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Abstract. Let 7, denote the binary tree of depth n augmented by an extra edge connected to its root. Let C, denote the cover time

of T, by simple random walk. We prove that the sequence of random variables v/C,2~+1) — m,,, where m,, is an explicit constant,
converges in distribution as n — 0o, and identify the limit.

Résumé. Soit 7, I’arbre binaire de profondeur n, augmenté par une aréte attachée a la racine. Soit C, le temps de recouvrement de

T par une marche aléatoire simple. Nous montrons que la suite de variables aléatoires v/C,2~"+1) — m,,, avec m,, une constante
explicite, converge quand n — oo. Nous identifions la limite.
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1. Introduction

We introduce in this section notation and our main results, provide background, and give a road map for the rest of the
paper.

1.1. Notation and main result

Let 7, denote the binary tree of depth n, whose only vertex of degree 2 is attached to an extra vertex p, called the ROOT.
The COVER TIME C, of T, is the number of steps of a (discrete time) simple random walk started at p, till visiting all
vertices of 7,,. We write SRW for such a random walk. The main result of this paper is the following theorem, which gives
convergence in law of a (normalized) version of the cover time C,.

Theorem 1.1. Let C), := 2-+De - and set

logn
my = PN, Pn 1= Csx — g ,  Cx=+/2log?2. (1.1)

Cyll

There exist a random variable X/, > 0 and o, > 0 finite, so that, for any fixed y € R,

lim P(\/C, —my <y) =E(exp|—a: X e }) :=P(Y, < V). (1.2)
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That is, the normalized cover time ,/C, — m, converges in distribution to Y/, a standard Gumbel random variable
shifted by log(a« X/,) then scaled by 1/c,. See Lemma 1.4 for a description of the random variable X/ in terms of the
limit of a derivative martingale.

As is often the case, most of the work in proving a statement such as Theorem 1.1 involves the control of certain
excursion counts. We now introduce notation in order to describe these. Let V; denote the set of vertices of 7, at level
J» with V_; = {p}. For each v € V,, let v(j) denote the ancestor of v at level j < n, i.e. the unique vertex in V; on the
geodesic connecting v and p. In particular, v(—1) is the root p.

Next, for each v € V), let

Tif’j = #{excursions from v(j — 1) to v(j) made by the SRW on 7,

prior to completing its first [s] excursions from the root ,0}. (1.3)
Setting

ty,=infl{s € Z, : T}, #0}, (1.4)

v,n

for the number of excursions from the root by the SRW till reaching v, we consider the corresponding excursion cover
time of V,,,

1= sup {1y, }. (1.5)

veV,
Our main tool in proving Theorem 1.1 is a generalization (see Proposition 2.2 below), of the following theorem
concerning f\.

Theorem 1.2. With notation as in Theorem 1.1,

‘/Zt,’{—mngYoo asn— oo, (1.6)

where Yoo := Y. — 8o for a standard Gaussian random variable g, independent of Y. . Alternatively, for some random
variable X5, > 0,

P(Yoo <) :=E(exp{—o Xoce™}). (1.7)

The main challenge in proving Theorem 1.2 (or Proposition 2.2), is in obtaining the following key sharp right tail
estimates for the excursion cover times.

Theorem 1.3. There exists a finite o, > 0 such that

lim limsup|z~'e™*P(y/21} — my > z) — | =0. (1.8)
270 p—soo

Tail estimates at such fine resolution were established, for example, en-route to the convergence in law of the maximum
of BRW (see [14]). However, what significantly complicates our analysis, is having here a more general branching process
where the motion of individual particles follows a Markov chain (and not merely a sum of i.i.d.-s).

To describe X and X/, let {g,, u € Too\{p}} be the standard Gaussian branching random walk (BRW), on the infinite
binary tree 7o \{p}. That is, denoting by O the unique vertex at V; and placing i.i.d. standard normal weights on the edges
of Too, we write g, for the sum of the weights along the geodesic connecting 0 to u. We further consider the empirically
centered g/, := g, — &|u|, Where

=27 g kel (1.9)

u'eVy

denotes the average of the BRW at level k, and set

Xk — Z(c*k+gu)e—6*(0*k+gu)’ X]/( — Z (C*k _I_g;)e—c*(c*k+g;). (110)

ueVi ueVi

It is not hard to verify that { X} is a martingale, referred to as the DERIVATIVE MARTINGALE. We then have that



832 A. Dembo, J. Rosen and O. Zeitouni

Lemma 1.4. X;, X; and g, converge a.s. to positive, finite limits Xoo, X, and a standard Gaussian variable g,
independent of X[, such that

Xoo = XL e 8, (1.11)

The convergence of Xj to X, is well known, see e.g. [3,10] (and, for its first occurrence in terms of limits in branching
processes, [25]), and building on it, we easily deduce the corresponding convergence for X,

1.2. Background and related results

Theorem 1.1 is closely related to the recent paper [16], which deals with continuous time SRW, and we wish to acknowl-
edge the priority of their work. The proofs however are different — while [16] builds heavily on the isomorphism theorem
of [22] to relate directly the occupation time on the tree to the Gaussian free field on the tree which is nothing but the
BRW described above Lemma 1.4, our proof is a refinement of [8, Theorem 1.3], where the tightness of the LHS of (1.6) is
proved. Our proof, which is based on the strategy for proving convergence in law of the maximum of branching random
walk described in [14], was obtained independently of [16], except that in proving that Theorem 1.2 implies Theorem 1.1,
we do borrow some ideas from [16]. As motivation to our work, we note that estimates from [8] were instrumental in
obtaining the tightness of the (centered) cover time of the two dimensional sphere by e-blowup of Brownian motion, see
[9]. Many of the ideas and computations we do in proving Theorem 1.3 play an important role in a forthcoming work
where we plan to upgrade the tightness result of [9] to a convergence in law.

We next put our work in context. The study of the cover time of graphs by SRW has a long history. Early bounds appear
in [27], and a general result showing that the cover time is concentrated as soon as it is much longer than the maximal
hitting time appears in [4]. A modern general perspective linking the cover time of graphs to Gaussian processes appears
in [20], and was refined to sharp concentration in [19] (for many graphs including trees) and [31] (for general graphs). See
also [26] for a different perspective on [20]. For the cover time of trees, an exact first order asymptotic appears in [5]. The
tightness of \/CTQ around an implicit constant was derived by analytic methods in [15], and, following the identification of
the logarithmic correction in m,, [21], its O (1) identification appears in [8].

We note that the evaluation of the cover time is but one of many natural questions concerning the process of points
with a-typical (local) occupation time, and quite a bit of work has been devoted to this topic. We do not elaborate here
and refer the reader to [2,18,29]. Particularly relevant to this paper is the recent [1].

It has been recognized for quite some time that the study of the cover time of two dimensional manifolds by Brownian
motion (and of the cover time of two dimensional lattices by SRW) is related to a hierarchical structure similar to that
appearing in the study of the cover time for trees, see e.g. [17] and, for a recent perspective, [28]. A similar hierarchical
structure also appears in the study of extremes of the critical Gaussian free field, and in other logarithmically correlated
fields appearing e.g. in the study of random matrices. We do not discuss that literature and refer instead to recent surveys
offering different perspectives [6,11,12,24,30].

1.3. Structure of the paper

In contrast with [16] the key to our proof of Theorem 1.2 is the sharp right tail of Theorem 1.3. Indeed, after quickly
dispensing of Lemma 1.4, in Section 2 we obtain Theorem 1.2 out of Theorem 1.3, by adapting the approach of [14] for
the convergence in law of the maximum of BRW. In the short Section 3, which is the only part of this work that parallels
the derivation of [16], we deduce Theorem 1.1 out of Theorem 1.2.

As mentioned before, the bulk of this paper is devoted to the proof of Theorem 1.3, which we establish in Section 4
by a refinement of the approach used in deriving [8, Theorem 1.3]. In doing so, we defer the a-priori bounds we need on
certain barrier events, which might be of some independent interest, to Section 5, where we derive these bounds by refining
estimates from [8]. The proof of the main contribution to the tail estimate of Theorem 1.3, as stated in Proposition 4.3, is
further deferred to Section 6. There, utilizing the close relation between our Markov chain and the 0-dimensional Bessel
process, we get sharper barrier estimates, now up to (1 + o(1)) factor of the relevant probabilities.

