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Abstract

Given an arbitrary countably generated rigid C*-tensor category, we construct a fully-faithful bi-
involutive strong monoidal functor onto a subcategory of finitely generated projective bimodules over
a simple, exact, separable, unital C*-algebra with unique trace. The C*-algebras involved are built
from the category using the Guionnet-Jones-Shlyakhtenko construction. Out of this category of Hilbert
C*-bimodules, we construct a fully-faithful bi-involutive strong monoidal functor into the category of
bi-finite spherical bimodules over an interpolated free group factor. The composite of these two functors
recovers the functor constructed by Brothier, Hartglass, and Penneys.

1 Introduction
Since the advent of modern subfactor theory by Jones [17], there has been considerable interest in aximotizing
the standard invariant resulting from a finite-index subfactor N ⊂ M. The standard invariant has been
axiomitized by Ocneanu’s paragroups (for finite depth subfactors) [24], Popa’s λ-lattices [29], and Jones’
planar algebras [18].

A natural question is given a standard invariant, can one construct a subfactor with that standard
invariant? This question was answered in the affirmative by Popa in [28] where given a λ-lattice, a finite-
index II1 subfactor N ⊂M was constructed whose standard invariant was the given λ-lattice.

Popa’s theorem was reproven utilizing a diagrammatic argument by Guionnet, Jones, and Shlyakhtenko
[10]. The first author and Penneys utilized the construction therein to state an analogous result in a C*-
algebraic setting: [12] Given a standard invariant, P±

• , there is an inclusion B0 ⊂ B1 with finite Watatani
index of simple, unital C*-algebras with unique trace satisfying: P+

n = B0 ∩Bn and P−
n = B1 ∩Bn+1. Here

(Bn) is the Jones-Watatani tower for B0 ⊂ B1.
As the N −N and M −M bimodules generated by L2(M) as an N −M bimodule form rigid C∗-tensor

categories, it is natural to ask to what degree an arbitrary rigid C*-tensor category can be represented by
bimodules over a II1 factor. The first author, along with Brothier and Penneys [2] proved that every rigid
C*-tensor category is equivalent to a subcategory of bimodules of L(F∞) (See Example 2.10.).

Theorem ([2]). Given a countably generated rigid C*-tensor category, C, there is a a full and faithful
bi-ivolutive strong monoidal functor

G : C ↪→ Bimsp
bf L(F∞).

It is natural to ask what sort of reconstruction theorems can be obtained in the context of projective
Hilbert C*-bimodules over C*-algebras. One immediate difficulty is that due to K-theoretic obstructions, it
is impossible to find a single separable unital C*-algebra B so that every countably generated rigid C*-tensor
category is fully realized as a subcategory of the projective C*-bimodules over B (see the discussion before
Corollary 5.14). This observation leads to the following natural question:
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Question. Given a rigid C*-tensor category, C, is there a separable, simple, unital C*-algebra B (depending
on C) so that C is realized as a full subcategory of the projective C*-bimodules of B?

In [32], Yuan answered the above question in the affirmative under the weaker assumption of not requiring
norm separability on the C*-algebra, even in the case where C is countably generated (If C has infinitely
many isomorphism classes of simple objects, then Yuan’s C*-algebra is the norm closure of an inductive limit
of direct sums of B(H) for H an infinite-dimensional Hilbert space. See [32], section 3.) In this article, we
answer the above question in the affirmative:

Theorem A. Given a countably generated rigid C*-tensor category with simple unit, C, there is a unital,
simple, separable, exact C*-algebra, B0 with unique trace, and a fully-faithful bi-involutive strong monoidal
functor

F : C ↪→ Bimtr
fgp(B0),

into the rigid C*-tensor category of finitely generated projective B0-bimodules compatible with the (unique)
trace of B0. (See Example 2.15, Equation 5.1 and [20, Definition 5.7]) Moreover, the K0 group of B0 is the
free abelian group on the classes of simple objects in C, and the image of the simple objects of C are precisely
the canonical generators of K0(B0), when viewed as right B0-Hilbert modules.

Our proof of this theorem can be outlined as follows:
♣ We take off from Chapter 3 by choosing a symmetrically self-dual object x ∈ C (Definition 3.2) of

quantum dimension δx > 1, and use it to construct a graded ground C*-algebra A∞ (Equation 3.6) from
the endomorphism C*-algebras C(x⊗n). We then build an A∞-module X1 and consider the creation and
annihilation operators by real vectors inside the C*-algebra of adjointable endomorphisms of F(X1A∞), the
full Fock space of X1A∞ . (See Definition 3.12, the discussion following Corollary 3.13 and [27].) These
operators together with A∞ generate the simple C*-algebra B∞ (a.k.a. Voiculescu semi-circular system),
which comes equipped with a faithful conditional expectation onto A∞ and tracial weight Tr. We then
consider certain corners Bn ⊂ B∞(Notation 3.21), for n ≥ 0, which are unital, separable, simple and have a
unique trace, given by trBn

:= Tr |Bn
.

♣♣ The algebra B0 is of central importance to us, since it acts on the off-corners {lBr}l,r∈N∪0 of B∞ by
means of multiplication in the ambient C*-algebra B∞. In this framework all our actions are automatically
bounded. We then construct a rigid C*-tensor category of finitely generated projective, minimal and nor-
malized Hilbert C*-bimodules over B0, denoted Bimfgp(B0) (see Definitions 2.13 and 2.14), which includes
the bimodules 0Br, for r ≥ 0. The simplicity of each Bn allows us to describe the Connes’ fusion relative to
B0 of these bimodules in simple terms (Lemma 3.38) as:

B0
(0Bn ⊠

B0
0Bm)B0

∼=B0
(0Bn+m)B0

.

