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Abstract

Link prediction is a common problem in network science that cuts across many disciplines. The goal is to forecast the

appearance of new links or to find links missing in the network. Typical methods for link prediction use the topology of the

network to predict the most likely future or missing connections between a pair of nodes. However, network evolution is

often mediated by higher-order structures involving more than pairs of nodes; for example, cliques on three nodes (also called

triangles) are key to the structure of social networks, but the standard link prediction framework does not directly predict these

structures. To address this gap, in recent work, we propose a new link prediction task called “pairwise link prediction” that

directly targets the prediction of new triangles, where one is tasked with finding which nodes are most likely to form a triangle

with a given edge. We extend this work in this manuscript, and we evaluate a variety of natural extensions to link prediction

methods including neighborhood and PageRank-based methods. A key difference from our previous work is the definition

of the neighborhood of an edge, which has a surprisingly large impact on the empirical performance. Our experiments on

a variety of networks show that diffusion-based methods are less sensitive to the type of graphs used and more consistent

in their results. We also show how our pairwise link prediction framework can be used to get better predictions within the

context of standard link prediction evaluation.

Keywords Link prediction · Higher-order methods · PageRank · Neighborhood methods

1 Introduction

Networks are a standard tool for data analysis in which

links between data points are the primary object of study.

A fundamental problem in network analysis is link pre-

diction (Liben-Nowell and Kleinberg 2007; Lü and Zhou

2011a), which is typically formulated as a problem of iden-

tifying pairs of nodes that will either form a link in the
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future (when viewing the network as evolving over time)

or whose connection is missing from the data (Clauset et al.

2008). The link prediction problem has applications in a vari-

ety of domains. For instance, in online social networks of

friendships, predicting that two people will form a connec-

tion can be used for friendship recommendation (Backstrom

and Leskovec 2011). Similarly, predicting new links between

users and items on platforms such as Amazon and Netflix

can be used for product recommendation (Gomez-Uribe and

Hunt 2015). And in biology, link prediction is used to iden-

tify novel interactions between genes, diseases, and drugs

within interaction networks (Lin et al. 2018). In the settings

above, the link prediction problem is oriented around—and

evaluated in terms of—the identification of pairs of nodes

that are likely to be connected. However, there is mount-

ing evidence that the organization and evolution of networks

is centered around higher-order interactions involving more

than two nodes (Milo et al. 2002; Milo 2004; Benson et al.

2016, 2018; Lambiotte et al. 2019). In the case of social

networks, triangles (cliques on three nodes) are extremely

common due to various sociological mechanisms driving

triadic closure (Easley and Kleinberg 2010; Holland and
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Leinhardt 1977; Granovetter 1977; Rapoport 1953). Exist-

ing methods for link prediction are indeed motivated by these

ideas. For instance, the Jaccard similarity between the sets of

neighbors of two nodes—a common heuristic for link pre-

diction (Liben-Nowell and Kleinberg 2007)—measures the

number of triangles that would be created if the two nodes

are linked, normalized by the total number of neighbors of

the two nodes. Still, such methods are used to make pre-

dictions on pairs of nodes, rather than a prediction on the

appearance of the higher-order structures directly. In our

recent paper (Nassar et al. 2019), we develop a framework for

directly predicting the appearance of a higher-order structure

and we focus on the case of triangles. Here, we extend the

methods we propose in Nassar et al. (2019) and our exper-

imental setup in order to be able to predict triangles more

reliably. In particular, the main differences from our previ-

ous paper (Nassar et al. 2019) are listed below.

– We modify our definition of neighborhood methods in

this paper in order to capture predictions on edges that

are not part of any triangles (our previous definitions were

unable to make any predictions on such type of edges).

– We study the convergence and scalability of TRPR

from Nassar et al. (2019), introduce an incremental

update to it (we call the new method TRPRW), and find

that TRPRW outperforms TRPR.

– We change our experimental setup to capture the predic-

tion of adding two edges to the network, whereas in our

previous experimental setup we allowed the prediction

of either edges, or both.

Again, classical link prediction is centered around the fol-

lowing question: given a node u in the network, which nodes

are likely to link to u? This scenario is illustrated in Fig. 1a.

Our framing of the problem is similar, but we instead ask the

following: given an edge (u, v) in the network, which nodes

are likely to connect to both u and v? We call this the pair-

wise link prediction problem, and it is illustrated in Fig. 1b.

There are several scenarios where the pairwise link predic-

tion problem is natural, such as recommending a new friend

to a couple on an online social network, recommending a

movie to a couple in a video site, or predicting an effective

drug given a disease-gene pair. We devise two new algo-

rithms for the pairwise link prediction problem. The first is

based on a variant of seeded (personalized) PageRank that

uses multiple seeds, namely, one seed at each endpoint of

the edge for which we are trying to predict new triadic con-

nections. The second is based on a PageRank-like iteration

that puts more weight on edges that participate in many tri-

angles. In this sense, the method reinforces triangles, and we

call the method “Triangle Reinforced PageRank” (TRPR).

