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Abstract. Let Tn denote the binary tree of depth n augmented by an extra edge connected to its root. Let Cn denote the cover time
of Tn by simple random walk. We prove that the sequence of random variables

√
Cn2−(n+1) − mn, where mn is an explicit constant,

converges in distribution as n → ∞, and identify the limit.

Résumé. Soit Tn l’arbre binaire de profondeur n, augmenté par une arête attachée à la racine. Soit Cn le temps de recouvrement de
Tn par une marche aléatoire simple. Nous montrons que la suite de variables aléatoires

√
Cn2−(n+1) − mn, avec mn une constante

explicite, converge quand n → ∞. Nous identifions la limite.
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1. Introduction

We introduce in this section notation and our main results, provide background, and give a road map for the rest of the
paper.

1.1. Notation and main result

Let Tn denote the binary tree of depth n, whose only vertex of degree 2 is attached to an extra vertex ρ, called the ROOT.
The COVER TIME Cn of Tn is the number of steps of a (discrete time) simple random walk started at ρ, till visiting all
vertices of Tn. We write SRW for such a random walk. The main result of this paper is the following theorem, which gives
convergence in law of a (normalized) version of the cover time Cn.

Theorem 1.1. Let C′
n := 2−(n+1)Cn, and set

mn := ρnn, ρn := c∗ − logn

c∗n
, c∗ =

√
2 log 2. (1.1)

There exist a random variable X′
∞ > 0 and α∗ > 0 finite, so that, for any fixed y ∈ R,

lim
n→∞ P

(√
C′

n − mn ≤ y
)
= E

(
exp

{
−α∗X′

∞e−c∗y
})

:= P
(
Y ′

∞ ≤ y
)
. (1.2)
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That is, the normalized cover time
√

C′
n − mn converges in distribution to Y ′

∞, a standard Gumbel random variable
shifted by log(α∗X′

∞) then scaled by 1/c∗. See Lemma 1.4 for a description of the random variable X′
∞ in terms of the

limit of a derivative martingale.
As is often the case, most of the work in proving a statement such as Theorem 1.1 involves the control of certain

excursion counts. We now introduce notation in order to describe these. Let Vj denote the set of vertices of Tn at level
j , with V−1 = {ρ}. For each v ∈ Vn let v(j) denote the ancestor of v at level j ≤ n, i.e. the unique vertex in Vj on the
geodesic connecting v and ρ. In particular, v(−1) is the root ρ.

Next, for each v ∈ Vn let

T s
v,j = #

{
excursions from v(j − 1) to v(j) made by the SRW on Tn

prior to completing its first [s] excursions from the root ρ
}
. (1.3)

Setting

t∗v,n = inf
{
s ∈ Z+ : T s

v,n (= 0
}
, (1.4)

for the number of excursions from the root by the SRW till reaching v, we consider the corresponding excursion cover
time of Vn,

t∗n := sup
v∈Vn

{
t∗v,n

}
. (1.5)

Our main tool in proving Theorem 1.1 is a generalization (see Proposition 2.2 below), of the following theorem
concerning t∗n .

Theorem 1.2. With notation as in Theorem 1.1,

√
2t∗n − mn

dist=⇒ Y∞ as n → ∞, (1.6)

where Y∞ := Y ′
∞ − ḡ∞ for a standard Gaussian random variable ḡ∞, independent of Y ′

∞. Alternatively, for some random
variable X∞ > 0,

P(Y∞ ≤ y) := E
(
exp

{
−α∗X∞e−c∗y

})
. (1.7)

The main challenge in proving Theorem 1.2 (or Proposition 2.2), is in obtaining the following key sharp right tail
estimates for the excursion cover times.

Theorem 1.3. There exists a finite α∗ > 0 such that

lim
z→∞ lim sup

n→∞

∣∣z−1ec∗zP
(√

2t∗n − mn > z
)
− α∗

∣∣ = 0. (1.8)

Tail estimates at such fine resolution were established, for example, en-route to the convergence in law of the maximum
of BRW (see [14]). However, what significantly complicates our analysis, is having here a more general branching process
where the motion of individual particles follows a Markov chain (and not merely a sum of i.i.d.-s).

To describe X∞ and X′
∞, let {gu,u ∈ T∞\{ρ}} be the standard Gaussian branching random walk (BRW), on the infinite

binary tree T∞\{ρ}. That is, denoting by 0 the unique vertex at V0 and placing i.i.d. standard normal weights on the edges
of T∞, we write gu for the sum of the weights along the geodesic connecting 0 to u. We further consider the empirically
centered g′

u := gu − ḡ|u|, where

ḡk = 2−k
∑

u′∈Vk

gu′ , k ∈ Z+, (1.9)

denotes the average of the BRW at level k, and set

Xk =
∑

u∈Vk

(c∗k + gu)e−c∗(c∗k+gu), X′
k =

∑

u∈Vk

(
c∗k + g′

u

)
e−c∗(c∗k+g′

u). (1.10)

It is not hard to verify that {Xk} is a martingale, referred to as the DERIVATIVE MARTINGALE. We then have that
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Lemma 1.4. Xk , X′
k and ḡk converge a.s. to positive, finite limits X∞, X′

∞ and a standard Gaussian variable ḡ∞,
independent of X′

∞, such that

X∞ = X′
∞e−c∗ḡ∞ . (1.11)

The convergence of Xk to X∞ is well known, see e.g. [3,10] (and, for its first occurrence in terms of limits in branching
processes, [25]), and building on it, we easily deduce the corresponding convergence for X′

k .

1.2. Background and related results

Theorem 1.1 is closely related to the recent paper [16], which deals with continuous time SRW, and we wish to acknowl-
edge the priority of their work. The proofs however are different – while [16] builds heavily on the isomorphism theorem
of [22] to relate directly the occupation time on the tree to the Gaussian free field on the tree which is nothing but the
BRW described above Lemma 1.4, our proof is a refinement of [8, Theorem 1.3], where the tightness of the LHS of (1.6) is
proved. Our proof, which is based on the strategy for proving convergence in law of the maximum of branching random
walk described in [14], was obtained independently of [16], except that in proving that Theorem 1.2 implies Theorem 1.1,
we do borrow some ideas from [16]. As motivation to our work, we note that estimates from [8] were instrumental in
obtaining the tightness of the (centered) cover time of the two dimensional sphere by ε-blowup of Brownian motion, see
[9]. Many of the ideas and computations we do in proving Theorem 1.3 play an important role in a forthcoming work
where we plan to upgrade the tightness result of [9] to a convergence in law.

We next put our work in context. The study of the cover time of graphs by SRW has a long history. Early bounds appear
in [27], and a general result showing that the cover time is concentrated as soon as it is much longer than the maximal
hitting time appears in [4]. A modern general perspective linking the cover time of graphs to Gaussian processes appears
in [20], and was refined to sharp concentration in [19] (for many graphs including trees) and [31] (for general graphs). See
also [26] for a different perspective on [20]. For the cover time of trees, an exact first order asymptotic appears in [5]. The
tightness of

√
C′

n around an implicit constant was derived by analytic methods in [15], and, following the identification of
the logarithmic correction in mn [21], its O(1) identification appears in [8].

We note that the evaluation of the cover time is but one of many natural questions concerning the process of points
with a-typical (local) occupation time, and quite a bit of work has been devoted to this topic. We do not elaborate here
and refer the reader to [2,18,29]. Particularly relevant to this paper is the recent [1].

It has been recognized for quite some time that the study of the cover time of two dimensional manifolds by Brownian
motion (and of the cover time of two dimensional lattices by SRW) is related to a hierarchical structure similar to that
appearing in the study of the cover time for trees, see e.g. [17] and, for a recent perspective, [28]. A similar hierarchical
structure also appears in the study of extremes of the critical Gaussian free field, and in other logarithmically correlated
fields appearing e.g. in the study of random matrices. We do not discuss that literature and refer instead to recent surveys
offering different perspectives [6,11,12,24,30].

1.3. Structure of the paper

In contrast with [16] the key to our proof of Theorem 1.2 is the sharp right tail of Theorem 1.3. Indeed, after quickly
dispensing of Lemma 1.4, in Section 2 we obtain Theorem 1.2 out of Theorem 1.3, by adapting the approach of [14] for
the convergence in law of the maximum of BRW. In the short Section 3, which is the only part of this work that parallels
the derivation of [16], we deduce Theorem 1.1 out of Theorem 1.2.

As mentioned before, the bulk of this paper is devoted to the proof of Theorem 1.3, which we establish in Section 4
by a refinement of the approach used in deriving [8, Theorem 1.3]. In doing so, we defer the a-priori bounds we need on
certain barrier events, which might be of some independent interest, to Section 5, where we derive these bounds by refining
estimates from [8]. The proof of the main contribution to the tail estimate of Theorem 1.3, as stated in Proposition 4.3, is
further deferred to Section 6. There, utilizing the close relation between our Markov chain and the 0-dimensional Bessel
process, we get sharper barrier estimates, now up to (1 + o(1)) factor of the relevant probabilities.

2. From tail to limit: Lemma 1.4 and Theorem 1.2

We start by proving the elementary Lemma 1.4, denoting throughout the last common ancestor of u,u′ ∈ T∞ by w =
u ∧ u′. Namely, w = u(|w|) for |w| = max{j ≥ 0, u(j) = u′(j)}.
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Proof of Lemma 1.4. The BRW {gu;u ∈ Tk} of Lemma 1.4 is the centered Gaussian random vector having

Cov(gu, gu′) =
∣∣u ∧ u′∣∣. (2.1)

Further, the average of the BRW weights on the edges of T∞ between levels (k − 1) and k, is precisely $gk := ḡk − ḡk−1
for ḡk of (1.9). With ($gk, k ≥ 1) independent centered Gaussian random variables with Var($gk) = 2−k , we have that
ḡk converges a.s. to the standard Gaussian ḡ∞ := ∑

k $gk . Next, recall the existence of wk → ∞ such that, a.s.,

Ak :=
{
c∗k + gu ∈ wk + (0,2c∗k),∀u ∈ Vk

}
occurs for all k large, (2.2)

see e.g. [23, (1.8)]. For Xk of (1.10), it follows from [3] that Xk
a.s.→ X∞ ∈ (0,∞), while

Xk > wkX̃k on Ak, for X̃k :=
∑

u∈Vk

e−c∗(c∗k+gu). (2.3)

Thus, X̃k
a.s.→ 0 as k → ∞. From the two expressions in (1.10) we have that

X′
k = (Xk − ḡkX̃k)e

c∗ḡk

which thereby converges a.s. to X′
∞ = X∞ec∗ḡ∞ as claimed in (1.11). Finally, from (2.1) we deduce that for any u ∈ Vk ,

k ≥ 0,

Cov(gu, ḡk) = 2−k
∑

u′∈Vk

∣∣u ∧ u′∣∣ =
k∑

j=1

(j − 1)2−j + k2−k = 1 − 2−k. (2.4)

This covariance is constant over u ∈ Vk , hence Cov(g′
u, ḡ|u|) = 0 for g′

u := gu − ḡ|u|, implying the independence of ḡk

and {g′
u,u ∈ Vk}. The latter variables are further independent of the BRW edge weights outside Tk , hence of ḡ∞. Thus,

the random variable X′
∞, which is measurable on σ (g′

u,u ∈ T∞), must also be independent of ḡ∞. !