This construction then induces the functor

F : Cx ↪→ Bimfgp(B0)

x⊗n ↦−→ B0
(0Bn)B0

, C(x⊗n −→ x⊗m) ∋ f ↦−→ F(f) :
•
n

↦−→ • n
f

m

.

Here, Cx is the full subcategory of C generated by tensor powers of x . By construction, F will be a faithful
bi-involutive strong monoidal functor, as will be shown in Chapter 4. However, showing that it is full takes
some more work, and the proof is delayed to the last chapter.

♣♣♣ The next step of the proof consists of turning Hilbert C*-bimodules into bifinite and spheri-
cal/extremal bimodules over an interpolated II1-factor M0. This is done and explained in Chapter 5. The
factor M0 is in fact isomorphic to the von Neumann algebra generated by B0, and we shall find the tools
to compute it over several different representations (Lemma 3.40). In order to do so, one has to further
restrict Bimfgp(B0) to those bimodules which are compatible with the trace trB0

, and we denote this rigid
C*-tensor subcategory by Bimtr

fgp(B0). From Y ∈ Bimtr
fgp(B0) we obtain an honest Hilbert space by fusing it

with L2(B0), obtaining Y ⊠B0
L2(B0). Afterwards, we extend both left and right B0-actions on Y to normal
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left and right actions of M0. This process in fact defines a full and faithful bi-involutive strong monoidal
functor (shown in Propositions 5.10 and 5.9)

M0
(− ⊠

B0

L2(B0))M0
: Bimtr

fgp(B0) ↪→ Bimsp
bf(M0)

Y ↦−→ M0
(Y ⊠

B0

L2(B0))M0
, Bimtr

fgp(B0)(Y → Z) ∋ f ↦−→ f ⊠ idL2(B0) .

♣♣♣♣ Finally, we recover the functor G from [2] via the commuting 2-cell

Cx

Bimtr
fgp(B0) Bimsp

bf(M0),

F G

M0
(−⊠B0

L2(B0))M0

T
∼=

where T is a monoidal unitary natural isomorphism. It is preciselly this commuting 2-cell that grants us the
grounds for showing that F is full, and this is indeed proven by a simple finite-dimensional linear algebraic
trick. (See Proposition 5.11.) We consider this step the most important part of the proof, since it provides
a conceptual and concrete connection between the realization functors F and G.

As a consequence of Theorem A (see also Remark 5.13), we found a way around the aforementioned
K-theoretical obstruction to the existence of a C*-algebra B such that every rigid C*-tensor category can be
realized into Bimfgp(B), by restricting our scope to unitary fusion categories: (Corollary 5.14).

Corollary B. There exists a unital simple exact separable C*-algebra B with unique trace over which we
can full and faithfully realize every unitary fusion category C into Bimtr

fgp(B), in the spirit of Theorem A.

2 Background

2.1 Rigid C*-tensor categories

We shall provide a brief description and relevant examples of rigid C*-tensor categories (RC*TC). All cat-
egories in this article are assumed to be essentially small (isomorphism classes of objects form a set) and
Vec enriched (not necessarily finite dimensional). We let (C, ⊗, α, 1, λ, ρ) denote an arbitrary Vec enriched
semi-simple tensor category, where − ⊗ − : C ⊗ C −→ C is a bilinear functor, α is the associator, 1 is the
monoidal/tensor unit, and λ and ρ are the left and right unitors, respectively. We refer to the monoidal cat-
egory simply as C. Furthermore, we assume the monoidal unit is simple ; i.e. its endomorphism space
is one dimensional: C(1) ∼= . This assumption together with semi-simplicity imply that hom spaces are finite
dimensional. (For a more detailed description of (monoidal) categories see [6] and [22].) All the categories
in this paper are assumed to admit direct sums and contain sub-objects; i.e. they are Cauchy-complete.

We further endow C with more structure:

Definition 2.1 ([15], [7]). We say that C is a dagger category if and only if for each a, b ∈ C there is an
anti-linear map

† : C(a→ b) → C(b→ a)

such that

• The map † is an involution; i.e. for each a, b ∈ C and every f ∈ C(a→ b) we have (f†)† = f.

• For composable morphisms f and g in C, we have (f ◦ g)† = g† ◦ f†.

• Moreover, we have the identity (f ⊗ g)† = f† ⊗ g†.

Furthermore, we say that f ∈ C(a→ b) is unitary if it is invertible with f−1 = f†.

Having a dagger structure on C allows us to introduce important analytical properties, as one could ask
whether endomorphism ∗-algebras in C are C*-algebras. We then introduce the following definition:
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Definition 2.2 ([15], [7] ). We say a dagger category is a C*-category if and only if the following conditions
hold for each a, b ∈ C:

• For every morphism f ∈ C(a→ b) there exists an endomorphism g ∈ C(a) such that f† ◦ f = g† ◦ g.