We compare these algorithms to natural extensions of local

similarity measures that are common in link prediction, such

(A) (B)

Fig. 1 a In standard link prediction, we are tasked with finding nodes

that are likely to link to a given node u. b In this paper, we study pairwise

link prediction, where we are tasked with finding nodes that are likely

to form a triangle with a given edge (v,w)

as Jaccard similarity (Liben-Nowell and Kleinberg 2007),

Adamic-Adar similarity (Adamic and Adar 2003), and pref-

erential attachment (Newman 2001). For a given edge, each

of the above methods produces a score for the remaining

nodes in the graph. We find that our proposed diffusion-based

methods are the least sensitive to the graph type and degree

distribution and often produce the top results. We provide

code for all the methods used in this paper in the repository:

https://github.com/nassarhuda/pairseed

2 Motivation

Since a network encodes pairwise relationships (edges)

between elements (nodes), the link prediction problem is nat-

ural in many cases. Nevertheless, recent studies have shown

that networks evolve through higher-order interactions, i.e.,

much of the structure in evolving networks involves interac-

tions between more than just two nodes (Benson et al. 2018).

Recent research has also introduced the problem of predict-

ing the time when an edge addition will close a triangle (Dave

and Hasan 2019). Furthermore, random graph models con-

structed from distributions of triangles have shown to be

good fits for real-world data (Eikmeier et al. 2018), providing

additional evidence that triadic relationships are important to

the assembly of networks. These considerations motivate us

to study higher-order generalizations of the link prediction

problem.

3 Link predictionmethods

We now briefly review some related work in link prediction.

As part of this, we will go over methods that we will gen-

eralize in the next section for the pairwise link prediction

problem. All of these methods assign some similarity score

between pairs of nodes, where a larger similarity is indicative

of pairs that are likely to connect. For notation, we use Γ (u)

to denote the set of neighbors of node u in the graph.
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3.1 Local methods

Several approaches to link prediction are based on local infor-

mation in the graph, namely a score is assigned to a pair of

nodes w and u based on their neighborhoods Γ (w) and Γ (u).

One approach that falls under this category stems from

the idea that as the set of nodes incident to both w and u,

i.e., |Γ (w) ∩ Γ (u)|, increases, the chance that w and u are

connected also increases (Newman 2001). Here, |Γ (w) ∩

Γ (u)| is the number of triangles that would be formed if w

and u were connected. Often, this number is normalized by

the size of the neighborhoods, which gives rise to the Jaccard

similarity between two nodes w and u:
|Γ (w)∩Γ (u)|
|Γ (w)∪Γ (u)| .

The Adamic–Adar similarity measure (Adamic and Adar

2003) is another local score that assigns similarity scores

between pairs of nodes based on the premise that when

the common nodes between two nodes have little impor-

tance (where importance is measured by the logarithm of the

degree), it is more likely that these two nodes are connected.

The Adamic–Adar measure defines the similarity between

two nodes w and u as
∑

z∈Γ (w)∩Γ (u)
1

log(|Γ (z)|) . The loga-

rithm function is used in an analogous way to how it is used

in Information Retrieval, to dampen the importance of high

degree nodes. As an example, the logarithm function will

guarantee that the importance of a node with degree 1000 is

close to the importance of a node with degree 1010, whereas

two nodes with degree 10 and 20, will have more distant

importance score. Even though in both scenarios the degree

difference is the same, the importance difference is not.

There are two methods that are similar to the Adamic–

Adar measure, that we discuss here. The first is the resource

allocation index (Lü and Zhou 2011b), and its only differ-

ence from Adamic–Adar is that it removes the log function

from the denominator of the Adamic–Adar equation. It can

be generalized to perform the pairwise link prediction task

in the same way we generalize the Adamic–Adar index in

Sect. 4.1. The second metric is the Soundarajan Hopcroft

index (Soundarajan and Hopcroft 2012). It uses the same

concept from the resource allocation index but restricts pre-

dictions to happen within communities. This method, too, can

be generalized to perform the pairwise link prediction task

and can be used when community information is present.

A third local method is based on preferential attachment,

where nodes are more likely to connect to established nodes

in the network, and established nodes have a higher chance

to connect to each other (Barabási and Albert 1999; Newman

2001). Using degree as a proxy for how established a node

is, the preferential attachment score between nodes w and u

is |Γ (w)| · |Γ (u)|.

3.2 Global methods

Another set of approaches for link prediction are based on

aggregating (weighted or normalized) path counts of vary-

ing lengths. In contrast to the local methods described above,

these methods use global information about the entire net-

work. For example, the Katz similarity counts the number

of paths between two nodes, weighting paths of length k by

βk (Katz 1953; Liben-Nowell and Kleinberg 2007), where β

is an attenuation parameter between 0 and 1. Another class

of global methods are methods based on diffusions such as

PageRank (Page et al. 1999). Such diffusion methods usually

conserve a seeded amount of “mass” across the network, and

for the task of link prediction, they are typically seeded by

a particular node u. The similarity of u to all other nodes

is then given by the amount of “mass” that diffuses to each

other node. We will make use of PageRank-like methods in

the next section.