We next normalize the counts T s
u,j of (1.3) and define

T̂u(s) :=
T s

u,|u| − s
√

2s
, Ŝk(s) := 2−k

∑

u∈Vk

T̂u(s), (2.5)

and get from the CLT for sums of i.i.d. the following relation with the BRW.

Lemma 2.1. For fixed k and the BRW {gu;u ∈ Tk} of Lemma 1.4, we have

{
T̂u(s), u ∈ Tk

} dist=⇒
s→∞ {gu,u ∈ Tk}, (2.6)

{
T̂u(s) − Ŝk(s), u ∈ Vk

} dist=⇒
s→∞

{
g′

u,u ∈ Vk

}
. (2.7)

Proof. The consecutive excursions from ρ by the SRW on Tn are i.i.d. Hence, s .→ {T s
u,|u|, u ∈ Tk} is an Rd -valued random

walk (with d the finite size of Tk). Further, projecting the SRW on Tn to the geodesic from u to ρ, yields a symmetric SRW

on {−1,0, . . . , |u|}. Thus, denoting by Tj the number of excursions from u(j − 1) to u ∈ Vj during a single excursion
from ρ, we have that P(Tj ≥ 1) = pj := 1/(j + 1) (for reaching u before returning to ρ), and Tj conditional on Tj ≥ 1,
follows a geometric law of success probability P(Tj = 1|Tj ≥ 1) = pj . Consequently, for any j ∈ [0, k],

E(Tj ) = 1, Var(Tj ) = E
[
Tj (Tj − 1)

]
= 2(1 − pj )

pj
= 2j. (2.8)

Note that T 1
u,|u| and T 1

u′,|u′| are independent, conditionally on T 1
w,|w|, for w = u ∧ u′, each having the conditional mean

T 1
w,|w|. We thus see that for any u,u′ ∈ Tk , in view of (2.8),

Cov
(
T 1

u,|u|, T
1
u′,|u′|

)
= Var(T|u∧u′|) = 2

∣∣u ∧ u′∣∣. (2.9)
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Comparing with (2.1), the i.i.d. increments of our Rd -valued random walk have the mean vector 1 and covariance matrix
which is twice that of the BRW, with (2.6) and (2.7) as immediate consequences of the multivariate CLT. !

Using throughout the notation

sn,y := (mn + y)2/2 (2.10)

for mn of (1.1), we have that
{√

2t∗n − mn ≤ y
}

=
{
t∗n ≤ sn,y

}
.

In view of Lemma 2.1, we thus see that Theorem 1.2 is an immediate consequence (for non-random τk(s) = s), of (2.12)
in the following proposition. (The additional statement employing (2.13) is utilized in the proof of Theorem 1.1.)

For any k ≥ 1, let Fk denote the σ -algebra generated by the collection {T '
u,j ,' ≥ 0, j ≤ k,u ∈ Vk} for a SRW on Tn. A

moment’s thought reveals that Fk does not depend on n ≥ k.

Proposition 2.2. Assuming Theorem 1.3, if Fk-measurable {τk(s), s ≥ 0} are such that

τ̂k(s) :=
(

τk(s) − s√
2s

)
p−→

s→∞ 0, (2.11)

then for any fixed y ∈ R,

lim
k→∞

lim sup
n→∞

∣∣P
(
t∗n ≤ τk(sn,y)

)
− P(Y∞ ≤ y)

∣∣ = 0. (2.12)

Further, replacing (2.11) by

τ̂k(s) + Ŝk(s)
p−→

s→∞ 0, (2.13)

leads to (2.12) holding with Y ′
∞ of (1.2) instead of Y∞.

Proof. For a possibly random, Fk-measurable τ , we set

T̂u(τ ; s) :=
T τ

u,|u| − s
√

2s
, (2.14)

in analogy to T̂u(s; s) = T̂u(s) of (2.5). With (T τ
u,|u| − τ )/

√
2 the sum of τ i.i.d. standardized variables, by Donsker’s

invariance principle, as s → ∞, the path θ .→ W(s)(θ) := T̂u(θs; s) − ((θs − s)/
√

2s), converges in law to a Brownian
motion. Thus, if τk(s)

s

p→ 1, then W(s)( τk(s)
s ) − W(s)(1)

p→ 0. That is,

T̂u

(
τk(s); s

)
− T̂u(s; s) − τ̂k(s)

p−→
s→∞ 0, ∀u ∈ Tk. (2.15)

Further,

fs(x) :=
√

2(s +
√

2sx) −
√

2s −→
s→∞ x, (2.16)

uniformly over bounded x. Hence, setting

T̃u(τ ; s) :=
√

2T τ
u,|u| −

√
2s = fs

(
T̂u(τ ; s)

)
, (2.17)

upon combining Lemma 2.1 and (2.15), we deduce from (2.11) that

{
T̃u

(
τk(s); s

)
, u ∈ Vk

} dist=⇒
s→∞ {gu,u ∈ Vk}, (2.18)

whereas under (2.13) we merely replace gu by g′
u on the RHS. Proceeding under the assumption (2.11), fix y ∈ R and an

integer k ≥ 1, setting

z(n)
u :=

√
2T

τk(sn,y )

u,k − mn−k, z(∞)
u := c∗k + gu + y, ∀u ∈ Vk, (2.19)
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with c∗ as in (1.1). For fixed y and k, we have, using (2.10), that

√
2sn,y − mn−k − (c∗k + y) = mn − mn−k − c∗k = 1

c∗
log

(
1 − k

n

)
−→
n→∞ 0.

Hence from (2.18) at s = sn,y it follows that

{
z(n)
u , u ∈ Vk

} dist=⇒
n→∞

{
z(∞)
u , u ∈ Vk

}
. (2.20)

In particular, for Xk of (1.10) and X̃k of (2.3) we have that

X
(n,y)
k :=

∑

u∈Vk

z(n)
u e−c∗z

(n)
u

dist=⇒
n→∞ (Xk + yX̃k)e

−c∗y. (2.21)

For any fixed y ∈ R, we have by (2.2) and (2.20) that

lim
k→∞

lim
n→∞

P
(
A

(n)
k

)
= 1, A

(n)
k =

{
z(n)
u ∈ wk + y + (0,2c∗k),∀u ∈ Vk

}
. (2.22)

Recalling that X̃k
a.s.→ 0 (see the line following (2.3)), and the definition of Y∞ from (1.7), we have in view of (2.21) that

for any αk → α∗

P(Y∞ ≤ y) = lim
k→∞

E
[
1Ak exp

{
−αk(Xk + yX̃k)e−c∗y

}]

= lim
k→∞

lim
n→∞

E
[
1
A

(n)
k

exp
{
−αkX

(n,y)
k

}]

= lim
k→∞

lim
n→∞

E
[

1
A

(n)
k

∏

u∈Vk

(
1 − αkz

(n)
u e−c∗z

(n)
u

)]
, (2.23)

where limn→∞f (n) stands for bounds given by both lim supn→∞ f (n) and lim infn→∞ f (n), and in the last equality of
(2.23) we relied on having

δk := sup
n

1
A

(n)
k

sup
u∈Vk

{
αkz

(n)
u e−c∗z

(n)
u

}
−→
k→∞

0,

as well as e−a ≥ 1 − a ≥ e−a(1+δ) for a ∈ [0, δ ∧ 1/2]. For u ∈ Vk let V u
n = {v ∈ Vn : v(k) = u} denote the leaves of the

binary sub-tree of Tn of depth n − k, emanating from u, with u(k − 1) acting as its (extra) root. The event {t∗n ≤ τ } of the
SRW reaching all of Vn within its first τ excursions from ρ is the intersection over u ∈ Vk of the events of reaching all
of V u

n within the first T τ
u,k excursions of the SRW between u(k − 1) and u. By the Markov property, for Fk-measurable

τ , conditionally on Fk the latter events are mutually independent, of conditional probabilities γ̄n−k(T
τ
u,k) for u ∈ Vk and

γ̄n(s) := P(t∗n ≤ s). Consequently, for τ = τk(sn,y) we get that

P
(
t∗n ≤ τ | Fk

)
=

∏

u∈Vk

γ̄n−k

(
T τ

u,k

)
=

∏

u∈Vk

(
1 − γn−k

(
z(n)
u

))
, (2.24)

for γn(z) := P(
√

2t∗n − mn > z) and z
(n)
u of (2.19). Theorem 1.3 and the monotonicity of z .→ γn(z) yield that for some

nk < ∞ and α
(±)
k → α∗,

α
(−)
k ze−c∗z ≤ γn(z) ≤ α

(+)
k ze−c∗z ∀n ≥ nk,∀z ∈ wk + y + [0,2c∗k]. (2.25)

Under the event A
(n)
k , which is measurable on Fk , the latter bounds apply for all z = z

(n)
u . Hence, we get from (2.24) that

lim
n→∞

E
[

1
A

(n)
k

∏

u∈Vk

(
1 − α

(+)
k z(n)

u e−c∗z
(n)
u

)]
≤ lim

n→∞
P
(
t∗n ≤ τk(sn,y);A(n)

k

)
≤ lim

n→∞P
(
t∗n ≤ τk(sn,y);A(n)

k

)

≤ lim
n→∞E

[
1
A

(n)
k

∏

u∈Vk

(
1 − α

(−)
k z(n)

u e−c∗z
(n)
u

)]
.

We now establish (2.12), by taking k → ∞ while utilizing (2.22) and (2.23).
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The same argument applies under (2.13), now replacing gu by g′
u in (2.19), thereby changing Xk , X̃k and Y∞ in (2.21)

and (2.23), to X′
k , X̃′

k and Y ′
∞. !