• The map || · || : C(a→ b) −→ [0,∞] defined by

||g||2 := sup
{︁
|λ| ≥ 0 | (g† ◦ g − λ · ida) ̸∈ GL(C(a))

}︁
defines a (submultiplicative) C*-norm. This is, the map defines a submultiplicative norm and for each
morphism f as above we have ||f† ◦ f || = ||f ||2.

Notice that being C* is a property of a dagger category and not extra structure.

Remark 2.3. Theorem 1.2 in [14] asserts that any C*-tensor category is equivalent to a strict one. (In a
strict category the associator and unitors are all identities.) We can therefore assume that C is strict,
with no loss of generality. In lights of this result, we will often omit the associator and the unitors in our
computations.

Definition 2.4 ([6]). We say that C is a rigid category if each object has a dual and a predual. That is,
for each c ∈ C there is an object c∨, the dual of c, and evaluation and coevaluation maps

evc : c∨ ⊗ c −→ 1 and coevc : 1 −→ c⊗ c∨,

which we draw as follows:

evc =

c∨ c

1

and coevc =

c c∨

1

(2.1)

(From this point on, we relax the graphical calculus notation, so that we will not necessarily indicate the
presence of the unit object 1 nor the dashed strand id1.) For each object c ∈ C, the evaluation and coevaluation
maps satisfy the Zig-Zag equations (a.k.a. the conjugate equations in [21], Sec. 2):

c∨

c∨

=

c∨

c

c∨

and

c

c

=

c

c∨

c

(2.2)

Which more succinctly can be equivalently stated as

idc∨ = (evc ⊗ idc∨) ◦ (idc∨ ⊗coevc) and idc = (idc ⊗evc) ◦ (coevc ⊗ idc).

We moreover require that there exists a predual object to c, denoted by c∨, such that (cv)∨ ∼= c.
For arbitrary c, b ∈ C, the dual of a map f ∈ C(a→ b) can be computed by composing with the evaluation

and coevaluation maps as follows:

f∨ = f

b∨

a∨

(2.3)

where f∨ ∈ C(b∨ → a∨) is given by (evb ⊗ ida∨) ◦ (idb∨ ⊗f ⊗ ida∨) ◦ (idb∨ ⊗coeva). As a result, these choices
of duals for objects, can be arranged into a strong-monoidal dual functor

(•)∨ : C −→ Cmop,
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where Cmop is C considered with reversed arrows and tensor product. The associated tensorator is given by
the natural isomorphism whose components are given by

νa,b =

b∨ a∨

(a⊗ b)∨

= (evb ⊗ id(a⊗b)∨) ◦ (idb∨ ⊗ eva ⊗ id(a⊗b)∨) ◦ (idb∨ ⊗ ida∨ ⊗coeva⊗b). (2.4)

Remark 2.5. Neither a dual functor nor its tensorator need to be unitary; i.e., (f†)∨ ̸= (f∨)†, nor ν−1 = ν†.
However, for a RC*TC with simple unit, there exists a balanced dual for each object (see Lemma 3.9 in
[31] or Prop. 3.24 in [25]); i.e., for each c ∈ C, there exists a choice of dual (c̄, evc, coevc) for which the
Zig-Zag equations hold and moreover satisfies the balancing condition: for an arbitrary endomorphism
f ∈ C(a→ a), its left and right traces match; i.e

eva ◦ (ida ⊗f) ◦ eva
† = f

a
= f

a
= coeva

† ◦ (f ⊗ ida) ◦ coeva ∈ . (2.5)

This choice of balanced dual assembles into a unitary dual functor for which for every morphism f we obtain
f†

∨
= f∨

†, and ν is unitary. We remark that this choice of dual functor is unique up to a unique natural
isomorphism.

Associated to the balanced dual functor there is a canonical pivotal structure

φ : idC ⇒ (•)∨∨,

which is a natural monoidal unitary spherical (i.e. Eqn. 2.5 holds) isomorphism whose components are
given by

(coevc
† ⊗ idc∨∨) ◦ (idc ⊗coevc∨) =

c

c∨

c∨∨

= φc =

c

c∨

c∨∨

= (idc∨∨ ⊗evc) ◦ (evc∨
† ⊗ idc).

(2.6)
Remark 2.6. Using the unitary balanced dual functor in C, the naturality of φ and the canonical spherical
pivotal structure, one can show that the mirrored dual of a morphism matches Eqn. 2.7: (see [2], pp. 8-10)

f

b∨

a∨

= f∨ = f

b∨

a∨

= (ida∨ ⊗coevb
†) ◦ (ida∨ ⊗f ⊗ idb∨) ◦ (eva

† ⊗ idb∨). (2.7)

Notice that, in light of the naturality of φ, rotation by 2π in C satisfies the identity f∨∨ ◦ φa = φb ◦ f,
for an arbitrary f ∈ C(a→ b).

Definition 2.7 ([16], [25], [15]). Using the dagger structure † and the unique unitary (balanced) dual functor
from Remark 2.5 (•)∨ : C −→ Cmop, we can define an involutive structure (( · , ν), φ, r) on C as follows:

· : C −→ Cmp

c ↦→ c̄ (= c∨), f ↦→f := (f†)∨ (= (f∨)†).

