In this paper, we first consider global and multiple testing for a single high-dimensional logistic
regression model. The global test statistic is constructed as the maximum of squared standardized
statistics for individual coefficients, which are based on a two-step standardization procedure. The
first step is to correct the bias of the logistic Lasso estimator using a generalized low-dimensional
projection (LDP) method, and the second step is to normalize the resulting nearly unbiased es-
timators by their estimated standard errors. We show that the asymptotic null distribution of
the test statistic is a Gumbel distribution and that the resulting test is minimax optimal under
the Gaussian design by establishing the minimax separation distance between the null space and
alternative space. For large-scale multiple testing, data-driven testing procedures are proposed and
shown to control the false discovery rate (FDR) and falsely discovered variables (FDV) asymptot-
ically. The framework for testing for single logistic regression is then extended to the setting of
testing two logistic regression models.

The main contributions of the present paper are threefold.

1. We propose novel procedures for both the global testing and large-scale simultaneous testing
for high dimensional logistic regressions. The dimension p is allowed to be much larger than
the sample size n. Specifically, we require logp = O(n°!) for the global test and p = O(n?)
for the multiple testing procedure, with some constant c;,cs > 0. For the global alternatives
characterized by the £, norm of the regression coefficients, the global test is shown to be

minimax rate optimal with the optimal separation distance of order \/logp/n.

2. Following similar ideas in Ren et al. (2016) and Cai et al. (2017), our construction of the test
statistics depends on a generalized version of the LDP method for bias correction. The original
LDP method (Zhang and Zhang, 2014) relies on the linearity between the covariates and
outcome variable. For logistic regression, the generalized approach first finds a linearization
of the regression function, and the weighted LDP is then applied. Besides its usefulness
in logistic regression, the generalized LDP method is flexible and can be applied to other

nonlinear regression problems (see Section 7 for a detailed discussion).

3. The minimax lower bound is obtained for the global hypothesis testing under the Gaussian
design. The lower bound depends on the calculation of the x2-divergence between two logistic
regression models. To the best of our knowledge, this is the first lower bound result for high-

dimensional logistic regression under the Gaussian design.



1.2 Other Related Work

We should note that a different but related problem, namely inference for high-dimensional linear
regression, has been well studied in the literature. Zhang and Zhang (2014), van de Geer et al.
(2014) and Javanmard and Montanari (2014a,b) considered confidence intervals and testing for low-
dimensional parameters of the high-dimensional linear regression model and developed methods
based on a two-stage debiased estimator that corrects the bias introduced at the first stage due to
regularization. Cai and Guo (2017) studied minimaxity and adaptivity of confidence intervals for
general linear functionals of the regression vector.

The problems of global testing and large-scale simultaneous testing for high-dimensional linear
regression have been studied by Liu and Luo (2014), Ingster et al. (2010) and more recently by Xia
et al. (2018) and Javanmard and Javadi (2019). However, due to the nonlinearity and the binary
outcome, the approaches used in these works cannot be directly applied to logistic regression
problems. In the Markov random field setting, Ren et al. (2016) and Cai et al. (2017) constructed
pivotal /test statistics based on the debiased LDP estimators for node-wise logistic regressions with
binary covariates. However, the results for sparse high-dimensional logistic regression models with
general continuous covariates remain unknown.

Other related problems include joint testing and false discovery rate control for high-dimensional
multivariate regression (Xia et al., 2018) and testing for high-dimensional precision matrices and
Gaussian graphical models (Liu, 2013; Xia et al., 2015), where the inverse regression approach and
de-biasing were carried out in the construction of the test statistics. Such statistics were then used
for testing the global null with extreme value type asymptotic null distributions or to perform

multiple testing that controls the false discovery rate.

1.3 Organization of the Paper and Notations

The rest of the paper is organized as follows. In Section 2, we propose the global test and estab-
lish its optimality. Some comparisons with existing works are made in detail. In Section 3, we
present the multiple testing procedures and show that they control the FDR/FDP or FDV/FWER
asymptotically. The framework is extended to the two-sample setting in Section 4. In Section 5,
the numerical performance of the proposed tests are evaluated through extensive simulations. In
Section 6, the methods are illustrated by an analysis of a metabolomics study. Further extensions
and related problems are discussed in Section 7. In Section 8, some of the main theorems are
proved. The proofs of other theorems as well as technical lemmas, and some further discussions
are collected in the online Supplementary Materials.

Throughout our paper, for a vector a = (a1, ...,a,)"

€ R", we define the ¢, norm |||, =
(>r, al) 1/p, and the fo norm ||al|cc = maxi<j<p|a;|. a_; € R""! stands for the subvector of
a without the j the component. We denote diag(ai,...,a,) as the n x n diagonal matrix whose

diagonal entries are ay, ..., a,. For a matrix A € RP*9 )\;(A) stands for the i-th largest singular



value of A and Amax(A) = AM(A), Amin(A) = Aprg(A). For a smooth function f(x) defined on R,
we denote f(z) = df(z)/dx and f(z) = d*f(z)/dz®. Furthermore, for sequences {a,} and {b,},
we write a, = o(by) if lim,, a, /b, = 0, and write a,, = O(by,), a, < b, or b, 2 a,, if there exists a

constant C' such that a,, < Cb, for all n. We write a,, < b,, if a,, < by, and a,, 2 by,. For a set A, we

denote |A| as its cardinality. Lastly, C,Cy, C1, ... are constants that may vary from place to place.

2 GLOBAL HYPOTHESIS TESTING

In this section, we consider testing the global null hypotheses
Hy:8=0 Vs. Hy:p#0,

under the logistic regression model with random designs. The global testing problem corresponds
to the detection of any associations between the covariates and the outcome.

Our construction of the global testing procedure begins with a bias-corrected estimator built
upon a regularized estimator such as the ¢;-regularized M-estimator. For high-dimensional logistic

regression, the ¢1-regularized M-estimator is defined as

n

b= arg min {i > [— yiB! X; +log(1+ eﬁ”%] - Anﬁnl}, (2.1)
=1

which is the minimizer of a penalized log-likelihood function. Negahban et al. (2010) showed that,
when X; are i.i.d. sub-gaussian, under some mild regularity conditions, standard high-dimensional
estimation error bounds for [3’ under the ¢; or £5 norm can be obtained by choosing A =< \/m.
Once we obtain the initial estimator B , our next step is to correct the bias of B .

For technical reasons, we split the samples so that the initial estimation step and the bias
correction step are conducted on separate and independent datasets. Without loss of generality,
we assume there are 2n samples, divided into two subsets D; and D, each with n independent
samples. The initial estimator § is obtained from D;. In the following, we construct a nearly
unbiased estimator 8 based on 3 and the samples from Ds, using the generalized LDP approach.
Throughout the paper, the samples Z; = (X;,Y;), i = 1,...,n, are from Dy, which are independent
of ﬁ . We would like to emphasize that the sample splitting procedure is only used to simplify our
theoretical analysis, which does not make it a restriction for practical applications. Numerically, as
our simulations in Section 5 show, sample splitting is in fact not needed in order for our methods

perform well (see further discussions in Section 7).



2.1 Construction of the Test Statistic via Generalized Low-Dimensional Projection

Let X be the design matrix whose i-th row is X;. We rewrite the logistic regression model defined
by (1.1) as
vi=f(B"Xi) +e (2.2)

where f(u) = e*/(1+ e¥) and ¢ is error term. To correct the bias of the initial estimator (3, we

consider the Taylor expansion of f(u;) at 4; for u; = 8 X; and 4; = BTXi
Flug) = f() + f(0:) (i — @) + Re;
where Re; is the reminder term. Plug this into the regression model (2.2), we have
yi = F(@) + f@) X[ B = f(@) X[ B+ (Rei + &), (2.3)

By rewriting the logistic regression model as (2.3), we can treat y; — f(u;) + f (a;) X, 3 on the left
hand side as the new response variable, whereas f (u;)X; as the new covariates and Re; + ¢; as the
noise. Consequently, 5 can be considered as the regression coefficient of this approximate linear
model.

The bias-corrected estimator, or, the generalized LDP estimator 3 is defined as

3. + > i1 vij(yi — (BT X))

- C j=1,..p, 2.4
Yo v (BT X)Xy g P (24)

where Xj; is the j-th component of X; and v; = (v1,vaj, ..., vnj)T is the score vector that will be
determined carefully (Ren et al., 2016; Cai et al., 2017). More specifically, we define the weighted
inner product (-,-), for any a,b € R™ as (a,b),, = S, f(@;)a;bi, and denote (-,-) as the ordinary

inner product defined in Euclidean space. Combining (2.3) and (2.4), we can write

3. - <Uj7€> + <Uj7Re> . <Uj7h—j>n

(Wi, xi0n  (V5,Xj)n (v, Xi)n (2.5)

where x; € R" denote the j-th column of X, h_; = X_j(B_j —B_;) where X_; € R” x RP~1 is the
submatrix of X without the j-th column, and Re = (Rey, ..., Re,) " with Re; = f(u;) — f(i;) —
f(@3)(u; — @5). We will construct score vector vj so that the first term on the right hand side of
(2.5) is asymptotically normal, while the second and third terms, which together contribute to the
bias of the generalized LDP estimator Bj, are negligible.

To determine the score vector v; efficiently, we consider the following node-wise regression

among the covariates

X; = X_j’)/j + 15, i=1..p, (26)



where v; = arg min_ cgp—1 E[||x;—X_;7(/3] and 7; is the error term. Intuitively, if we set v; = W1,
for W = diag(f(@1), ..., f(tin)), then it should follow that

(vj hj)n < max| (v, xe)n] - (|8 — Bl = max | (7, 3] - 1|15 — Bl ~ 0.
#J k#j

In practice, we use the node-wise Lasso to obtain an estimate of 7;. For X from D, and B obtained

from Dy, the score v; is obtained by calibrating the Lasso-generated residue 7);, i.e.
vi(N) =W, () = x5 — X500,

R . x; — X_ ;b2
Fi(A) = argmm{HJQJH2 —I—)\Hle}. (2.7)
b n
Clearly, v;(\) depends on the tuning parameter A. Define the following quantities
ol
[(v;(A); %))l

The tuning parameter A can be determined through (;(\) and 7;(\) by the algorithm in Table 1,
which is adapted from the algorithm in Zhang and Zhang (2014).

G(A) = max M

X o, W=

(2.8)

Table 1: Computation of v; from the Lasso (2.7)

Input:  An upper bound ¢  for ¢;, with default value ¢* = V2log p,
tuning parameters kg € [0,1] and 1 € (0, 1];

Step 1: If (j(A) > (7 for all A >0, set (7 = (1 + k1) infaso G (N);
A max{A: (j(A) < C]*},CJ* — Q(A),Tf — 7i(N);

Step 22 Aj < min{\: 75(A) < (14 Ko)7; };
vj = 0i(Ag), 7 = Ti(N), G = Gi(A))

Output: )\j,’l)j,Tj,Cj

Once Bj and 7; are obtained, we define the standardized statistics
Mj = Bj/7j,
for j = 1,...,p. The global test statistic is then defined as

M,, = max Mj2. (2.9)
1<j<p

2.2 Asymptotic Null Distribution

We now turn to the analysis of the properties of the global test statistic M,, defined in (A.1). For

the random covariates, we consider both the Gaussian design and the bounded design. Under the



Gaussian design, the covariates are generated from a multivariate Gaussian distribution with an
unknown covariance matrix X € RP*P, In this case, we assume

(A1). X; ~ N(0,X) independently for each i =1, ..., n.
In the case of bounded design, we assume instead

(A2). X, fori=1,...,n areiid. random vectors satisfying EX; = 0 and maxi<;<p, || Xillco < T
for some constant T > 0.
Define the ¢; ball

P
— — .. pPXp . 3 .. n <
Bi(k) {Q (wij) € RPZP 112?§7j:1 min <|ww\1 / ogp’ 1> < k:}

In general, B;(k) includes any matrix € whose rows w; are £y sparse with ||w;||o < k or ¢; sparse
with |jwi[l1 < ky/logp/n for all i = 1,...,p. The parameter space of the covariance matrix ¥ and
the regression vector [ are defined as following.

(A3). The parameter space O(k) of § = (5,3) € RP x RP*P satisfies

O(k) = {(5,2) C1Bllo B M T < Apin(B) € Amax(B) < M, 27 € Bl(k:)},

for some constant M > 1. For convenience, we denote O1(k) = {5 € RP : ||B]lo < k} and ©2(k) =
{(ZeRPP: M1 < Apin(B) < Anax(E) < M, 271 € Bi(k)}, so that O(k) = O1(k) x Oz(k).
The following theorem states that the asymptotic null distribution of M, under either the

Gaussian or bounded design is a Gumbel distribution.

