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This paper is dedicated to the memory of our friend Joe Diestel (1943-2017). Lebesgue-
Bochner spaces were one of the main passions of Joe. He started to work in this direction
in his Ph.D. thesis [Die68], and devoted to Lebesgue-Bochner spaces a large part of his
most popular, classical, Dunford-Schwartz-style monograph [DU77], joint with Jerry UhL

Abstract

We study the Lebesgue-Bochner discretization property of Banach spaces Y, which
ensures that the Bourgain discretization modulus for Y has a good lower estimate. We
prove that there exist spaces that do not have the Lebesgue-Bochner discretization
property, and we give a class of examples of spaces that enjoy this property.

1 Introduction

We denote by ¢y (X) the greatest lower bound of distortions of bilipschitz embeddings of
a metric space (X, dx) into a metric space (Y, dy), that is, the greatest lower bound of
the numbers C' for which there are a map f: X — Y and a real number r > 0 such that

Vu,v € X rdx(u,v) <dy(f(u), f(v)) < rCdx(u,v).

See [Mat02], [Naol8], and [Ost13] for background on this notion. Let X be a finite-
dimensional Banach space and Y be an infinite-dimensional Banach space.

Definition 1.1. For ¢ € (0, 1) let dxy (¢) be the supremum of those ¢ € (0,1) for which
every d-net Ny in Bx satisfies ¢y (N5) > (1 —¢)ey (X). The function dx<,y (€) is called the
Bourgain discretization modulus for embeddings of X into Y.

It is not immediate that the discretization modulus is defined for any ¢ € (0, 1), but
this can be derived using the argument of [Rib76] and [HM82] (see [GNS12, Introduction]).
Giving a new proof of the Ribe theorem [Rib76], Bourgain proved the following remarkable
result [Bou87] (we state it in a stronger form which was proved in [GNS12]):
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Theorem 1.2 (Bourgain’s discretization theorem). There exists C' € (0,00) such that for
every two Banach spaces X,Y with dim X =n < co and dimY = oo, and every e € (0,1),
we have

Sxoy(e) > e~ ey (X)/e)°™ (1)

Bourgain’s discretization theorem and the described below result of [GNS12] on im-
proved estimates in the case of L, spaces have important consequences for quantitative
estimates of Li-distortion of the metric space consisting of finite subsets (of equal car-
dinality) in the plane with the minimum weight matching distance, see [NS07, Theorem
1.2].

The proof of Bourgain’s discretization theorem was clarified and simplified in [Beg99]
and [GNS12| (see also its presentation in [Ost13, Section 9.2]). Different approaches to
proving Bourgain’s discretization theorem in special cases were found in [LN13], [HLN16],
and [HN16+]. However these approaches do not improve the order of estimates for the
discretization modulus.

On the other hand the paper [GNS12] contains a proof with much better estimates in
the case where Y = L,,. The approach of [GNS12] is based on the following result (whose
proof uses methods of [JMS09]; origins of this approach can be found in [GKO03]).

Theorem 1.3 ([GNS12, Theorem 1.3]). There exists a universal constant k € (0, 00) with
the following property. Assume that 6, € (0,1) and D € [1,00) satisfy § < ke?/(n?D).
Let X,Y be Banach spaces with dim X = n < oo, and let Ny be a §-net in Bx. Assume that
cy (N5) < D. Then there exists a separable probability space (,v), a finite dimensional
linear subspace Z CY, and a linear operator T : X — Lo (v, Z) satisfying

1—c¢
D

Remark 1.4. The measure v in the proof of [GNS12, Theorem 1.3] is atomless, it is the
normalized Lebesgue measure on the unit ball of X.

vr e X, lzllx < WT2lLy@w,z) < 1T/ 10wz < (1 + )] x (2)

As is noted in [GNS12], since (2, v) is a probability measure, we have

I ey < - Mipwz) S - llowz2)

for every p € [1,00]. Therefore (2) implies that X admits an embedding into L,(v, Z)

D(1
with distortion < D +e)

—€
isometric to Ly, (see [Lac74, §14]), we get that if Z is a subspace of L,, then L,(v, Z) is also
a subspace of L,. As explained in [GNS12], it follows that the Bourgain’s discretization
modulus for the case of Y = L,, satisfies a much better estimate

. Since, by the well-known Carathéodory theorem, L,(v, L;) is

H62

5X<—>Lp (e) > YD)

(since for all spaces X,Y and all § > 0, ¢y (N5) < v/n, see [GNS12]).

To generalize this approach to a wider class of spaces, it is natural to introduce the
following definition.



Definition 1.5. We say that a Banach space Y has the Lebesque-Bochner discretization
property if there exists a function f : [1,00) — [1,00) such that for any separable proba-
bility measure p, for any C' > 1 and any finite dimensional subspace Z C Y, if W is any
finite-dimensional subspace of Lo (i1, Z) such that for all w € W

[0l L (,2) < Cllwllzy (u,2) (3)
then W is f(C)-embeddable into Y.