2. From tail to limit: Lemma 1.4 and Theorem 1.2

We start by proving the elementary Lemma 1.4, denoting throughout the last common ancestor of u,u’ € Too by w =
u Au'. Namely, w = u(|w|) for jw| =max{j >0, u(j) =u'(j)}.
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Proof of Lemma 1.4. The BRW {g,; u € T;} of Lemma 1.4 is the centered Gaussian random vector having
Cov(gu, gu) = |u nu'|. 2.1

Further, the average of the BRW weights on the edges of 7o, between levels (k — 1) and k, is precisely Agy := gk — gk—1
for g of (1.9). With (Agy, k > 1) independent centered Gaussian random variables with Var(Agy) = 27k, we have that
gk converges a.s. to the standard Gaussian g 1= Zk Agr.. Next, recall the existence of wy — oo such that, a.s.,

A = {c*k + gu € wr + (0, 2c4k), Yu € Vk} occurs for all k large, 2.2)
see e.g. [23, (1.8)]. For X of (1.10), it follows from [3] that X s Xoo € (0, 00), while

Xy > wkik on Ay, for ik = Z e Cxlektgn) (2.3)

ueVy

Thus, X k 23 0 as k — oo. From the two expressions in (1.10) we have that
X} = (Xg — & Xp)e %

which thereby converges a.s. to X/ = Xooe*8= as claimed in (1.11). Finally, from (2.1) we deduce that for any u € Vg,
k>0,

k
Cov(gy, gx) =27% Z lunu'| = Z(j —127 k2 k=1-27F (2.4)
u'eVy j=1

This covariance is constant over u € Vi, hence Cov(g,,, gju) = 0 for g, := g, — &ju|, implying the independence of g
and {g;, u € Vi}. The latter variables are further independent of the BRW edge weights outside 7, hence of goo. Thus,
the random variable X go, which is measurable on a(g,;, u € Too), must also be independent of g. O

We next normalize the counts T; j of (1.3) and define

s —
Ty =S

u

Tu(s) =
(5) 1= = 7=

o Ske):=270 ) (), 2.5)

ueVy

and get from the CLT for sums of i.i.d. the following relation with the BRW.

Lemma 2.1. For fixed k and the BRW {g,; u € T} of Lemma 1.4, we have

(Tu()ueTi} £ {guue T, (2.6)
{Tu) = Sk(o),u e Vi) =5 (gl ue Vi @.7)

Proof. The consecutive excursions from p by the SRW on 7,, are i.i.d. Hence, s {th»l u U € Ti}is an R4-valued random
walk (with d the finite size of 7). Further, projecting the SRW on 7}, to the geodesic from u to p, yields a symmetric SRW
on {—1,0,..., [u]}. Thus, denoting by T; the number of excursions from u(j — 1) to u € V; during a single excursion
from p, we have that P(T; > 1) =p; :=1/(j + 1) (for reaching u before returning to p), and 7; conditional on T; > 1,
follows a geometric law of success probability P(T; = 1|7} > 1) = p;. Consequently, for any j € [0, k],
E(T)=1,  Var(T;)=E[T;(T; — )] = Lp ‘ P _; 2.8)
J

1
Note that Tu’ |
Tl

w,|w|*

and Tul, | re independent, conditionally on Tul) for w = u A/, each having the conditional mean

»lwp?

We thus see that for any u, u’ € T, in view of (2.8),

CoV(T,} s Ty 1) = Var(Tjunw) = 2|u Add'|. (2.9)

u,lul* Tul,u'|
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Comparing with (2.1), the i.i.d. increments of our R?-valued random walk have the mean vector 1 and covariance matrix
which is twice that of the BRW, with (2.6) and (2.7) as immediate consequences of the multivariate CLT. U

Using throughout the notation
Sn.y 1= (my + y)?/2 (2.10)
for m,, of (1.1), we have that
(V2 —my <y} ={6y <suy}-

In view of Lemma 2.1, we thus see that Theorem 1.2 is an immediate consequence (for non-random i (s) = ), of (2.12)
in the following proposition. (The additional statement employing (2.13) is utilized in the proof of Theorem 1.1.)

For any k > 1, let F; denote the o -algebra generated by the collection {Tlf’ I £>0,j<k,ucV}forasrRwon7,. A
moment’s thought reveals that F; does not depend on n > k.

Proposition 2.2. Assuming Theorem 1.3, if F-measurable {t(s), s > 0} are such that

v () =8 »p
'L'k(S) = (ﬁ) ,\::o O, (211)
then for any fixed y € R,
lim limsup|P(t; < t(sn,y)) — P(Yoo < )| =0. (2.12)

k=00 p—soo

Further, replacing (2.11) by
Tu(s) + Sk(s) = 0, (2.13)
§—>00
leads to (2.12) holding with Y/ of (1.2) instead of Yoo.

Proof. For a possibly random, Fj-measurable 7, we set

T* S

AU
V2s
in analogy to ﬁ(s; s) = YA"u(s) of (2.5). With (TM” —-1)/ V2 the sum of 7 i.i.d. standardized variables, by Donsker’s
invariance principle, as s — oo, the path 6 W& (©9) = T“,,(Os; s) — ((6s — s5)/+/2s), converges in law to a Brownian
motion. Thus, if & 5 1, then W® (%)) — w®) (1) £ 0. That is,

T, (t;5) 1= (2.14)

Jue]

Tu(w(s):s) = Tuls: ) = Tuls) = 0, VueTk. 2.15)
Further,
Fi () :=/2(s + V25x) — /25 . (2.16)

uniformly over bounded x. Hence, setting

Tu(t:s) :=\/ﬂ—~/2_s=fs(ﬁ(t;s)), (2.17)
upon combining Lemma 2.1 and (2.15), we deduce from (2.11) that

{To (i (s); ), ue Vk}sizi“:; {gu. 1 € Vi, (2.18)

whereas under (2.13) we merely replace g, by g, on the RHS. Proceeding under the assumption (2.11), fix y € R and an
integer k > 1, setting

M= 2Tu’7",fs”’y) — My, 72 i=cik +gu+y, VYueV, (2.19)
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with ¢, as in (1.1). For fixed y and k, we have, using (2.10), that

1 k
28,y —Mpy_ — (csk +y)=my —my_ — cxk=— log<1 — —) — 0.
Cx

nj) n—oo
Hence from (2.18) at s = s,y it follows that

[z uev) £ {209 eyl (2.20)

n—o00

In particular, for X; of (1.10) and X r of (2.3) we have that

(n,y) ._ () ,—cyzP  dist TN, —CxY
x "= " 2Pe = (Xi+ yXpe . (2.21)

ueVy

For any fixed y € R, we have by (2.2) and (2.20) that

lim lim P(A") =1, A" ={z" € wi +y + (0, 2c,k), Vu € Vi ). (2.22)

k—00 00

Recalling that X k b)) (see the line following (2.3)), and the definition of Y., from (1.7), we have in view of (2.21) that
for any oy — oy

P(Yoo < y) = lim E[1s, exp{—ax(Xy +yXpe ]

= lim @ E[lA(") exp{_akxlgn,y)}]
k

—> X n—00

. - )]
= lim lim E[IA/(CH) 1_[ (1 —akzlgn)e CxZu ):|’ (2.23)

— X0 n—o00

where E,H «of (n) stands for bounds given by both limsup, _, ., f(n) and liminf,_, » f(n), and in the last equality of
(2.23) we relied on having

(n) p—cszi”
Sk = sup IA(’” sup {axz } — o,
uevVy k— 00

aswellas e ¢ > 1 —a > e U4 for g € [0,8 A 1/2]. For u € Vj let V¥ ={v € V, 1 v(k) = u} denote the leaves of the
binary sub-tree of 7, of depth n — k, emanating from u, with u(k — 1) acting as its (extra) root. The event {#; < t} of the
SRW reaching all of V,, within its first T excursions from p is the intersection over u € Vj of the events of reaching all
of V,;' within the first 7, , excursions of the SRW between u(k — 1) and u. By the Markov property, for Fi-measurable
T, condltlonally on Fj the latter events are mutually independent, of conditional probabilities y,— (7 ;) for u € Vi and
Yu(s) :=P(t; < ). Consequently, for T = 14 (s,,,) we get that

Pty <t F)= [ tni(TT) = [T (1 = i cI7)). (2.24)

ueVy ueVy
for y,(z) :=P(/2t¥ —m, > z) and z(")

+
nk<ooanda( )—>a*,

of (2.19). Theorem 1.3 and the monotonicity of z — y,,(z) yield that for some

(=) ), ,—cuz

op 'ze” N <) <oy ze Vn > ng,Vz € wi + y + [0, 2¢4k]. (2.25)

Under the event A,(C") , which is measurable on F, the latter bounds apply for all z = zu . Hence, we get from (2.24) that