Theorem 1. Let M, be the test statistic defined in (A.1), D be the diagonal of £~ and (&) =
D=122-1D=1/2 Suppose maxi<i<j<p |&ij| < co for some constant 0 < ¢y < 1, logp = O(n") for
some 0 <r < 1/5, and

1. under the Gaussian design, we assume (A1) (A3) and k = o(\/n/ log? p); or
2. under the bounded design, we assume (A2) (A3) and k = o(y/n/ log®/? p).

Then under Hy, for any given x € R,

e
N

The condition that logp = o(n") for some 0 < r < 1/5 is consistent with those required for

1
Py(M,, — 2logp + loglogp < z) — exp < - — (—:1:/2)>, as (n,p) — oo.

testing the global hypothesis in high-dimensional linear regression (Xia et al., 2018) and for testing
two-sample covariance matrices (Cai et al., 2013). It allows the dimension p to be exponentially
large comparing to the sample size n, which is much more flexible than the likelihood ratio test

considered in Sur et al. (2017) and Sur and Candes (2019), where the dimension can only scale as



p < n. Under the Gaussian design, it is required that the sparsity k is o(ﬁ/ log® p) whereas for
the bounded design, it suffices that the sparsity k to be 0(\/5/ log‘r’/2 p).

Remark 1. The analysis can be extended to testing Hy : g = 0 versus Hy : Sg # 0 for a given
index set G. Specifically, we can construct the test statistic as Mg, = max;ce MJ2 and obtain a
similar Gumbel limiting distribution by replacing p by |G|, as (n, |G|) — oo. The sparsity condition
thus should be forwarded to the set G.

Based on the limiting null distribution, the asymptotically « level test can be defined as
Do (My) = I{M, > 2logp —loglogp + ¢a},

where ¢, is the 1 —a quantile of the Gumbel distribution with the cumulative distribution function

exp (— % exp(—z/2)), i.e.

go = —log(m) — 2loglog(1 — a)~t.

The null hypothesis Hy is rejected if and only if ®,(M,) = 1.

2.3 Minimax Separation Distance and Optimality

In this subsection, we answer the question: “What is the essential difficulty for testing the global
hypothesis in logistic regression.” To fix ideas, we begin with defining the minimax separation
distance that measures such an essential difficulty for testing the global null hypothesis at a given

level and type II error. In particular, we consider the alternative

H: e {ﬂ ER?: |8llo = o 18llo < k}

for some p > 0. This alternative concerns the detection of any discernible signals among the
regression coefficients where the signals can be extremely sparse, which has interesting applications
(see Xia et al. (2015)). Similar alternatives are also considered by Cai et al. (2013) and Cai et al.
(2014).

By fixing a level a@ > 0 and a type Il error probability § > 0, we can define the d-separation

distance of a level « test procedure ®,, for given design covariance 3 as

®,,0,3)=inf<p>0: inf Py(®po=1)>1-96
L ) {’0 . e ) }
= inf {,0 >0: sup Py(®, =0) < 5}. (2.10)
501 (k):[Blloo=p

The §-separation distance p(®,, 0, 0(k)) over ©(k) can thus be defined by taking the supremum



over all the covariance matrices ¥ € O2(k), so that

P(®a,0,0(k)) = sup p(Pq,6, %),
€O (k)
which corresponds to the minimal ¢, distance such that the null hypothesis Hy is well separated
from the alternative H; by the test ®,. In general, d-separation distance is an analogue of the
statistical risk in estimation problems. It characterizes the performance of a specific a-level test
with a guaranteed type II error 6. Consequently, we can define the («,d)-minimax separation

distance over O(k) and all the a-level tests as

The definition of («, §)-minimax separation distance generalizes the ideas of Ingster (1993), Baraud
(2002) and Verzelen (2012). The following theorem establishes the minimax lower bound of the
(e, §)-separation distance under the Gaussian design for testing the global null hypothesis over the
parameter space ©'(k) C ©(k) defined as

O'(k) = (©1(k) N {B € RP: ||]|2 S (n'/*logp)~'}) x Oa(k).

Theorem 2. Assume that a+0 < 1. Under the Gaussian design, if (A1) and (A3) hold, (8,%) €
Q'(k) and k < min{p”,\/n/log®p} for some 0 < v < 1/2, then the (a,d)-minimaz separation

distance over ©'(k) has the lower bound

*(0,6,0/ (k) > e/ 2P (2.11)

n

for some constant ¢ > 0.

In order to show the above lower bound is asymptotically sharp, we prove that it is actually
attainable under certain circumstances, by our proposed global test ®,. In particular, for the
bounded design, we make the following additional assumption.

(A4). It holds that Py(maxi<i<n |87 X;| > C) = O(p~¢) for some constant C, ¢ > 0.

Theorem 3. Suppose that logp = O(n") for some 0 < r < 1. Under the alternative Hy : || 3|00 >

car/logp/n for some ca > 0, and

(i) under the Gaussian design, assume that (A1) and (A3) hold, ||5]l2 < C(loglogp)/vlogn
for C < min{\/2/Amax(E), (2r/2Amax (X)) 71}, logp = log!*on for some § > 0 and k =
o(v/n/log’ p); or

(ii) under the bounded design, assume that (A2), (A8), and (A4) hold, and k = o(y/n/log®? p).

10



Then we have Py(®o(M,) =1) = 1 as (n,p) — oc.

In Theorem 3, (A4) is assumed for the bounded case and ||8||2 = O(loglog p/+/log n) is required
for the Gaussian case. In particular, since logp = O(n") for some 0 < r < 1, the upper bound
loglog p/+/logn for ||B]|2 can be as large as v/logn. In Theorem 2, the minimax lower bound is
established over (3,X) € ©(k), so that the same lower bound holds over a larger set

(8,%) € (01(k) N {B € R : ||B]]2 < loglogp/+/logn}) x Os(k), (2.12)

since loglog p/v/Iogn > (n'/*1log p)~!. On the other hand, Theorem 3 (i) indicates an upper bound
S \/W attained by our proposed test under the Gaussian design over the set (2.12). These
two results imply the minimax rate p* =< \/logw and the minimax optimality of our proposed
test over the set (2.12).

2.4 Comparison with Existing Works

In this section, we make detailed comparisons and connections with some existing works concerning
global hypothesis testing in the high-dimensional regression literature.

Ingster et al. (2010) addressed the detection boundary for high-dimensional sparse linear re-
gression models, and more recently Mukherjee et al. (2015) studied the detection boundary for
hypothesis testing in high-dimensional sparse binary regression models. However, although both
works obtained the sharp detection boundary for the global testing problem Hy : 8 = 0, their
alternative hypotheses are different from ours. Specifically, Mukherjee et al. (2015) considered the
alternative hypothesis Hy : 8 € {8 € RP : ||B8]lo > k,min{|B;| : Br # 0} > A}, which implies
that S has at least k nonzero coefficients exceeding A in absolute values. Ingster et al. (2010)
considered the alternative hypothesis Hy : 8 € {6 eRP:|Bllo <k, |82 > p}, which concerns k
sparse B with ¢5 norm at least p. In fact, the proof of our Theorem 2 can be directly extended to

such an alternative concerning the f5 norm, which amounts to obtaining a lower bound of order

klogp
n

such alternative is beyond the scope of the current paper.

for high dimensional logistic regression. However, developing a minimax optimal test for

Additionally, in contrast to the minimax separation distance considered in this paper, the
papers by Ingster et al. (2010) and Mukherjee et al. (2015) considered the minimax risk (or the

minimax total error probability) given by

inf sup Risk(®,X) =inf sup { max Pp(® =1) + max
o 3€0q(k) @ 3e€02(k) BeHo BeO1(k):||Blloc=p

Py(® = 0)}, (2.13)
where the infimum is taken over all tests ®. This minimax risk can be also written as

inf sup Risk(®,¥) = inf {a+inf sup sup Py(®, = O)} (2.14)
® $co,(k) a€(0,1) Ca 3:3€0, (k) BEO1 (k):[|Bllc0>p



A comparison of (2.10) and (2.14) yields the slight difference between the two criteria, as one
depends on a given Type I error a and the other doesn’t.

Moreover, these two papers considered different design scenarios from ours. In Ingster et al.
(2010), only the isotropic Gaussian design was considered. As a result, the optimal tests proposed
therein rely highly on the independence assumption. In Mukherjee et al. (2015), the general binary
regression was studied under fixed sparse design matrices. In particular, the minimax lower and
upper bounds were only derived in the special case of design matrices with binary entries and
certain sparsity structures.

In comparison with the recent works of Sur et al. (2017), Candeés and Sur (2018) and Sur and
Candes (2019), besides the aforementioned difference in the asymptotics of (p,n), these two papers
only considered the random Gaussian design, whereas our work also considered random bounded
design as in van de Geer et al. (2014). In addition, Sur et al. (2017) and Sur and Candes (2019)
developed the Likelihood Ratio (LLR) Test for testing the hypothesis Hy : 85, = fj, = ... = 5, =0
for any finite k. Intuitively, a valid test for the global null and p/n — « € (0,1/2) can be adapted
from the individual LLR, tests using the Bonferroni procedure. However, as our simulations show
(Section 5), such a test is less powerful compared to our proposed test.

Lastly, our minimax results focus on the highly sparse regime k < p? where v € (0,1/2). As
shown by Ingster et al. (2010) and Mukherjee et al. (2015), the problem under the dense regime
where v € (1/2,1) can be very different from the sparse regime. Mostly likely, the fundamental
difficulty of the testing problem changes in this situation so that different methods need to be

carefully developed. We leave these interesting questions for future investigations.

3 LARGE-SCALE MULTIPLE TESTING

Denote by 3 the true coefficient vector in the model and denote Ho = {j : 5; =0,5 =1,--- ,p}, H1 =
{7:8;#0,5=1,---,p}. In order to identify the indices in H, we consider simultaneous testing
of the following null hypotheses

HO,j:ﬁj:() VS. Hl’j:ﬁj%o, 1§]§p

Apart from identifying as many nonzero (3; as possible, to obtain results of practical interest, we
would like to control the false discovery rate (FDR) as well as the false discovery proportion (FDP),
or the number of falsely discovered variables (FDV).

3.1 Construction of Multiple Testing Procedures

Recall that in Section 2, we define the standardized statistics M; = B]- /7j, for j = 1,...,p. For
a given threshold level ¢ > 0, each individual hypothesis Ho; : 3; = 0 is rejected if |M;| > t.
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Therefore for each ¢, we can define

Djen, HIM;| =t}
max { 338y I{|M;] > t},1}’

FDPy(t) = FDRy(t) = Eg[FDP(t)],

and the expected number of falsely discovered variables FDVy(t) = Eg[ > I{|M;| > t}].

J€Ho

Procedure Controlling FDR/FDP. In order to control the FDR/FDP at a pre-specified level
0 < a < 1, we can set the threshold level as

[ ier, LM >t
t1:inf{0§t§bp: Z]EHO {l J| } < }7

e {30 (0] = 1,1) = 31

for some b, to be determined later.

In general, the ideal choice #; is unknown and needs to be estimated because it depends on
the knowledge of the true null Hy. Let Go(t) be the proportion of the nulls falsely rejected by the
procedure among all the true nulls at the threshold level ¢, namely, Go(t) = p% jero THIM;| > th,
where py = |Hp|. In practice, it is reasonable to assume that the true alternatives are sparse. If the

sample size is large, we can use the tails of normal distribution G(t) = 2 — 2®(¢) to approximate

Go(t). In fact, it will be shown that, for b, = \/2logp — 2loglog p, SUPg<t<p, ‘%%g? — 1} — 0 in
probability as (n,p) — oo. To summarize, we have the following logistic multiple testing (LMT)
procedure controlling the FDR and the FDP.

Procedure 1 (LMT). Let 0 < o < 1, b, = y/2logp — 2loglogp and define

N _ pG(t)
t—1nf{0§t§bp. maX{Z?le{‘Mj‘zt}71} §a}. (3.2)

If t in (3.2) does not exist, then let t = \/2logp. We reject Hy ; whenever |M;| > t.

Procedure Controlling FDV. For large-scale inference, it is sometimes of interest to directly
control the number of falsely discovered variables (FDV) instead of the less stringent FDR/FDP,
especially when the sample size is small (Liu and Luo, 2014). By definition, the FDV control,
or equivalently, the per-family error rate control, provides an intuitive description of the Type I
error (false positives) in variable selection. Moreover, controlling FDV = r for some 0 < r < 1 is
related to the family-wise error rate (FWER) control, which is the probability of at least one false
positive. In fact, FDV control can be achieved by a suitable modification of the FDP controlling
procedure introduced above. Specifically, we propose the following FDV (or FWER) controlling
logistic multiple testing (LMTy ) procedure.