Lemma 1.6. In Definition 1.5 it suffices to require that the function f exists in the case
where p is the Lebesgue measure on [0,1]. A function f which works for some separa-
ble atomless probability measure space works for any other separable atomless probability
measure space.

Proof. The second statement follows immediately from the Carathéodory theorem [Lac74,
§14] stating that all separable atomless probability measure spaces are isomorphic.

To prove the first statement assume that f is a function which works for any separable
atomless probability measure space, and let (€2, 3, 1) be a separable probability measure
space with atoms {a;}},, where M is either a positive integer or co. Let © = Q\{a;}M,.
For each i let (€2;, 3, 1;) be a separable atomless measure space satisfying p;(€2;) = p(a;).
We create a separable atomless probability measure space as the disjoint union

with the natural o-algebra and measure, we denote this measure by v.

For a subspace W C Loo(p, Z) satisfying (3) we introduce a subspace W C Loo(v, Z)
as the set of all vectors obtained in the following way: for each w € W we introduce
W € Loo(v, Z) by

w(t) =

w(t) ifte,
w(al) if t € Q.

It is easy to see that W is isometric to W, and that

101 v,2) < CllwllLyw,2)- (4)

Thus, the function f which can be used for the atomless measure v, can also be used for
73 O

We need the following generalization of the Bourgain discretization modulus: Given
an increasing function g : RT — R™, we define 6%. ., (¢) as the supremum of § such that
for all -nets Ny of By,

1+¢
cy (X) Sg(l

The following is a corollary of Theorem 1.3.

D). (5)
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Corollary 1.7. Let Y be a Banach space with the Lebesgue-Bochner discretization prop-
erty. Then
ey (€) = re?/(n°)?),

where Kk is the constant of Theorem 1.3, g(t) := tf(t) and f is the function of Defini-
tion, 1.5 corresponding to a separable atomless probability measure space.

Proof. Let § < ke?/(n°/?) and Ns be a d-net in an n-dimensional Banach space X. By
Theorem 1.3, there exists a finite dimensional subspace Z C Y and a finite-dimensional
subspace W C Loo(v, Z) (the image of the operator T') such that W satisfies (3) with
C = %%201/(/\/5). Thus by the Lebesgue-Bochner discretization property of Y, ¢y (W) <
f(HEcey (NVs)), and we obtain

1+e¢
1—¢

1+¢
1—¢

ey (X) < cy (Ns)f < Cy(N5)> . O

Problem 1. Characterize Banach spaces with the Lebesgue-Bochner discretization prop-
erty.

At the meeting of the Simons Foundation (New York City, February 20, 2015) Assaf
Naor mentioned that at that time no examples of Banach spaces which do not have the
Lebesgue-Bochner discretization property were known, although people who were working
on this (Assaf Naor and Gideon Schechtman) believed that such examples should exist.

We note that the argument which uses the Fubini and Carathéodory theorems to
show that L,(L,) is isometric to L, (for suitable measure spaces) fails for other function
spaces, even in a certain ‘isomorphic’ form (see [BBS02, Appendix]). For some spaces a
very strong opposite of the situation in the L,-case happens: Raynaud [Ray89] proved
that when L,([0,1], 1) is an Orlicz space that is not isomorphic to some L, and does not
contain cg or ¢1, then for any r € [1,00), the space ¢,(L,) (and thus also L, ([0,1], u, L))
not only does not embed in L ([0, 1], 1), but is not even crudely finitely representable in
it.

In general, if E is a Banach function space on a measure space (£, 1), the structure
of the FE-valued Bochner space E(€2, u, E) can be very different from the structure of the
space E, see [Rea90], [BBS02], [FPP08]. We refer the reader to [BBS02] for a detailed
discussion and history of related results.

In this paper we show (Proposition 2.2) that there is a class of Banach spaces which do
not have the Lebesgue-Bochner discretization property and observe that this class contains
the space constructed by Figiel [Fig72].

We also find some examples, besides L, of Banach spaces that have the Lebesgue-
Bochner discretization property. An easy observation is that the Lebesgue-Bochner spaces
L,(F), where E is any Banach space, have the Lebesgue-Bochner discretization prop-
erty. It is interesting that even the finite direct sums of such spaces have the Lebesgue-
Bochner discretization property, see Proposition 3.1. We would like to mention that many
well-known and important spaces are of the form L,(F). In particular, the mixed norm
Lebesgue spaces L introduced in [BP61] are such and thus have the Lebesgue-Bochner



discretization property. For P = (p1,...,pm) € [1,00)™, the space L consists of measur-
able functions f on Q =[], (€, 1;), the norm defined by

p3/p2 1/pm

Il | [ (/ (/rf<t1,...,tmmdm)m/m du2> - dp

Mixed norm spaces of this type arise naturally in harmonic and functional analysis. Such
norms (and their generalizations that use other function space norms in place of the Lj,-
norms) are used, for example, to study Fourier and Sobolev inequalities and embeddings
of Sobolev spaces. The properties and applications of mixed norm spaces are extensively
studied in the literature, see e.g. [GS16, CS16, DPS10] and their references.