. ) . T
lim EI:IAI(:!) [T =afPzimees )] < lim P(57 < t(sy); Ay") < Tm P(t7 < zilsny); AL”)
n—oo L{EV/\ n— oo

— (=) (Vl) C*Zu
<nlLrIoloE|: A(n) 1_[ 1 o )]

ueVy

We now establish (2.12), by taking k — oo while utilizing (2.22) and (2.23).
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The same argument applies under (2.13), now replacing g, by g, in (2.19), thereby changing Xy, X x and Y, in (2.21)
and (2.23), to X}, X; and Y/ . a

3. Excursion counts to real time: From Proposition 2.2 to Theorem 1.1

Theorem 1.1 amounts to showing that for any fixed y € R and € > 0,

lim P(C, < 2sp,y-2¢) <P(Y5 < y) < lim P(C, < 2s5n,y+2¢), 3.1
n—o00

n—oo

where throughout s, y, := (m, + y)2/2, as in (2.10). To this end, let

Ry :=27" ) TS - (3.2)
ueT,

The SRW on 7,, makes 2("+1)Rfl steps during its first s excursions from the root to itself. Thus, {t* <t} ={C, < R}}, so
for any random 7, 7,

P(ry <) —P(Ry, > 21) <P(C, <21) <P(1; <) +P(Ry, <21). (3.3)

Considering (3.3) at t = s, y+2¢, the insufficient concentration of R} at the non-random 7 = s, , rules out establishing
(3.1) directly from Theorem 1.2. We thus follow the approach of [16, Section 9], in employing instead (3.3) for t =
7 (Sn,y) and the F-measurable

w(s)=inf{t e Zy | S =5}, Sf=2"%>"T!,. (3.4)

ueVy

Recall that E[S,l] =1 (see (2.8)), while setting c"sz := Var(gy) = 1 —27% (see (2.4)), and comparing (2.1) to (2.9), we arrive
at Var(S,i) = 26,3. Hence, Donsker’s invariance principle yields a coupling between the piece-wise linear interpolation
t— /.S:S,k(t) of {(S,tC —1)//2s;t € Z4}, and a standard Brownian motion {Wj}, such that

sup |Ss.x(65) — G Wa| —> 0. (3.5)
0¢€[0,2] §—00

From (3.4) we see that S,:k © > 0 is at most 2 times the total number of excursions from Vj_; to Vi made by the
SRW started at some v € Vi, before hitting the root, plus 1. The latter has exactly the law of S,l given S,,: > (. Thus,

E 1
i = sup{E[SPC) — 51} < — k]

< < o0, (3.6)
40 P(S} > 0)

and for 7y (s) defined as in (2.11), one has when s — oo, that

Ssuk(w(s)) +Tuls) = S 0. 6= 2y (3.7)
s \/Z_S s

In particular, considering (3.5) at 65, by the continuity of 6 — Wy

Sy k(058) = 5k Wa, +0,(1) =G W1 + 0, (1) = Sy 1(s) 4+ 0, (1).

Since TS'\S,k(s) = §k(s) of (2.5), we conclude that {rx(s), s > 0} of (3.4) satisfy (2.13), and with |25, y40 — 28, y] >
4e . /sy,y for n large enough, we finish the proof of Theorem 1.1 upon showing that for s = s, , and any fixed € > 0,

lim Tim P(|R*® — 25| > 4e/5) =0. (3.8)

k—oon—o0

To this end, recall that in view of (2.8) and (3.2)

rj=B(R}) =27/|Tj| =227/, G2
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and similarly, by (2.9) and (3.2) we get that

op :=Var(R)) =2 Y 27"|unu|<4. (3.10)

w,u' €Ty
Next, writing in short T = 74 (s), we have for any n > k, the representation
T _ ~Ak—n pt T —k k ot
Rn—Z Rk +rn_kSk +2 Ak,n(Z Sk)’

where the random variable Ay ,(¢) is the centered and scaled total time spent by the SRW on 7, below level k during
the first £ excursions from Vj_; to Vj. For fixed £, Ay ,(£) (i—) Rﬁfk — ]E(Rﬁf ) and has variance anzf ¢ < 4L. Further,
A,n(2%SF) conditioned on F is distributed as R, —E(R’_,) with £ = 2FS7. Recalling that R} |, = 2(R} — S}) and
utilizing (3.6), we thus get by Markov’s inequality (conditional on ), that

AFE(ST) 427k Cr
o T k—n—1 kK’ _
Sk»" T ]P)(|Rn -2 Rl:—l - 2Sl€| = 6\/5) = (zkE\/E)Z T2 (1 _)’

goes to zero for s = s, y, — 00 followed by k — o0o. Also, by the union bound,

N

P(|RE — 25| > d€/5) < 8kn +P(Sf — s > €/5) + P(x > 25) + P(2F "7 IRE | > €/5).

Next, employing Markov’s inequality, we deduce that the last term goes to zero, since 2K "5y _1/(€4/s) — O for s = s, y
and n — o0. By (3.6) and having WHP t = 14 (s) < 2s (see (3.7)), we thus arrive at (3.8) and thereby conclude the proof
of Theorem 1.1.

4. Sharp right tail: Auxiliary lemmas and proof of Theorem 1.3

Hereafter we denote by IP; probabilities of events occurring up to the completion of the first [s] excursions at the root and
let n,(j) := /2T1f,j for ve Vi, j <k and T,f’j of (1.3), with the value of s implicit. For u € V, where n’ :=n — £, and
Vi={veV,:v@)=u},let

fooo
() == J'env'}{””(”)}’ (4.1)

denote the minimal (normalized) occupation time of edges entering leaves of the sub-tree of depth £ rooted at u (during
the first [s] excursions from the root p), abbreviating ng for n,u, (0). Since

x> s} = {min{73,} =0},

veV,

Theorem 1.3 amounts to the claim

@, = lim z7'e™* [im Py, (1% =0), 4.2)

=00 n—00
for s,,; and ¢, of (2.10) and (1.1), respectively. Our proof of (4.2) is based on a refinement of the probability estimates of
[8, Section 5], intersecting here the event {77,% = (0} with barrier events involving the (normalized) edge occupation times
{j = nu(j),v € T,}. More precisely, we adapt the strategy of [14, Section 3], by essentially bounding ]P’Sm(nf, =0)
between the expectations of counts A, ¢ < I', ¢ for two barrier type events, which are equivalent at the claimed scale of
asymptotic growth in z (see Lemma 4.2). Our curved barrier event for I';, ; is relaxed enough to deduce that the event

{I'y,¢ = 1} is for large n, £, about the same as having {77?Z =0} (see Lemma 4.1). The straight barrier event for A, ¢ is

strict enough to yield a negligible variance (see Lemma 4.4), so its expectation serves to lower bound Py, (ng =0). Our
claim (4.2) then follows from such a limit for Ey, .[An ¢] (which is a consequence of Proposition 4.3). Specifically, for
s = sy, consider the excess edge occupation times, over the barrier

Gn())i=pan— ). je[0.n])n'=n—t. 4.3)
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7 level
n n

Fig. 1. Depiction of the events E, ¢(u) (dashed line) and F;, ¢(u) (dotted line) for some u € V,,/. In either case, the red paths emanating from level

n’ =n — € denote excursion counts corresponding to different children of u. Note the curved vs. straight barrier and the excursion count that reaches 0.

In the sequel we show that the main contribution to {ng = 0} is due to not covering a sub-tree rooted at some u € V,
while the edge occupation times along the geodesic to u exceed the barrier ¢, (-) of (4.3), with the excess at the edge into
u further restricted to

Iy = ﬁ[r[l,rg], re :=+/logt. 4.4)
To this end, let
Mo (J) == nv(j) = @n(j), 4.5)

considering for u € V,/ the events

Ene@):= () {#u()>0}N {fu(n') € Lo, nj ) =0}, (4.6)

0<j<n’

and the corresponding counts

Anei= Y 1, - (4.7)

uevV,

See Figure 1 for a pictorial illustration of the event Ej, ¢(u). As explained before, aiming first to upper bound Py, . (ng =0),
we fix § € (0, %) and for k € [1,n], h € [0, n — k], consider the curved, relaxed barriers

Pn ke, (J) = @n(j) = Vin (), j €[0,k], (4.8)
using hereafter the notations

Ven(D)i=h+jis = A=), jel0,kl. (4.9)
We further use the abbreviated notation

Ve() :=Vw o, (), Wwhere hy = %logﬁ, (4.10)
with n’ =n — £ > 1. Replacing the barriers of (4.3) by those of (4.8), we then form the larger counts

Twe= Y 1£, - (4.11)

MGVnI

where in terms of (4.1), (4.5) and (4.8), we define for each u € Vs

Fuo@) = () {Au() +ve(i) >0} 0 {nf@) =0} (4.12)

O<j=<n
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My + 2
My — h[ S

level
™ o leve

Fig. 2. Depiction of an event from G,, ; (dashed line) corresponding to some u € V,,/, n’ =n — £. Note the curved barrier.