4 Pairwise link predictionmethods

We propose several methods for the pairwise link prediction

problem. First, we extend the three local methods described

above to measure node-edge similarity. After, we propose

diffusion-based methods akin to seeded PageRank.

4.1 Local similarity measures for pairwise prediction

In Nassar et al. (2019), we extended the common local

methods for link prediction to the pairwise link prediction

paradigm. Through this extension, we needed to define the

notion of a neighborhood of an edge (u,v). Initially, the

intersection of neighborhoods of the edge’s endpoints was

a natural choice, but in practice the intersection set is very

limiting specially in scenarios when an edge is connected to

the rest of the graph, yet does not participate in any trian-

gles (for instance, Figs. 3 and 5 in Nassar et al. (2019)). So

here, we revise this definition to capture the union of node

neighborhoods rather than the intersection and state it below.

Γ ((u, v))

= {z | z is connected to u, v, or both, but is not u or v}

= Γ (u) ∪ Γ (v) \ {u, v}.

Note that this is akin to the boundary of a set of vertices in the

graph that is often used to define the size of a cut, which—for

an edge—would correspond to the union of neighborhoods.

Using the substitution gives us three similarity measures that

will compute the similarity of an edge to a node.
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– Jaccard Similarity (JS).

JS(w, (u, v)) =
|Γ (w) ∩ Γ ((u, v))|

|Γ (w) ∪ Γ ((u, v))|

– Adamic–Adar (AA).

AA(w, (u, v)) =
∑

z∈Γ (w)∩Γ ((u,v))

1

log|Γ (z)|

– Preferential attachment (PA).

PA(w, (u, v)) = |Γ (w)| · |Γ ((u, v))|

Further, we now introduce other variations of extending the

common local methods for link predictions. Specifically, we

extend the Jaccard similarity and Adamic–Adar measures

to account for a combination of the single link prediction

results. We use the maximum value of the single similarity

score of both endpoints of an edge (u, v) with another node

w, as well as the product of similarity values. We use these

two functions, MAX and MUL, since they are non-linear

combinations of the two single link prediction results. We

state these measure below.

– Jaccard Similarity.

JS–MAX(w, (u, v)) = max(J S(w, u), J S(w, v))

JS–MUL(w, (u, v)) = J S(w, u) · J S(w, v)

– Adamic–Adar.

AA–MAX(w, (u, v)) = max(AA(w, u), AA(w, v))

AA–MUL(w, (u, v)) = AA(w, u) · AA(w, v)

Next, we discuss two methods for pairwise link prediction

based on seeded PageRank, and use a combination of the

single seeded PageRank results to compute a new measure

of similarity between an edge and a node.

4.2 Pair-seeded PageRank

We now restate the pair-seeded PageRank method we use

in Nassar et al. (2019). Seeded PageRank is a foundational

concept in network analysis that models a flow of infor-

mation in a network to predict links and communities on a

network (Andersen et al. 2006; Gleich 2015). Seeded PageR-

ank models information flow from the seed node to other

nodes in the network via a Markov chain, and the stationary

distribution of the chain provides the scores on the nodes.

A high score on a node is a signal that the node should be

connected to the seed node. More formally, let A be the sym-

metric adjacency matrix of an undirected graph, and let P

be the column stochastic matrix of a random walk on that

graph. Specifically, P(i, j) = A(i, j)/|Γ ( j)|. Let u be the

seed node. Then the seeded PageRank scores are entries of

the solution vector x to the linear system

(I − α P)x = (1 − α)eu .

Here, eu is the vector of all zeros, except at index u, where

eu(u) = 1 (i.e., eu is the indicator vector on node u). The

parameter α is the probability of transitioning according to

the probability distribution in P and (1 − α) is the proba-

bility of teleporting according to the probability distribution

in eu . The entries of x can be viewed as similarity scores

between node u and the other nodes, in the same way x is

used in Liben-Nowell and Kleinberg (2007), and thus these

scores can be utilized for standard link prediction.

In the same way seeded PageRank predicts the relevance

of other nodes in the network to a single seed node, we pro-

pose pair-seeded PageRank to predict the relevance of nodes

to a single edge; with these similarities, we are able to make

predictions for the pairwise link prediction problem. For a

given edge (u, v), pair-seeded PageRank solves the follow-

ing linear system:

(I − α P)x = (1 − α)eu,v.

In this case, eu,v is the vector of all zeros, except at indices

u and v, where eu,v(u) = eu,v(v) = 1/2. The solution x

can be interpreted as the similarity of each node to the edge

(u, v). We note that pair-seeded PageRank is equivalent to

the sum of single-seeded PageRank on each of the nodes, up

to a scalar multiple.

Indeed, this is a useful and helpful observation as there are

many systems designed to estimate large seeded PageRank

values for single-seeds by using highly scalable random walk

methods (Lofgren et al. 2016). Thus, this technique could

be used wherever a PageRank-style prediction is already

employed.

4.3 Extensions of single-seeded PageRank

We also use the single seeded PageRank solution of each

endpoint of the edge we are interested in predicting links to

and produce two more metrics for relating an edge to a node,

in the same way we did with local methods. Denote xu , and

xv to be the seeded PageRank solutions for nodes u and v

respectively. Then, we define MAX and MUL as follows.