3. Excursion counts to real time: From Proposition 2.2 to Theorem 1.1

Theorem 1.1 amounts to showing that for any fixed y ∈ R and ε > 0,

lim
n→∞ P

(
C′

n ≤ 2sn,y−2ε

)
≤ P

(
Y ′

∞ ≤ y
)
≤ lim

n→∞
P
(
C′

n ≤ 2sn,y+2ε

)
, (3.1)

where throughout sn,y := (mn + y)2/2, as in (2.10). To this end, let

Rs
n := 2−n

∑

u∈Tn

T s
u,|u|. (3.2)

The SRW on Tn makes 2(n+1)Rs
n steps during its first s excursions from the root to itself. Thus, {t∗n ≤ τ } = {C′

n ≤ Rτ
n}, so

for any random t , τ ,

P
(
t∗n ≤ τ

)
− P

(
Rτ

n > 2t
)
≤ P

(
C′

n ≤ 2t
)
≤ P

(
t∗n ≤ τ

)
+ P

(
Rτ

n < 2t
)
. (3.3)

Considering (3.3) at t = sn,y±2ε , the insufficient concentration of Rτ
n at the non-random τ = sn,y rules out establishing

(3.1) directly from Theorem 1.2. We thus follow the approach of [16, Section 9], in employing instead (3.3) for τ =
τk(sn,y) and the Fk-measurable

τk(s) := inf
{
' ∈ Z+ | S'

k ≥ s
}
, S'

k := 2−k
∑

u∈Vk

T '
u,k. (3.4)

Recall that E[S1
k ] = 1 (see (2.8)), while setting σ̄ 2

k := Var(ḡk) = 1−2−k (see (2.4)), and comparing (2.1) to (2.9), we arrive
at Var(S1

k ) = 2σ̄ 2
k . Hence, Donsker’s invariance principle yields a coupling between the piece-wise linear interpolation

t .→ Ŝs,k(t) of {(St
k − t)/

√
2s; t ∈ Z+}, and a standard Brownian motion {Wθ }, such that

sup
θ∈[0,2]

∣∣Ŝs,k(θs) − σ̄kWθ

∣∣ p−→
s→∞ 0. (3.5)

From (3.4) we see that S
τk(s)
k − s ≥ 0 is at most 2−k times the total number of excursions from Vk−1 to Vk made by the

SRW started at some v ∈ Vk , before hitting the root, plus 1. The latter has exactly the law of S1
k given S1

k > 0. Thus,

ck := sup
s≥0

{
E

[
S

τk(s)
k − s

]}
≤ E[S1

k ]
P(S1

k > 0)
< ∞, (3.6)

and for τ̂k(s) defined as in (2.11), one has when s → ∞, that

Ŝs,k

(
τk(s)

)
+ τ̂k(s) = S

τk(s)
k − s√

2s

p−→ 0, θs := τk(s)

s

p−→ 1. (3.7)

In particular, considering (3.5) at θs , by the continuity of θ .→ Wθ

Ŝs,k(θss) = σ̄kWθs + op(1) = σ̄kW1 + op(1) = Ŝs,k(s) + op(1).

Since Ŝs,k(s) = Ŝk(s) of (2.5), we conclude that {τk(s), s ≥ 0} of (3.4) satisfy (2.13), and with |2sn,y±2ε − 2sn,y | ≥
4ε

√
sn,y for n large enough, we finish the proof of Theorem 1.1 upon showing that for s = sn,y and any fixed ε > 0,

lim
k→∞

lim
n→∞ P

(∣∣Rτk(s)
n − 2s

∣∣ ≥ 4ε
√

s
)
= 0. (3.8)

To this end, recall that in view of (2.8) and (3.2)

rj := E
(
R1

j

)
= 2−j |Tj | = 2 − 2−j , (3.9)
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and similarly, by (2.9) and (3.2) we get that

σ 2
n := Var

(
R1

n

)
= 2

∑

u,u′∈Tn

2−2n
∣∣u ∧ u′∣∣ ≤ 4. (3.10)

Next, writing in short τ = τk(s), we have for any n ≥ k, the representation

Rτ
n = 2k−nRτ

k + rn−kS
τ
k + 2−k$k,n

(
2kSτ

k

)
,

where the random variable $k,n(') is the centered and scaled total time spent by the SRW on Tn below level k during

the first ' excursions from Vk−1 to Vk . For fixed ', $k,n(')
(d)= R'

n−k − E(R'
n−k) and has variance σ 2

n−k' ≤ 4'. Further,
$k,n(2kSτ

k ) conditioned on Fk is distributed as R'
n−k − E(R'

n−k) with ' = 2kSτ
k . Recalling that R'

k−1 = 2(R'
k − S'

k ) and
utilizing (3.6), we thus get by Markov’s inequality (conditional on Fk), that

δk,n := P
(∣∣Rτ

n − 2k−n−1Rτ
k−1 − 2Sτ

k

∣∣ ≥ ε
√

s
)
≤ 42kE(Sτ

k )

(2kε
√

s)2 = 42−k

ε2

(
1 + ck

s

)
,

goes to zero for s = sn,y → ∞ followed by k → ∞. Also, by the union bound,

P
(∣∣Rτ

n − 2s
∣∣ ≥ 4ε

√
s
)
≤ δk,n + P

(
Sτ

k − s ≥ ε
√

s
)
+ P(τ ≥ 2s) + P

(
2k−n−1R2s

k−1 ≥ ε
√

s
)
.

Next, employing Markov’s inequality, we deduce that the last term goes to zero, since 2k−nsrk−1/(ε
√

s) → 0 for s = sn,y

and n → ∞. By (3.6) and having WHP τ = τk(s) < 2s (see (3.7)), we thus arrive at (3.8) and thereby conclude the proof
of Theorem 1.1.

4. Sharp right tail: Auxiliary lemmas and proof of Theorem 1.3

Hereafter we denote by Ps probabilities of events occurring up to the completion of the first [s] excursions at the root and
let ηv(j) :=

√
2T s

v,j for v ∈ Vk , j ≤ k and T s
v,j of (1.3), with the value of s implicit. For u ∈ Vn′ where n′ := n − ', and

V u
n := {v ∈ Vn : v(n′) = u}, let

η
,
'(u) := min

v∈V u
n

{
ηv(n)

}
, (4.1)

denote the minimal (normalized) occupation time of edges entering leaves of the sub-tree of depth ' rooted at u (during
the first [s] excursions from the root ρ), abbreviating η

,
n for η

,
n(0). Since

{
t∗n > s

}
=

{
min
v∈Vn

{
T s

v,n

}
= 0

}
,

Theorem 1.3 amounts to the claim

α∗ = lim
z→∞ z−1ec∗z lim

n→∞
Psn,z

(
η,

n = 0
)
, (4.2)

for sn,z and c∗ of (2.10) and (1.1), respectively. Our proof of (4.2) is based on a refinement of the probability estimates of
[8, Section 5], intersecting here the event {η,

n = 0} with barrier events involving the (normalized) edge occupation times
{j .→ ηv(j), v ∈ Tn}. More precisely, we adapt the strategy of [14, Section 3], by essentially bounding Psn,z (η

,
n = 0)

between the expectations of counts -n,' ≤ .n,' for two barrier type events, which are equivalent at the claimed scale of
asymptotic growth in z (see Lemma 4.2). Our curved barrier event for .n,' is relaxed enough to deduce that the event
{.n,' ≥ 1} is for large n, ', about the same as having {η,

n = 0} (see Lemma 4.1). The straight barrier event for -n,' is
strict enough to yield a negligible variance (see Lemma 4.4), so its expectation serves to lower bound Psn,z (η

,
n = 0). Our

claim (4.2) then follows from such a limit for Esn,z [-n,'] (which is a consequence of Proposition 4.3). Specifically, for
s = sn,z consider the excess edge occupation times, over the barrier

ϕ̄n(j) := ρn(n − j), j ∈
[
0, n′], n′ = n − '. (4.3)



838 A. Dembo, J. Rosen and O. Zeitouni

Fig. 1. Depiction of the events En,'(u) (dashed line) and Fn,'(u) (dotted line) for some u ∈ Vn′ . In either case, the red paths emanating from level
n′ = n − ' denote excursion counts corresponding to different children of u. Note the curved vs. straight barrier and the excursion count that reaches 0.

In the sequel we show that the main contribution to {η,
n = 0} is due to not covering a sub-tree rooted at some u ∈ Vn′

while the edge occupation times along the geodesic to u exceed the barrier ϕ̄n(·) of (4.3), with the excess at the edge into
u further restricted to

I' :=
√

'
[
r−1
' , r'

]
, r' :=

√
log'. (4.4)

To this end, let

η̂v(j) := ηv(j) − ϕ̄n(j), (4.5)

considering for u ∈ Vn′ the events

En,'(u) :=
⋂

0≤j≤n′

{
η̂u(j) > 0

}
∩

{
η̂u

(
n′) ∈ I',η

,
'(u) = 0

}
, (4.6)

and the corresponding counts

-n,' :=
∑

u∈Vn′

1En,'(u). (4.7)

See Figure 1 for a pictorial illustration of the event En,'(u). As explained before, aiming first to upper bound Psn,z (η
,
n = 0),

we fix δ ∈ (0, 1
2 ) and for k ∈ [1, n], h ∈ [0, n − k], consider the curved, relaxed barriers

ϕn,k,h(j) := ϕ̄n(j) − ψk,h(j), j ∈ [0, k], (4.8)

using hereafter the notations

ψk,h(j) := h + j δ
k , jk := j ∧ (k − j), j ∈ [0, k]. (4.9)

We further use the abbreviated notation

ψ'(·) := ψn′,h'
(·), where h' := 1

2
log', (4.10)

with n′ = n − ' ≥ 1. Replacing the barriers of (4.3) by those of (4.8), we then form the larger counts

.n,' =
∑

u∈Vn′

1Fn,'(u), (4.11)

where in terms of (4.1), (4.5) and (4.8), we define for each u ∈ Vn′

Fn,'(u) :=
⋂

0≤j≤n′

{
η̂u(j) + ψ'(j) > 0

}
∩

{
η

,
'(u) = 0

}
. (4.12)
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Fig. 2. Depiction of an event from Gn,' (dashed line) corresponding to some u ∈ Vn′ , n′ = n − '. Note the curved barrier.