See Figure 1 for a pictorial illustration of the event F, ,(u). If 175 = 0, then necessarily 772 (u) =0 for some u € V,y and
either F, ¢(u) occurs (so I', ¢ > 1), or else the event G, ¢ := G, (h¢) must occur, where, see Figure 2,

Guwmy:=J U () =—vwai} (4.13)

ueVy 0<j<k’
Hence, for any ¢,
Es, . [Cne] = Py, (Coe = 1) = Py, (0} =0) =Py, (Gne). (4.14)
Recall that by [8, proof of Corollary 5.4], for some ¢’ >0 and all z > 1,

lim Py, . (;72 = O) > /787 %%, 4.15)

n—oo

so our next lemma, which is an immediate consequence of Lemma 5.1 below, shows that the right-most term in (4.14) is
negligible.

Lemma 4.1. We have that

lim sup{z*‘e“*Z lim IPSM(G,L@)} =0. (4.16)
n— o0 ’

=00 ;>
Combining (4.14)—(4.16), we arrive at

Py, (h=0) _

lim lim lim
t—>ooz>oon—>o0 Eg [Ty 0]

4.17)

Restricting hereafter to § € (0, %) allows us to further show in Section 5.2 the following equivalence of first moments (cf.
(5.41) for why we take & small).

Lemma 4.2. For any § € (0, %) we have that

lim Tim {z "¢ Tim E, [Ty _An,g]} —0. (4.18)
n—>oo o

{—002—>00
Now, from (4.17) and (4.18), we have the upper bound

_— T T Psn.z(ng ZO)
lim lim lim ——— <
{—00Z—>00 n—>00 ]Es,,vz [An,el

(4.19)

For such expected counts with straight barriers, we establish in Section 6.1, using the connection to the 0-Bessel process,
the following large n and z asymptotic.
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Proposition 4.3. There exists ap > 0 such that

lim e { Tim 2~"et Tim B, [An ]} =1, (4.20)

£—00 7—00 n—oo

where by (4.15) and (4.19), liminf{a,} is strictly positive.

As shown in Section 5.3, the barrier event we have added in the definition (4.6) of E, ¢(u) yields the following tight
control on the second moment of A, ;.

Lemma 4.4. We have that

lim Tim {z 1 Tim ES,H[A,,,K(A,,,Z—D]}ZO. 4.21)
n—0oo o

L—007—>00

Note that A, ¢ > 1 implies having n,(n) = 0 for some v € V,,, that is, having 175 = 0. Hence, with A, ¢ integer valued,
for any choice of ¢,

Pxn‘z (77;% = 0) = ]Plsn.Z (An,é > 1) = Ev,u [An,é] - ]Ex,u [An,Z(An,f - 1)] (4-22)

Having a positive liminf{c,}, the latter bound, together with (4.20) and (4.21), imply that

Py, (1 =0) _

lim lim lim (4.23)
{—00Z—>00 n—>00 ]EsM[An,Z]

Proof of Theorem 1.3. Comparing first (4.19) to (4.23) and then with (4.20), we conclude that
lim agl{ lim 2~ Tim Py, (nf = o)} —1. (4.24)
L—>00 n—oo n—oo

Necessarily oy — o, for which (4.2) holds (with a, > 0 in view of (4.15) and o, < 0o by [8, Proposition 5.2]). O

5. Barrier bounds for excursion counts
We keep the barrier sequences of (4.8) and all other related notation from Section 4. Further, with p, — ¢, > 1.1, see
(1.1), WLOG we restrict to n > n, > 64 with p, > p, =: 1.1, starting at the following a-priori bound on the events G,, ;’ (h)
from (4.13). Recall the notation s, ; of (2.10).
Lemma 5.1. For some ¢ < 00, anyn > ny, z,k' > 1 and h € [0,n — k'],

Py, . (G () < ez + hye e+ 1 =G+ B, 5.1)
Proof of Lemma 4.1. Setting h = hy = %logé in (5.1), results with

Py, (Gue) < c(z + log £)¢ /202 /6m), (5.2)

so taking £ — oo establishes (4.16). O

Before embarking on the proof of Lemma 5.1, we deduce from it certain useful a-priori tail bounds on the non-covering
events {ng =0}.

Corollary 5.2. For some c < oo and alln > n,, 7> 1,
Py, (nh=0) < cze~¢7 o=/ B, (5.3)
Further, for some éﬁnite, any 0 <{<n/lognandr > —hy,

— _ _ 2
Vit (1) i = By gy (15 = 0) < €71 + log e =" e ™ /80, (5.4)
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Proof. The event ng = 0 amounts to 7, (n) =0 for some v € V,,. With ¢, ,.0(n) =0 (see (4.8)—(4.9)), this implies that
Ny (1) < @n.n.0(n) and consequently that G, ,(0) also occurs (take j = k' =n in (4.13)). That is {n,ﬁ, =0} € G,.,(0), so
the bound (5.3) follows from (5.1). Proceeding to prove (5.4), setting 0:= n, Vexp(2(cx+1)/(2—c4)), one easily checks
that z=r + (log€ — 1)/cx > 1 whenever r > —% log€ and £ > ¢. 1f further 1 <{ <n/logn, then

Llogn
ol +r=cel — +r>mp+z,
cyn
s0 (5.3) at n = £ and such z yields the bound (5.4), possibly with ¢ — ec. O

We recall (4.5), (4.9) and take throughout
H, :=[x,x+1]. 5.5

The key to this section are the following a-priori barrier estimates adapted from [8, Section 5] (though it is advised to skip
the proofs at first reading).

Lemma 5.3. Let g, (i) :=iexp(cyi + iz/m), Bk = SIOgn —logk and zj, ==z + h. For some c1 > 1,allz> 1,k >0,
helO,n—k)andieZ4

nelis 1) =P, (min{u () +icn (D) 2 0. (k) € Hi) (5.6)
—_ Zh _ _ 72 .
<e27F[ 2 Ak )ePriem e/ GMg (i 1), Vm e |2k, n® 5.7
<er ( — ) e g+ 1) (2, 7%] 57)
(replacing for k = 0 the ill-defined factor (j% Ak)ePrk by 1).

Likewise, fori,k' € Zo,n' =k’ +k € (k',n), m € [2k, (n — k)% and z > 0,

Pre@ =P min {7,())} = 0,7(n') € Hi | 1, (K) =2)
JE ,n']
2_keﬁn,k

V kn—k’

The bound (5.8) applies also to z € [—pyk, 0], now with m = —4k.

< (zV 1)eCrie= @D /Gm g 4 1y, (5.8)

Proof. In case k > 1, setting a = p,n — h and b = p,(n — k) — h, using [8, Lemma 5.1], the event considered in (5.6)
corresponds to [8, (1.1)] for L=k, C =1, ¢ = L _ s and the line Jfan(j; k) between (0,a) and (k, b), taking there
y=b+iandx =,/2[s, ;] > a. Having z > 1 and m,, > 1 yields that x > V2. Further, with 4 € [0, n — k) and p, > ps,

1
y2b=,0n(n—k)—hzl+ﬁ(n—k) (5.9
(the restriction to y > V2 in [8, (1.1)] clearly can be replaced with y > 1 there, since for y € [1, ﬁ) one has Hf /2N

Z=(H ﬁ)z /2N Z). Here x/L and y/L are not uniformly bounded above but following [8, proof of (4.2)] and utilizing
[8, Remark 2.6] to suitably modify [8, (4.16)], we nevertheless arrive at the bound

1 —a)(1+1i) |
Gnka iz h) SC( +x—a)(1+1i) X sup {6_(x_w)2/(2k)}. (5.10)
k ky weH,

In addition, whenever x > ﬁ, v, k > 1, we have that

QoG h) <Py, (Ay(k) € Hi_) <c sup {e~—0)/@0) (5.11)

weH,y

(see [9, Lemma 3.6]). Next, since x < c4n + z, we deduce from (5.9) that

X 20 z Co 22
L 2 ) <2 =, 5.12
ky = kn (C*+n)_ nexp<12n2) ( )
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for some constant ¢, < oo. Further, setting §, ; :=a + z;, — x and

- __klogn
Enk =Enk + fSn,z» Enk = s (5.13)
Cyn

2
we have from (1.1) that x — b = ¢k + zj, — &y . With & = log2, it follows that for any real w,
, 2

ﬁ(x —b—)? =klog2 + cx(zh — Eng — W) + —(zh — B — )% (5.14)

By an elementary inequality, for any m > 2k,

SO 2k o
(zh — W —Epp)* > %(zﬁ —3W% — 35, ;). (5.15)

so that by (5.14)

1 2 _ 4wt &
—(x—=b—w) >klog2+ci(zp —Enk —W)+-—— — —
2k 3m

(5.16)

With cuey x — logk = By <1 for k € [1,n] (while §, ; and 5,21’ ¢/ k are uniformly bounded), we plug into the smaller
among (5.10) and (5.11) the bounds (5.12) and (5.16) (for w = b + w and w € H;), to arrive at (5.7). Further,
qn.0.z(i; h)=0for any i <z — 1.1, whereas for i > z; — 1.1, having

inf{gn (25— 0.he™ 5/} > 0,

m,zp=>

yields that (5.7) holds also for k = 0 (under our convention).