MAX(u, v) = max(xu, xv) (element-wise maximum)

MUL(u, v) = xu ⊙ xv (element-wise multiplication)
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Fig. 2 Motivating social

network example for the TRPR

algorithm. If all of the friends of

the blue couple know the red

node, it is likely that the red

node knows the blue couple as

well. Running TRPR on the

above example with eu,v as the

seed vector on the blue nodes

reveals that the red node has the

third highest score after the two

blue nodes. After 10 iterations

of Algorithm 1 with α = 0.85,

the output vector assigns a score

of 0.120 to the red node, 0.062

to the black nodes, and 0.252 to

the blue nodes

4.4 Triangle reinforced PageRank (TRPR)

We now revisit our method, triangle reinforced PageRank,

TRPR from Nassar et al. (2019), extend the method to a

weighted version, and introduce an empirical convergence

study on this method. For an unweighted graph, the PageR-

ank solution is highly affected by the degree of nodes in

the network. Here, we reinforce the influence of triangles by

giving edges participating in many triangles a higher weight.

Figure 2 presents a motivating example for the usefulness of

reinforcing triangles.

To develop our TRPR method, we first introduce a tensor

T , that encodes all triangles in a network:

T (i, j, k) =

{

1 if (i, j, k) is a triangle

0 otherwise.

Again, in our derivation, we assume that the graph is undi-

rected so that T is fully symmetric in all permutations of

indices. A typical way to solve the PageRank linear system is

the power method. With TRPR, we modify the power method

by adding a step that redistributes the weights in the net-

work. Specifically, we compute the matrix X̂ = T [x], where

X̂(i, j) =
∑

k T (i, j, k)x(k), which measures the relevance

of edge (i, j) to the distribution of node scores in the vec-

tor x. We then run an iteration of the power method on a

weighted adjacency matrix X = X̂ + A, where the columns

are re-normalized to make the matrix column stochastic.

Algorithm 1 shows the pseudocode.

A weighted version of TRPR. Although TRPR intro-

duces higher weights to edges participating in many triangles

by forming a new adjacency matrix X̂ + A, these weights are

often dominated by the weights in the adjacency matrix A. To

give a fair contribution to these edges, we introduce a scalar

multiple to X̂ . Any scalar multiplied by X̂ that produces a

fair contribution of weights from both, X̂ and A, is what

we are looking for and straightforward scalar we choose is

γ = sum(A)/sum(X̂). This scalar will guarantee that the

Algorithm 1: TRPR

Input: T , adjacency matrix of undirected graph A, α, eu,v,

nb. iterations n

Output: x

x0 = eu,v

for i = 1, 2, . . . , n do

X̂
(i)

= T [xi−1] # i.e., X̂
(i)
r ,s =

∑

k T (r , s, k)xi−1(k)

P i = normalize(X̂
(i)

+ A) # column stochastic

xi = α P i xi−1 + (1 − α)x0

return xn

sum of weights in A and γ X̂ are equal. We present the pseu-

docode of the algorithm of the weighted version of TRPR in

Algorithm 2.

Algorithm 2: TRPR-Weighted

Input: T , adjacency matrix of undirected graph A, α, eu,v,

nb. iterations n

Output: x

x0 = eu,v

for i = 1, 2, . . . , n do

X̂
(i)

= T [xi−1] # i.e., X̂
(i)
r ,s =

∑

k T (r , s, k)xi−1(k)

γ = sum(A)/sum(X̂
(i)

)

P i = normalize(γ X̂
(i)

+ A) # column stochastic

xi = α P i xi−1 + (1 − α)x0

return xn

TRPR and TRPRW can be implemented efficiently.

Although TRPR involves the tensor T , we do not need to form

it explicitly, and we show an alternative derivation here. We

first unwrap one iteration of TRPR. Let Ai = T [xi−1] + A,

at iteration i , and let D
−1
i be the diagonal matrix with the kth

diagonal entry being the inverse of the sum of edge weights

connected to node k in Ai , we can translate xi = α P i xi−1 +

(1 − α)x0 into

xi = α((T [xi−1] + A)D
−1
i )xi−1 + (1 − α)x0

Then,

xi = αT [xi−1]D
−1
i xi−1 + α AD

−1
i xi−1 + (1 − α)x0.

Set yi−1 = D
−1
i xi−1. Then

xi = αT [xi−1]yi−1 + α Ayi−1 + (1 − α)x0.

The relevant computationally expensive pieces to compute

are T [xi−1]yi−1 and the entries of D
−1
i . Both involve the

same type of operation. Using the definition of T [x] we

have that the matrix-vector product z = T [x]y has zi =
∑

j

∑

k T (i, j, k)y( j)x(k). Consequently, if we have any

means of iterating over the triangles of a graph, then we can
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compute T [x]y for any pair x and y in a fashion akin to a

sparse-matrix-vector product but in runtime proportional to

the number of triangles in the graph.