See Figure 1 for a pictorial illustration of the event Fn,'(u). If η
,
n = 0, then necessarily η

,
'(u) = 0 for some u ∈ Vn′ and

either Fn,'(u) occurs (so .n,' ≥ 1), or else the event Gn,' := Gn,n′(h') must occur, where, see Figure 2,

Gn,k′(h) :=
⋃

u∈Vk′

⋃

0≤j≤k′

{
η̂u(j) ≤ −ψk′,h(j)

}
. (4.13)

Hence, for any ',

Esn,z [.n,'] ≥ Psn,z (.n,' ≥ 1) ≥ Psn,z

(
η,

n = 0
)
− Psn,z (Gn,'). (4.14)

Recall that by [8, proof of Corollary 5.4], for some c′ > 0 and all z ≥ 1,

lim
n→∞

Psn,z

(
η,

n = 0
)
≥ c′ze−c∗z, (4.15)

so our next lemma, which is an immediate consequence of Lemma 5.1 below, shows that the right-most term in (4.14) is
negligible.

Lemma 4.1. We have that

lim
'→∞

sup
z≥1

{
z−1ec∗z lim

n→∞ Psn,z (Gn,')
}

= 0. (4.16)

Combining (4.14)–(4.16), we arrive at

lim
'→∞

lim
z→∞ lim

n→∞
Psn,z (η

,
n = 0)

Esn,z [.n,']
≤ 1. (4.17)

Restricting hereafter to δ ∈ (0, 1
6 ) allows us to further show in Section 5.2 the following equivalence of first moments (cf.

(5.41) for why we take δ small).

Lemma 4.2. For any δ ∈ (0, 1
6 ) we have that

lim
'→∞

lim
z→∞

{
z−1ec∗z lim

n→∞ Esn,z [.n,' − -n,']
}

= 0. (4.18)

Now, from (4.17) and (4.18), we have the upper bound

lim
'→∞

lim
z→∞ lim

n→∞
Psn,z (η

,
n = 0)

Esn,z [-n,']
≤ 1. (4.19)

For such expected counts with straight barriers, we establish in Section 6.1, using the connection to the 0-Bessel process,
the following large n and z asymptotic.
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Proposition 4.3. There exists α' > 0 such that

lim
'→∞

α−1
'

{
lim

z→∞
z−1ec∗z lim

n→∞
Esn,z [-n,']

}
= 1, (4.20)

where by (4.15) and (4.19), lim inf{α'} is strictly positive.

As shown in Section 5.3, the barrier event we have added in the definition (4.6) of En,'(u) yields the following tight
control on the second moment of -n,'.

Lemma 4.4. We have that

lim
'→∞

lim
z→∞

{
z−1ec∗z lim

n→∞ Esn,z

[
-n,'(-n,' − 1)

]}
= 0. (4.21)

Note that -n,' ≥ 1 implies having ηv(n) = 0 for some v ∈ Vn, that is, having η
,
n = 0. Hence, with -n,' integer valued,

for any choice of ',

Psn,z

(
η,

n = 0
)
≥ Psn,z (-n,' ≥ 1) ≥ Esn,z [-n,'] − Esn,z

[
-n,'(-n,' − 1)

]
. (4.22)

Having a positive lim inf{α'}, the latter bound, together with (4.20) and (4.21), imply that

lim
'→∞

lim
z→∞

lim
n→∞

Psn,z (η
,
n = 0)

Esn,z [-n,']
≥ 1. (4.23)

Proof of Theorem 1.3. Comparing first (4.19) to (4.23) and then with (4.20), we conclude that

lim
'→∞

α−1
'

{
lim

n→∞
z−1ec∗z lim

n→∞
Psn,z

(
η,

n = 0
)}

= 1. (4.24)

Necessarily α' → α∗ for which (4.2) holds (with α∗ > 0 in view of (4.15) and α∗ < ∞ by [8, Proposition 5.2]). !

5. Barrier bounds for excursion counts

We keep the barrier sequences of (4.8) and all other related notation from Section 4. Further, with ρn → c∗ > 1.1, see
(1.1), WLOG we restrict to n ≥ n1 ≥ 64 with ρn ≥ ρ∗ =: 1.1, starting at the following a-priori bound on the events Gn,k′(h)

from (4.13). Recall the notation sn,z of (2.10).

Lemma 5.1. For some c < ∞, any n ≥ n1, z, k′ ≥ 1 and h ∈ [0, n − k′],

Psn,z

(
Gn,k′(h)

)
≤ c(z + h)e−c∗(z+h)e−(z+h)2/(8n). (5.1)

Proof of Lemma 4.1. Setting h = h' = 1
2 log' in (5.1), results with

Psn,z (Gn,') ≤ c(z + log')'−c∗/2e−c∗ze−z2/(8n), (5.2)

so taking ' → ∞ establishes (4.16). !

Before embarking on the proof of Lemma 5.1, we deduce from it certain useful a-priori tail bounds on the non-covering
events {η,

' = 0}.

Corollary 5.2. For some c < ∞ and all n ≥ n1, z ≥ 1,

Psn,z

(
η,

n = 0
)
≤ cze−c∗ze−z2/(8n). (5.3)

Further, for some '̂ finite, any '̂ ≤ ' ≤ n/ logn and r ≥ −h',

γn,'(r) := P[(ρn'+r)2/2]
(
η

,
' = 0

)
≤ c'−1(r + log')e−c∗re−r2/(8'). (5.4)
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Proof. The event η
,
n = 0 amounts to ηv(n) = 0 for some v ∈ Vn. With ϕn,n,0(n) = 0 (see (4.8)–(4.9)), this implies that

ηv(n) ≤ ϕn,n,0(n) and consequently that Gn,n(0) also occurs (take j = k′ = n in (4.13)). That is {η,
n = 0} ⊆ Gn,n(0), so

the bound (5.3) follows from (5.1). Proceeding to prove (5.4), setting '̂ := n1 ∨exp(2(c∗ +1)/(2−c∗)), one easily checks
that z = r + (log' − 1)/c∗ ≥ 1 whenever r ≥ − 1

2 log' and ' ≥ '̂. If further 1 ≤ ' ≤ n/ logn, then

ρn' + r = c∗' − ' logn

c∗n
+ r ≥ m' + z,

so (5.3) at n = ' and such z yields the bound (5.4), possibly with c .→ ec. !

We recall (4.5), (4.9) and take throughout

Hx := [x, x + 1]. (5.5)

The key to this section are the following a-priori barrier estimates adapted from [8, Section 5] (though it is advised to skip
the proofs at first reading).

Lemma 5.3. Let gm(i) := i exp(c∗i + i2/m), βn,k := k
n logn − logk and zh := z + h. For some c1 ≥ 1, all z ≥ 1, k ≥ 0,

h ∈ [0, n − k) and i ∈ Z+

qn,k,z(i;h) := Psn,z

(
min
j≤k

{
η̂v(j) + ψk,h(j)

}
≥ 0, η̂v(k) ∈ Hi−h

)
(5.6)

≤ c12−k

(
zh√
kn

∧ k

)
eβn,k e−c∗zhe−z2

h/(4m)gm(i + 1), ∀m ∈
[
2k,n2] (5.7)

(replacing for k = 0 the ill-defined factor ( zh√
kn

∧ k)eβn,k by 1).

Likewise, for i, k′ ∈ Z+, n′ = k′ + k ∈ (k′, n), m ∈ [2k, (n − k′)2] and z ≥ 0,

pn,k,z(i) := P
(

min
j∈(k′,n′]

{
η̂v(j)

}
≥ 0, η̂v

(
n′) ∈ Hi

∣∣ η̂v

(
k′) = z

)

≤ c1
2−keβn,k

√
kn−k′

(z ∨ 1)e−c∗ze−(z∨1)2/(4m)gm(i + 1). (5.8)

The bound (5.8) applies also to z ∈ [−ρnk,0], now with m = −4k.

Proof. In case k ≥ 1, setting a = ρnn − h and b = ρn(n − k) − h, using [8, Lemma 5.1], the event considered in (5.6)
corresponds to [8, (1.1)] for L = k, C = 1, ε = 1

2 − δ and the line fa,b(j ; k) between (0, a) and (k, b), taking there
y = b + i and x =

√
2[sn,z] ≥ a. Having z ≥ 1 and mn ≥ 1 yields that x ≥

√
2. Further, with h ∈ [0, n − k) and ρn ≥ ρ∗,

y ≥ b = ρn(n − k) − h ≥ 1 + 1
10

(n − k) (5.9)

(the restriction to y ≥
√

2 in [8, (1.1)] clearly can be replaced with y > 1 there, since for y ∈ [1,
√

2) one has H 2
y /2 ∩

Z=(H√
2)

2/2 ∩ Z). Here x/L and y/L are not uniformly bounded above but following [8, proof of (4.2)] and utilizing
[8, Remark 2.6] to suitably modify [8, (4.16)], we nevertheless arrive at the bound

qn,k,z(i;h) ≤ c
(1 + x − a)(1 + i)

k

√
x

ky
sup

w∈Hy

{
e−(x−w)2/(2k)

}
. (5.10)

In addition, whenever x ≥
√

2, y, k ≥ 1, we have that

qn,k,z(i;h) ≤ Psn,z

(
η̂v(k) ∈ Hi−h

)
≤ c sup

w∈Hy

{
e−(x−w)2/(2k)

}
(5.11)

(see [9, Lemma 3.6]). Next, since x ≤ c∗n + z, we deduce from (5.9) that

x

ky
≤ 20

kn

(
c∗ + z

n

)
≤ co

kn
exp

(
z2

12n2

)
, (5.12)
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for some constant co < ∞. Further, setting δn,z := a + zh − x and

ε̄n,k = εn,k + δn,z, εn,k := k logn

c∗n
, (5.13)

we have from (1.1) that x − b = c∗k + zh − ε̄n,k . With c2
∗
2 = log 2, it follows that for any real w̃,

1
2k

(x − b − w̃)2 = k log 2 + c∗(zh − ε̄n,k − w̃) + 1
2k

(zh − ε̄n,k − w̃)2. (5.14)

By an elementary inequality, for any m ≥ 2k,

(zh − w̃ − ε̄n,k)
2 ≥ 2k

3m

(
z2
h − 3w̃2 − 3ε̄2

n,k

)
, (5.15)

so that by (5.14)

1
2k

(x − b − w̃)2 ≥ k log 2 + c∗(zh − ε̄n,k − w̃) + z2
h

3m
− w̃2

m
−

ε̄2
n,k

m
. (5.16)