Turning to the proof of (5.8), we consider first z > 0, proceeding as in the proof of (5.7) with the line f, »(j; k) of
length k and same slope as in the preceding, now connecting (k', a) to (n’, b), where a = p,(n — k') and b = p,,(n — n’).
Forx =a+zand y=>b+i we have x >a > b and y > b > 0, thanks to our assumption that n’ € (k’, n). By the Markov
property of j — n,(j), for such values of (a, b, x, y) the RHS of (5.10) with & = 0 necessarily bounds the probability
Dn.k.z (i), and thereafter one merely follows the derivation of (5.7), now with &2 =4, ; = 0 and n — k' replacing n when
bounding x/y. The latter modification results in having ,/k,_p in (5.8), instead of \/k,. Next, for z < 0 we simply
lower the barrier line f, 5(j; k) to start at a = x = @, (k') + z, where our assumption that z > —p,k guarantees having
X > @u(n’) > 0 (thereby x > V2, with Pn.k.z(i) bounded by the RHS of (5.10)). Here x /(ky) < c,/ky—r,and z =z <0

allows us to replace the RHS of (5.15) for w > i by (’H) — 1, yielding the stated form of (5.8). (|

We conclude this sub-section by adapting the bounds of Lemma 5.3 to the form needed when proving Lemma 4.4 and
Lemma 4.2.

Lemma 5.4. There exists a constant ¢y < 00 satisfying the following. Fix lasin Corollary 5.2 and I, as in (4.4). For any

2>0,0€e[l, T g land k > 1, setting k' = n’ — k with n’ as in (4.3),

i e@ =P( min [70()) = 0.70(n') € e i) =0 [ u(K) = 2)
<27 KePri(1v JE/R) (1 + 7)e 2 </ BHVEO), (5.17)
If in addition z > 4hy, n > 3¢, then for any r > 0,

ke (r) =B, (min {0 () + e () Lze) > 0.4u(h) <0, () € Hy )

2
<27 fez(k) e~ /I0 7 (r 4 1)) drh (5.18)
k! 129172
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Proof. Starting with (5.17), by the Markov property of n,(j) at j = n’ and monotonicity of y > y, ¢(y) of (5.4), we
have in terms of p,  ;(-) of (5.8)

On it <Y Pk () Ve (r).

rely

Plugging the bounds of (5.4) and (5.8) (at m = 2(k Vv 8¢)), yields for ¢/ finite

2 kebuk /1 2 r2 2
/ —eaz,—22/BKV80) N T —r2/(160)
Onk,(2) < € — (14 2)e” e ) 732¢ :

n—k' rely

With the latter sum uniformly bounded and &,y = k A €, we arrive at (5.17).
Next, turning to establish (5.18), note first that

b<il il vo<j<k<k (5.19)
when 8 = 1 and consequently also for all 8 € [0, 1]. For 8 = 4§, it results with

Yirn(J) Y (j),  for b’ =y (k), j €10, kI,

with equality at j = k. In particular, recalling (4.10) and considering k" = n’, we have that

Ve(j) <vun(j)  for h=(k), j € [0, k]. (5.20)

Employing (5.20) to enlarge the event whose probability is p, k. (i), we get by the Markov property of 1, (j) at j =k, in
terms of gy k,z (3 ), Pn,k,z() and h = Y (k), that

h
Puke() <D quiz(h—ish) sup {puw. (). (5.21)

i=1 ZeH
Substituting first our bound (5.8) at m = —4k’, and then (5.7) at m = 2k, yields that for some c’1 finite,

h 2

. K , —1/2 o (rii _r

ke <1y dnz(h — i )2 P (k)T 20D 4 e
i=1

<ch2 " ePritbui —cazp ,—22/(8K) cur ,—12/(4k)
<c zZne e g+ Dee . (5.22)

ki, okn
With § < § and z > 4h, it follows that

2 2 25 2
WRAR )
2k — k ~ 16k
Further, recall that k + k" =n’ and B, ,» < 1, hence

n' 2e
<

Bk +ﬂn o .Bn n' -
e K= ern .
k' = Ty

(5.23)

Our assumption n > 3£ results with k v k€’ > £ and thereby &/, 4¢kn = Lky . Applying the preceding within (5.22), we
arrive at (5.18). O

5.1. Negligible crossings: Proof of Lemma 5.1
Fixing n, k’, h as in Lemma 5.1, consider for u € Vj, the first time

Ty i= min{j >0:m,(j) < QDn,k/,h(j)}
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that the process j > n,(j) reaches the relevant barrier of (4.8), see Figure 2. For z,m, > 1 we have that t,, > 1, since
Nu(0) = /2[sn,z]1 > my >@, 4 (0) under Py, .. Decomposing G,y (h) according to the possible values of {r,}, results
with
k/
(Gu(h)) <) Py, .(3u € Vi such that 7, = k). (5.24)
k=1

P

Sn,z

Te)
The event {1, = k} depends only on the value of u(k) € Vi. Hence, by the union bound we have that for any fixed u € Vy/
() < 2Py, (7 = ). (5.25)

With p, > 1 > §, it is easy to verify that j > @, x ,(j) is strictly decreasing with @,y (k") = pu(n — k') — h > 0.
Further, for b := ¢y,  n(k), b := @, 1.1 (k + 1), we get upon conditioning on 1, (k) =y, that

[Evs,,wz (tu=k+1)

oo
<Y Py, (tu >k nu(k) € Hyyi) sup P (1) <b). (5.26)
i=0

YEHpy; 2
Applying [7, Lemma4.6] at p=g =1/2and 8 = 52/2 <y?/2

sup P2 (n(1) <B) <e /4, (5.27)

y
YEHp; 2

Setting A’ = Y, (k), we proceed to bound the first probability on the RHS of (5.26). To this end, recall (5.19), yielding
that @, k. w () < @u.r.n(j) for j € [0, k], with equality at j =k (see (4.8)—(4.9)). Consequently,

P, . (tu > ks nu(k) € Hpti) < quio (i3 1), (5.28)

for g, k.- (-; -) of Lemma 5.3. Since n — k' > h and § < 1, for any k < &/,
n—k—h=kK—k—(K—-k">0,
in which case, by (5.7) we have that for any i € Z
i (is 1) < 12K gpe= o e/ B g (i 4 1), (5.29)

Noting that sup, > 3{g2, (i + 1)}e_"2/4 is summable (and z; > zj), we find upon combining (5.25)—(5.29), that for some
c3 finite and any 1 <k < k/,

o
Uer)) <20 g (i3 0)e ™74
i=0

8
< e3(zn + k) )e O CthD =5/ 8m), (5.30)

Further, with ¢, ¢ (1) <m, — h we have similarly to (5.25)—(5.27) that

() < 2P, (t,=1) <2P,, (na(1) <m, —h) < 2e~/*,

Sn,z

which is further bounded for z;, > z > 1 by the RHS of (5.30) at k = 0 (possibly increasing the universal constant c3).
Summing over k < k’ it follows from (5.24) and (5.30) that for some universal ¢4 < 00,

kl
ps'u (Gn,k’ (h)) < cSe*C*Zhe*d/(Sn) Z(Zh + k;z/)e—csfk,‘z,
k=0

_ _2
§C4Zhe C*Zhe Zh/(gn)’

as claimed in (5.1).
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5.2. Comparing barriers: Proof of Lemma 4.2