This directly enables us to compute T [xi−1]yi−1. To com-

pute the entries in D
−1
i , note that T [x] is a symmetric matrix

because it can be written as a sum of symmetric matrices

(since T is fully symmetric in all permutations). Thus, the

row-sums of Ai are the vertex-degrees we need to build D
−1
i .

Let e be the vector of all ones; these row sums are computed

as Ai e = T [xi ]e + Ae. Since A is not changing, we only

need to compute the column sums of T [xi ]e at each iteration.

Again, we can use an implicit tensor-vector-vector product

operation to compute the column sums. And thus, all opera-

tions involving the tensor T are linear in terms of the number

of triangles in the network, and we use a fast routine to iterate

through triangles in a graph. For ease of reuse, we provide

the code for TRPR1.

TRPR runs in time proportional to the number of

triangles. We experimentally validate the running time of

TRPR on generalized preferential attachment graphs (Avin

et al. 2015) while varying the size of the graphs. In this

experiment, we vary the edge addition probability pe, and

allow the node addition probability to be 1 − pe. We

use pe values = {0.5, 0.6, 0.7, 0.8, 0.9} and graph sizes

n = {2000, 5000, 10, 000, 20, 000, 50, 000, 100, 000} and

for every pair of (n, pe), we count the number of triangles

produced. In Figure 3, we show the running time in sec-

onds (y-axis) as the number of triangles increases (with the

increase of the edge addition probability) and it shows that

TRPR scales linearly with the increase of the number of tri-

angles and is a fast method when implemented efficiently.

We run TRPR with 10 iterations. While we still seek

a robust convergence theory for the TRPR iteration, at the

moment, we run this algorithm for 10 iterations. This choice

was based on the following experiment, where we study the

ordering of nodes from every iteration. In this experiment,

we study the ordering of the nodes from every iteration and

notice that the order does not change much after just a few

iterations. In Fig. 4, we show the Spearman’s rank correla-

tion coefficient and the Kendall rank correlation coefficient

between two consecutive iterates from TRPR on 4 graphs

from the experiments section. We notice that after a few iter-

ations, 10 iterations, the orderings of the vectors no longer

change (red solid line in Figure 4).

Convergence of TRPR. Convergence of this type of

nonlinear system of equations is theoretically delicate with

bounds that are often insufficient for practice (Benson et al.

2017). As stated, with both starting point and number of

iterations fixed, TRPR produces a unique deterministic and

reproducible set of scores that locally capture the influence of

both the graph and the reinforced triangles. As the number

1 https://github.com/nassarhuda/pairseed/blob/master/trpr.jl

Fig. 3 Time in seconds for running TRPR with 10 iterations on gener-

alized preferential attachment graphs of different sizes as the number

of triangles increases (due to increasing the edge addition probability

in the generalized preferential attachment model). The various colors

correspond to different graph sizes, as shown in the legend. And the

inset figure is a zoom in on the lower left corner of the plot. The shaded

area is 20th and 80th percentiles while the solid line is the median time

after running the same experiment for 20 trials. This figure shows that

TRPR scales linearly with the increase of the number of triangles and

is a fast method which can scale to large graphs

of iterations grows, empirically, we observe that the itera-

tions converge. See our evidence in Fig. 5, where we show

the 1-norm difference (sum of the absolute value of the dif-

ference vector between two consecutive iterates) decay from

two consecutive iterates from TRPR on 4 datasets used in the

experiments section.

5 Experimental setup

We now perform a series of experiments on synthetic as well

as real-world graphs from a variety of disciplines, including

online social networks, communication networks, and bio-

logical interaction networks. We also include experiments

for static networks as well as a temporal network. The main

difference in our experimental setup here from our previous

paper (Nassar et al. 2019), is the focus on predicting both

edges connected to the endpoints of a given edge and we dis-

cuss the details later in this section. Throughout this section,

we use the term seed edge to signify that this is the edge we

would like to make predictions on. When we refer to node

predictions given an edge (u, v), this is analogous to predict-

ing two edges, one from the predicted node to u and another

from the predicted node to v. For a given edge (u, v), we use
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Fig. 4 Spearman’s rank

correlation coefficient and the

Kendall rank correlation

coefficient between consecutive

iterates from TRPR. The solid

plots show the consecutive

correlation values when

truncating the vectors to take the

top 100 nodes, and the dashed

lines compare the orderings in

the full vectors. The vertical red

line represents the 10th iterate.

The text in the figures is the

correlation between the 10th

iterate and the 200th iterate.

These correlations support our

choice of 10 iterations in the

experiments involving TRPR

Fig. 5 1-norm convergence of TRPR on 4 datasets of varying sizes

used in the experiments section. These plots show that TRPR reaches a

steady state experimentally

the Success Probability (SP) measure, which we define as

follows:

SP((u, v), k) =

⎧

⎪

⎨

⎪

⎩

1 if at least one ground truth node w appears in the top k

predictions for edge (u, v)

0 otherwise.

For our experiments, we want to assess the efficacy of the

methods presented so far, and a common way to achieve this

in link prediction problems is by splitting the set of edges of a

graph into two sets (e.g., Liben-Nowell and Kleinberg 2007).