Here, Cmp is the monoidal category C considered with the reversed tensor product. Notice that if f ∈ C(a→ b),
then f ∈ C(a → b). The involution · is a conjugate-linear strong-monoidal functor, which comes equipped
with the canonical unitary pivotal structure {φc : c

∼−→ c}c∈C satisfying φc = φc. The monoidal structure is
given by natural unitaries {νa,b : a⊗ b

∼−→ a⊗ b}, and an isomorphism r : 1
∼−→ 1 given by λ

1
◦ coev1. Here λ

is the left unitor. We limit ourselves to remark there are associativity and unitality axioms these maps must
satisfy, and a more detailed view can be found in [16, Definition 2.4].
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A tensor category with an involution is called involutive. And a tensor category is called bi-involutive
([15, Definition 2.3] and [25, Definition 3.35]) if it is a dagger category with an involution and moreover,
the involution · is a dagger functor (i.e. for every f ∈ C(a → b), we have f† = f

†
) with unitary structure

isomorphisms φ, ν and r.

Remark 2.8. Notice that the bi-involutive structure described above is canonical. (The interested reader
can go to [16], Example 2.12 and the references therein for an expanded description of the structure isomor-
phisms.) It was shown in [25] that this bi-involutive structure is canonical and independent of the choice of
unitary dual functor.

The following definition will be of importance in the last section, so we include them for the convenience
of the reader.

Definition 2.9 ([25]). A bi-involutive functor between bi-involutive RC*TCs is a dagger tensor functor
(F, µ) : C −→ D together with a natural unitary isomorphism χc : F(c) −→ F(c) which is monoidal with
respect to µ, νC and νD, and involutive with respect to φC and φD. These properties are captured by the
following commutative diagrams:

F(a)⊠ F(b) F(a⊗ b) F(b⊗ a)

F(a)⊠ F(b) F(b)⊠ F(a) F(b⊗ a)

χa⊠χb

µa,b F(νa,b)

χb,a

νF(a),F(b) µa,b

F(c) F(c)

F(c) F(c)

F(φc)

φF(c) χa

χc

(2.8)

We now introduce the tensor category of bimodules over a II1 factor. Beyond its great significance in the
theory of subfactors, this example is of central importance to us as it will serve as a grounds to construct a
more general RC*TC of bimodules over a C*-algebra.

Example 2.10. For this example we closely follow [1] and [16]. For a type II1 factor (N, τ), consider the
(W*-)tensor category of bimodules over N . The tensor product is given by the Connes fusion relative
tensor product [4], denoted − ⊠N −. By restricting to the full subcategory of bifinite bimodules Bimbf(N),
we obtain a RC*TC whose structure we now describe. Let Ω ∈ L2(N, τ) be a cyclic vector in the GNS-
construction. Given H ∈ Bimbf(N), we say that ξ ∈ H is (left/right-)-bounded if and only if the map
NΩ → H given by nΩ ↦→ ξ � n, extends to a bounded map Lξ : L2(N) → H. The set of bounded vectors
in H is denoted by H◦, and defines a dense subset of H. Bounded vectors help us define an N -valued inner
product; i.e., for η, ξ ∈ H◦, we have ⟨η | ξ⟩N := L∗

ηLξ. This product is indeed N -valued, as L∗
ηLξ commutes

with the right N -action.
The dual of H ∈ Bimbf(N) is given by H, as a Hilbert space. To refer to an element in H we write

ξ ∈ H. Right and left N -actions are given by n� ξ�m := m∗ � ξ � n∗, and for ξ, η ∈ H their inner product
is given by ⟨ξ | η⟩N := ⟨η | ξ⟩N . We are now able to define an evaluation map

evH : H ⊠
N
H → L2(N) given on H◦ ⊗

N
H◦ by

η ⊠ ξ ↦→ ⟨η | ξ⟩N ,
which is N -bilinear and bounded.

To define coevaluation maps, we need the notion of a (finite) right N -basis, which we introduce in a more
general context in Definition 2.12. By [3], such a finite set exists and we denote it by {β} ⊂ H◦. We then
have that for every ξ ∈ H◦, ξ =

∑︁
β � ⟨β | ξ⟩N . For a chosen basis {β} ⊂ H◦, we then have the map

coevH : L2(N) −→ H ⊠
N
H given by

nΩ ↦→
∑︂

(n� β)⊠ β,

which can be seen not to depend on the choice of basis. The maps evH and coevH satisfy the Zig-Zag
Equations (2.2). Thus Bimbf(N) is indeed a RC*TC, where our choice of evaluation and coevaluation maps
is usually referred to as the tracial evaluation and coevaluation. One may need to renormalize these
maps on irreducible bimodules so that they satisfy the balancing condition described in Equation 2.5. We
further restrict to the full rigid C* tensor subcategory of spherical/extremal bimodules, denoted Bimsp

bf(N), so
that the tracial dual matches the canonical unitary dual functor.
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2.2 Hilbert C*-bimodules

We recall some useful facts about Hilbert C*-bimodules that we will use in the following sections. Throughout
this section, we assume that C and D are unital C*-algebras.

Definition 2.11 ([20]). A C-D Hilbert C*-bimodule Y is a vector space together with commuting left
and right actions denoted by −�− : C ×Y → Y and −�− : Y ×D → Y. Moreover, we have the following
structures:

• A C-valued form C⟨−, · ⟩ which is C-linear on the left and conjugate linear on the right, and

• a D-valued form ⟨ · |−⟩D which is D-linear on the right and conjugate linear on the left.