With c∗εn,k − logk = βn,k ≤ 1 for k ∈ [1, n] (while δn,z and ε̄2
n,k/k are uniformly bounded), we plug into the smaller

among (5.10) and (5.11) the bounds (5.12) and (5.16) (for w = b + w̃ and w̃ ∈ Hi ), to arrive at (5.7). Further,
qn,0,z(i;h)= 0 for any i < zh − 1.1, whereas for i ≥ zh − 1.1, having

inf
m,zh≥1

{
gm(zh − 0.1)e−c∗zh−z2

h/(4m)
}

> 0,

yields that (5.7) holds also for k = 0 (under our convention).
Turning to the proof of (5.8), we consider first z > 0, proceeding as in the proof of (5.7) with the line fa,b(j ; k) of

length k and same slope as in the preceding, now connecting (k′, a) to (n′, b), where a = ρn(n − k′) and b = ρn(n − n′).
For x = a + z and y = b + i we have x ≥ a > b and y ≥ b > 0, thanks to our assumption that n′ ∈ (k′, n). By the Markov
property of j .→ ηv(j), for such values of (a, b, x, y) the RHS of (5.10) with h = 0 necessarily bounds the probability
pn,k,z(i), and thereafter one merely follows the derivation of (5.7), now with h = δn,z = 0 and n − k′ replacing n when
bounding x/y. The latter modification results in having

√
kn−k′ in (5.8), instead of

√
kn. Next, for z ≤ 0 we simply

lower the barrier line fa,b(j ; k) to start at a = x = ϕ̄n(k
′) + z, where our assumption that z ≥ −ρnk guarantees having

x ≥ ϕ̄n(n
′) > 0 (thereby x ≥

√
2, with pn,k,z(i) bounded by the RHS of (5.10)). Here x/(ky) ≤ co/kn−k′ , and zh = z ≤ 0

allows us to replace the RHS of (5.15) for w̃ ≥ i by (i+1)2

2 − 1, yielding the stated form of (5.8). !

We conclude this sub-section by adapting the bounds of Lemma 5.3 to the form needed when proving Lemma 4.4 and
Lemma 4.2.

Lemma 5.4. There exists a constant c2 < ∞ satisfying the following. Fix '̂ as in Corollary 5.2 and I' as in (4.4). For any
z ≥ 0, ' ∈ ['̂, n

logn ] and k ≥ 1, setting k′ = n′ − k with n′ as in (4.3),

θn,k,'(z) := P
(

min
j∈(k′,n′]

{
η̂v(j)

}
≥ 0, η̂v

(
n′) ∈ I',η

,
'(v) = 0

∣∣ η̂v

(
k′) = z

)

≤ c22−keβn,k (1 ∨
√

'/k)(1 + z)e−c∗ze−z2/(8(k∨8')). (5.17)

If in addition z ≥ 4h', n ≥ 3', then for any r ≥ 0,

pn,k,z(r) := Psn,z

(
min
j≤n′

{
η̂v(j) + ψ'(j)1j≤k

}
> 0, η̂v(k) ≤ 0, η̂v

(
n′) ∈ Hr

)

≤ c22−n′ ψ'(k)3

k
3/2
n′ '1/2

e−z2/(16k)z(r + 1)e−c∗(z−r)e
− r2

4(n′−k) . (5.18)
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Proof. Starting with (5.17), by the Markov property of ηv(j) at j = n′ and monotonicity of y .→ γn,'(y) of (5.4), we
have in terms of pn,k,z(·) of (5.8)

θn,k,'(z) ≤
∑

r∈I'

pn,k,z(r)γn,'(r).

Plugging the bounds of (5.4) and (5.8) (at m = 2(k ∨ 8')), yields for c′
1 finite

θn,k,'(z) ≤ c′
1

2−keβn,k
√

'
√

kn−k′
(1 + z)e−c∗ze−z2/(8(k∨8'))

∑

r∈I'

r2

'3/2 e−r2/(16').

With the latter sum uniformly bounded and kn−k′ = k ∧ ', we arrive at (5.17).
Next, turning to establish (5.18), note first that

j
β
k′ ≤ k

β
k′ + j

β
k , ∀0 ≤ j ≤ k < k′ (5.19)

when β = 1 and consequently also for all β ∈ [0,1]. For β = δ, it results with

ψk′,h(j) ≤ ψk,h′(j), for h′ = ψk′,h(k), j ∈ [0, k],

with equality at j = k. In particular, recalling (4.10) and considering k′ = n′, we have that

ψ'(j) ≤ ψk,h(j) for h = ψ'(k), j ∈ [0, k]. (5.20)

Employing (5.20) to enlarge the event whose probability is pn,k,z(i), we get by the Markov property of ηv(j) at j = k, in
terms of qn,k,z(·; ·), pn,k,z(·) and h = ψ'(k), that

pn,k,z(r) ≤
h∑

i=1

qn,k,z(h − i;h) sup
z′∈H−i

{
pn,k′,z′(r)

}
. (5.21)

Substituting first our bound (5.8) at m = −4k′, and then (5.7) at m = 2k, yields that for some c′
1 finite,

pn,k,z(r) ≤ c1

h∑

i=1

qn,k,z(h − i;h)2−k′
eβn,k′ (k′

k′+'

)−1/2
ec∗(r+i)(r + 1)e

− r2
4k′

≤ c′
1h2−n′ eβn,k+βn,k′

√
k′
k′+'kn

zhe
−c∗zhe−z2/(8k)g2k(h)(r + 1)ec∗re−r2/(4k′). (5.22)

With δ ≤ 1
2 and z ≥ 4h', it follows that

h2

2k
≤ h2

' + k2δ
n′

k
≤ z2

16k
+ 1.

Further, recall that k + k′ = n′ and βn,n′ ≤ 1, hence

eβn,k+βn,k′ = eβn,n′ n′

kk′ ≤ 2e

kn′
. (5.23)

Our assumption n ≥ 3' results with k ∨ k′ ≥ ' and thereby k′
k′+'kn ≥ 'kn′ . Applying the preceding within (5.22), we

arrive at (5.18). !

5.1. Negligible crossings: Proof of Lemma 5.1

Fixing n, k′, h as in Lemma 5.1, consider for u ∈ Vk′ , the first time

τu := min
{
j ≥ 0 : ηu(j) ≤ ϕn,k′,h(j)

}
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that the process j .→ ηu(j) reaches the relevant barrier of (4.8), see Figure 2. For z,mn ≥ 1 we have that τu ≥ 1, since
ηu(0) =

√
2[sn,z] > mn ≥ϕn,k′,h(0) under Psn,z . Decomposing Gn,k′(h) according to the possible values of {τu}, results

with

Psn,z

(
Gn,k′(h)

)
≤

k′∑

k=1

Psn,z (∃u ∈ Vk′ such that τu = k)
︸ ︷︷ ︸

(Ik)

. (5.24)

The event {τu = k} depends only on the value of u(k) ∈ Vk . Hence, by the union bound we have that for any fixed u ∈ Vk′

(Ik) ≤ 2kPsn,z (τu = k). (5.25)

With ρn > 1 > δ, it is easy to verify that j .→ ϕn,k′,h(j) is strictly decreasing with ϕn,k′,h(k
′) = ρn(n − k′) − h ≥ 0.

Further, for b := ϕn,k′,h(k), b̃ := ϕn,k′,h(k + 1), we get upon conditioning on ηu(k) = y, that

Psn,z (τu = k + 1)

≤
∞∑

i=0

Psn,z

(
τu > k,ηu(k) ∈ Hb+i

)
sup

y∈Hb+i

P y2
2

(
ηu(1) ≤ b̃

)
. (5.26)

Applying [7, Lemma 4.6] at p = q = 1/2 and θ = b̃2/2 ≤ y2/2

sup
y∈Hb+i

P y2
2

(
ηu(1) ≤ b̃

)
≤ e−i2/4. (5.27)

Setting h′ = ψk′,h(k), we proceed to bound the first probability on the RHS of (5.26). To this end, recall (5.19), yielding
that ϕn,k,h′(j) ≤ ϕn,k′,h(j) for j ∈ [0, k], with equality at j = k (see (4.8)–(4.9)). Consequently,

Psn,z

(
τu > k,ηu(k) ∈ Hb+i

)
≤ qn,k,z

(
i;h′), (5.28)

for qn,k,z(·; ·) of Lemma 5.3. Since n − k′ ≥ h and δ < 1, for any k < k′,

n − k − h′ ≥ k′ − k −
(
k′ − k

)δ
> 0,

in which case, by (5.7) we have that for any i ∈ Z+

qn,k,z

(
i;h′) ≤ c12−kzh′e−c∗zh′ e−z2

h′/(8n)
g2n(i + 1). (5.29)

Noting that supn≥3{g2n(i + 1)}e−i2/4 is summable (and zh′ ≥ zh), we find upon combining (5.25)–(5.29), that for some
c3 finite and any 1 ≤ k < k′,

(Ik+1) ≤ 2k+1
∞∑

i=0

qn,k,z

(
i;h′)e−i2/4

≤ c3
(
zh + kδ

k′
)
e−c∗(zh+kδ

k′ )e−z2
h/(8n). (5.30)

Further, with ϕn,k′,h(1) ≤ mn − h we have similarly to (5.25)–(5.27) that

(I1) ≤ 2Psn,z (τu = 1) ≤ 2Psn,z

(
ηu(1) ≤ mn − h

)
≤ 2e−z2

h/4,

which is further bounded for zh ≥ z ≥ 1 by the RHS of (5.30) at k = 0 (possibly increasing the universal constant c3).
Summing over k ≤ k′ it follows from (5.24) and (5.30) that for some universal c4 < ∞,

Psn,z

(
Gn,k′(h)

)
≤ c3e

−c∗zhe−z2
h/(8n)

k′∑

k=0

(
zh + kδ

k′
)
e
−c∗kδ

k′

≤ c4zhe
−c∗zhe−z2

h/(8n),

as claimed in (5.1).
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5.2. Comparing barriers: Proof of Lemma 4.2

Hereafter, let νn,k,z(·) denote the finite measure on [0,∞) such that

νn,k,z(A) := 2kPsn,z

(
min
j≤k

{
η̂v(j)

}
> 0, η̂v(k) ∈ A

)
, (5.31)

using the abbreviation νn,z = νn,n′,z (where n′ = n− '). In view of (4.6) and the Markov property of {ηv(j)} at j = n′ we
have that

Esn,z [-n,'] = 2n′Psn,z

(
En,'(v)

)
=

∫

I'

γn,'(y)νn,z(dy), (5.32)

for γn,'(·) of (5.4). Similarly, setting the finite measure on [−h',∞)

µn,z(A) := 2n′Psn,z

(
min
j≤n′

{
η̂v(j) + ψ'(j)

}
> 0, η̂v

(
n′) ∈ A

)
, (5.33)

we have by the Markov property and (4.12) that

Esn,z [.n,'] = 2n′Psn,z

(
Fn,'(v)

)
=

∫ ∞

−h'

γn,'(y)µn,z(dy). (5.34)

For r ≥ 1, recalling Hr = [r, r +1], we decompose µn,z(Hr)−νn,z(Hr) according to the possible values of τ := max{j <

n′ : η̂v(j) ≤ 0}, to arrive at

µn,z(Hr) − νn,z(Hr) ≤ 2n′
n′−1∑

k=1

pn,k,z(r), (5.35)

for pn,k,z(r) of Lemma 5.4. By (5.32), (5.34), (5.35) and the monotonicity of y .→ γn,'(y) we have that

Esn,z [.n,' − -n,'] ≤
∑

r /∈I'

γn,'(r)µn,z(Hr) +
∑

r∈I'

γn,'(r)

n′−1∑

k=1

2n′
pn,k,z(r)

:= In(z,') + IIn(z,'). (5.36)

Dealing first with In(z,') of (5.36), note that µn,z(Hr) = 2n′
qn,n′(r + h;h) for qn,k(i;h) of Lemma 5.3 and h = h'.