Hereafter, let v, x . (-) denote the finite measure on [0, 0o) such that
U kc(A) 1= 24Py (I}Li?{ﬁv(j)} = 0,7, (k) € A), (5.31)

using the abbreviation v, ; = v, v, (Where n’ = n — £). In view of (4.6) and the Markov property of {n,(j)} at j =n’ we
have that

Esn,z [An,e] = 2’1,]P>s,,vz (En,é(v)) = / Vn,(()’)"'n,z(d)’), (5.32)
Iy
for v, ¢(-) of (5.4). Similarly, setting the finite measure on [—/, 00)

pon e (A) = 2B, (min {0 () + Y1)} > 0, () € 4), (5.33)

we have by the Markov property and (4.12) that

o]

Ey, . [Tne] =2" Py, (Fpe(v)) :/ Vit (V) tn 2 (dy). (5.34)

—hy

For r > 1, recalling H, = [r, r + 1], we decompose u,, ; (H,) — v, ;(H,) according to the possible values of 7 := max{j <
n' 1y (j) < 0}, to arrive at

n'—1

2 (Hy) = v 2(Hp) <273 Py (1), (5.35)
k=1

for p,. k. (r) of Lemma 5.4. By (5.32), (5.34), (5.35) and the monotonicity of y — y, ¢(y) we have that

n'—1

By, (Tt = Ane] <Y Yt O ttn(H) + > Ve () D 2" P (r)

r¢ly relp k=1
=1,(z, ) +1,(z, ). (5.36)
Dealing first with I, (z, £) of (5.36), note that u, .(H,) = 2”/qn,,,r(r + h; h) for g, x(i; h) of Lemma 5.3 and h = hy.
Combining (5.4) vyith (5.7) at k = n’ (where k,, = £), and having z + hy < 2z (as z — 0o before £ — 00), yields for some

¢cs finite, any £ > £, large n and all r > —hy

. (r+ 2hg) 2 2
Vit (" in o (Hy) < esze™ —m—e™" /@0 grt+ho7/n (5.37)

Substituting (5.37) in (5.36) and taking n — oo results with
m {z“eC*Z Tim 1 (z, z)} <), (5.38)
Z—> 00 n—>oo

where by our choice (4.4) of I, for any £ — 0o

(r +2h4) 2
a(0)i=cs ) —rm—e /% —0.
rele

In view of (5.4), it suffices to show that for some ¢;(£) — O and all r € I,

—> 0

n'—1
im < Tim ZZ"’pn,k,zm} < %( F e, (5.39)
k=1
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in order to get the analog of (5.38) for Il,(z, £) and thereby complete the proof of the lemma. In view of (5.18) we get
(5.39) upon showing that

n'—1 2 2
. - Z r
lim lim sup hm E wg(k) k, =32 exp( Tok 7) =0. (5.40)

(00200 g, > 4(n" — k)

Even without the exponential factor, since § < % the sum in (5.40) over {k : kfl/ > hy}, where ¥, (k) < Zkfl, is bounded
above by

_L
43 B <en ™™ o, (5.41)
k>h1/3 {—00

Further, the sum in (5.40) over {k : k‘S < hg} has 2h, 1/ terms, which are uniformly bounded by (2hy)3 exp(—b¢/ (4h1/ 8)),
where having

Z2 . 2 4
by == A inf{r*} = —, (5.42)
4 rel log¢

makes that sum also negligible, as claimed in (5.40).
5.3. Second moment: Proof of Lemma 4.4

In view of (4.7) we have that

Es[Ane(Ane—D]= D Py(Ene@) N Ene(v)).
u,veV,,

u#v
We recall the definition (4.6) of E, ¢(-) and split the preceding sum according to the values of k' = |u A v| < n’ and
A, (k') > 0. Specifically, having 2" ¥~ such ordered pairs (for k = n’ — k'), yields the bound

/
n

o0 n
By, [Ane(Ans — D] = 3 2% fo 02 e (dy) =1 3 U (5.43)

k=1 k=1

in terms of 6, x ¢(-) and v, g . (-) of (5.17) and (5.31), respectively. Further, the Markov property of n,(j) at j = k' yields
in terms of gy, y/ . (-; 0) of (5.6)

o0
’ 2
Je = 302 i 602 sup e ()]
i=0 veH;

Plugging in the preceding the bounds (5.17) and (5.7) (at m = 64n < n?), we find that for some cg < 00, any k € (0,n'),
z>1and n > ng(¢) as in Lemma 5.4,

Ji < coePri T2k (1 vé/k)(—/\k> _C*ZZ(Z + 1)Pec, (5.44)

7%
Using (5.23), Bnx <1 and &, > k,» we get from (5.44) that for some ¢7 < o0,
c7ze” %k, 3/2 ky > 2,
Jk = c7e™4%, k' <¢, (5.45)
C7ZE_C*Z\/Z]<_3, k<d,

where for k < £ we used the alternative bounds B, x < 1 — logk and k, > £. Now, (5.45) implies that for all n,

oo ZJk<C7[«/—Zk +Zk‘3/2+ Z z i|§8g’z

o173 01/3 —n'—¢
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1/3

for some &¢,; — 0, when z — oo followed by £ — oo. Turning to control the remaining sum of J; over k < £'/°, note
that by (5.42), upon comparing (5.4) and (5.17) we find that for some £(¢) — 0 as £ — oo and any n > ng(£),

0173

k 61/3

> 2 sup{Bu ke ()} <47 sup{yne(r)} < e(0).

k=1 y>0 rely
To complete the proof of Lemma 4.4, recall (4.6) and (5.31), that for k' =n' — k

x o
2 [ Ot (9) =B (A (5.46)
0

Hence, we have on the RHS of (5.43) that

>0

el/3
fim {zle""z fim ZJk} <o) Tim {71e%% Tim B, (A},
n—)ookz1 Z—>00 n—o0 ”

which together with (4.22) and (5.3) imply that the RHS is for all £ large enough at most 2ce(£) (i.e. negligible, as
claimed).

6. The Bessel process: Proof of Proposition 4.3
Hereafter, set A¢(y) := %(c*ﬁ + y)z, y > —c*{, with

D) 1= Pp o (nf = 0,n(0) € el + 1),

6.1)
() =B {Peia, () (0] = 0.7(0) € el + 1) .

which are y ¢(-) from (5.4), restricted to I, of (4.4), and its regularization by an expectation, denoted E¢, over the
independent Poisson(A) variable £(A) at A = A¢(y). We emphasize that the law of £ depends on £ but we suppress this
from the notation. We follow this convention of suppressing dependence in ¢, n in many places throughout this section,
e.g. in the definitions (6.5), (6.10), (6.17), (6.24) and (6.28) below. Our goal here is to prove Proposition 4.3, with

1 / i~
agi=—= [ ye*'yu(y)dy. (6.2)
vl Jo
In particular oy < 00, since by standard Poisson tail estimates for some ¢ < oo,

Pe(y) <P(\/26 (Le()) — cxl € I) < exp{—cdist(y, [e)*} (6.3)

(see [8, (3.8)]). Omitting hereafter from the notation the (irrelevant) specific choice v € V7, we recall from (4.5), (5.31)
and (5.32) that

2By, [Anel =By, . (@(n(n’) —cub); ?liﬂ{ﬁ( N> o). (6.4)

The first step towards Proposition 4.3 is our next lemma, utilizing the Markov structure from [8, Lemma 3.1] to estimate
the barrier probabilities on the RHS of (6.4) via the law IP’;' of a O-dimensional Bessel process {Y;}, starting at Y1 = x. To
this end, define for « € R the events

n'

Be:= [ {Yj > () + kv ()}, (6.5)

j=1

in terms of the barrier notations (4.3), (4.9), (4.10), and associate to each [0, 1]-valued g(-), the function

g(w) :=E5[g(,/26(w?/2))], (6.6)

so in particular g(w) = 7 (w — c,£) yields g(w) = Yy (w — ¢, k).
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Lemma 6.1. There exist U, g Uwo, a centered Gaussian of variance 1/2, and e — 0 as £ — 0o, such that for s = s, ,
any [0, 1]-valued g(-) supported on [@,(n’), 00) and 7 > £,

(1 =)' E" (F): B1) 2 By (8(n(n)): min{7(j)} > 0) 6.7)
> (1—e)E"™ (8(Yy): By). (6.8)

where EY>S denotes expectation with respect to a O-dimensional Bessel process starting at Y1 = Uy + /2s. Further, for
some § > 0,

sup{E[¢’" ]} < oo. (6.9)