• Compatibility of inner products with the involution: C⟨ξ, η⟩ = (C⟨η, ξ⟩)∗, and ⟨ξ | η⟩D = (⟨η | ξ⟩D)∗;

These forms provide canonical norms defined as follows:
for each y ∈ Y,

C ||y||2 := ||C⟨y, y⟩||C , and ||y||2D := ||⟨y | y⟩D||D.

We also require the following identities and properties to hold for every ξ, η ∈ Y:

• The two norms above are complete and equivalent;

• The two forms are positive definite; i.e. C⟨ξ, ξ⟩ ≥ 0 on Y and C⟨ξ, ξ⟩ = 0 if and only if ξ = 0, and
similarly for the D-valued form.

• For each c ∈ C and each d ∈ D, we have C⟨ξ � d, η⟩ = C⟨ξ, η � d∗⟩, and ⟨c� ξ | η⟩D = ⟨ξ | c∗ � η⟩D.

For Hilbert C∗-bimodules CYD and CZD, denote by B(Y,Z) the Banach space of bounded C-D bilinear
operators. We denote the set of left-adjointable operators by ∗B(Y,Z), and B∗(Y,Z) denotes the set of
right-adjointable operators. We notice that under this notation, the last bullet points amounts to saying
that there is an embedding of the left C-action into the Banach space of right-adjointable operators and also
that there exists an embedding of the right D-action into the space of left-adjointable operators.

Notice that the left adjoint of a given operator need not match its right adjoint. Often times, it will
be sufficient for our purposes to restrict to those operators for which these notions match, denoted bi-
adjointable operators. In the following definitions we seek for sufficient conditions for our bimodules to
form a RC*TC. We will closely follow [20] for the description of such categorical/analytic structures and
properties.

Definition 2.12 ([20]). Given a Hilbert C∗-bimodule CYD, we say that {ui}mi=1 ⊂ Y is a right D-basis if
and only if for each ξ ∈ Y we have

ξ =

m∑︂
i=1

ui � ⟨ui | ξ⟩D.

Similarly, we say {vj}nj=1 ⊂ Y is a left C-basis if and only if for each ξ ∈ Y we have

ξ =

n∑︂
j=1

C⟨ξ, vj⟩ � vj .

If a bimodule Y has both a left and a right basis, we say it is finitely generated projective (fgp).

Definition 2.13 ([20], Definitions 1.14 and 1.16). Define the right index the and left index of a fgp C-D
Hilbert C*-bimodule Y as

r-Ind(Y) :=

m∑︂
i=1

C⟨ui, ui⟩, and l-Ind(Y) =

n∑︂
j=1

⟨vj | vj⟩D.
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By Proposition 1.13 in [20], these sums do not depend on the choices of bases, and moreover that r-Ind ∈
Z(C)+ and l-Ind ∈ Z(D)+, define positive central elements in their respective C*-algebras. Thus, if either
C or D have trivial center, the corresponding index is then a positive real number. Moreover, we define the
index of Y as

Ind(Y) = l-Ind(Y) · r-Ind(Y).

We say the bimodule Y is normalized if r-Ind(Y) = l-Ind(Y). By [20, Lemma 1.15 ] fgp bimodules over
C*-algebras with trivial centers can always be normalized and therefore we will only consider these, without
loss of generality.

We shall next introduce another property for an fgp bimodule CYD that will become of crucial importance
when defining a tensor structure for bimodules, obtaining a multiplicative notion of (Jones’) index.

Definition 2.14 ([20], Proposition 3.3 and Definition 3.5). Let CYD be as above, and further assume that
Z(C) == Z(D). For K := r-Ind(Y)

l-Ind(Y) > 0 and each T ∈ End(CYD) we have∑︂
i

C⟨Tui, ui⟩ = K ·
∑︂
j

⟨vj |Tvj⟩D ∈,

we then say that Y is a minimal bimodule.

Example 2.15. We now describe a RC*TC, which is a C*-algebraic analog of the category Bimsp
bf(N) of

spherical bifinite bimodules over a II1-factor N , outlined earlier in Example 2.10. In describing this exam-
ple, we rely heavily on the results in [20]. Let B be a fixed unital C*-algebra with trivial center. Consider
the category of fgp normalized and minimal Hilbert C*-bimodules over B, denoted by Bimfgp(B). Neither
minimality nor being normalized are extra properties of a bimodule, since one can always remetrize to si-
multaneously force minimality and normality. For further details, see [20, Lemma 3.6]. Since there is no
loss of generality by doing so, from this point on, we will only consider fgp normalized and minimal
bimodules. The greater advantage of reducing the category to normalized and minimal bimodules is that the
index is well behaved with respect to sums and products in the category, which we shall next define, and that
we can structure Bimfgp(B) as a RC*TC.

There is a canonical way to direct sum objects in Bimfgp(B), where we emphasize that the resulting object
belongs to Bimfgp(B), and the index behaves additively (Lemma 3.9 [20]). The tensor structure is given by
B-fusion − ⊠B −, where if Y,Z ∈ Bimfgp(B) then Y ⊠B Z ∈ Bimfgp(B) without completion (Proposition
1.23 in [20]). We remark that Ind(Y ⊠B Z) = Ind(Y)· Ind(Z) holds true on Bimfgp (Proposition 1.30, [20]),
and that fusion is distributive with respect to sums (Lemma 1.24, [20]).