Combining (5.4) with (5.7) at k = n′ (where kn = '), and having z + h' ≤ 2z (as z → ∞ before ' → ∞), yields for some
c5 finite, any ' ≥ '̂, large n and all r ≥ −h'

γn,'(r)µn,z(Hr) ≤ c5ze
−c∗z (r + 2h')

2

'3/2 e−r2/(8')e(r+h')
2/n. (5.37)

Substituting (5.37) in (5.36) and taking n → ∞ results with

lim
z→∞

{
z−1ec∗z lim

n→∞ In(z,')
}

≤ εI('), (5.38)

where by our choice (4.4) of I', for any ' → ∞

εI(') := c5
∑

r /∈I'

(r + 2h')
2

'3/2 e−r2/(8') −→ 0.

In view of (5.4), it suffices to show that for some εII(') → 0 and all r ∈ I',

lim
z→∞

{

z−1ec∗z lim
n→∞

n′−1∑

k=1

2n′
pn,k,z(r)

}

≤ εII(')√
'

(r + 1)ec∗r , (5.39)
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in order to get the analog of (5.38) for IIn(z,') and thereby complete the proof of the lemma. In view of (5.18) we get
(5.39) upon showing that

lim
'→∞

lim
z→∞ sup

r∈I'

lim
n→∞

n′−1∑

k=1

ψ'(k)3k
−3/2
n′ exp

(
− z2

16k
− r2

4(n′ − k)

)
= 0. (5.40)

Even without the exponential factor, since δ < 1
6 the sum in (5.40) over {k : kδ

n′ ≥ h'}, where ψ'(k) ≤ 2kδ
n′ is bounded

above by

4
∑

k≥h
1/δ
'

k3δ−3/2 ≤ ch
(3− 1

2δ )

' −→
'→∞

0. (5.41)

Further, the sum in (5.40) over {k : kδ
n′ < h'} has 2h

1/δ
' terms, which are uniformly bounded by (2h')

3 exp(−b'/(4h
1/δ
' )),

where having

b' := z2

4
∧ inf

r∈I'

{
r2} = '

log'
, (5.42)

makes that sum also negligible, as claimed in (5.40).

5.3. Second moment: Proof of Lemma 4.4

In view of (4.7) we have that

Es

[
-n,'(-n,' − 1)

]
=

∑

u,v∈Vn′
u (=v

Ps

(
En,'(u) ∩ En,'(v)

)
.

We recall the definition (4.6) of En,'(·) and split the preceding sum according to the values of k′ = |u ∧ v| < n′ and
η̂v(k

′) > 0. Specifically, having 2n′+k−1 such ordered pairs (for k = n′ − k′), yields the bound

Esn,z

[
-n,'(-n,' − 1)

]
≤

n′∑

k=1

22k

∫ ∞

0
θ2
n,k,'(y)νn,k′,z(dy) =:

n′∑

k=1

Jk (5.43)

in terms of θn,k,'(·) and νn,k′,z(·) of (5.17) and (5.31), respectively. Further, the Markov property of ηv(j) at j = k′ yields
in terms of qn,k′,z(·;0) of (5.6)

Jk ≤
∞∑

i=0

2k′
qn,k′,z(i;0)

[
2k sup

y∈Hi

θn,k,'(y)
]2

.

Plugging in the preceding the bounds (5.17) and (5.7) (at m = 64n ≤ n2), we find that for some c6 < ∞, any k ∈ (0, n′),
z ≥ 1 and n ≥ n0(') as in Lemma 5.4,

Jk ≤ c6e
βn,k′+2βn,k (1 ∨ '/k)

(
z

√
k′
n

∧ k′
)

e−c∗z
∞∑

i=0

(i + 1)3e−c∗i . (5.44)

Using (5.23), βn,k ≤ 1 and k′
n ≥ kn′ we get from (5.44) that for some c7 < ∞,

Jk ≤






c7ze
−c∗zk

−3/2
n′ , kn′ ≥ ',

c7e
−c∗z, k′ < ',

c7ze
−c∗z

√
'k−3, k < ',

(5.45)

where for k < ' we used the alternative bounds βn,k ≤ 1 − logk and k′
n ≥ '. Now, (5.45) implies that for all n,

z−1ec∗z
n′∑

k='1/3

Jk ≤ c7

[
√

'

'−1∑

k='1/3

k−3 +
n′−'∑

k='

k
−3/2
n′ +

n′∑

k=n′−'

z−1

]

≤ δ',z
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for some δ',z → 0, when z → ∞ followed by ' → ∞. Turning to control the remaining sum of Jk over k < '1/3, note
that by (5.42), upon comparing (5.4) and (5.17) we find that for some ε(') → 0 as ' → ∞ and any n ≥ n0('),

'1/3∑

k=1

2k sup
y≥0

{
θn,k,'(y)

}
≤ 4'1/3

sup
r∈I'

{
γn,'(r)

}
≤ ε(').

To complete the proof of Lemma 4.4, recall (4.6) and (5.31), that for k′ = n′ − k

2k

∫ ∞

0
θn,k,'(y)νn,k′,z(dy) = Esn,z [-n,']. (5.46)

Hence, we have on the RHS of (5.43) that

lim
z→∞

{

z−1ec∗z lim
n→∞

'1/3∑

k=1

Jk

}

≤ ε(') lim
z→∞

{
z−1ec∗z lim

n→∞ Esn,z [-n,']
}
,

which together with (4.22) and (5.3) imply that the RHS is for all ' large enough at most 2cε(') (i.e. negligible, as
claimed).

6. The Bessel process: Proof of Proposition 4.3

Hereafter, set λ'(y) := 1
2 (c∗' + y)2, y ≥ −c∗', with

γ̂'(y) := P[λ'(y)]
(
η

,
' = 0,η(0) ∈ c∗' + I'

)
,

γ̃'(y) := Eξ
{
Pξ(λ'(y))

(
η

,
' = 0,η(0) ∈ c∗' + I'

)}
,

(6.1)

which are γ∞,'(·) from (5.4), restricted to I' of (4.4), and its regularization by an expectation, denoted Eξ , over the
independent Poisson(λ) variable ξ(λ) at λ = λ'(y). We emphasize that the law of ξ depends on ' but we suppress this
from the notation. We follow this convention of suppressing dependence in ', n in many places throughout this section,
e.g. in the definitions (6.5), (6.10), (6.17), (6.24) and (6.28) below. Our goal here is to prove Proposition 4.3, with

α' := 1√
π'

∫ ∞

0
yec∗y γ̃'(y) dy. (6.2)

In particular α' < ∞, since by standard Poisson tail estimates for some c < ∞,

γ̃'(y) ≤ P
(√

2ξ
(
λ'(y)

)
− c∗' ∈ I'

)
≤ exp

{
−c dist(y, I')

2} (6.3)

(see [8, (3.8)]). Omitting hereafter from the notation the (irrelevant) specific choice v ∈ Vn′ , we recall from (4.5), (5.31)
and (5.32) that

2−n′Esn,z [-n,'] = Esn,z

(
γ̂'

(
η
(
n′) − c∗'

)
; min
j<n′

{
η̂(j)

}
> 0

)
. (6.4)

The first step towards Proposition 4.3 is our next lemma, utilizing the Markov structure from [8, Lemma 3.1] to estimate
the barrier probabilities on the RHS of (6.4) via the law PY

x of a 0-dimensional Bessel process {Yt }, starting at Y1 = x. To
this end, define for κ ∈ R the events

Bκ :=
n′⋂

j=1

{
Yj > ϕ̄n(j) + κψ'(j)

}
, (6.5)

in terms of the barrier notations (4.3), (4.9), (4.10), and associate to each [0,1]-valued g(·), the function

g̃(w) := Eξ
[
g
(√

2ξ
(
w2/2

))]
, (6.6)

so in particular g(w) = γ̂'(w − c∗') yields g̃(w) = γ̃'(w − c∗').
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Lemma 6.1. There exist Us
dist=⇒ U∞, a centered Gaussian of variance 1/2, and ε' → 0 as ' → ∞, such that for s = sn,z,

any [0,1]-valued g(·) supported on [ϕ̄n(n
′),∞) and z ≥ ',

(1 − ε')
−1EY,s

(
g̃(Yn′);B−1

)
≥ Es

(
g
(
η
(
n′)); min

j<n′

{
η̂(j)

}
> 0

)
(6.7)

≥ (1 − ε')EY,s
(
g̃(Yn′);B2

)
, (6.8)

where EY,s denotes expectation with respect to a 0-dimensional Bessel process starting at Y1 = Us +
√

2s. Further, for
some δ > 0,

sup
s

{
E

[
eδU2

s
]}

< ∞. (6.9)

Proof. Recall from [8, Lemma 3.1] the time in-homogeneous Markov chain
(
η(0) =

√
2[s], Y1,η(1), . . . , Yn′ ,η

(
n′), . . .

)
,

of law Qs
1= Q[s]

1 . From [8, Lemma 3.1(a)] we have that Qs
1[g(η(j))|Yj ] = g̃(Yj ) of (6.6), and that Y1 = √

2L1(s) for a
.([s],1)-random variable L1(s). Set Us := √

2L1(s) −
√

2s and note that by [8, Lemma 3.1(d,e)], the random variables
{η(j), j ≥ 0} and {Yj , j ≥ 1} have respectively, the marginal laws Ps and PY,s .