Proof. Recall from [8, Lemma 3.1] the time in-homogeneous Markov chain
((0) =/2Is1, Y1, n(D), .., Yur, n(n'), ...),

of law Q= Q!"). From [8, Lemma 3.1(a)] we have that Q3 [g(1(j))|¥;1 = Z(¥;) of (6.6), and that Y| = /2L (s) for a
' ([s], 1)-random variable £ (s). Set Uy := /2L1(s) — +/2s and note that by [8, Lemma 3.1(d,e)], the random variables

{n(j), j = 0} and {Y}, j > 1} have respectively, the marginal laws P; and PYs,
Standard large deviations for Gamma variables yield (6.9) with § < 1/2 (cf. [8, (3.13)]). Recall that (Li(s) —

s)/«/ﬂ 2& U when s — oo (by the CLT), hence the same convergence applies for Uy = f;((L1(s) — s)/\/ﬂ) and
fs () of (2.16). In addition, setting for k € N the events

k

Ar:= {0 > @ (i}, (6.10)

j=0
we have by the preceding and (6.5) that the bound (6.7) follows from

Qi (¢(n(n")): Aw N B_1) = (1 —e)Ey(g(n(n')): Aw) (6.11)

(taking k = n’ due to the assumed support of g(-) and including j = 0 at no loss of generality since z > 0). Now, recall
from [8, Lemma 3.1(b)] that

Qi (g(n(n")): Aw N B_1) =E; <g(n(n’)) ﬁ F!; An/>, (6.12)

where if

G = D242 2 > 6., 6.13)
then by [8, (3.14)],

F =@ (Y > @a () = ve() | 1G = 1), n() 2 1 = ce™ Vi),

Since (6.13) holds on the event A,/ for j =1, ..., n’ recalling (4.10) that ¥, (j) = ¥¢(n’ — j) and splitting the product
on the RHS of (6.12) to j > n/2 and j < n/2, yields the inequality (6.11), and thereby (6.7), with

[1- cef"(juhf)z]z, (6.14)

—12

8521—
0

J
which converges to zero when £ — oo.

2
Recall from [8, (3.4)] the notation (@)2C /2 for the law of the Markov chain (Y1, n(1),...) started at Y1 = x. To see (6.8),
we will show

Q@0 A1 0 B2) = (1= e0PY (B(Y): Ba). (6.15)
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my, + 2hy
My — 2h[ N

0 T+1 w7 n level

Fig. 3. The curves in the events Dyp, (dashed lines) and Dy (curved, solid lines). The event Dy, 7 involves the curves between 7' + 1 and n —T.

Taking the expectation over x with respect to the law of ¥y under Q] and arguing as in the proof of (6.7) will then give
(6.8). Turning to establishing (6.15), recall from [8, Lemma 3.1(c)] that

n'—1
2/2 (i~ ~
Q) ?(F(Wu): Ay N By) =P/ <g<Ynf) [1F 15’2),
j=1
where by [8, (3.16)],
2 . . —eU2(i
FYi=Q3 P (n() > @a() | ¥}, Yjq1) = 1 — ce Vi),
provided that
VYiYir1 = @n(j) + (). (6.16)
On B;, we have that for any j < n’, and all £ larger than some fixed universal constant,
VYiYir1 > @n(G+ D+ 29+ 1) = 0, (j) + ¥ ().

In particular, with (6.16) holding on B; for any j € {1,...,n" — 1}, by the same reasoning as before, this yields the
inequality (6.15), and hence also (6.8). O

We next estimate the barrier probabilities for {Y;} in terms of the law ]P}f/ of a Brownian motion {W,}, starting at
Wi =Y, =x.For0<T < T’ <n/, introduce the events

Doy 1.7 = { Wi > @u (1) £ 2¢(1), Ve € [T + 1, T']}, (6.17)

using hereafter Dy, 7,7/ if £2v,(¢) in (6.17) is replaced by the constant function « i, with abbreviated notation D1y 1
when 7" =n" — T and D4y for Doy o. See Figure 3 for a pictorial description. Recall the sets B, see (6.5).

Lemma 6.2. For g(w) :=g(w)//w, some &g — 0, any g(-), n, £ as in Lemma 6.1 and all x > 0,

EY (3(Y,); B2) = (1 — e)VXEY (8(Wy); Day), (6.18)
EY (F(Y,); B-1) < (1 — ) "' VXEY (R(Wy): D_ay). (6.19)

Proof. Recall that up to the absorption time 7, := inf{r > 1: Y; = 0}, the 0-dimensional Bessel process satisfies the
SDE

t
1
Y[ZW[_/ —ds, Y]:W1:.x,
1 2Y



850 A. Dembo, J. Rosen and O. Zeitouni

with {W;} having the Brownian law ]P’XV. Further, the event {Y, > 0} implies that {t, > n’}, in which case by Girsanov’s
theorem and monotone convergence, we have that for any bounded F,,/-measurable Z,

EY(Z: Yy >0)=EY (z [ X =3 o inf {W,}>O>. (6.20)
W,,/ zen,n/]

With B containing the event corresponding to Djy for the process Y;, we get (6.18) by considering (6.20) for
Z=g(W1 D,, - Indeed, the event Dy, implies that inf; <, {W; — @, (1)} > 0, hence

3 ' -2 3 ' -2 3
e WO s 5 R [ 5 = ] g,

with ¢ — 0 as £ — oco. Next, for all £ larger than some universal constant,

1nf {(pn(t) —2¥e(1)} = @u(n') — 2he > 0,

and with B" :={W; > ¢, (j) — ¥¢(j), j =1,2,...,n'}, it suffices for (6.19) to show that
EY (8(Wy): Doy N B') = (1 — e)EY (8(Wy): B). 6.21)

To this end, since ¢; := ¢, (t) — 2,(¢) is a convex function, we get upon conditioning on {Wi, W, ..., W/},
that

n'—1
E)‘?/(/g\(wn’); D—21// N B/) > EEV (E(Wn’) l_[ FW; B/>,

j=1
where by the reflection principle (see [8, (2.1)] or [13, Lemma 2.2]),
W w : .
Fim =P (MIEIE(I)I’II]{Wj‘FM_f‘f’jv‘f’jJrI(M’1)} >0] stWj+1)
=1—exp(=2(W; — ¢)(Wjs1 — dj11), (6.22)
with f, 5(-; 1) denoting the line segment between (0,a) and (1,b). On the event B’ we thus have that F J.W >

1 — exp(=2¥¢(j)Ve(j + 1)) for all j € {1,2,...,n" — 1}, thereby in analogy with (6.14), establishing (6.21)
for

o
ee=1-][1- e 20 HROGHD R0 ]2
j=0
which converges to zero as £ — oo. O

6.1. Proof of Proposition 4.3
Taking s = s, ; yields that W =m,, 4+ z + Uy. For such W let
oy =2 e 2 R Wi W (W — e)ags (Wi, W], (6.23)

with 77 := n’ — 1 denoting our barrier length and q(ﬁi) (x,w):= qéio) (x, w) for the corresponding non-crossing probabilities

qLiT) (x, w) :=PY (Diay.1 | Wy =w). (6.24)

Combining (6.4) with Lemmas 6.1 and 6.2 for g(-) = 7;(- — c«£) and g(-) = V¢ (- — c4£), respectively, we have that
(1 —e) %), > 27 ey, [Anel > (1 — )l .

The proof of Proposition 4.3 thus amounts to showing that for any € > 0 and all large enough ¢,

(14 €)lay > hm im {«'7). 1> lim lim {«'%) .} > (1 - e)a. (6.25)
i,f,z A,z

—> 00 n— 00 Z—> 00 n—> 00
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To this end, setting 7’ = z + U; and W,y = ¢, £ + y, we write (6.23) explicitly as

o ec*zzn/E[/ Se(y)dy Yt
L, = Vel

with the expectation over 7. Hereafter £ < n/logn so |cx — p,|¢ <1 and Doy imposes heights a® = p,a + b®),
b™) = p, £ £ 2hy at barrier end points. Thus, in the preceding formula one needs only consider 7/, y > £3/,. Recall that
my — ¢l = cun’ — &y for &y, of (5.13). Thus, upon setting A, := %ﬁ(z’ — y 4+ ¢ — &n.0)%, We then get similarly to
(5.14) that

(mn+2', cil + y)e_(’""_c*“j_y)z/ﬁ},

1
ﬁ(c*n/ +2 - Y- 8”’”)2 = (n/ + 1) log2 + C*(Z/ i A Sn,n) + A,

Since cy€,,, = logn, this simplifies our formula for aﬁ)z to

(&)
o) __L [ ec*y)'}'g(y)Mdy
mE T Sl Jasn, 1+ y/(cel) ©26)
n my, +7 o 7
fn(,jtf,)z(y) = 22 E[ Zn qui)(mn +z/,c*€+y)e Use A"]
74 *