Procedure 2 (LMTy ). For a given tolerable number of falsely discovered variables r < p (or a

13



desired level of FWER 0 < r < 1), let tppy = G~ (r/p). Hy j is rejected whenever |M;| > trpv.

3.2 Theoretical Properties for Multiple Testing Procedures

In this section we show that our proposed multiple testing procedures control the theoretical
FDR/FDP or FDV asymptotically. For simplicity, our theoretical results are obtained under the
bounded design scenario. For FDR/FDP control, we need an additional assumption on the interplay
between the dimension p and the parameter space O(k).

Recall that 1; = (9j1,...,njn) | for j = 1,...,p defined in (2.6). We define Fjj, = Eo[nijmie/ f (ui)]
for 1 < j,k < p, and pji, = Fji/\/FjjFrr. Denote B(6) = {(j, k) : |pju| = 6,7 # j} and A(e) =
B((logp)~>7). .

(A5). Suppose that for some € > 0 and ¢ > 0, 3= t)c 4(0)j. ket pﬁ’zﬂi‘ﬂ = 0(p*/(logp)?).

The following proposition shows that M; is asymptotically normal distributed and Go(t) is well
approximated by G(t).

Proposition 1. Under (A2) (A3) and (A4), suppose p = O(n€) for some constant ¢ > 0, k =
o(v/n/log®? p), then as (n,p) — oo,

i >
sup  sup BoMil2t) 1‘ — 0. (3.3)
jeHo 0<t<2Togp| 2~ 2®(t)
If in addition we assume (A5), then
Go(t
0<t<b, | G(1)

i probability, where ® is the cumulative distribution function of the standard normal distribution

and b, = /2log p — 2loglog p.
The following theorem provides the asymptotic FDR and FDP control of our procedure.

Theorem 4. Under the conditions of Proposition 1, for t defined in our LMT procedure, we have

(rorat

FDRy({
lim i()<l, lim Py
apo/p

< <1+ e> =1 (3.5)
(np)—o0  P0 /P (n.p)—o0
for any € > 0.

For the FDV/FWER controlling procedure, we have the following theorem.

Theorem 5. Under (A2) (A3) and (A4), assume p = O(n€) for some ¢ > 0 and k = o(y/n/log®? p).
Let » < p be the desired level of FDV. For tppy defined in our LMTy procedure, we have

lim , )00 %ifpm’) < 1. In addition, if 0 <r <1, we have lim, p)_, o %&%DV) <1.
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The above theoretical results are obtained under the dimensionality condition p = O(n®), which
is stronger than that of the global test. Essentially, the condition is needed to obtain the uniform
convergence (3.3), whose form (as ratio) is stronger than the convergence in distribution in the

ordinary sense (as direct difference).

4 TESTING FOR TWO LOGISTIC REGRESSION MODELS

In some applications, it is also interesting to consider hypothesis testing that involves two separate
logistic regression models of the same dimension. Specifically, for £ = 1,2 and ¢ = 1, ..., ng, where
ni < no, yl@ = f(ﬁ(Z)TXi(L})) + el@), where f(u) =e"/(1+ e"), and el(-é) is a binary random variable
such that 3{”| X ~ Bernoulli(£(3® ' x“)). The global null hypothesis Hy : 31 = ® implies
that there is overall no difference in association between covariates and the response. If this null
hypothesis is rejected, we are interested in simultaneously testing the hypotheses Hy ; : BJ(-D = B](»Q)
for each j =1,...,p.

To test the global null Hy : B = 52 against H; : V) # B2 we can first obtain B](-E) and T](Z)
for each model, and then calculate the coordinate-wise standardized statistics T; = \/é’(:()l) — \/’?532),
for j = 1,...,p. Define the global test statistic as T;, = maxj<;<; sz, it can be shovzfn that 17che
limiting null distribution is also a Gumbel distribution. The « level global test is thus defined as
®,(Ty) = I{T;,, > 2logp — loglogp + qu }, where g, = —log(m) — 2loglog(1 — «)~!. For multiple
hypotheses testing of two regression vectors Ho ; : ﬁj(l) = ﬁj(?) for j = 1,...,p, we consider the test
statistics T defined above. The two-sample multiple testing procedure controlling FDR/FDP is

given as follows.

Procedure 3. Let 0 < a < 1 and define { = inf {O <t < by: {prGl(t{)|T > 1} < a}. If the
max j=1 jlZty,

above t does not exist, let t = \/2logp. We reject Hy j whenever |T};| > t.

5 SIMULATION STUDIES

In this section we examine the numerical performance of the proposed tests. Due to the space
limit, for both global and multiple testing problems, we only focus on the single regression setting,
and report the results on two logistic regressions in the Supplementary Materials. Throughout our

numerical studies, sample splitting was not used.

5.1 Global Hypothesis Testing

In the following simulations, we consider a variety of dimensions, sample sizes, and sparsity of the
models. For alternative hypotheses, the dimension of the covariates p ranges from 100, 200, 300 to

400, and the sparsity k is set as 2 or 4. The sample sizes n are determined by the ratio r = p/n that
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takes values of 0.2, 0.4 and 1.2. To generate the design matrix X, we consider the Gaussian design
with the blockwise-correlated covariates so that 3 = ¥ p, where Xp is a p x p blockwise diagonal
matrix including 10 equal-sized blocks, whose diagonal elements are 1’s and off-diagonal elements
are set as 0.7. Under the alternative, suppose § is the support of the regression coefficients 3 and
|S| =k, we set |B;| = pl{j € S} for j =1,...,p and p = 0.75 with equal proportions of p and —p.
We set kg = 0 and k1 = 0.5.

To assess the empirical performance of our proposed test (”Proposed”), we compare our test
with (i) a Bonferroni procedure applied to the p-values from univariate screening using MLE
statistic ("U-S”), and (ii) to the method of Sur et al. (2017); Sur and Candes (2019) ("LLR”) in
the setting where » = 0.2 and 0.4.

Table 2 shows the empirical type I errors of these tests at level & = 0.05 based on 1000
simulations. Figure 1 shows the corresponding empirical powers under various settings. As we
expected, our proposed method outperforms the other two alternatives in all the cases (including
the moderate dimensional cases where r = 0.2 and 0.4), and the power increases as n or p grows.
In the rather lower dimensional setting where » = 0.2, the LLR performs almost as well as our

proposed method.

Table 2: Type I error with a = 0.05 for the proposed method (Proposed), the Bonferroni corrected
univariate screening method (U-S) and the Bonferroni corrected likelihood ratio based method of
Sur and Candes (2019) (LLR), for different n,p and k.

k=2 k=4

P/" — 700 200 300 400 p =400 600 800 1000
Proposed

02 0052 0066 0.042 0.054 0.058 0.050 0.046 0.070

04 0038 0054 0.062 0054 0.046 0.050 0.060 0.074

12 0026 0044 0.042 0.045 0.014 0.044 0.054 0.054

U-S

0.2  0.040 0.032 0.024 0018 0.018 0.022 0.028 0.034

04 0050 0032 0.024 0020 0.028 0.028 0.032 0.046

12 0028 0.038 0024 0.020 0032 0018 0.034 0.014
LLR

0.2 0050 0.050 0.068 0.040 0.058 0.044 0.046 0.034

04 0084 0070 0.048 0.056 0.062 0.042 0.058 0.064

5.2 Multiple Hypotheses Testing

FDR Control. In this case, we set p = 800 and let n vary from 600, 800, 1000, 1200 to 1400, so
that all the cases are high-dimensional in the sense that p > n/2. The sparsity level k varies from
40, 50 to 60. For the true positives, given the support S such that |S| = k, we set |5;| = p1{j € S}

for j =1, ...,p with equal proportions of p and —p. The design covariates X;’s are generated from
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Figure 1: Empirical power with a = 0.05 for the proposed method (Proposed), the Bonferroni
corrected univariate screening method (U-S) and the Bonferroni corrected likelihood ratio based
method of Sur and Candes (2019) (LLR). Top panel: k& = 2; bottom panel: k = 4.

a (| X;" B| < 3)-truncated multivariate Gaussian distribution with covariance matrix ¥ = 0.01%,
where 3 is a p X p blockwise diagonal matrix of 10 identical unit diagonal Toeplitz matrices whose
off-diagonal entries descend from 0.1 to 0 (see Supplementary Material for the explicit form). The
choice of kg and k; are the same as the global testing. Throughout, we set the desired FDR, level

as o = 0.2.

0.3~

0.0-
BY Knockoff LmT LMTO uls
method

Figure 2: Boxplots of the empirical FDRs across all the settings for a = 0.2.

We compare our proposed procedure (denoted as ”LMT”) with following methods: (i) the basic
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Figure 3: Empirical power under FDR o = 0.2 for p = 3 (top) and p = 4 (bottom).

LMT procedure with b, in (3.2) replaced by oo ("LMT0"), which is equivalent to applying the BH
procedure (Benjamini and Hochberg, 1995) to our debiased statistics Mj, (ii) the BY procedure
(Benjamini and Yekutieli, 2001) using our debiased statistics M; ("BY”), implemented using the R
function p.adjust(...,method="BY"), (iii) a BH procedure applied to the p-values from univariate
screening using the MLE statistics ("U-S”), and (iv) the knockoff method of Candeés et al. (2018)
("Knockoff”). Figure 2 shows boxplots of the pooled empirical FDRs (see Supplementary Material
for the case-by-case FDRs) and Figure 4 shows the empirical powers of these methods based on
1000 replications. Here the power is defined as the number of correctly discovered variables divided
by the number of truly associated variables. As a result, we find that LMT and LMTO correctly
control FDRs and have the greatest power among all the cases. In particular, the power of LMT
and LMTO are almost the same, which increases as the sparsity decreases, the signal magnitude p
increases, or the sample size n increases, while LMTO has slightly inflated FDRs. The U-S method,
although correctly controls the FDRs, has poor power, which is largely due to the dependence

among the covariates.

FDV Control. For our proposed test that controls FDV (denoted as LMTYy/ ), by setting desired
FDV level r = 10, we apply our method to various settings. Specifically, we set p = 3, p €
{800, 1000, 1200}, set k € {40,50,60}, and let n vary from 400, 600, 800 to 1000. The design
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covariates are generated similarly as the previous part. The resulting empirical FDV and powers
are summarized in Table 3. Our proposed LMTy, has the correct control of FDV in all the settings

and the power increases as n grows, k decreases, or p decreases.

Table 3: Empirical performance of LMTy, with FDV level r = 10.

i Empirical FDV Empirical Power
p P n =400 600 800 1000 | 400 600 800 1000
40 407 545 644 711|008 023 040 0.59
800 50 430 629 7.27 826|006 0.16 0.32 0.49
60 433  6.63 T7.48 842|005 0.12 025 0.42
40 330 459 579 6.82 | 0.06 0.18 0.35 052
31000 50 349 542 643 7.03 005 0.13 026 0.43
60 3.68 547 7.29 7.97 | 0.03 0.09 020 0.34
40 260 436 500 5.68 | 0.05 0.15 031 0.46
1200 50 2.97 422 573 6.43 |0.03 0.11 021 0.36
60 978 491 591 7.25|0.02 007 016 0.27

6 REAL DATA ANALYSIS

We illustrate our proposed methods by analyzing a dataset from the Pediatric Longitudinal Study
of Elemental Diet and Stool Microbiome Composition (PLEASE) study, a prospective cohort study
to investigate the effects of inflammation, antibiotics, and diet as environmental stressors on the
gut microbiome in pediatric Crohn’s disease (Lewis et al., 2015; Lee et al., 2015; Ni et al., 2017).
The study considered the association between pediatric Crohn’s disease and fecal metabolomics by
collecting fecal samples of 90 pediatric patients with Crohn’s disease at baseline, 1 week, and 8 weeks
after initiation of either anti-tumor necrosis factor (TNF) or enteral diet therapy, as well as those
from 25 healthy control children (Lewis et al., 2015). In details, an untargeted fecal metabolomic
analysis was performed on these samples using liquid chromatography-mass spectrometry (LC-MS).
Metabolites with more than 80% missing values across all samples were removed from the analysis.
For each metabolite, samples with the missing values were imputed with its minimum abundance
across samples. To avoid potential large outliers, for each sample, the metabolite abundances were
further normalized by dividing 90% cumulative sum of the abundances of all metabolites. The
normalized abundances were then log transformed and used in all analyses. The metabololomics
annotation was obtained from Human Metabolome Database (Lee et al., 2015). In total, for each

sample, abundances of 335 known metabolites were obtained and used in our analysis.
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6.1 Association Between Metabolites and Crohn’s Disease Before and After Treat-

ment

We first test the overall association between 335 characterized metabolites and Crohn’s disease by
fitting a logistic regression using the data of 25 healthy controls and 90 Crohn’s disease patients
at the baseline. We obtain a global test statistic of 433.88 with a p-value < 0.001, indicating a
strong association between Crohn’s disease and fecal metabolites. At the FDR < 5%, our multiple
testing procedure selects four metabolites, including C14:0.sphingomyelin, C24:1.Ceramide.(d18:1)
and 3-methyladipate/pimelate (see Table 4). Recent studies have demonstrated that sphingolipid
metabolites, particularly ceramide and sphingosine-1-phosphate, are signaling molecules that reg-
ulate a diverse range of cellular processes that are important in immunity, inflammation and in-
flammatory disorders (Maceyka and Spiegel, 2014). In fact, ceramide acts to reduce tumor necrosis
factor (TNF) release (Rozenova et al., 2010) and has important roles in the control of autophagy,
a process strongly implicated in the pathogenesis of Crohn’s disease (Barrett et al., 2008; Sewell
et al., 2012).