The input graph to our algorithms will be comprised of the

edges in one set (the bigger set), and the remaining edges

(the smaller set) will be treated as missing edges. Then, for a

given edge in the input graph, the goal is to predict nodes that

connect to both endpoints of this edge. To inspect whether

the predicted edges were in fact the relevant edges to predict,

we look in the missing edges set to see if our predictions are

present there.

Each method presented so far gives an ordering of the

nodes based on the similarity scores computed. Our predic-

tion set will be the top k nodes with the highest similarity

scores, and that aren’t already connected to either endpoint

of the seed edge in the input graph. A correct prediction here

would be a node which forms a triangle with the seed edge

using two edges from the missing edges set. For each graph,

we run 500 random experiments and we try to predict links

to 500 randomly chosen seed edges. For each of these exper-

iments, an SP value (0 or 1) is computed, based on whether

we found at least one correct prediction (SP value of 1) or
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not (SP value of 0). The overall score is then computed as

the mean value over all experiments.

The main choice for this measure in contrast to the area

under ROC curve (AUC score) measure we use in Nassar

et al. (2019), is the small number of nodes that we often want

to recover. For a given edge (u, v) in the input graph, the

missing edges set must have the edges (u, w) and (v,w) for

w to be considered a correct ground truth node for recovery.

In subsequent sections, we will see that the number of such

candidate nodes in the set of missing edges is often small (1

in most instances), and thus a measure such as the AUC score

does not fully capture the performance of our methods.

5.1 Leave One Edge’s Triangles Out (LOETO)

The LOETO experiments are akin to the leave-p-out cross

validation method, in the sense that we will leave p edges

out and treat them as missing edges, and the remaining edges

will constitute the input graph. Here, p = (2 × number of

nodes that form a triangle with a randomly chosen edge).

An experimental trial in this setting is designed as follows.

Randomly pick a seed edge in the graph, and find all the

wedges (path of length 2) that form a triangle with this edge.

Next, remove all these wedges and treat them as missing

edges. Figure 6 visualizes this experiment. The graph used

will be the one in panel B of Fig. 6 (the grey dashed edges

no longer appear in the network and the goal is to recover the

connections with the green nodes in the graph). We then use

the pairwise link prediction methods on the seed edge, which

produces an ordering on the nodes, and given this ordering,

we compute the success probability. Since this method leaves

a big portion of the graph in the input graph, we compute its

success probability with top k = 5.

5.2 Hold-out cross validation

In this setup, for a given network, we remove 30% of the

edges and treat them as missing edges, and use the remain-

ing 70% of the edges to constitute the input graph. Note that

we increase the split for our missing edges set from Nassar

et al. (2019) since here, we are interested in finding nodes

that connect to both endpoints of a given edge. And increas-

ing the size of the missing edges set increases the possible

number of nodes that fit this criteria for our algorithms to

find. An experimental trial in this setting is designed as fol-

lows. For a random seed edge in the input graph, we use the

pairwise link prediction methods to predict which nodes will

form triangles with the randomly chosen seed edge. Each

method produces a similarity score on all nodes, and we use

the ordering of the nodes induced by the scores to calculate

the Success Probability with top k values = 5, 25.

We also perform a similar experiment on temporal net-

works with timestamps on the edge arrivals. In this scenario,

(A) (B) (C)

Fig. 6 Illustration of the Leave One Edge’s Triangles Out (LOETO)

experiment. For a given graph (subfigure a), randomly pick an edge

(red edge in subfigure b) and remove all edges that form a triangle with

it (dashed gray lines in subfigure b). Run all our methods on this new

graph. The edges to predict are the ones shown in subfigure c

we split the data based on these arrival timestamps—the first

70% of the edges to appear in time constitute the input graph

to our methods, and the later 30% are treated as missing

edges. In this set of experiments, we perform one more pro-

cessing step to guarantee that the network we will use as

input graph is connected. If the network is disconnected, we

extract the largest connected component.

5.3 Summary of methods and parameter settings

Finally, we summarize all of the methods that we use for

pairwise link prediction.

– Pairseed This is our method described in Sect. 4.2. We

use the implementation from MatrixNetworks.jl

(Nassar and Gleich 2018) with α = 0.85. This imple-

mentation solves the linear system until convergence to

machine precision.

– TRPR This is our method described in Sect. 4.4. We use

α = 0.85 and number of iterations n = 10.

– TRPRW This is the modified weighted version of the

TRPR algorithm described in Sect. 4.4 as well. We use

α = 0.85 and number of iterations n = 10.

– MUL, MAX These are the methods from Sect. 4.3 that

extend the single-seeded PageRank solutions. We use the

same implementation used by Pairseed, with α = 0.85.

– AA, PA, JS For a seed edge, we compute the general-

ized Adamic–Adar, preferential attachment, and Jaccard

similarity scores, respectively (as presented in Sect. 4.1)

between the seed edge and all remaining nodes in the

graph.