2 Finitely squarable Banach spaces

Definition 2.1. An infinite-dimensional Banach space Y is called finitely squarable if there
exists a constant C' such that for every finite-dimensional subspace Z C Y, the direct sum
Z @0 Z admits a linear embedding into Y with distortion bounded by C.

The first examples of Banach spaces which are not finitely squarable were constructed
by Figiel [Fig72]. An easy observation is that a Banach space Y which is isomorphic to
Y @Y is finitely squarable. The converse it false. In fact, both of the earliest examples of
Banach spaces which are not isomorphic to their squares, the James [Jam50] quasireflexive
space J [BP60] and ¢(w1) [Sem60], are finitely squarable, and for a very simple reason:
they have trivial cotype. For the James space this was proved in [GJ73], for ¢(w;) this
is obvious. Modern Banach space theory provides much more sophisticated examples
of finitely squarable spaces which are not isomorphic to their squares, for example, the
Argyros-Haydon space [AH11].

Proposition 2.2. Any space which is not finitely squarable does not have the Lebesgue-
Bochner discretization property.

Proof. Let Z be a subspace of Y for which Z @, Z is “very far” from a subspace of Y.
We introduce the following subspace W C Ly([0,1], Z): it consists of all Z-valued
functions which are constant on the first half and constant on the second half, but these
constants can be different vectors of Z. It is clear that this space is isometric to Z ® Z.
It is also clear that the L1([0, 1], Z) norm on this subspace is 2-equivalent to the Lo,-norm.
The conclusion follows. O

This proposition makes the following problem important:

Problem 2. Does there exist a finitely squarable space which does not have the Lebesgue-
Bochner discretization property?

We conjecture that the answer to Problem 2 is positive.



3 Examples of spaces with the Lebesgue-Bochner discretiza-
tion property

In this section we provide some examples of spaces having the Lebesgue-Bochner dis-
cretization property. In all proofs below we use the notation of Definition 1.5. That is: Y
is a Banach space, C' > 0, Z C Y is a finite dimensional subspace of Y. Since we consider
separable probability measures, by the Carathéodory theorem [Lac74], we may assume
that W is a finite-dimensional subspace of Lo ([0, 1], i, Z) such that for all w € W

1
6||wHLoo([0,1],u,Z) < Hw||L1([0,1],u,Z) < ||wHLoo([0,1},u,Z)- (6)

Since W is finite dimensional, for any & > 0, there exists a subspace W C Lo ([0, 1], 1, Z)
with Banach-Mazur distance from W less than 1 + &, such that W is spanned by simple
functions and all w € W satisfy (6) with C replaced by (1 4 £)C. Thus, without loss of
generality, we may assume that W is spanned by simple functions which are constant on
elements {A;}?_, of some partition of [0,1] into sets of measure . Thus we can denote
elements w € W as

w=(w,...,wy),

meaning that w = )" | 1a,®@w;. For allw € W we have 1wl Lo ([0,1],,2) = Max1<i<n [Jwil|z,
and for all p, 1 < p < oo, we have

1
lollponmnz = (5 anzup)p

Given any p € [1,00|, k € N, and any Banach spaces FE,..., Ex, by Lk(El,.. , Ex)

def

we denote the Banach space of all k-tuples (a1, ..., ay) such that a; € E; for all j € [k] =
{1,...,k}, endowed with the norm

k 1
1 v
@t an)llgim,, . ) = (%Z lailly, )" i p < oo,

[(ars s ar)ll ik (B, B = lfgangazHE

If the spaces F1,...,FE; are equal to the same space F, we denote L];(El, ..., Ex) by
LE(E).
P

Proposition 3.1. Letk e N, p,q1,...,q. > 1, X1,..., X be any Banach spaces, and for
each j € [k], let (Q,11j) be any atomless separable measure space, with finite or infinite
measure, or §}; = N, and p; be the counting measure. Then the space

Y = LF(Lg, (1, 11, X1), Lgy (2, 2, X2), . - -, Lay (e, i, X))

has the Lebesgue-Bochner discretization property with f(C) < KA=3/pC.

Note that since the constant f(C') in Definition 1.5 can depend on k, the fact that ¥
is an L’;—sum is not essential. Essential is the fact that Y is a finite direct sum.