For Y,Z ∈ Bimfgp(B), by [20, Lemma 1.10], any right (resp. left) B-module map T : Y → Z is
automatically a finite rank operator, is bounded with respect to the right (resp. left) B-norm (and hence
both norms) and is adjointable with respect to the right (resp. left) inner product, with right-adjoint T ∗

(resp. left-adjoint ∗T ). Moreover, minimality together with Proposition 3.14 in [20] ensure that if T is also
adjointable with respect to the left inner product, it satisfies ∗T = T ∗. Therefore Bimfgp(B)(Y → Z) consists
of bi-adjointable bounded B-bimodule maps, with common adjoint denoted T ∗. This defines a dagger
structure on Bimfgp(B).

We now define the conjugate bimodule of Y denoted Y, where Y = Y as sets. The bimodule structure
is as follows: if y, y′ ∈ Y and a, b ∈ B the left and right actions are given by a � y � b := b∗ � y � a∗,

B⟨y, y′⟩ := ⟨y | y′⟩B and ⟨y | y′⟩B := B⟨y, y′⟩. Clearly, Y ∈ Bimfgp(B). We are now in position to define
evaluation and coevaluation: for a given finite right B-basis {ui}mi=1 we have maps

evY :Y ⊠
B
Y −→ BBB , coevY : BBB −→ Y ⊠

B
Y,

η ⊠ ξ ↦→ ⟨η | ξ⟩B b ↦→ b�
m∑︂
i=1

ui ⊠ ui

One must check these maps belong to our category. For example, evY is manifestly right B-linear so it
is a bounded right-adjointable B-bimodule map. By direct computation, evY∗(b) = (

∑︁n
j=1 vj ⊠ vj) � b and
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moreover ∗ evY (b) = b �
∑︁n

j=1 vj ⊠ vj , where {vj}nj=1 is a finite left B-basis and b ∈ B is arbitrary.
Therefore, ∗evY is indeed the left-adjoint of the evaluation map. Then, necessarily, ∗ evY (b) = b�

∑︁n
j=1 vj ⊠

vj = (
∑︁n

j=1 vj ⊠ vj) � b = evY∗, showing that evY ∈ Bimfgp(B)(Y ⊠ Y → B). Similarly for coevY , where
coevY∗(y ⊠ y′) = B⟨y, y′⟩ = ∗ coevY (y ⊠ y′). We now define the dual module Y∨ := Y and the dual of
a morphism T∨ is given by the canonical dual. By Proposition 4.1 in [20], under these structural maps,
the category of fgp B-bimodules Bimfgp(B) is a rigid category. In fact, since we restricted to normalized
bimodules, Bimfgp(B) has the C*-property, by Corollary 4.3 in [20].

This choice of dual functor corresponds to the balanced unitary dual. Indeed the canonical spherical
structure on Bimfgp(B) defines an honest pivotal structure so, by Proposition 3.9 in [25], the result follows.
(Remarkably, that ∗T = T ∗ for every biadjointable map is an equivalent condition to the naturality of
the pivotal structure.) Thus, we can consider the canonical bi-involutive structure given on objects by
conjugation Y and a morphism T : Y → Z, its conjugate T : Y → Z is given by T := (T ∗)∨ = (T∨)∗ and
satisfies T (y) = T (y).

3 Diagramatic Algebras

3.1 GJS construction

In this section we will assume that C is a fixed essentially small RC*TC. We start with an auxiliary lemma,
which helps us find a special object x ∈ C. From the morphisms between tensor powers of this object we
will construct certain diagrammatic ∗-algebras, and an ambient C*-algebra, denoted B∞ (Definition 3.15),
which we will heavily rely on. The corners Bn of B∞ will be separable simple unital C*-algebras with unique
traces. Of particular importance will be the corner B0 (Notation 3.21), as we will use it to construct a
concrete rigid C*-tensor subcategory of Bimfgp(B0), (Example 2.15) where we fully and faithfully represent
C.

Notation 3.1. For an object c ∈ C, we define δc to be the quantum dimension of c. This is, δc :=
coevc∗ ◦ coevc = evc ◦ evc∗, is the (complex) value of the c-loop.

Definition 3.2. We say that an object x ∈ C is self-dual if and only if there exists a (unitary) isomorphism
ψ : x −→ x. (This isomorphism can be chosen to be unitary by polar decomposition.) Moreover, we say that
x is symmetrically self-dual (ssd) ([2], Definition 2.10) if and only if is self-dual and evx ◦ (ψ ⊗ idx) =
coevx∗ ◦ (idx ⊗ψ). (For more detailed treatments of self-dualities, the reader can go to [5, Theorem 3.4], [21],
and [13].)

Intuitively, in the graphical calculus, strings labeled by a ssd object need not be oriented. In the following
lemma, we show there are always ssd objects. We can fix a ssd object x ∈ C, since

Lemma 3.3. Every RC*TC has a ssd object x, with δx > 1 and x = x.

Proof. Let σ ∈ C be an arbitrary object (not isomorphic to the tensor unit), and define x := σ ⊕ σ. Clearly,
δx > 1. There is a canonical unitary map ψ : (σ ⊕ σ) −→ (σ ⊕ σ) ∼= x given by the diagonal matrix
diag(φσ, idσ), where φ is the canonical unitary pivotal structure on C. To establish symmetric self-duality,
one simply observes that this condition is equivalent to evx = coevx

† ◦ (idx ⊗φx) and evx ◦ (φx ⊗ idx), both
of which hold since we are using the canonical pivotal structure. Finally, we can choose x = x by using ψ to
unitarily redefine the balanced dual functor, if need be.