– AA–MUL, AA–MAX, JS–MUL, JS–MAX These are the

methods from Sect. 4.1, and they use the single node

similarity from both endpoints of a seed edge to compute

a new measure of similarity.
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Table 1 Statistics of the

real-world datasets used in this

paper

Network name Nodes Edges Triangles Type

Penn94 41536 1362220 7207796 Social

Caltech36 762 16651 119562 Social

Ch-Ch-Miner 1510 48512 568466 Biology

P-P-Pathways 21521 338624 2394642 Biology

email 1133 5451 5343 Communication

CollegeMsg 1899 13838 14319 Temporal

Email-EU 1005 32128 105461 Temporal

Fig. 7 Success probability results for the two biological datasets. In

both datasets, we notice that TRPRW outperforms the remaining diffu-

sion type methods and performs best on the top k predictions metric on

the Ch-Ch-Miner dataset. Another method that stands out in these two

datasets is AA-MUL which is the best method in terms of top k pre-

dictions in the P-P-Pathways dataset, with TRPRW performing worse

than AA-MUL by around 5% on the top k measures

Fig. 8 Success probability results for the two social networks datasets.

In both datasets, we notice that local methods generally outperform

diffusion type methods. This is mainly due to how social networks

grow (Schoenebeck 2013) and the influence of neighbors of nodes for

making new connections. Here too, TRPRW outperforms other diffu-

sion type methods and produces comparable results to the best local

methods on the top 25 and LOETO measures
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Fig. 9 Success probability results for the two networks, email and an

instance of a GPA graph. We group these two graphs together because

they have a very small number of triangles compared to the other net-

works. In these datasets TRPRW does not contribute an improvement

over the other diffusion type methods. In the email network, TRPR per-

forms best in the top k metric, and TRPRW performs best after the PA

method on the GPA graph

Fig. 10 Binary Mean Value results for the two temporal networks, CollegeMsg and Email-EU. The results on temporal networks are generally

worse than the results on static networks, and this can be an indicator that our methods are stronger in predicting missing links rather than future

links

6 Pairwise link prediction results

In all of the results in this section, we report the success prob-

ability from our predictions over 500 random experiments.

We use seven real-world graphs from different disciplines in

this section and give a summary of their statistics in Table 1.

We also use a synthetic graph generated from the generalized

preferential attachment model (GPA) (Avin et al. 2015).

Synthetic graph. generalized preferential attachment

(GPA) (Newman 2001) is a synthetic graph generation model

that generalizes the classical preferential attachment model

to allow for the addition of new components at each step of

the algorithm. For our experiments, we generate a graph with

5000 nodes and allow the event of node addition with prob-

ability 1/2, and we allow the event of edge addition with

probability 1/2. The starting graph structure is a clique of

size 5. At each step of the graph generation process, an edge

or node is added by attaching proportionally to the degrees

of the existing nodes.

Real world graphs. We use various real world graphs

to test our methods and provide statistics about them in

Table 1. Penn94 and Caltech36 are online social networks

from the Facebook100 collection of datasets (Traud et al.

2012). These two datasets are the biggest and smallest net-

works in terms of number of nodes respectively from this

collection. Ch-Ch-Miner is a biological network of drug

(chemical) interactions (Wishart et al. 2017; Stanford SNAP

Group 2017). P-P-Pathways is a biological network of phys-

ical interactions between proteins in humans (Agrawal et al.

2018). email is an email communication network (Guimerà

et al. 2003). Finally, CollegeMsg (Panzarasa et al. 2009)

and email-EU (Panzarasa et al. 2009) are temporal net-
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works representing private messages (CollegeMsg) or emails

(email-EU) between users in a network.

Results. We show the results of all methods in Figs. 7, 8, 9,

and 10. Overall, we notice that the diffusion methods have

more consistency in performance compared to local mea-

sures. For instance, AA-MUL — which is one of the best

performers on some datasets (P-P-Pathways in top 25 and

top 5 metrics) — drops to be one of the worst performers

in the top 25 metric on the email dataset. PA is the best per-

former on the GPA model, but drops to be the worst performer

on all other graphs. In contrast, TRPRW performs best on the

Ch-Ch-Miner and email datasets but never drops to be one of

the worst methods on any of the datasets. Temporal graphs

(CollegeMsg and Email-EU) both suffered from lower top

k scores as compared to static graphs, which suggests that

our methods are possibly stronger in detecting missing links

rather than future links. Upon further investigation on the

temporal graphs, we found that most of the top k predictions

were at least two hops away from the seed edges. In the tem-

poral data, these wedges (length-2 paths) did not close to

form triangles and thus the prediction was incorrect accord-

ing to the timestamped data. TRPRW seemed to improve the

performance of TRPR in general but did not contribute an

improvement on the email and GPA networks. Upon looking

closely at these two networks, we found that the number of

triangles is very small and thus using the unweighted TRPR

version which is close in performance to Pairseed, is more

ideal on datasets that do not contain many triangles.

To summarize, the diffusion type methods (Pairseed,

TRPR, and TRPRW) seem to have the most consistent results

across all experiments, with TRPRW performing better when

the number of triangles in the network is large. In contrast,

local methods (such as ones related to Adamic–Adar and

the Jaccard similarity) seem to be reliable for predictions on

social networks specifically and this mainly related to how

social networks grow (Schoenebeck 2013).