By our uniform tail estimate (6 9) for Uy and the tail bound (6.3) on P;¢(y), up to an error &, — 0 as n — 00, we can
restrict the evaluation of fn ‘ Z(y) to |z’'| + y < C+/Togn. This forces m,, + 7' = c4n (1 + &) and eliminates A,,, thereby

allowing us to replace fn ‘. Z(y) in (6.26) by
@) e Ui ,
fui-0N=E 75, 2% 0 (ma + 2, el +y) |- 6.27)

Recalling the events Dy, 7, see below (6.17), we further consider the barrier probabilities

G (row) i=PY (Dan, 7 | Wy = w), (6.28)
using the abbreviated notation a%i) (x,w) = q(ﬁio) (x, w). Let IP’E!L’I;"J (Am(r)) denote the probability that the Brownian
bridge, taking the value x at #; and w at 7, remains above the barrier m(¢) on the interval [#1, 2]. Recall from [13,
Lemma 2.2] that for a linear barrier m(t),

t| 1] (Am(t)) _ 1 —e —2(x— m(tl))+(w m(t2))+/(t2 tl) (629)

x—)w

It follows that
~ _ _ (&) _pD >
G5 (v, w) =P (Ag, (1 aan,) = 1 — e 200D 0mb 0/ (6.30)

Fixing ¢, with ¢, y — 0 and p, bounded, taking x — a® =7/ 4+p, F2hy and w — b® = Y—&n ¢ F 2h, (which are both
O (+4/logn)), we have for some ¢, — 0,

~ 24¢

o (mn+7,cil+y) = Tn (/4 F2he) (v F 2hy). (6.31)
Note further that

G (x, w) = EW[P[J;:i;V/ (Ag,()£2m,) | Wor = w]. (6.32)

The next lemma paraphrases [13, Proposition 6.1] (with the proof given there also yielding the claimed uniformity).

Lemma 6.3. For each € > 0 there exist T, n¢ finite so that, for any £ >0, T € [T, %71], x—a® w—bpH e [0, log 7]
and all n > n,

(1= T 0, w) < S0, w) < b (v, w) < (1 + OF (v, w). (6.33)
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F1x1ng € > 0, we bound separately fn ‘. Z(y) Starting with fn ‘ Z(y) we have from (6.27), using the fact that q~
qﬁ,Te and the RHS of (6.33), that

e~ U ,
f,, ‘. Z()’) [ 7 Eq; %6 (mp+7, el + y)]
R
¢ +e)]E|: o 20 (mn +72, el + y)] (6.34)
Z

Turning to evaluate a»(ﬁi% (my + 7', csl + y), we get from (6.32) and (6.29) that

E(i) (mn+72 el +y) <

E[(Z F2ho)+(Y F 2h0)+]. (6.35)

where (Z, Y) follow the joint Gaussian distribution of
(WT+1 —on(T+ 1), Wy — @ (}’l/ - T))

given Wi =m,, + 7’ and W,y = c,£ + y. It is further easy to verify that
Cov(Z,Y)=T 10 +T—2 U (6.36)
VED=0o0 TR 1 ) '

and that
- , T , T,,
E[(Z, )] - [z +c*+ﬁ(y—z),y+ﬁ(z —y)} =ox(1)

independently of (z/, y), decaying to zero when 7 — oo with £, T kept fixed. From this we get, in view of (6.34) and
(6.35), that

fm Tim {£,).(0} <A+ +3h) _lim [

—>00n—00

(2 +3ho)+ —y }
V2z

provided Ay > ¢, + +/Tc/(27). In addition, with B = {|U;| < z/2}, or without such restriction, we get thanks to (6.9), via
dominated convergence that

. (Z i3h()+ —c, Us ] 1 —c.U 1 274
lim E|1g——— "o —E(e Vo) = — /4 =1. (6.37)
2500 [ V2z V2 ( ) V2

(Recall Lemma 6.1 that Uy, ~ N (0, 1/2).) Combined with the previous display, we obtain

im Tim {£5) (0} < 1+ +3ho). (6.38)

7—>o00n—>00
Note that for £ — o0

o0
v~ v+ 3hy
— ey (y)————=—=dy <ay(l +¢). (6.39)
N /—3}1@ 1+ y/(esl)
(Due to (6.3) the contribution to ¢y outside V2 /Q2re), 2r¢ V] is negligible, whereas within that interval y/¢ — 0 and
h¢/y — 0.) Combining (6.26), (6.38) and (6.39) yields the LHS of (6.25), thereby completing the proof of the upper
bound in Proposition 4.3.
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My, + 3hy

My + 2" 5 I
M+ 2he [T

Yc*éer

c*l+ 3hy
c*l+ 2hy

1 T+1 n—-T n level

Fig. 4. Depiction of the events D,y (dashed curve) and Dg hg,0,T+1 N Dap,, 7 (dotted line).

Turning next to the lower bound on f “ (y) we first truncate to y € [\/_ L/(2ry), Ve £2r¢] and restrict to 7’ € [z 3 ] via
the event B. Then, taking sy > 2(T + 1)5 for T =T, of Lemma 6.3, guarantees that

3he > sup {290},
te[1,T+1U[n'—T,n']

for Yy (-) > hy of (4.10). This in turn implies that

Day, 1 C Day U (D5, 0.741 0 Dang.7) U (Dot 0 DS, 510 (6.40)

where Dg ho T.T" denotes the event of the Brownian motion crossing below the linear barrier in the definition of D3, 7,77,
see below (6.17). See Figure 4 for an illustration of these events. From (6.40) and the LHS of (6.33) we deduce by the
union bound, that at x =m, + z/, w = c,£ + y, for all 7 large enough

qgr)(x,w) >(1 - e)q(+) (x, w) — (¢3hz (e, w) — ~(+ th)(x w), (6.41)

where q(whe ) (x, w) and q(Jr ¢3h‘)(x, w) are the probabilities of the events Dgth’TJrl N Day,.7 and Dop, 7N DS
under ]P}?/( | Wy = w).

Proceeding to evaluating the latter terms, note that conditional on (Z, Y) and the given values of W| =x, W = w,
the events D3p, 0,741, Dan,, 7 and D3y, 51, are mutually independent. Thus, setting v =w—p,£ €[y, y+1] and
assuming WLOG that (\/Z/rg) Az > 8hy, we have from (6.29), that

3he,n—T,n'

1,T+1] _ =2 +pn—3he)(Z-3h T
P(DS, 0741 1 Z, Y)_l_Px—>WT+1(A§0n(l)+3he)_e @ron=3h)Z=3ha /T

'—T, —2(Y=3h '—3he)/T
P(DS), g | Z.Y)=1—PY ") (Agyaysang) = e 2T =30+ =3h0/T

W, _r—w

Combining these identities with (6.32) and the inequality (6.41), we arrive at

0 (x, w)

e _ =2+ pn=3he)(Z—3he) /T _ *2(y —=3hg)(¥ —3hg) 4/ T\plT+1.0'=T] _
zE[(1-e—e )PZ+§0,,(T+1)—>Y+<pn(n —T)(A‘ﬂn(”“h@)]'

The ﬁrs_t fac_tor on the RHS is at least_—Z and for _all £ larger than some universal £o(¢) it exceeds (1 — €)2 on the event
A:={Z ANY > 4h}. Setting V := (Z — 2hy)+ (Y — 2hy)+, we combine for the second term on the RHS the analog of
identity (6.30) with the bound 1 — e~ € [a — a?/2, a] on R, to arrive at

(i —2T)as" (x, w) > 2EH(1 — )2 — 314 — ~2V }V}
n—-2T
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Utilizing (6.27), the uniform tail bounds one has on (Z — z/, ¥ — y) when 7 — oo, for our truncated range of z’ and y,
followed by (6.37), we conclude that

c*US
lim lim {f(+) (y)} > lim lim ]E|:llge (+)(mn +7/, c*€+y)i|

Z7—> 00 n—> 00 7—> 00 n—> 00 «/_ 2
—3h

> (1 —¢€)’(y —3hy) lim IE[IB( O+ e ¢
Z,§—>00

*Us | > (1 — e)%(y — 3hy).
7 ]( ) (y ¢)

Plugging this into (6.26) and noting that for £ — oo

1 e —3hy
- ey (y)4 dy > ag(1 —e€)
Nl Ve ) V1I+y/(eid)

we arrive at the RHS of (6.25), thereby completing the proof of Proposition 4.3.
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