From this point on, we reserve the symbol x to denote a fixed ssd object in C as in the statement of the
previous Lemma.

Definition 3.4 ( [2, 9, 12, 13] ). Given non-negative integers l, r, b, we let Vb,l,r be C(x⊗b → x⊗l ⊗ x⊗r).
We define Gr∞ whose underlying vector space is given by the external algebraic direct sum

Gr∞ :=
⨁︂

l,r,b≥0

Vb,l,r.

9



An element ξ ∈ Vb,l,r can be pictorially visualized as follows:

ξ
•

l r

b

or

•

ξ

rl

b

. (3.1)

Here, the dot indicates how the lateral strings split on each side; i.e. there are l strings on the left and r
strings on the right. We warn the reader that the same element ξ ∈ Vb,l,r appears as many times as the
number (l + r) can be decomposed as a sum of two non-negative integers.

There is an involution on Gr∞ denoted by ∗, which is determined by the canonical conjugate structure
in C, given by its bi-involutive structure (See Remark 2.8):

∗ : Vb,l,r −→ Vb,r,l

•
ξ

l r

b

∗

:=

•

ξ†

b

lr

= (ξ†)∨ = (ξ∨)†. (3.2)

Notice how the roles of l and r switched. For notational convenience, we will denote this diagram as

ξ∗
•

r l

b

.

Definition 3.5. Define Gr0,∞ by
Gr0,∞ :=

⨁︂
l≥0,r≥0

V0,l,r.

The space Gr0,∞ becomes an algebra when endowed with the multiplication

•
ξ

l r

∧
•
η

l′ r′

:= δr=l′ ·
•

•
η

r′

•
ξ

l

(3.3)

Notice that if l+ r = l′ + r′ with l ̸= l′, this multiplication makes Vb,l,r orthogonal to Vb′,l′,r′ , and this is also
true for elements that are counted more than once in Gr∞ .

Define Gr0,n by
Gr0,n :=

⨁︂
n≥l,r≥0

V0,l,r. (3.4)

Note that Gr0,n is a finite dimensional unital ∗-subalgebra of Gr0,∞ which we describe in the following
Proposition whose proof is straightforward:

Proposition 3.6. For each n,m ∈ N, we have an injective ∗-algebra homomorphism (given by Frobenius
Reciprocity on C):

FR : Cop(x⊗m → x⊗n)
∼−→ Gr0,max(m,n) given by

n

f

m

↦−→

•

f (3.5)
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When n = m, the map FR becomes an injective ∗-algebra isomorphism.

Therefore, using Frobenius Reciprocity, we endow Gr0,n with a norm, giving it the structure of a unital
C*-algebra. Note that the inclusion Gr0,n ↪→ Gr0,n+1 is nonunital but preserves minimal projections. As
such, Gr0,∞ (being the inductive limit of the Gr0,n ) can be completed into an AF C∗-algebra which we shall
denote as A∞ with multiplication still denoted by ∧. This is, as a vector space

A∞ := lim
n

Gr0,n. (3.6)

We shall now complete Gr∞ into a right Hilbert C*-module over A∞ that will become of central impor-
tance in the sequel: For any n,m ∈ N we have left and right actions of Gr0,n and Gr0,m on Gr∞ defined as
follows: for a ∈ Gr0,n, a′ ∈ Gr0,m and ξ ∈ Gr∞, we have

•
a

l r

�
•
ξ

l′′ r′′

b

�
•
a′

r′l′

:= δr=l′′ · δr′′=l′ ·

•
•
a

l

•
ξ

b

•
a′

r′

(3.7)

The module Gr∞ then becomes endowed with an A∞-valued inner product (taking values in Gr0,∞) given
by the sesquilinear extension of

⟨ξ | η⟩A∞ := δl=l′ · δb=b′ ·

•
•
ξ∗

r

b

η
•

r′

(3.8)

for ξ ∈ Vb,l,r and η ∈ Vb′,l′,r′ . Note that this inner product is linear in the right variable and conjugate linear
in the left.

It is a straightforward computation to prove the next Proposition, following from the pivotal spherical
structure on C (see Remark 2.8):

Proposition 3.7. The following statements hold for all diagrams ξ, η ∈ Gr∞ and a ∈ Gr0,∞ :

• Right A∞-linearity: ⟨ξ | η � a⟩A∞ = ⟨ξ | η⟩A∞ ∧ a;

• The left action is right-adjointable: ⟨ξ | a∗ � η⟩A∞ = ⟨a� ξ | η⟩A∞ ; and

• Compatibility with adjoints: (⟨ξ | η⟩A∞)∗ = ⟨η | ξ⟩A∞ .

Definition 3.8. The vector space Gr∞ can now be endowed with a C*-norm, denoted ∥ · ∥A∞ , given by
∥ξ∥2A∞

:= ∥⟨ξ | ξ⟩A∞∥A∞ , where the latter norm is the norm in the C∗-algebra A∞. (We remind the reader
that this norm was introduced previously in Definition 3.28.) We therefore define X∞ to be the completion
of Gr∞ under ∥ · ∥A∞ ; this is

X∞ := Gr∞
|| · ||A∞ .

We also extend the A∞-valued inner product to all of X∞ × X∞ in the obvious way. We will keep the same
notation for this extended product.