We next investigate whether treatment of Crohn’s disease alters the association between metabo-
lites and Crohn’s disease by fitting two separate logistic regressions using the metabolites measured
one week or 8 weeks after the treatment. At each time point, a significant association is detected
based on our global test ( p-value < 0.001). One week after the treatment, we observe six metabo-
lites associated with Crohn’s disease, including all four identified at the baseline and two additional
metabolites, beta-alanine and adipate (see Table 4). The beta-alanine and adipate associations are
likely due to that beta-alanine and adipate are important ingredients of the enteral nutrition treat-
ment of Crohn’s disease. However, it is interesting that at 8 weeks after the treatment, valine,
C16.carnitine and C18.carnitine are identified to be associated with Crohn’s disease together with
3-methyladipate/pimelate and beta-alanine. It is known that carnitine plays an important role in
Crohn’s disease, which might be a consequence of the underlying functional association between
Crohn’s disease and mutations in the carnitine transporter genes (Peltekova et al., 2004; Fortin,
2011). Deficiency of carnitine can lead to severe gut atrophy, ulceration and inflammation in an-
imal models of carnitine deficiency (Shekhawat et al., 2013). Our results may suggest that the

treatment increases carnitine, leading to reduction of inflammation.

6.2 Comparison of Metabolite Associations Between Responders and Non-Responders

To compare the metabolic association with Crohn’s disease for responders (n = 47) and non-
responders (n = 34) eight weeks after treatment, we fit two logistic regression models, responder
versus normal control and non-responder versus normal control. Our global test shows that there is
an overall difference in regression coefficients for responders and for non-responders when compared
to the normal controls (p-value < 0.001). We next apply our proposed multiple testing procedure

to identify the metabolites that have different regression coefficients in these two different logis-
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Table 4: Significant metabolites associated with Crohn’s disease (coded as 1 in logistic regression)
at the baseline, one week and 8 weeks after treatment with FDR < 5%. The refitted regression
coefficients show the direction of the association.

Disease Stage HMDB ID  Synonyms Refitted Coefficient

00885 C16:0.cholesteryl ester 4.45

. 12097 C14:0.sphingomyelin 1.74
Baseline 04953 cz4:1.cerariide.y(d18:1) 4.25
00555 3-methyladipate/pimelate -12.82

06726 C20:4.cholesteryl ester 2.17

12097 C14:0.sphingomyelin 2.06

Woek 1 04949 C16:0.Ceramide.(d18:1) 0.87
00555 3-methyladipate/pimelate -6.10

00056 beta-alanine 2.95

00448 adipate -4.50

00883 valine 1.40

00222 C16.carnitine 0.58

Week 8 00848 C18.carnitine 0.39
00555 3-methyladipate/pimelate -5.95

00056 beta-alanine 0.63

tic regression models. At the FDR < 0.05, our procedure identifies 9 metabolites with different
regression coefficients (see Table 5). It is interesting that all these 9 metabolites have the same
signs of the refitted coefficients, while the actual magnitudes of the associations between responders
and non-responders when compared to the normal controls are different. Besides C24:4.cholesteryl
ester, beta-alanine, valine, C18.carnitine and 3-methyladipate/pimelate that we observe in pre-
vious analyses, metabolites 5-hydroxytryptopha, nicotinate, and succinate also have differential

associations between responders and non-responders when compared to the controls.

7 DISCUSSION

In this paper, for both global and multiple testing, the precision matrix £ = X~ of the covariates
is assumed to be sparse and unknown. Node-wise regression among the covariates is used to learn
the covariance structure in constructing the debiased estimator. However, if the prior knowledge of
2 = I is available, the algorithm can be simplified greatly. Specifically, instead of incorporating the
Lasso estimators as in (2.7), we let v; = W~ 'x; and 7; = ||v||n/(vj,x;) for each j = 1,...,p. The
theoretical properties of the resulting global testing and multiple testing procedures still hold, while
the computational efficiency is improved dramatically. However, from our theoretical analysis, even
with the knowledge of © = I, the theoretical requirement for the model sparsity (k = o(y/n/ log> p)
in the Gaussian case and k = o(y/n/log”?p) in the bounded case) cannot be relaxed due to the

nonlinearity of the problem.
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Table 5: Significant metabolites identified via logistic regression of responder vs normal control
and non-responder vs normal control for FDR < 5%.

Refitted Coefficients

HMDB D Synonyms Responder vs. Non-Responder vs.

Normal Normal
06726 C20:4.cholesteryl ester 0.139 1.854
01043 Linoleic.acid -0.686 -0.388
00472 5-hydroxytryptophan 1.000 1.034
00056 beta-alanine 0.503 2.298
00883 valine 0.628 0.530
00848 C18.carnitine 1.100 0.457
01488 nicotinate -1.936 -4.312
00254 succinate 0.750 1.508
00555 3-methyladipate /pimelate -1.989 -4.209

Sample splitting was used in this paper for theoretical purpose. This is different from other
works on inference in high-dimensional linear/logistic regression models, including Ingster et al.
(2010), van de Geer et al. (2014), Mukherjee et al. (2015) and Javanmard and Javadi (2019), where
sample splitting is not needed. However, as we discussed throughout the paper, the assumptions
and the alternatives that we considered are different from those previous papers. In the case of
high-dimensional logistic regression model, a sample splitting procedure seems unavoidable under
the current framework of our technical analysis without making additional strong structural as-
sumptions such as the sparse inverse Hessian matrices used in van de Geer et al. (2014) or the
weakly correlated design matrices used in Mukherjee et al. (2015). Our simulations showed that
the sample splitting is actually not needed in order for our proposed methods to perform well. It
is of interest to develop technical tools that can eliminate sample splitting in inference for high
dimensional logistic regression models.

As mentioned in the introduction, the logistic regression model can be viewed as a special case
of the single index model y = f(3'z) 4+ € where f is a known transformation function (Yang et al.,
2015). Based on our analysis, it is clear that the theoretical results are not limited to the sigmoid
transfer function. In fact, the proposed methods can be applied to a wide range of transformation
functions satisfying the following conditions: (C1) f is continuous and for any v € R, 0 < f(u) < 1;
(C2) for any uy,uy € R, there exists a constant L > 0 such that |f(u1) — f(ug)| < Llu; — us|; and
(C3) for any constant C' > 0, there exists § > 0 such that for any |u| < C, f(u) > 6. Examples

include but are not limited to the following function classes

o Cumulative density functions: f(zr) = P(X < x) for some continuous random variable X
supported on R. In particular, when X ~ N(0,1), the resulting model becomes the probit

regression.
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o Affine hyperbolic tangent functions: f(x) = %tanh(aa: +b) + % for some parameter a,b € R.

In particular, (a,b) = (1,0) corresponds to f(z) = e*/(1 + €%).
o Generalized logistic functions: f(x) = (1 + e~ %)~ for some a > 0.

Besides the problems we considered in this paper, it is also of interest to construct confidence
intervals for functionals of the regression coefficients, such as ||3||1, ||3||2, or 73 for some given
loading vector 6. In modern statistical machine learning, logistic regression is considered as an
efficient classification method (Abramovich and Grinshtein, 2018). In practice, a predicted label
with an uncertainty assessment is usually preferred. Therefore, another important problem is
the construction of predictive intervals of the conditional probability 7* associated with a given

predictor X*. These problems are related to the current work and are left for future investigations.

8 PROOFS OF THE MAIN THEOREMS

In this section, we prove Theorems 1, Theorem 2 and Theorem 4 in the paper. The proofs of other
results, including Theorems 3 and 5, Proposition 1 and the technical lemmas, are given in our

Supplementary Materials.

Proof of Theorem 1 Define F}j; = E[nlzj/f(uz)} Under Hy, Fj; = 4E[ni2j] = 4/wj;, and by (A3),
c< Fj; <Cfor j=1,...,pand some constant C' > ¢ > 0. Define statistics

~j _ <Uj7€>

and Mj = 2?21 m‘jei/f(ui), j=1,...p.

— ljlln nkj;

and Mn = max; M ]-2, M, = max; M ]2 The following lemma shows that Mn and therefore M,, are

good approximations of M,,.

Lemma 1. Under the condition of Theorem 1, the following events

By = {|Mn — M,| = 0(1)}, By = {|Mn — M,| = 0(10;}9)}7

hold with probability at least 1 — O(p~—¢) for some constant ¢ > 0.

It follows that under the event By N Bs, let y, = 2logp — loglogp + = and €, = o(1), we have
PG(Mn < yp_fn) < PQ(Mn < yp) < PG(Mn < yp+€n)

Therefore it suffices to prove that for any ¢ € R, as (n,p) — oo,

Py(M,, <y,) — exp ( - \/17? exp(—x/2)>. (8.1)



Now define M; = %,j =1,...,p. where Z;; = v%qlﬂv%q\ <Tn}— E[v%eilﬂv%eﬂ < 7,}] for
23

T, = log(p + n), v?j = i/ f(u;) and M,, = max; MJQ The following lemma states that M, is close
to Mn.

Lemma 2. Under the condition of Theorem 1, | M, —M,| = o(1) with probability at least 1—O(p~°)

for some constant ¢ > 0.

By Lemma 2, it suffices to prove that for any ¢t € R, as (n,p) — oo,

Py (]\Z[n < yp) —> exp ( - \/17? exp(—a:/2)>. (8.2)

To prove this, we need the classical Bonferroni inequality.

Lemma 3. (Bonferroni inequality) Let B = U}_, B;. For any integer k < p/2, we have

2k 2k—1
S )T A S PB) < Y ()T A (8.3)
t=1 t=1

where Ay =3 1 < cip<p P(Biy N ... N Byy).

By Lemma 3, for any integer 0 < ¢ < p/2,
2q d
d—1 o
Z(_l) Z P0< ﬂ Ajk> < Pa(lrg;gpMj > yp>

d=1 1<51<...<ja<p k=1
2p—1 d
<Yt ¥ oa(0a). e

d=1 1<j1<.<ja<p

where A;, = {szk > yp}. Now let w;;, = ZAij/,/Fjj for j =1,...,p, and W; = (w; j, ..., w; j,) " for

1 <4 < n. Define ||a||min = minj<;<4 |a;| for any vector a € R%. Then we have

d n
Pf)(ﬂAjk> —Pg( n_l/zzwi
k=1 i=1
Then it follows from Theorem 1.1 in Zaitsev (1987) that

Pg( n~1/2 iwi
=1

21/2”)-

min

> y;/2> < Pe(uNdymm >yl en<1ogp>1/2>

N tn } (8.5)

cod®7, (log p) /2

min

1/2

+ c1d®/? exp { —
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where ¢; > 0 and ¢ > 0 are constants, ¢, — 0 which will be specified later, and Ny =
(Nmys ooy Nmy) is a normal random vector with E(Ng) = 0 and cov(Ng) = cov(Wy). Here d

is a fixed integer that does not depend on n,p. Because logp = 0(n1/5), we can let ¢, — 0

sufficiently slow, say, €, = 1/log’ p/n, so that for any large ¢ > 0,

1/2¢

d5/2 _ n
“ xp cod37,(log p

; =067, (5.6)

Combining (A.8), (A.9) and (A.10), we have

2p—1
Pg(lrilaé( MJQ 2 yp) S Z (_1)d_1 Z PG <||Nd”min Z y;/Q - 6n(10gp)_1/2> + 0(1)'
=I=P d=1 1<j1 <. <ja<p
(8.7)
Similarly, one can derive
2p
P9<1rga§ N} > yp) =D C DY Pe(uNdumm > y;/2+en<1ogp>-1/2) +o(1). (8.8)
=I=P d=1 1<j1 < <ja<p

Now we use the following lemma from Xia et al. (2018).