Standard large deviations for Gamma variables yield (6.9) with δ < 1/2 (cf. [8, (3.13)]). Recall that (L1(s) −
s)/

√
2s

dist=⇒ U∞ when s → ∞ (by the CLT), hence the same convergence applies for Us = fs((L1(s) − s)/
√

2s) and
fs(·) of (2.16). In addition, setting for k ∈ N the events

Ak :=
k⋂

j=0

{
η(j) > ϕ̄n(j)

}
, (6.10)

we have by the preceding and (6.5) that the bound (6.7) follows from

Qs
1
(
g
(
η
(
n′));An′ ∩ B−1

)
≥ (1 − ε')Es

(
g
(
η
(
n′));An′

)
(6.11)

(taking k = n′ due to the assumed support of g(·) and including j = 0 at no loss of generality since z > 0). Now, recall
from [8, Lemma 3.1(b)] that

Qs
1
(
g
(
η
(
n′));An′ ∩ B−1

)
= Es

(

g
(
η
(
n′))

n′∏

j=1

F
η
j ;An′

)

, (6.12)

where if
√

η2(j − 1)/2 + η2(j)/2 > ϕ̄n(j), (6.13)

then by [8, (3.14)],

F
η
j := Qs

1
(
Yj > ϕ̄n(j) − ψ'(j) | η(j − 1),η(j)

)
≥ 1 − ce−cψ2

' (j).

Since (6.13) holds on the event An′ for j = 1, . . . , n′ recalling (4.10) that ψ'(j) = ψ'(n
′ − j) and splitting the product

on the RHS of (6.12) to j > n/2 and j ≤ n/2, yields the inequality (6.11), and thereby (6.7), with

ε' = 1 −
∞∏

j=0

[
1 − ce−c(j δ+h')

2]2
, (6.14)

which converges to zero when ' → ∞.

Recall from [8, (3.4)] the notation Qx2/2
2 for the law of the Markov chain (Y1,η(1), . . .) started at Y1 = x. To see (6.8),

we will show

Qx2/2
2

(
g̃(Yn′);An′−1 ∩ B2

)
≥ (1 − ε')PY

x

(
g̃(Yn′);B2

)
. (6.15)
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Fig. 3. The curves in the events D±2h'
(dashed lines) and D±2ψ (curved, solid lines). The event D2ψ,T involves the curves between T +1 and n′ −T .

Taking the expectation over x with respect to the law of Y1 under Qs
1 and arguing as in the proof of (6.7) will then give

(6.8). Turning to establishing (6.15), recall from [8, Lemma 3.1(c)] that

Qx2/2
2

(
g̃(Yn′);An′−1 ∩ B2

)
= PY

x

(

g̃(Yn′)

n′−1∏

j=1

FY
j ;B2

)

,

where by [8, (3.16)],

FY
j := Qx2/2

2

(
η(j) > ϕ̄n(j) | Yj ,Yj+1

)
≥ 1 − ce−cψ2

' (j),

provided that

√
YjYj+1 ≥ ϕ̄n(j) + ψ'(j). (6.16)

On B2, we have that for any j < n′, and all ' larger than some fixed universal constant,

√
YjYj+1 > ϕ̄n(j + 1) + 2ψ'(j + 1) ≥ ϕ̄n(j) + ψ'(j).

In particular, with (6.16) holding on B2 for any j ∈ {1, . . . , n′ − 1}, by the same reasoning as before, this yields the
inequality (6.15), and hence also (6.8). !

We next estimate the barrier probabilities for {Yj } in terms of the law PW
x of a Brownian motion {Wt }, starting at

W1 = Y1 = x. For 0 ≤ T < T ′ ≤ n′, introduce the events

D±2ψ,T ,T ′ :=
{
Wt > ϕ̄n(t) ± 2ψ'(t),∀t ∈

[
T + 1, T ′]}, (6.17)

using hereafter Dκh',T ,T ′ if ±2ψ'(t) in (6.17) is replaced by the constant function κh', with abbreviated notation D±2ψ,T

when T ′ = n′ − T and D±2ψ for D±2ψ,0. See Figure 3 for a pictorial description. Recall the sets Bκ , see (6.5).

Lemma 6.2. For ĝ(w) := g̃(w)/
√

w, some ε' → 0, any g̃(·), n, ' as in Lemma 6.1 and all x > 0,

EY
x

(
g̃(Yn′);B2

)
≥ (1 − ε')

√
xEW

x

(
ĝ(Wn′);D2ψ

)
, (6.18)

EY
x

(
g̃(Yn′);B−1

)
≤ (1 − ε')

−1√xEW
x

(
ĝ(Wn′);D−2ψ

)
. (6.19)

Proof. Recall that up to the absorption time τ∗ := inf{t > 1 : Yt = 0}, the 0-dimensional Bessel process satisfies the
SDE

Yt = Wt −
∫ t

1

1
2Ys

ds, Y1 = W1 = x,
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with {Wt } having the Brownian law PW
x . Further, the event {Yn′ > 0} implies that {τ∗ > n′}, in which case by Girsanov’s

theorem and monotone convergence, we have that for any bounded Fn′ -measurable Z,

EY
x (Z;Yn′ > 0) = EW

x

(
Z

√
x

Wn′
e− 3

8
∫ n′

1 (Ws)
−2 ds; inf

t∈[1,n′]
{Wt } > 0

)
. (6.20)

With B2 containing the event corresponding to D2ψ for the process Yt , we get (6.18) by considering (6.20) for
Z = g̃(Wn′)1D2ψ . Indeed, the event D2ψ implies that inft≤n′{Wt − ϕ̄n(t)} ≥ 0, hence

e− 3
8

∫ n′
1 (Ws)

−2 ds ≥ e− 3
8

∫ n′
1 (n−s)−2 ds ≥ e− 3

8' := 1 − ε'

with ε' → 0 as ' → ∞. Next, for all ' larger than some universal constant,

inf
t∈[1,n′]

{
ϕ̄n(t) − 2ψ'(t)

}
= ϕ̄n

(
n′) − 2h' > 0,

and with B ′ := {Wj > ϕ̄n(j) − ψ'(j), j = 1,2, . . . , n′}, it suffices for (6.19) to show that

EW
x

(
ĝ(Wn′);D−2ψ ∩ B ′) ≥ (1 − ε')EW

x

(
ĝ(Wn′);B ′). (6.21)

To this end, since φt := ϕ̄n(t) − 2ψ'(t) is a convex function, we get upon conditioning on {W1,W2, . . . ,Wn′},
that

EW
x

(
ĝ(Wn′);D−2ψ ∩ B ′) ≥ EW

x

(

ĝ(Wn′)

n′−1∏

j=1

FW
j ;B ′

)

,

where by the reflection principle (see [8, (2.1)] or [13, Lemma 2.2]),

FW
j := PW

(
min

u∈[0,1]
{
Wj+u − fφj ,φj+1(u;1)

}
> 0 | Wj,Wj+1

)

= 1 − exp
(
−2(Wj − φj )(Wj+1 − φj+1)

)
, (6.22)

with fa,b(·;1) denoting the line segment between (0, a) and (1, b). On the event B ′ we thus have that FW
j ≥

1 − exp(−2ψ'(j)ψ'(j + 1)) for all j ∈ {1,2, . . . , n′ − 1}, thereby in analogy with (6.14), establishing (6.21)
for

ε' = 1 −
∞∏

j=0

[
1 − e−2(j δ+h')((j+1)δ+h')

]2
,

which converges to zero as ' → ∞. !

6.1. Proof of Proposition 4.3

Taking s = sn,z yields that W1 = mn + z + Us . For such W1 let

α
(±)
n,',z := z−1ec∗z2n′E

[√
W1/Wn′ γ̃'(Wn′ − c∗')q

(±)
ñ (W1,Wn′)

]
, (6.23)

with ñ := n′ −1 denoting our barrier length and q(±)
ñ (x,w) := q(±)

ñ,0 (x,w) for the corresponding non-crossing probabilities

q(±)
ñ,T (x,w) := PW

x (D±2ψ,T | Wn′ = w). (6.24)

Combining (6.4) with Lemmas 6.1 and 6.2 for g(·) = γ̂'(· − c∗') and g̃(·) = γ̃'(· − c∗'), respectively, we have that

(1 − ε')
−2α

(−)
n,',z ≥ z−1ec∗zEsn,z [-n,'] ≥ (1 − ε')

2α
(+)
n,',z.

The proof of Proposition 4.3 thus amounts to showing that for any ε > 0 and all large enough ',

(1 + ε)3α' ≥ lim
z→∞ lim

n→∞
{
α

(−)
n,',z

}
≥ lim

z→∞
lim

n→∞

{
α

(+)
n,',z

}
≥ (1 − ε)3α'. (6.25)
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To this end, setting z′ = z + Us and Wn′ = c∗' + y, we write (6.23) explicitly as

α
(±)
n,',z = ec∗z2n′

z
√

2π ñ
E

[∫
γ̃'(y) dy

√
mn + z′

√
c∗' + y

q(±)
ñ

(
mn + z′, c∗' + y

)
e−(mn−c∗'+z′−y)2/2̃n

]
,

with the expectation over z′. Hereafter ' ≤ n/ logn so |c∗ − ρn|' ≤ 1 and D±2ψ imposes heights a(±) = ρnñ + b(±),
b(±) = ρn' ± 2h' at barrier end points. Thus, in the preceding formula one needs only consider z′, y ≥ ±3h'. Recall that
mn − c∗' = c∗n′ − εn,n for εn,n of (5.13). Thus, upon setting $n := 1

2̃n (z′ − y + c∗ − εn,n)
2, we then get similarly to

(5.14) that

1
2̃n

(
c∗n′ + z′ − y − εn,n

)2 =
(
n′ + 1

)
log 2 + c∗

(
z′ − y − εn,n

)
+ $n.

Since c∗εn,n = logn, this simplifies our formula for α
(±)
n,',z to

α
(±)
n,',z = 1√

π'

∫ ∞

±3h'

ec∗y γ̃'(y)
f̂

(±)
n,',z(y)

√
1 + y/(c∗')

dy,

f̂
(±)
n,',z(y) := n

2
√

2z
E

[√
mn + z′
√

c∗ñ
q(±)
ñ

(
mn + z′, c∗' + y

)
e−c∗Us e−$n

]
.