Proof of Proposition 3.1. To simplify notation we will omit the measure spaces when
writing the symbol for a Lebesgue-Bochner space, i.e. we will write L, (X;) instead
of Ly, (2, 1, X;) with the understanding that for all j € [k], the measure spaces are those
fixed in the statement of the proposition.

Note that if at least one of ¢; is equal to co, the space Y has trivial cotype and thus has
the Lebesgue-Bochner discretization property. In the following we assume that g¢; < oo
for all j € [k].

First, we prove that in the case where p = 1, we have f(C) < kC.

We denote Y7 = L¥(Lg, (X1), Lgy(X2), ..., Ly, (Xk)). Using the discussion and notation
preceding Proposition 3.1, we see that it suffices to prove that any subspace W C L7 (Y7)
satisfying

Vo e W  |lwlm) < Clwllmo (7)

admits a kC-isomorphic embedding into Y.

Let n € N, w = (wy,...,wy,) € W C L2 (Y1) and, for i € [n], w;, = (wij)?zl €
Li(Lg, (X1), Lg,(X2), ..., Lg, (X)), where, for all i € [n], j € [k], wij € Lq,(X;). We will
define a map ¢ from L2 (Y1) to Y; such that for all w € L7 (Y1), we have

k n 1
li(w)ly; = ;Ej(iijMm%)%. (®)

For each j € [k], we select n mutually disjoint subsets {€2;,}/'_; of ; such that for
each v € [n] there exists a constant a;, > 0 and a surjective isometry Tj, : Lg; (€5, pi5) —
Lq, (2, ajupy). It is well-known that when (€2;, ;) is atomless or equal to N with the
counting measure, then such choices are possible, and that the isometry 7}, can be natu-
rally extended to the isometry T}, from the Lebesgue-Bochner space Lq, (82, puj, X;) onto
Lq, (v, ajupj, Xj), cf. e.g. [DUTT].

We define the map ¢; : L3 (Lg,(Xj), .., Lg;(Xj)) — Lg;(X;) by setting for all
(x1,...,2p0) € L (Lg; (X)), ..., Lg; (X}))

n 1
Qip\ o5 =
o JV )\ 4
wi(z1,...,2,) = g (7) T Tjyxy.
v=1

Since the sets {€2;, }/_; are mutually disjoint, we get

1< N
lester, ol = (- E:%AﬂhmA!) = (D lalf) " (9)
v=1

Next, given w = (wi,...,wy,) € LY (Y1) where, for i € [n], w; = (wij);?zl €Y, we
define p(w) € Y7 by setting
k

p((wi)imy) = (5 ((wi)i) ).

J:1.

By (9), equality (8) is satisfied.



We will show that for all w € L2 (Y1), we have
lwllzp vy < lle(w)llv < kllwllzy, (vi)- (10)

To prove the leftmost inequality, we write

k
loll i) Z lwilly; = Z (2 ol

=1 j=1
1 1 & 1 k L& N
LS (S ) < 25 (A3 )

= HSO(U/)HYN

where the inequality follows from the classical theorem on averages ([HLP52, Theorem
16]) applied to each of the summands with the corresponding exponent g;, for 1 < j <k,
respectively.

To prove the rightmost inequality, for each j € [k], let i; € [n] be such that |[w; ;|q, =
maxi<i<n ||’LUZJ ||Qj . Then

n

(2 ol e ;i(lgwgc il

1 k k
el < 33 ( sz-jzqu)
Jj=1 =

k
( anz]lu%) > s, v
7j=1

max [|willy, = kllw] Lo v)-

le(w)llyy =

?r\*—‘

>

??'\P—‘

I
Mz&

1

?TT

<
1<i<

Thus (10) holds, and therefore, by (7),

1
gHwHLgo(Yl) < lp(w)lly, < kHwHLgo(Yl)-

Thus ¢ is a kC-isomorphic embedding of W into Y7, which ends the proof in the case

where p = 1.
For the general case, suppose that p > 1 and Y = L’;(qu (X1), Lgy(X2), ..., Ly, (Xk)).
Then spaces Y and Y7 are equal as sets, and for all y € Y we have

Hy”Y1 < HyHY < b”yHYw (11)

where b = k'=1/P. Let W be a subspace of L (Y) satisfying (7). Then for every w € W
we have

[l () < lwllz, vy < Cllwllzpyy < CollwllLpyy)- (12)



In the first part of the proof we defined the map ¢ : L% (Y7) — Y7 such that for all
w € L (Y1) we have (10). Therefore, by combining (10) and (11), we obtain for all
we L (Y),

1
plwllpey < lwllpeny < llew)lin

< [le(w)lly
< bllp(w)lvy < Vk[wllzn vy < O llwllzy (v)-

Thus, by (12), for all w € W we have

c vl o) < lle(w)lly < bkllw]ry ).

Since b = k'~1/P, this means that ¢ is a (Ck*~3/?)-isomorphic embedding of W into Y. [
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