Lemma 4. For any fixed integer d > 1 and real number t € R,

d
5 (1Nl 2 0 oo ) = (S espl(-1/2)) (1401,

exp
, , NG
1<51 <. <ja<p

It then follows from the above lemma, (A.11) and (A.12) that

2p d
. 1/ 1
i 2 > < BT o Wl _
n,ELnooP9<1r£?§‘pMﬂ y”) <2 (TG Tmew(-t2))

d=1
2p—1 1 1 d
lim Py max M? > > -1 d_1<ex —t 2) ,
i p( g 182 0p) 2 S0 (i)
for any positive integer p. By letting p — oo, we obtain (A.7) and the proof is complete. O

Proof of Theorem 2. The proof essentially follows from the general Le Cam’s method described
in Section 7.1 of Baraud (2002). The key elements can be summarized as the following lemma that
reduces the lower bound problem to calculation of the total variation distance between two posterior

distributions.
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Lemma 5. Let Hi be some subset in an £y bounded Hilbert space and p some positive number.
Let p1, be some probability measure on "y = {6 € ©, 0| = p}. Set P,, = [ Pypdu,(0), Po as the

(posterior) distribution at the null, and denote by ®, the level-a tests, we have

inf sup Py(®n =0) > inf P, (®q =0) > 1 —a—TV(P,,, F),
Do g, Pa

where TV (P,,, Py) denotes the total variation distance between P, and Py.

Now since by definition p*(®,,0,0(k)) > p*(Py,d,X) for any ¥ € O3(k), by Lemma 5, it
suffices to construct the corresponding H; for 8 € ©4(k) and find a lower bound p; = p(n) such
that

Vp < p1 iq{l(lfPMp(an:O)Zl—a—n:d (8.9)

for fixed covariance ¥ = I. In this case, an upper bound for the y?-divergence between P,

and Py, defined as XQ(PuwPO) = (dgl‘;g)Q — 1, can be obtained by carefully constructing the
alternative space Hj. Since TV (f,g) < v/X?(f,g) (see p.90 of Tsybakov (2009)), it follows that
infg, P, (o = 0) > 1 —a — /x3(Py,. Po). By choosing p1 = p(n) such that for any p < p1,

X2(Py,. Po) < n* = (1 — a — 6)%, we have (8.9) holds. In the following, we will construct the
alternative space H; and derive an upper bound of x*(P, ,» Po) where Py corresponds to the null
space Hg defined at a single point § = 0. We divide the proofs into two parts. Throughout, the

design covariance matrix is chosen as 3 = 1.

Step 1: Construction of #;. Firstly, for a set M, we define ¢(M,n) as the set of all the n-
element subsets of M. Let [1: p] = {1,...,p}, so £([1 : p], k) contains all the k-element subsets of
[1: p]. We define the alternative parameter space H; = {ﬁ eRP:B; =pl{jel}forlell

k:)} In other words, H; contains all the k-sparse vectors 3(I) whose nonzero components p are
indexed by I. Apparently, for any 8 € H,, it follows ||8||c = p and H; C O1(k).

Step 2: Control of x?(P, Ty

over ([1 : p|, k). This prior induces a prior distribution 73, over the parameter space H;. For
{0,} = Ho, the corresponding joint distribution of the data {(X;,v;)}, is

. 1 | >
— X )= —— ZeIXillz/2.
f gp( ’Luyl) (27’[’)”p/2 1131 26 2

Py). Let 7 denote the uniform prior of the random index set I

Similarly, the posterior distribution of the samples over the prior 7y, is denoted as

g = H/ Z7y27 7T'H1 - Z Hp layh

,367‘[1 =1
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As a result, we have the following lemma controlling X2<P7m1 JP) = x%(9, f).
Lemma 6. Let p> = 11log (1 + e )kg) where h(n) = [log(n* + 1)]™ and n =1 — a — &, then we
have x%(g, f) < (1 — a — §).

Combining Lemma 5 and Lemma 6, we know that for a,6 > 0 and a4+ 6 < 1, if p =
\/% log (1 + W), then Vp' < p,infe, supgeok):|g|o>p Fo(Pa = 0) > 6. Therefore, it follows
that

p*(a, 8,0(k)) > p*(a, 6,1) = \/Tll log <1 + k2> (8.10)

Lastly, note that for the above chosen p, H; C O1(k) N {B € R? : ||B]l2 < (n'/*logp)~'} when
k < min{p”,/n/log?p} for some 0 < v < 1/2. This completes the proof. O

Proof of Theorem 4. The proof follows similar arguments of the proof of Theorem 3.1 in
Javanmard and Javadi (2019). We first consider the case when ¢, given by (3.2), does not exist. In
this case, £ = /2logp and we consider the event Qy = e I(|M;| > /2logp) > 1} that there
are at least one false positive. In order to show the FDR/FDP can be controlled in this case, we
show that

Py(Q) — 0, as (n,p) = . (8.11)
Note that for j € Hp, we have M; = ﬁ—J = <Uj,’€> + <Uj’_Re> _ {ophjn . Then
I T vl l[vjlln ||vg||n
) R - h
Py(p) < Pe( Z I<<vj’€> + (g, Re) - (v, B} > \/210gp> > 1>
i \Mvilla gl [0l
. R h .
+P9(ZI<<UJ’E>+<”]’ ¢) _ v hgin g-@) 21>. (8.12)
S vl gl [0

For any € > 0, we can bound the first term by

Pa(ZI( i) ”J’Re>—<”j’h‘j>“zm> 21>

2 ol T ol ol
- Jh_; i R
:p9<ZI<sz STogp + L Boiln (0, e>>21>
it [vjlln [[vjlln
. h; iR
< P9< 3 1<Mj > \/210gp—6> > 1> +P9<max Wi hgin (v, Re) | e>
=t i€to | [vjlln [vjlln
- (vj;hj)n  (vj, Re) )
<pmax Py| M; > +/2logp — € —}—P(max — >e€
pje?-to 9( J &P > ’ J€EHo v5]|n vl

By the proof of Lemma 1, we know that Pg(maxjeyo }(v' hojn _ (v;.Re) } > 6) — 0. In addi-

llvjlln llvjlln

tion, for j € Ho, Pg(Mj > 2logp —€) < Pg(Mj > 2logp — 2€) + P9(|Mj — M;| > e),
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where maxjcy, Po(|M; — M;| > ¢) = O(p~°) for some sufficiently large ¢ > 0. Now since

Mj = —Zy:ln%z/jf(ui) where Eiqu/%(jui) =0 and Var(qu%iLi)) =1, by Lemma 6.1 of Liu (2013),

we have Supo<i<4,/logp ‘% — 1‘ < C(logp)~t. Now let t = \/2Iogp — 2¢, we have

. G(v/21 —2
P@(MjZ\/QlOgPQE) < G(v/2logp —2¢) + C ( Ing 6).
ogp
Hence pmax;cy, Po (]\ij > 2logp — e) < CpG(v/2logp — 2¢) + O(p~©), which goes to zero as
(n,p) — oo. By symmetry, we know that the second term in (8.12) also goes to 0. Therefore we
have proved (8.11).
Now consider the case when 0 < < b, holds. We have

. e HIM;| > 1 i
FDPy() = Zfej;‘o (M) 2 &) < ppOG() —(1+ Ap),
max{zj:11{|Mj| > t},1} max{zj:1]{|Mj| > t},1}

o zje’HO I{|M;|>t} _ L. poG(%) < Poa
where A) = supg<;<p, ‘—poG(t) 1‘. Note that by definition max{z;’:l[ﬂMjIZf}J} =5
The proof is complete if A, — 0 in probability, which has been shown by Proposition 1. O
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SUPPLEMENTARY MATERIALS

In the online Supplemental Materials, we prove Theorem 3, 5, Proposition 1, and the technical
lemmas. The technical results and simulations concerning the two-sample tests discussed in Section

4 are also included.
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Abstract

In this Supplementary Material we prove Theorem 3, 5 and Proposition 1 in the main paper
and the technical lemmas. The technical and simulation results of the two-sample tests discussed

in Section 4 of the main paper are included in the appendix.

1 Proofs of Main Results

1.1 Proof of Proposition 1

By similar argument as in Lemma 1, we can prove the following lemma.

Lemma 7. Assume (A2) (A3) and (A4), k = o(v/n/log®? p), then

~ . 1 ~ 1
M, — M| = , M, — Mj| = ,
e =01 ) =)
hold with probability at least 1 — O(p~¢) for some constant ¢ > 0.
For (20), by Lemma 6.1 in Liu (2013), we have

G(t)

max  sup
1<5<P o<i<a/Togp

- 1‘ < C(logp)™2™m (1.1)

for some constant 0 < ;1 < 1/2. So (20) follows from Lemma 7, and the fact that G(¢ +

0(1/y/Togp))/G(t) = 1+ o(1) uniformly in 0 < ¢ < v/2log p.



For (21), it suffices to show that

Zje?—[o I{‘Mj‘ >t}
sup —

1| — 0 in probability. 1.2
0<t<bp poG(t) Y (1.2)

Let 20 < 21 < ... < zg, < 1 and t; = G~ 1(2), where 2 = G(bp), zi = ¢cp/p + c§/3ei5/p with
¢p = pG(by), and d,, = [log((p — cp)/cf,/g)]l/‘S and 0 < § < 1, which will be specified later. We have
G(t;)/G(tiy1) = 1+ o(1) uniformly in i, and to/+/2log(p/c,) = 14 o(1). Note that uniformly for
1<j5<m, G(t;)/G(ti-1) — 1 as p — oo. The proof of (1.2) reduces to show that

Zje?—[o I{’Mj‘ > ti} _
poG(ti)

0<i<d,

1’ —0 (1.3)

in probability. In fact, for each € > 0, we have

> jeng LM, | >t} —Py (| M| >1)] 2

Set I(t) = el . By Markov’s inequality Py(|I(t;)| > €/2) < Egtl)} , and it
suffices to show Z?QOE[I(Q)]Q = o(1). To see this, by (1.1),

]Efz(t) _ ZjEHo[P9(|Mj| > t) - P92(|M]| > t)]
PeG2(t)
N > jkero ki Do(IMG] = ¢ [My| > t) — Py(|M;] > t) Po(|My| > t)]
PaG2(t)
C 1 Py(|M;| > t,|My| > t)
< R Z 2
PoG(t) P (G k) €A, keHo GA(t)
1 Py(|M;| > t,|My| > t)
- iZ» 2 ‘ [ G2(t)
(4,k)€A(e)e:5,k€Ho
C
= poT(t) + 111 (t) + Li2(2).

For (j,k) € A(e)¢ with 5,k € Ho, applying Lemma 6.1 in Liu (2013), we have I12(t) < C(logp)~'~¢
for some £ > 0 uniformly in 0 < ¢ < /2logp. By Lemma 6.2 in Liu (2013), for (j,k) € A(e) with
j, k € Hp, we have

y y 2
Py(|M;| > t,| M| >t §Ct+126xp<—>.
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So that

20pjkl

(t+1) % exp ( t2> <oy Y [Gw) T

1
P2 T 1+ |pjil P2
J O (j,k)EA(e):5,k€Ho

Ii(t) < C—
PO (j ke Ao keto

Note that for 0 <t < by, we have G(t) > G(b,) = ¢,/p, so that by assumption (A5) it follows that

for some €,q > 0,
2[pjkl

Int)<C Z p1+‘pf’“|+q_2 = 0(1/(logp)?).
(4,k)€A(e):5,k€Ho

By the above inequalities, we can prove (1.3) by choosing 0 < § < 1 so that

dp dp
S E[I(t)]? < CD (pG(t:) ' + Cdp[(logp) ™' ~° + (logp) 7]
=0 1=0

=o(1).
O
1.2 Proof of Theorem 3
Define M = T{l(@v’j — Bj), and M) = maxj(M]’.)Q, we have —B;/7; = M} — M;. Thus
5]2/7]2 < 2(MJ’-)2 + 2Mj2, for all j, (1.4)
and
max B3 /77 < 2M,, + 2M,. (1.5)

The main idea for proving Theorem 3 is that, in order to show that M, is “large”, we show that
M; is “small” while max; 532 / Tj2 is “large” under the condition of Theorem 3. In the following,
we consider the Gaussian design and the bounded design separately. For the Gaussian design, we

divide the proof into two parts.

Gaussian Design, Case 1. ||3]2 < (logp)~'/2. 1In this case, 31 X; are iid. N(0,3"2p). By
Lemma 6 in Cai et al. (2014), we have

1<i

2o e 19761 2 e/ B Do) = 0(), (16)
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then (A4), or Pp(maxi<i<y, |8 Xi| < ¢) — 1 for some constant ¢ > 0, holds. Consequently, the

following lemma can be established by similar arguments as the proof of Lemma 1.