7 Back to standard link prediction

In this section we bring our attention back to the standard link

prediction problem and show how the methods we presented

in this paper can also be used to further enhance standard

link prediction. We split our data in the same way to the

previous experiments except that here we use an 80–20 split.

This is because we no longer need to find paths of length 2

for prediction purposes and we can thus increase the set of

missing edges by 10%. Then, for the top 100 nodes with the

largest degree in the input graph, we perform different types

of seeded PageRank diffusion for link prediction on these

nodes. This choice of nodes serves the purpose of identifying

nodes that have a higher chance of making connections in the

Table 2 Description of methods inspired by pairwise link to perform

the standard link prediction task

sum� For a certain node i , aggregate the

pair-seeded PageRank results

from all edges adjacent to i . This

is equivalent to performing

PageRank with a normalized

initial vector valued 1 at the

indices of all the neighbors of i ,

and degree(i) at index i .

max• This is similar to the previous

approach, but here, we instead

take the element-wise maximum

value of the pair-seeded

PageRank vectors.

star-seed+ This is similar to pair-seeded

PageRank, except that we start

PageRank with a normalized

initial vector valued 1 at the

index of the seed node and all its

neighbors.

TRPR� This uses the same starting vector

used by star-seed, but instead,

applies the TRPR algorithm on it.

test data. We measure performance in terms of Area Under the

ROC curve (henceforth, AUC score). Our baseline is single-

seeded PageRank.

Our results on pairwise link prediction suggest that mul-

tiple seeds with PageRank-like methods are effective for

prediction. Here, we consider four different multiple-seeding

strategies and compare them to single-seeded PageRank for

the classical link prediction problem. We summarize the four

new methods in Table 2. The methods sum, max, and star-

seed are motivated by the double seeding idea used in the

previous sections.

We use real-world networks from Sect. 6, and present our

results in Fig. 11. The scatter plots compare the AUC score

of the neighborhood-based seeding methods to the AUC

scores from single-seeded PageRank. These results suggest

that neighborhood-based seeding is superior to single-seeded

PageRank as a link prediction method.

8 Discussion and future work

Link prediction is a well-studied research topic due to its util-

ity in many disciplines. Traditional link prediction methods

aim to find pairs of nodes that are likely to form a link. Here,

we studied a higher-order version of the problem called pair-

wise link prediction where we predict nodes that are likely

to form a triangle with an edge.

In our previous work, (Nassar et al. 2019), we gen-

eralized local link-prediction methods and we developed

two PageRank-based methods for this problem. In this
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Fig. 11 Results of standard link

prediction experiment on four

real-world networks. Each

scatter plot shows the link

prediction AUC results of 100

experiments of methods inspired

by our pairwise link prediction

proposal with respect to the

AUC scores of single-seeded

PageRank. The solid black line

is the plot of f (x) = x . Points

above the line are cases where

our proposed methods have

superior performance to

standard single-seeded

PageRank. We see that in most

cases the four methods

outperform the classical seeded

PageRank method. This study

suggests that it is useful to

consider a node’s neighborhood

for the purposes of seeding for

link prediction with PageRank.

The values in the legend serve as

a summary performance

measure, which is the average

distance to the f (x) = x line

manuscript, we revised our generalizations of the local

link-prediction methods and added new extensions to these

methods. Further, we included a more detailed analysis of

the convergence and scalability of TRPR from Nassar et al.

(2019), and introduced an incremental update to it, namely

TRPRW. In general, the PageRank-based methods remained

consistent in behavior on a variety of datasets. Using these

results as inspiration, we then developed multiple-seeding

strategies for PageRank in classical link prediction, which

outperform their standard single-seeded counterparts.

TRPR (Triangle Reinforced PageRank) is our new prin-

cipled method for the task of pairwise link prediction. We

demonstrated that TRPR is computationally efficient; the

implementation details of TRPR can improve on the ide-

alized algorithm by taking advantage of a triangle iterator

that avoids building a tensor. We also presented a weighted

version of TRPR (TRPRW) which gave equal weighting con-

tributions from edges and triangles. We note that highly

efficient implementations of our procedures are possible

given their close relationships with traditional PageRank

methods. Scaling to billions of nodes and edges is simply

not a problem given current abilities to compute PageRank

(e.g., Lofgren et al. 2016), and especially that we have an

existing routine to iterate through triangles in a graph quickly.

Even though we do not provide theoretical evidence on the

convergence of TRPR, we presented a discussion that shows

that, in fact, TRPR appears to converge and reach a steady

state empirically.

In this paper, we focused on the problem of predicting

a node to connect to the endpoints of a given edge, and an

alternate problem is to predict an edge that is important when

given a single node. We intend to extend this work to the

latter scenario by adapting TRPR to this purpose. TRPR can

be adapted by fixing one seed node and using the values

in the matrix X̂
(i)

from Algorithms 1 and 2 as similarity

measures between edges and the seed node. Finally, the work

we present in this paper provides a framework for higher-
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order link prediction that is not limited to triangles, and the

space of higher-order prediction problems has limitless sub-

structure.
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