(6.26)

By our uniform tail estimate (6.9) for Us and the tail bound (6.3) on γ̃'(y), up to an error εn → 0 as n → ∞, we can
restrict the evaluation of f̂

(±)
n,',z(y) to |z′| + y ≤ C

√
logn. This forces mn + z′ = c∗ñ(1 + εn) and eliminates $n, thereby

allowing us to replace f̂
(±)
n,',z(y) in (6.26) by

f
(±)
n,',z(y) = E

[
e−c∗Us

√
2z

ñ

2
q(±)
ñ

(
mn + z′, c∗' + y

)]
. (6.27)

Recalling the events Dκh',T , see below (6.17), we further consider the barrier probabilities

q̃(±)
ñ,T (x,w) := PW

x (D±2h',T | Wn′ = w), (6.28)

using the abbreviated notation q̃(±)
ñ (x,w) = q̃(±)

ñ,0 (x,w). Let P[t1,t2]
x→w(Am(t)) denote the probability that the Brownian

bridge, taking the value x at t1 and w at t2 remains above the barrier m(t) on the interval [t1, t2]. Recall from [13,
Lemma 2.2] that for a linear barrier m(t),

P[t1,t2]
x→w(Am(t)) = 1 − e−2(x−m(t1))+(w−m(t2))+/(t2−t1). (6.29)

It follows that

q̃(±)
ñ (x,w) = P[1,n′]

x→w(Aϕ̄n(t)±2h') = 1 − e−2(x−a(±))+(w−b(±))+/̃n. (6.30)

Fixing ', with εn,' → 0 and ρn bounded, taking x − a(±) = z′+ρn ∓ 2h' and w − b(±) = y−εn,' ∓ 2h' (which are both
O(

√
logn)), we have for some εn → 0,

q̃(±)
ñ

(
mn + z′, c∗' + y

)
= 2 + εn

ñ

(
z′+c∗ ∓ 2h'

)
(y ∓ 2h'). (6.31)

Note further that

q̃(±)
ñ,T (x,w) = EW

x

[
P[T +1,n′−T ]

WT +1→Wn′−T
(Aϕ̄n(t)±2h') | Wn′ = w

]
. (6.32)

The next lemma paraphrases [13, Proposition 6.1] (with the proof given there also yielding the claimed uniformity).

Lemma 6.3. For each ε > 0 there exist Tε , nε finite so that, for any ' ≥ 0, T ∈ [Tε,
1
2 ñ], x − a(±),w − b(±) ∈ [0, log ñ]

and all ñ > nε

(1 − ε)̃q(+)
ñ,T (x,w) ≤ q(+)

ñ,T (x,w) ≤ q(−)
ñ,T (x,w) ≤ (1 + ε)̃q(−)

ñ,T (x,w). (6.33)
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Fixing ε > 0, we bound separately f
(±)
n,',z(y). Starting with f

(−)
n,',z(y), we have from (6.27), using the fact that q(−)

ñ ≤
q(−)
ñ,Tε

and the RHS of (6.33), that

f
(−)
n,',z(y) ≤ E

[
e−c∗Us

√
2z

ñ

2
q(−)
ñ,Tε

(
mn + z′, c∗' + y

)]

≤ (1 + ε)E
[
e−c∗Us

√
2z

ñ

2
q̃(−)
ñ,Tε

(
mn + z′, c∗' + y

)]
. (6.34)

Turning to evaluate q̃(±)
ñ,T (mn + z′, c∗' + y), we get from (6.32) and (6.29) that

q̃(±)
ñ,T

(
mn + z′, c∗' + y

)
≤ 2

ñ − 2T
E

[
(Z̄ ∓ 2h')+(Ȳ ∓ 2h')+

]
, (6.35)

where (Z̄, Ȳ ) follow the joint Gaussian distribution of

(
WT +1 − ϕ̄n(T + 1),Wn′−T − ϕ̄n

(
n′ − T

))

given W1 = mn + z′ and Wn′ = c∗' + y. It is further easy to verify that

Cov(Z̄, Ȳ ) = T

[
1 0
0 1

]
+ T 2

ñ

[−1 1
1 −1

]
, (6.36)

and that

E
[
(Z̄, Ȳ )

]
−

[
z′ + c∗ + T

ñ

(
y − z′), y + T

ñ

(
z′ − y

)]
= oñ(1)

independently of (z′, y), decaying to zero when ñ → ∞ with ', T kept fixed. From this we get, in view of (6.34) and
(6.35), that

lim
z→∞ lim

n→∞
{
f

(−)
n,',z(y)

}
≤ (1 + ε)(y + 3h') lim

z,s→∞ E
[
(z′ + 3h')+√

2z
e−c∗Us

]

provided h' ≥ c∗ + √
Tε/(2π). In addition, with B = {|Us | < z/2}, or without such restriction, we get thanks to (6.9), via

dominated convergence that

lim
z,s→∞ E

[
1B

(z′ ± 3h')+√
2z

e−c∗Us

]
= 1√

2
E

(
e−c∗U∞

)
= 1√

2
ec2∗/4 = 1. (6.37)

(Recall Lemma 6.1 that U∞ ∼ N(0,1/2).) Combined with the previous display, we obtain

lim
z→∞ lim

n→∞
{
f

(−)
n,',z(y)

}
≤ (1 + ε)(y + 3h'). (6.38)

Note that for ' → ∞

1√
π'

∫ ∞

−3h'

ec∗y γ̃'(y)
y + 3h'√

1 + y/(c∗')
dy ≤ α'(1 + ε). (6.39)

(Due to (6.3) the contribution to α' outside [
√

'/(2r'),2r'
√

'] is negligible, whereas within that interval y/' → 0 and
h'/y → 0.) Combining (6.26), (6.38) and (6.39) yields the LHS of (6.25), thereby completing the proof of the upper
bound in Proposition 4.3.
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Fig. 4. Depiction of the events D2ψ (dashed curve) and Dc
3h',0,T +1 ∩ D2h',T (dotted line).

Turning next to the lower bound on f
(+)
n,',z(y), we first truncate to y ∈ [

√
'/(2r'),

√
'2r'] and restrict to z′ ∈ [ z

2 , 3z
2 ] via

the event B. Then, taking h' ≥ 2(T + 1)δ for T = Tε of Lemma 6.3, guarantees that

3h' ≥ sup
t∈[1,T +1]∪[n′−T ,n′]

{
2ψ'(t)

}
,

for ψ'(·) ≥ h' of (4.10). This in turn implies that

D2ψ,T ⊂ D2ψ ∪
(
Dc

3h',0,T +1 ∩ D2h',T

)
∪

(
D2h',T ∩ Dc

3h' ,̃n−T ,n′
)
, (6.40)

where Dc
3h',T ,T ′ denotes the event of the Brownian motion crossing below the linear barrier in the definition of D3h',T ,T ′ ,

see below (6.17). See Figure 4 for an illustration of these events. From (6.40) and the LHS of (6.33) we deduce by the
union bound, that at x = mn + z′, w = c∗' + y, for all ñ large enough

q(+)
ñ (x,w) ≥ (1 − ε)̃q(+)

ñ,T (x,w) − q̃(↓3h',+)
ñ,T (x,w) − q̃(+,↓3h')

ñ,T (x,w), (6.41)

where q̃(↓3h',+)
ñ,T (x,w) and q̃(+,↓3h')

ñ,T (x,w) are the probabilities of the events Dc
3h',0,T +1 ∩D2h',T and D2h',T ∩Dc

3h' ,̃n−T ,n′

under PW
x (· | Wn′ = w).

Proceeding to evaluating the latter terms, note that conditional on (Z̄, Ȳ ) and the given values of W1 = x, Wn′ = w,
the events D3h',0,T +1, D2h',T and D3h' ,̃n−T ,n′ are mutually independent. Thus, setting y′ = w − ρn' ∈ [y, y + 1] and
assuming WLOG that (

√
'/r') ∧ z ≥ 8h', we have from (6.29), that

P
(
Dc

3h',0,T +1 | Z̄, Ȳ
)
= 1 − P[1,T +1]

x→WT +1
(Aϕ̄n(t)+3h') = e−2(z′+ρn−3h')(Z̄−3h')+/T ,

P
(
Dc

3h' ,̃n−T ,n′ | Z̄, Ȳ
)
= 1 − P[n′−T ,n′]

Wn′−T →w(Aϕ̄n(t)+3h') = e−2(Ȳ−3h')+(y′−3h')/T .

Combining these identities with (6.32) and the inequality (6.41), we arrive at

q(+)
ñ (x,w)

≥ E
[(

1 − ε − e−2(z′+ρn−3h')(Z̄−3h')+/T − e−2(y′−3h')(Ȳ−3h')+/T
)
P[T +1,n′−T ]

Z̄+ϕ̄n(T +1)→Ȳ+ϕ̄n(n′−T )
(Aϕ̄n(t)+2h')

]
.

The first factor on the RHS is at least −2 and for all ' larger than some universal '0(ε) it exceeds (1 − ε)2 on the event
A := {Z̄ ∧ Ȳ ≥ 4h'}. Setting V := (Z̄ − 2h')+(Ȳ − 2h')+, we combine for the second term on the RHS the analog of
identity (6.30) with the bound 1 − e−a ∈ [a − a2/2, a] on R+ to arrive at

(̃n − 2T )q(+)
ñ (x,w) ≥ 2E

[{
(1 − ε)2 − 31Ac − 2V

ñ − 2T

}
V

]
.
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Utilizing (6.27), the uniform tail bounds one has on (Z̄ − z′, Ȳ − y) when ñ → ∞, for our truncated range of z′ and y,
followed by (6.37), we conclude that

lim
z→∞

lim
n→∞

{
f

(+)
n,',z(y)

}
≥ lim

z→∞
lim

n→∞
E

[
1B

e−c∗Us

√
2z

ñ

2
q(+)
ñ

(
mn + z′, c∗' + y

)]

≥ (1 − ε)2(y − 3h') lim
z,s→∞ E

[
1B

(z′ − 3h')+√
2z

e−c∗Us

]
≥ (1 − ε)2(y − 3h').

Plugging this into (6.26) and noting that for ' → ∞

1√
π'

∫ 2r'
√

'

√
'/(2r')

ec∗y γ̃'(y)
y − 3h'√

1 + y/(c∗')
dy ≥ α'(1 − ε)

we arrive at the RHS of (6.25), thereby completing the proof of Proposition 4.3.
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