Lemma 8. Under the condition of Theorem 3, suppose (A4) hold, then

Py(IM] > /Cologp) = O(p™°) (1.7)

for some constants Cy,c > 0.

By Lemma 8, we have

Py(M,, > Cologp) = O(p~°) (1.8)

for some Cp, c > 0. On the other hand, to bound 7;, we start with the inequality

il _ G
<ﬁjvxj> N \/ﬁ

obtained as (2.10) in the proof of Lemma 1. By (A4), there exists some constant 0 < £ < 1 such
that x < |f(u;)| < 1 — & with high probability. Then it follows that

_ 2
1— ;) < &f (), where §; = m

Thus, since

[0jlln = 12 <

n
=1

(fla) — a0l < (&> Pad = &2,
=1

we have, with probability at least 1 — O(p~©),

;1 oy sl 1+67 G
< (1) IR < o =3, 1.9
Tyl = TS I 1 S n = Uk (1.9)

for some constant C3 > 0. Therefore, since ||8||c > c21/logp/n,

j =

1
maxﬁ?/Tf chﬂ-cg%z:@;logp (1.10)
J n

with probability converging to 1. In particular, when c5 is chosen such that the constant Cy—2Cjy >
4, then under Hi, combining (1.5) (1.8) and (1.10), we have Py(®o(M,) =1) — 1 as (n,p) — oo.

Gaussian Design, Case 2. |32 > (logp)~/2.

1Bllse = \/1IBII3/k Z (klogp)~'/2. (1.11)
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In this case, we have



By (1.6), with probability at least 1 — O(n~°),

. 2Amax (2) 1 1
i ) > 018D BT ogn) R
2 2 U e (8]v/ 2o (2 ToB )2~ 4P/ P50z
Let
L(n) = e~ I1Bll24/2Amax () 10gn/4’
it follows that with probability at least 1 — O(n~°),
. . 1-L
L= i) < af @), where & =+
Thus, with probability at least 1 — O(n™°)
. 14 ¢l/2 18l124/0-5Amax (E) log n
= I ]H < (1+€1/2) 19512 <0y + &5 < Cse 7 (1.13)
(v, %) (M%) vn vn

for some constant C3 > 0. Therefore, for j = argmax |3;|, plug in (1.11) and k = o(/n/log®p),

we have

5212 e~ l1Bl2y/Pmax(Dlogn > 1\ /7 10g2 pe 181123/ 2rmax() logn (1.14)

a~k1gp

with probability at least 1—-O(n~¢). Observe that as long as || 3|2 < C'v/logn for C' = (21/2Amax (X)) !

(which is true since by assumption loglogp < rlogn and [|3|l2 < Cloglogp/+/logn for some
C < (2ry/2Amax(2))71), we have
ﬂ?/v‘f > Cylog?p (1.15)

with probability at least 1 — O(n™°).

Now we show that for the same j = argmax |},
Py((M})* > Cologp) = O(n™°) (1.16)

for some Cj, ¢ > 0. This can be established by the following lemma.

Lemma 9. Under the condition of Theorem 3, if |32 = (logp)~'/2, then for any j = 1,.

Py (MJ' > Clx/logp) =0(n"°) (1.17)
for some constants C1,c > 0.

Therefore, by (1.4) (1.15) and (1.16), we have

M, > M7 > 5Cylog® p — Colog p

N | —
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with probability at least 1 — O(n~¢). Thus Py(®a(M,) =1) = 1 as n — occ.

Bounded Design. The proof under the bounded design follows the same argument as the Case

1 of the Gaussian design, thus is omitted. O

1.3 Proof of Theorem 5

By (20) in Proposition 1, let t = ppy, it follows that as (n,p) — oo,

Py(|M;| > trpy)
G(trpv)

sup
J€Ho

- 1‘ — 0, (1.18)

So that by noting that G(trpy) = r/p, we have as (n,p) — oo,

‘Zje?—{o Py(|Mj] > trpv)
r/p

—po| = 0, (1.19)

which completes the proof of (23). To prove (24), it suffices to note that

FWER() = o 3 1005 20> 1) = U 1512 1) < 3 A2 ),

JjE€EHo JEHo J€Ho

and the final result follows from (1.19). O

2 Proofs of Technical Lemmas

Proof of Lemma 1. We start with the following lemma. In general, we will prove Lemma 1

under more general conditions posed in this lemma.
Lemma 10. If one of the following two conditions holds,

(C1) under Gaussian design, assume (A1) (A3) hold, k = o(y/n/log®p), and | X Bl < c2 for

some constant cag > 0;

(C2) under the bounded design, assume (A2) (A8) (A4) hold, and k = o(y/n/log®? p),

Lemma 10 can be established by combining results from Lemma 11 and Lemma 12 below, which

then
lvilln — La/2

max \/ﬁ i

1<j<p

i probability.

provide some high probability bounds under the Gaussian and the bounded design, respectively.
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Lemma 11. Under the Gaussian design, assume (A1) and (A3) hold, the following events

ao={15 -1 = o(r/22)},

1 . lo
A= { max 21X (4 — )3 = O(k gp) }

1<j<pn n

_ . _ logp
A= { o 15, = 5 lh = 0 (k22 ) .

. klogp
Az = i — Mig =0 5
’ {Hﬁx‘nj i < Vv >}

hold with probability at least 1 — O(p~¢) for some constant ¢ > 0. In addition, if || X ]|cc < c1 for

some constant ¢; > 0 and k = o(n), the following events

A4:{max %—L :O<k‘logp>}’
() f(u) vn

_ lvjlln 12| [ Vklogp
5_{112;%0 W_Fjj =0 nl/4 '

hold with probability at least 1 — O(p~¢) for some constant ¢ > 0.

In particular, in (C1) of Lemma 10, we assume that k& = o(y/n/log®p), so As in Lemma 11
implies Lemma 10 under (C1). On the other hand, under the bounded design, we have the following

lemma.

Lemma 12. Under the bounded design, assume (A2) (A8) and (A4) hold, k = o(n/logp), then
events Ao, A1, Aa (in Lemma 11) and

. logp
AéZ{maX!mjnij\z()(k‘ )},
1,] n

Aﬁl:{max 1A - .1 :O(k: 10gp>}7
©of(as) f (u) n
) vl as2| o (VElog'*p

45 = { 1555 Vn 7| =0 nl/4 ’

hold with probability at least 1 — O(p~¢) for some constant ¢ > 0.

In (C2) of Lemma 10, we assume that k = o(y/n/1og®?p), so event A% in Lemma 12 implies
Lemma 10 under (C2). Now we proceed to prove Lemma 1.

For event By, we first show that

- ~ 1
M; — M;| = 2.2
mjax| J ]| O(@)a ( )
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holds in probability. To see this, note that for any j,

o | (vise) (v (vj,6) Yo mijei/ f(ui)
\M; — M| < +
e P NaT Vb
=T +Ts.

It follows that
1

E'ALI— (2.3)
HUJHn Fj;

el S e

To bound 77, by Lemma 10, we only need to obtain an upper bound of ‘ﬁ Yoy vijei‘. Note that

conditional on X and B, v;j is fixed and v;j¢; are conditional independent sub-gaussian random
variables. In particular, we have E[vi;e;| X, 5] = 0 and E[ 21X, ] < v . Thus, by concentration

of independent sub-gaussian random variables, for any ¢ > 0

1< 5 t2n?
Pz ) <o (- 7))
It then follows that
1 1O t*n?
Pg(n;vijei > t) = /Pg(n ;Uijei > t‘X B)dP 5 < Eexp < a5 U%)
Let t = C'\/logw, we have

1 @ logp) < clogp >
Py < vije; > C < Eexp (2.4)
n ; 7% n 221 1 Z]/n

Now under either (C1) or (C2), we have

n n

£ SR SR
=1

i=1

< max 15/ f (@)% = 15/ 2 ()| = op(1).

To see this, by Lemma 11 and Lemma 12, we have

mae [/ £2(as) — o £2(us)| <
)~ )+
: 72— o(1)
B O(klog?p//n)  under (C1)
"~ | O(klog'?p/\/n) under (C2)

Uz)VhQ] - 7712J|

~—| —~
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with probability at least 1 — O(p~¢). By concentration inequality for sub-exponential random
variables 77% /f2(u;) (see the arguments following (2.26) in the proof of Lemma 10 for more details),

we have

n

P o7 > 0 [R2) = 067

for some C, ¢ > 0. Thus it follows that

1 n
Py ( vl > C> =0(p™).
n =1

1=

for some C, ¢ > 0. Now notice that

= () <2l (o) s =]
e R

< p—1/2C + O(p—c )

=0(p ™),
by (2.18), we have
1 n
Py <\/ﬁ Z%’jﬁi > Cvy 10%P> =0(p ). (2.5)
i=1

Thus, combining with Lemma 10, we have

1 1
T <C,/] . R — -
L= o8P O(logp> 0<v10gp>’

with probability at least 1 — O(p~¢). On the other hand,

1/2
T, < FM

1 < ,
7n sz’jﬁi NV ;m’jei/f(uz‘)

fz [% VZUH

Following the same conditional argument as (2.18), we have

(fz [% ‘f?iﬂzt)ﬂe"p( 257 tfa /n>

o2
Fyj
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Nig Mg 2 _ k2 logp
f’(aji) f(uji)' Under (C2), we have oj; = O(*=262). Then

R N TR N _me) —c
P"(ﬁ;@[ﬂa» fw]zt)gep( #1ogp) 0P )

Let t = klogp/\/n, we have

(e =) o0

Therefore T, = O(&\/%p) = o(1/y/logp) with probability at least 1 — O(p~¢) as long as k =

o(v/n/log®? p). Under (C1), similar argument yields Th = o(1/y/Iog p) with probability at least
1 —O(p~°) as long as k = o(y/n/log?p). Using a union bound argument across j = 1,...,p, we

where a;; =

prove that (2.2) holds in probability. Using the same argument, we can prove

P(;(max |M;| > C\/logp> =0(p™ ). (2.6)
J
Therefore, we have

|M,, — M,| < mjax \MJZ - M]2| < C’(mjax|]\~4j|) : Hl]aX|Mj — M;| = o(1)

with probability at least 1 — O(p~¢). This completes the proof of event B;.
For event B, note that

_ ~ . R . . h_.
|0, — My| < max | N? — M?| < C(max | M) - max (W’J’ eill , 1o, J”). (2.7)
J J J [vjlln [0l[n

To bound max; (v, Re)|/||vj]/n, by Lemma 10 and mean value theorem,

[(vj, Re)| _ | iy vig (f () = f(u))) (@ — w)|
gl Va(E? —op(1))

Under (C1), max; ; |v;;| = Op(v/log p) and thereby

S sy () — () s — )
=1
= O(klog®? p)

n

< 3 (@ — i) - max o] = [.X(3 ~ B[ - O(v/ogp)

=1
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with probability at least 1 — O(p~¢). Thus

max
i lvjlla

(05, Re)| _ , (‘klog™?p
NG

in probability. Under (C2), max; j |v;;| = Op(1) and thereby

f:v@j(f'(ai) — F)) (@ — )| < i(ﬁi —ui)? - max [vi;| = IX(5 = B)II3 - O(1)
i=1 i=1 ’
= O(klogp)
with probability at least 1 — O(p~¢). Thus
R k1
max W = O< \;%p) (2.8)
In general, either (C1) or (C2) implies that
max [(vj, Re)|/[[vj|ln = o(log /% p) (2.9)

with probability at least 1 — O(p™©). On the other hand, to bound max; |[(v;,h_;)|/[|vj|n, by
Proposition 1 (ii) in Zhang and Zhang (2014), we know that if we choose A\ = Cy/logp/n, then
under (C1) or (C2)

(M5 Xk) il C2
max ——— < C1+/2logp, - < —= (2.10)
k25 |17l2 (Mj,x5) — V/n

with probability at least 1 — O(p~¢). Note that

n n n
A5ll2 = | D02 = | D v < 1> Faa? = [[vjlln,
1=1 =1 =1

we have

u :maxw < Civ/2logp (2.11)
k27 [[vjlln

in probability. Therefore under either (C1) or (C2)

n

(v, hj)| -1 CienyT (A [(vj, Xi)n| 5
I PRt - e T
. k1
=~ 5l = 0 “2EL (2.12)

with probability at least 1 — O(p~°). Back to (2.7), note that max; |M,| < max; |M,| + op(1) =
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Op(y/logp), we have

with probability at least 1 — O(p~¢). O

Proof of Lemma 2. The lemma is proved under the Gaussian design. For the bounded design,

by definition Mj is essentially the same as Mj. Note that

1<j<pTZE i€ 1{|vie] > ] < Cn'/? maxE[lv i 1{[v%ei] > 7))
< Cnl/Q(p +n)” maxIEHU € |e\vjsi|]
0]

<Cn'P(p+n)7",

where the last inequality follows from

[wqwﬂ<qu@w%mm%wg@

by sub-gaussianity of v . Hence, if max; ; |U €| <7y, then

Zl-j = v%ei [ 621{|v €| < 1nl]
and thereby
M: — M:| < m Elvle 1{|v0¢ | <
m]ax] J il = 1252 \/TT”; et ifoijeil < Tn}]‘
= EU el V€| 2> T
1255 \/nTN; ‘ {| g n}]‘

< 11 >

gcmﬂ@+nr
=0(1/logp).

Then we have

Pg(ﬂlax ]M] — Mj\ > C(logp)_1> < P<max lvij€il > Tn) =0(p™ ). (2.13)
J i,J
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Now by the fact that
| My, — M| < 2max [M;| max | Mj — M;| + max [M; — M;|?,
J J J
it suffices to apply (2.13) and (2.6) in the proof of Lemma 1. O

Proof of Lemma 6. By definition, we have

X*(g, f) = /—1

_ 1 /(deﬂlﬂ?lp(Xi,yi;B))Q_
(g)2 [Tz, p(Xi, 4i)

_ 2 Z Z H/ zayuﬁ (Xi, y:;8") 1 (2.14)

k BeH, ey i=1 Xi, yl)

Note that

/p(Xi, yi; B)p(Xi, yi; B') (2.15)
wyz
1 //Qexp X Xi+uiX (B+5))
~ (2n)2 1+ exp(X, B)][1 + exp(X;' 8)]
1 / 2 exp(— XTX'+X;(B+/8/))
(271-)17/2 1+ exp(XTﬁ)] 1+ exp(XTﬁ’)]
2exp(—3X; X;)
p/2 / [1+ exp( XTB)H +eXP(XiT5/)]
_ Eh( 5.9 (2.16)

dyi dX i

i

dX;

where in the last equality, the expectation is with respect to a standard multivariate normal random
vector X ~ N(0,I,) and

XT(B+8") X' _1.X"8 _
BXGH B = e ) g, ¢ e P ol
(1+eX B)(14eX F) eXB 4 1eX™F 41

T T
=1+ tanh <X2 5) tanh <X2B )

1
Lemma 13. If (X,Y) ~ N(0,X) with ¥ = o> (
p

X Y
E tanh <2> tanh <2> < 60%p.

/1)) for some 0% < 1, then it follows
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Now since XZ»Tﬁ ~ N(0,kp?), where we can choose p such that kp? < 1. By Lemma 13, let
J = |supp(B) Nsupp(B’)| = |I N I'| be the number of intersected components between 3 and ', we

have
*(9, f) épi >N <1+66T6’> —1= p2 >y <1+6jp2> —1
(k BEH B'eHa () BEH: B'eH

Note that for 8, 8’ uniformly picked from Hi, j follows a hypergeometric distribution
Yy

k\ (p—k
N )
P(J=j)= s =01,k
(%)
Then
2 2 71\n _ 2 6np3J
x“(g,f) <E(1+6p*J)" —1=Eexp(nlog(l+6p°J)) —1<Ee -1

As shown on page 173 of (Aldous, 1985), J has the same distribution as the random variable
E(Z|B,,) where Z is a binomial random variable of parameters (k,k/p) and B, some suitable

o-algebra. Thus by Jensen’s inequality we have

k
Rebn/p’ < (1 — E + keﬁn"’2> .
p p

Let )
2 p
= —log(1+ L
= s (1 )
where h(n) = [log(n? +1)]7' and n =1 — a — §, we have

6np2J 1/h
EebmP Se/("),

so that
(g, f) <’ =(1—a—6)>

Proof of Lemma 9. Note that

) < a | 1g Rl [y bl
i T P T PR T W
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We bound the above three terms one by one. Firstly, by concentration of sub-exponential random

variables 77i2j (see (2.26) in the proof of Lemma 10 for details) and (2.18), we have

Then we have
|<Uj7 €>| < 1/2 Zz 1 nljel/f(ul

lojlln — \/m = IZ"?mez/f Zéz.

Conditional on X and 3, we have E[&]X, 5] = 0 and E[¢2]X, 5] < nZ]/fQ(uz) = wi(n). By

concentration inequality for independent sub-gaussian random variables & |X, B, we have for any

t>0
1 < N t2n2
Py — i >t X, < ~—~nr |-
9<n;¥ ‘*ﬂ em( 23y wm(o

Z Nij — Enz?j

z&gm*>=0@*> (2.17)

It then follows that
P(lzn:§>t> /P<1i§>t‘Xﬁ>dP <E ( o’ )
o\ — i Z = o\ — i 2 ) s S LEXp\ —o~—=n |-
ni= L *0 23 i 2ij(n)
Let t = C'\/log p/n, we have

1 « [log p clogp
Pg(”;& S ) = fexp < 2, aij(n)/n) (2.18)

Now since with probability at least 1 — O(n™¢), a;j(n) < nZ]L( n)~2, or

Py (; Z;Oéij(n) > L(n)_Q% Zﬁ%) =0(n"°),

=1

by (2.17), we have

< Z% ) > CL(n)~ ):()(n—C)
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for some C, ¢ > 0. Now notice that

clogp clogp 1 & _9
E <E — )14 — i < CL
exp( Zz 1 z]/n> o |:exp< 22?—1a1.7/n> {nizlaj _C (n)

clogp 1< _9
+E[exp ( _ )1{ ai; > CL(n) H
2> 0 agi/n n; J
< p—l/(2C’L’2(n)) + O(n—c’)
=0(n™°),
where we used the fact that

pV/OL72 ) - exp(—erB2vIogm) <

for sufficiently small ¢ > 0, as long as ||(||2 = O(logkl)%) and logp > log'™®n. As a result, by

(2.18), we have

Py <\/15 ;Ei > C\/logp> =0(n"°). (2.19)

To bound |(v;, Re)|/||vj|/n, by mean value theorem,

[{vj, Re)| _ n V2SR i (f (i) — f(u)) (i — )|
oslh = Vi /n

Note that max; |v;;| = O(y/log pL~1(n)) with probability at least 1 — O(n™°), thereby

n
<D (@ —w)?- max |vy|
i=1 ’

= [1X(6 = B)[13 - O(L™"(n)y/log p) = O(klog®* pL ™! (n))

(@) — f(up) (@ — ws)

with probability at least 1 — O(n~¢). Since ||8]l2 < C(loglogp) for some C' < 1/2/Anmax(X), we

Vlogn
have 2,
[(vj, Re)| (klog >
B 280 — o 22522 = o(y/log p) (2.20)
1051 L(n)v/n
with probability at least 1 — O(n™¢). Finally, to bound max; |(v;,h_;)|/||vj|ln, by (2.11) we have
he; k1
|<U.77 J>| _ O( ng> — 0(1) (221)
[0l vn
with probability at least 1 — O(n™¢). Combining (2.19) (2.20) and (2.21), we have proven Lemma
9. O
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Proof of Lemma 11. Event Ag and As follows from Corollary 1, 2 and 5 of Negahban et al.
(2010). For the event Aj, by Theorem 1.6 of Zhou (2009), the condition of Lemma 11 implies the
restricted eigenvalue condition, which, by Lemma 2.1 and Figure 1 of van de Geer and Biithlmann

(2009), implies event A;. For event A3, note that under Ay we have

log p

vn

H;%XI??U —nigl = H;SJ@X\XL—J‘(% —7)| < max HXZ',—jHoomJaX 195 — vl < Ck

where the last inequality follows from that fact that

Pg( max X; > +/Clog > ic (2.22)

p

for some sufficiently large constant C, ¢ > 0, which is a consequence of the Gaussian tail probability
bound 1 — ®(z) < 1¢(z) by taking z = /Clogp for some sufficiently large C' > 0.

For event Ay, since || X 8]|c < c2 for some constant ca > 0, there exists some constant 0 < k < 1
such that x < |f(u;)| < 1 — & and thereby f(u;) > k(1 — &) for all i. Ay then follows from the
following lemma, event Ay and (2.22).

Lemma 14. Let f(z) = then uniformly over a,b € R, it holds that

l—i-ez ’

A ‘<max{f(a),f(b)}
fa Fol T f@io)

For event As, by the fact that v;; = 1;;/ f (1), it follows that

1
a—b < ———la—10. 2.23
R (223)

lvilln — Lay2

\/ﬁ JJj
‘ Z i/ f

7112”2] [f(lu) - féi)]

1 @ ,
+ Ezn?j/f(ui)_Fjj
=1

=L+ 1L+ 1.

i=1

1/2

1/2

13 ) 1/2
gl
_*an]/f ul

1/2
1/2
Fj

§’12 viif (@) —

=1

%an]/f ’LL@ -

1/2

1/2 1/2

1
nzl 772] 771] /f ul)

To bound I, note that || XS] < ¢ implies max; f(u;) > 7 for some constant r > 0, and that
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N —nj = X—j ('Y ’YJ) we have

n

1 " .
I3 < Z |75 — il < — > [ = mis > + 215 — migl - |nis]
=1

N 2C+/logp .
< X (A — ~:)I2 X (A — s
< X6 =B+ TR X (- )l
1 R 2C/log p
< X =)l + Ry 21X = )le- (2.24)
Therefore, by event Aj, as long as k < n,

log p log p log p
I2 < Chk CoVk =0(Vk 2.25
2 = Giv— + CoVk NG VEk n ( )

with probability at least 1 — O(p~¢) for some ¢ > 0. By A4 and (2.25), we have, with probability
at least 1 — O(p~©) for some ¢ > 0,

1 p logp log p log p
1 nlgl Ck [ E 77U+0 ] Ck\f C’k:\/ﬁ,

where the last inequality follows from the concentration inequality

< Z% m W)ZO(pC)- (2.26)

To show this, we need to introduce the following norms for random variables. The sub-gaussian

norm of a random variable U is defined as ||U|[y, = sup,;>, ﬁ(E|U|Q)1/q’ and the sub-exponential
norm of a random variable is defined as [|Uly, = sup,>q ¢ ' (E|U|9)Y/9. By definition 7;; are

sub-gaussian with |74, < C' < oo and therefore
1051y, = Sglqul(Elmj!Qq)l/q = Sglf[q*m(E!%\Qq)mq]Q = |[ni;ll7, < C* < o0.
= >

So 77% with ¢ = 1,...,n are i.i.d. sub-exponential random variables. Then (2.26) follows from stan-
dard concentration inequality for sub-exponential random variables (see, for example, Proposition

5.16 in Vershynin (2010)). Similarly, we can show 771‘29' / f(u;) are sub-exponential and therefore

log p
FJj :O< n )

with probability at least 1 — O(p~¢) for some ¢ > 0. Thus, I) + Iy + I3 = O( Vsll‘/)fp). O

= | S ) -
i=1
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Proof of Lemma 12. Events Ay A; and As follow the same argument as in Lemma 11. For

event A%, by Aj, A2 and boundedness of X, we have

. /logp
Hll%x‘nw nij| = m%X‘X i—i (%5 — ) < mzijX, JHoomjaXH’YJ Vil < Ck n

For event A}, by (A4), there exists some constant r > 0 such that f(u;) > r for all i with probability
at least 1 — O(p~°). A} then follows from Lemma 14. For event Af, as the proof of A5 in Lemma

11, we have

1/2 n 1/2

1
nz; 7723 _771] /f ul)
1=

:len;m% [f(;) - f(lléi)]

1 — .
+ anj/f(ui) — Fj;
=1

:I1+IQ+I3.

1/2

To bound I3, note that P(max; f(uz) <r)=0(p~°) , and that 0; —n; = X_;(; —v;), by A,

1 & A
Z |75 — il < - > i = mil* + 2[5 = mig - i)
=1

. 2C .
S*HX—J( = w)l3+ IX (3 =)l
2
SfllXﬁ(v 3 + \fHX*J(’V i)z

1 1 1
< 01k-22 1 0o/ in _ o< k O?’) (2.27)

with probability at least 1 —O(p~¢) for some ¢ > 0. For I;, by A/ and boundedness of X, we have,
with probability at least 1 — O(p~¢) for some ¢ > 0,

n

1 1 1
<=3 iy Oky [ =2F :O<k ng).

Finally, by concentration inequality for sub-exponential random variables 771'2]' / f (u;) for i =1,...,m,

we have
T, log p
=2 S - 1 = 0|
=1
. o e o (VElogt 4 p
with probability at least 1 — O(p~¢) for some ¢ > 0. Thus, I + I + I3 = O( vz £). O
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Proof of Lemma 13. By normalization, we only need to consider (X,Y) with Var(X) =
Var(Y) =1 and EXY = p and prove

X Y
E tanh (02> tanh (02> < 100%p. (2.28)

Note that the inner product
(X,)Y)=EXY

defines a Hilbert space on L?(Q, F, i1). Then the above inequality is equivalent to

<tanh <U2X>,tanh <";/)> < o%(X,Y).

Consider the Hermite polynomials H,(z),x € R,n = 0,1, ... which are defined as

n! da™ ’

so that in particular Ho(z) = 1, Hy(z) = x, Ho(x) = (22—1)/2, and in general H,,(x) is a polynomial

of order n. The Hermite polynomials satisfy the following basic identities

H,(z) = Hp1()
(n+1)Hyy1(x) = xHy(z) — Hy—1(x), (2.29)
Hp(—x) = (=1)"Hn(x),

for all n > 1. For X,Y that are N(0,1) random variables that are jointly Gaussian, it can be
shown (see, for example, Section 2.10 of Kolokoltsov (2011)) that

0 if m # n,

! _ (2.30)
S(EXY)™ if m=n.

(Hn(X), Hn(Y)) = E(Hp(X)Hp(Y)) = {

Now we would like to expand the function tanh(cz/2) in terms of orthogonal Hermite polynomials

as

o0
tanh(ox/2) =Y CnHy(z).
n=0
To calculate the coefficients C),, simply note that

_ (tanh(0X/2), H,(X))  (-1)" oo\ A
Cn= (Ho(X), Ho (X)) (2m)1/2 /taﬂh <>d$n(e ) d.

2
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Denote ¢(z) = e~*°/2, we have

C, = (\_/%n / tanh (?)gf)(")(az)dm

Note that ¢(z) is an even function and tanh(z) is an odd function, so the integrand ¢(™ (z) tanh(oz/2)
is an odd function for all odd n > 0. Therefore Co;, = 0 for any k > 0. Now we calculate for k > 0,

through integration by parts,

—1)2k+1 _1\2k+1
Copry = T / tanh <02x>¢(2k+1)(x)daz _ = tanh(V) ((’;>¢<2’f) (z)da

V2r Var
_ (—1)%+1 (2k+1) <Ul’)
== e tanh 5 o(x)dz.

By the fact that, for any x > 0,
tanh(™ (2/2) < sinh™ (z),

we have

C < (_1)2k+1 . h(2k+1) d
2%+1 S 727r S (oz)¢p(z)dx
1\2k+1
= <\1/)T sinh(oz)¢* ) (2)dx
T

_ \/22? /0 " (o) Hypor (2) (2k + D)l()da

2
— y2k+1,0%/2

9

where the last equation follows from Equation 7.387.1 of Gradshteyn and Ryzhik (2014). As a

result,

<tanh <"2X>,tanh (”2Y > = <gCan(X),goan(y)> — §0§<Hn(X),Hn(Y)>

i 022k+1p2k+1 _ 2 oo (0.2p)2k’+1 02 . )
= = <e ~——~—— =¢7 sinh(c"p).
— (2k +1)! — (2k +1)!

Now since sinh(z) < 2z for 0 < z < 1. To see this, note that

d
d—(sinh(m) —2z) = cosh(z) —2<0
x
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when 0 < < 1. So sinh(z) — 2z takes its maximum at = 0, which is 0. Thus, given the fact
that 02 < 1, we have

sinh(0?p) < 602p, (2.31)
which completes the proof. O
Proof of Lemma 14. Since f(:c) = 6?&;5?:) < (lf;)Q = f(a:) for all z € R, by mean value

theorem, for any a,b € R, we have for some ¢ between a and b,

/(@) = f(®) = la = blf(c) < la—0lf(c) < |a — bl max{f(a), f(D)}

by monotonicity of f(z). The rest of the proof follows from

’_1 ! ’: |f(a) — F(b)]
fla) — f(b) f(a)f(b)

3 Supplementary Tables and Figures of Section 5.2

In Section 5.2 of our main paper, we carried our simulations that compare different methods
that control FDR. The design covariates were generated from a truncated multivariate Gaussian
distribution, whose covariance matrix is a blockwise diagonal matrix of 10 identical unit diagonal

Toeplitz matrices as follows

1 p—2 p—3 1 0
0(p—-1) 10(p-1) ° 10(p-1)

p—2 1 p—2 1 2
T0(p—1) 0(p—1) ' 10(p-1) 10(p-1)
1 2 p—2
| 0 W we-n v WD b

Due to the space limit, we only presented the boxplots for the pooled empirical FDRs across all
the settings. As a complement to Figure 2 in the main paper, the case-by-case empirical FDRs are

shown in Figure 1.

A Technical Results for Two-Sample Testing

In this section, we discuss the implications of our results on single logistic regression problems to

the two-sample settings.
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Figure 4: Empirical FDRs under nominal a = 0.2 for p = 3 (top) and p = 4 (bottom).

A.1 Two-Sample Global Hypothesis Testing

For testing two-sample global null hypothesis
Hy: Y =@ vs. Hy: Y £ 53,

Informed by the previous results, we construct the global two-sample testing procedure as follows.

First we obtain /3 ) and TJ@) for each group, and calculate the coordinate-wise standardized statistics

5(1) 5(2)
g B
\/57_;1) \/57_](2)

for j =1,...,p. Then we calculate the difference the global test statistics is defined as

T; =

— 2
T, = 121;2{})’1’] . (A.1)

The following corollary states the asymptotic null distribution for the global test statistics M,
under bounded design. In particular, we assume the parameters (5(4), E(Z)) for £ = 1,2 come from

the same parameter space O(k). We denote 6 = (31, 21, 3(2) 5(2)),
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Theorem 6. Let T}, be the test statistics defined in (A.1), DY be the diagonal of [EO]~1 and
(fg)) = [DW~2[Z@O]~ DW=1/2. Suppose maxi<i<j<p lﬁg)| < ¢y < 1 for some constant 0 <
co < 1, logp =0O(n") for some 0 <r <1/5. and

1. under the Gaussian design, we assume (A1) (A3) and k = o(/n/ log? p); or
2. under the bounded design, we assume (A2) (A3) and k = o(y/n/ log®/? p).

Then under Hy, for any © € R, Then under Hy, for any x € R,

1
Py(T,, — 2logp + loglogp < =) — exp < — exp(—x/2)>, as (n,p) — oo.

Vs
Based on the limiting null distribution, the asymptotically « level tests can be defined as follows:
o (Tn) = I{T;, > 2logp — loglogp + qa },
where g, = — log(7)—2loglog(1—a)~!. The null hypothesis Hy is rejected if and only if ®,(T},) = 1.

A.2 Two-Sample Multiple Hypotheses Testing

Consider simultaneously testing the two-sample hypothesis
1 2 1 2 .
HO,jiﬁj( ):5]( S Hl,jiﬁj(» )#ﬂj( ), j=1,..,p.

As a consequence of the previous analysis, we propose the following two-sample multiple testing
procedure controlling FDR/FDP or FDV.

Two-Sample FDR/FDP Control Procedure. Define test statistics

7= (6 = 87 Ve

J

for j=1,...,p. Let 0 < a < 1 and define

. , pG(t)
t_mf{ogtgbp'max{zgII{|Tj|2t},1} §a}. (A.2)

We reject Hp j whenever |M;| > t.

Two-Sample FDV Control Procedure. For a given tolerable number of falsely discovered

variables r, let
tAFDV = Gil(r/p). (A3)
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We reject Hy j whenever |T;| > trpy.
The following theorems provide the asymptotic behavior of our proposed testing procedures.

For simplicity, we only consider the bounded design scenario.

Theorem 7. Assume the conditions of Proposition 1 are satisfied for each group of the samples,

we have

FDRy(t
lim i(t) <1 lim Py

<1, §1+6>:1. (A.4)
(n,p)—o0 apo/p (n,p)—o00

for any € > 0.

Theorem 8. Suppose the conditions of Theorem 5 are satisfied for each group of the samples, then

lim FDVg(tppv)

< 1. A5
(np)—oo  TPO/D - (4.5)

A.3 Proofs of the Theorems in Appendix A

In this section, to illustrate how the proofs of the one-sample tests extend to the two-sample tests,
we prove Theorem 6 in our Appendix A. The proofs of Theorem 7 and Theorem 8 are similar and

thus are omitted.
Proof of Theorem 6 Define Fj(f) = E[(ng))z/f(uy))] and n < nj < ng. Define statistics

1 2 n 1) (1) /4 1 n 2) (2) y 4/ (2
e @) st S e e )
J B j — -

1 2 ’ J )
bl Lol JmED nyF

for j = 1,...,p, and thereby M,, = max; MJZ,MH = max; MJQ

Lemma 15. Under the condition of Theorem 6, the following events

S P S AR

hold with probability at least 1 — O(p~°) for some constant C,c > 0.

The proof of the above lemma follows directly from the proof of Lemma 1.

It follows that under the event By N Bs, let y, = 2logp — loglogp + = and €, = o(1), we have
PG(Mn < yp_fn) < PQ(Mn < yp) < PG(Mn < yp+€n)

Therefore it suffices to prove that for any ¢ € R, as (n,p) — oo,

Py(M,, <y,) — exp ( - \/17? exp(—x/2)>. (A.6)



Now define

n (1 n ~(2

i = — j = 1, ey P
\/mF j(jl ) \/nQF J'(J2 )

where Z()_Uoz 4)1{|er e)’< ) —E[ 0,0 (z {0 0,0 (e | < 74}] for 7, = log p, o0 _m])/f( (Z)

and M,, = max; M ]2 Equivalently, we can erte

ni+nz
M] = — E Wi J=1..p
ny “
=1
where
7 (1)
w;; = L fori=1,...,n1,
1
s
Jj
and

_ 4o
— \/71 Y , fori:n1+1,...,n1+n2-
n2 \/m

27

By similar statement in Lemma 2, it suffices to prove that for any t € R, as (n,p) — oo,

Py (Mn < yp) —> exp ( - exp(—a;/2)>. (A.7)

1
NG

By Lemma 3 in the main paper, for any integer 0 < ¢ < p/2,

2q d

d—1 , ~r2
> (1) | > | Pa( N A;k> < P9<1r£?§pMj > yp)
d=1 1<51<...<jq<p k=1

2p—1

d
<> (=ptt N Pg( N Ajk>, (A.8)
d=1 1<j1<...<ja<p k=1
where A4;, = {Mfk > yp}. Now let W; = (w;jy, ..., wij,)? for 1 <i < ny + ny. Define ||a|/min =
ming<;<g |a;| for any vector a € R%. Then we have
y§/2>-
min

pg(lﬁAjk> = 7|

n1+n2

1/QZW
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Then it follows from Theorem 1.1 in Zaitsev (1987) that

o

ni1+n2

”;1/2 Z Wz‘

=1

> y;/2> < Py (uNdnmin >yt - enaogp)l/?)

min

nt/?e
+ 1 d®? - Ln , A9
AP adr(logp) 2 (4.9)
where ¢; > 0 and c; > 0 are constants, ¢, — 0 which will be specified later, and Ny =
(Nmys --r, Ny ) is a normal random vector with E(Ng) = 0 and cov(Ng) = cov(W1)+n2/n1cov(Wy, 4+1).

Here d is a fixed integer that does not depend on n,p. Because logp = 0(n1/5), we can let €, — 0

sufficiently slowly, say, €, = 1/ @, so that for any large ¢ > 0,

1/2¢,

c1d?/? exp { — n

o, (10g p) /2 } =0 (A.10)

Combining (A.8), (A.9) and (A.10), we have

2p—1
P9<mafozyp)sZ<—1>“ 3 P9<||Nduminzy;/2—en<logp>1/2)+o<1>.

1<5<
=I=P d=1 1<j1<..<ja<p
(A.11)

Similarly, one can derive

2p
Pe<maxMj22yp)zZ<—1>d—1 > Pe(uNdnmmzy;/2+en<1ogp>—1/2>+o<1>.

1<j<p ) .
d=1 1<j1<...<ja<p
(A.12)
Using Lemma 4 in the main paper, it then follows from (A.11) and (A.12) that
e 1/ 1 d
lim 12 > < B Dl —
T > ) < 30 (o)
2p—1 1 1 d
lim Py max M? > > -1 d_1<ex —t 2) ,
i p( g 182 0p) 2 S0 (i)
for any positive integer p. By letting p — oo, we obtain (A.7) and the proof is complete. O
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