To equip X∞ with a right Hilbert A∞-module structure (see Definition 3.28 on Hilbert bimodules and
Definition 1.3.2 in [23] for Hilbert modules), we must first extend the actions to all of X∞ and all of A∞.
The right Gr0,∞-action extends to X∞ since for each sequence ξn ∈ Gr∞ converging to ξ ∈ X∞, and for each
a ∈ Gr0,∞, a simple diagrammatic computation reveals that ||ξn � a||2A∞

= δx · ||a∗ ∧ ⟨ξn|ξn⟩A∞ ∧ a||A∞ ≤
δx · ||ξn||2A∞

· ||a||2A∞
, which is bounded above in A∞-norm, since the ξn are bounded. Using the same

inequality we obtain a (bounded) right A∞-action on X∞. Moreover, observe that the first and last items
in Proposition 3.7 apply to the extended A∞-action over the module X∞. Thus, (X∞, ⟨· | ·⟩A∞) is a right
Hilbert C*-module over A∞.

We shall now show there is a left action of A∞ on X∞ by right adjointable operators. To do so, we first
bring an auxiliary lemma:
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Lemma 3.9. For n,m ≥ 0, the collection of maps

Gr0,n −→ Gr0,n+m given by the linear extension of •
ξ

↦→

•
•
ξ (3.9)

extends to an isometric C*-algebra homomorphism A∞ −→ A∞.

Proof. This map is clearly a densely defined injective ∗-algebra homomorphism. This map is bounded
because it is a monomorphism between the finite dimensional algebras Gr0,n and Gr0,n+m.

For arbitrary η ∈ Vb,l,r ⊂ Gr∞ and a ∈ Gr0,∞ we have the following diagrammatic identity:

⟨a� η|a� η⟩A∞ = δl=r′ ·
•

•
η∗

r

b

l′l′ •
•
a∗

•
a

•
•
η

r

b

(3.10)

Thus, denoting the rightmost element above as ξ ∈ Gr0,∞, we then obtain that ⟨a � η | a � η⟩a∞ =
ξ∗ ∧ [(a∗ ∧ a)]∧ ξ. Here, [a∗ ∧ a] denotes the middle element in the diagram above. By Lemma 3.9 we obtain
that ||a� η||2A∞

= ||⟨a� η | a� η⟩A∞ ||A∞ = || ξ∗ ∧ [(a∗ ∧ a)] ∧ ξ||A∞ ≤ ||ξ ||2A∞
· ||a||2A∞

= ||η||2A∞
· ||a||2A∞

.
Similarly as done for the right action, this inequality allows us to define a bounded left action of A∞ on X∞.
Finally, notice that the second item in Proposition 3.7 (which extends to the left action of A∞ on X∞ by a
density argument), implies that the left A∞-action is given by right-adjointable operators. Therefore, there
is a faithful embedding ([A∞] � −) ↪→ B∗((X∞)A∞).

There is an (N ∪ {0})-graded family of right A∞-modules of importance:

Definition 3.10. For arbitrary b ≥ 0, set Grb,∞ to be the following subspace of Gr∞ :

Grb,∞ :=
⨁︂

l≥0,r≥0

Vb,l,r,

and define Xb as its completion in X∞. Note that each Xb is naturally a right A∞-module with a canonical
left A∞ action (by right-adjointable operators). Also note that X0 = A∞.

The treatment below relies heavily on the machinery in section 4 of [13] and is essentially a translation
of that section into our diagrammatic language. In that article, planar algebras were used as a substitute
for the graphical picture used in this article. Below is a dictionary that the reader can use when parsing the
changes in notation and diagrams between [13] and this article.

[13] This manuscript

ξ
l r

b

ξ
•

l r

b
Pl,n,r Vb,l,r
F(P•) X∞
Bn(P•) Gr0,n
B(P•) A∞
Xb Grb,∞
Xb Xb

L(ξ) L(ξ)(creation operators)

12



We have the following proposition, appearing as [13, Proposition 4.11]:

Proposition 3.11 ([13]). For arbitrary b, b′ ≥ 0, the mapping

Ub,b′ : Grb,∞ ⊙Grb′,∞ → Gr(b+b′),∞

defined by

•
ξ

l r

b

⊙
•
η

l′ r′

b′

↦−→ δr=l′ ·

•
•
ξ

l

•
η

r′

(b+ b′)

(3.11)

extends to a unitary isomorphism of right A∞ Hilbert C*-bimodules:

Ub,b′ : Xb ⊗A∞ Xb′ → Xb+b′ .

Here, the relative (algebraic) tensor product ⊙ is balanced over diagrams with no strings going up; i.e. over⨁︁
b′′≥0 Grb′′,0,0.

We now introduce a construction due to Pimsner.

Definition 3.12 ([27]). Given an arbitrary Hilbert C*-module Y over a C∗-algebra A with a left action of
A as bounded, adjointable operators on Y, one can form the full Fock space F(Y) given by

F(Y) = A⊕
∞⨁︂

n=1

Y⊗n
A .

An immediate consequence from Proposition 3.11 and the previous definition gives:

Corollary 3.13. The unitary operators in Proposition 3.11 induce a unitary

U : F(X1) → X∞.

Recall that by [27], given F(Y) as above, and ξ ∈ Y, one can form the creation operator ℓ(ξ) on F(Y)
defined as as the linear extension of

ℓ(ξ)a = ξa for all a ∈ A

ℓ(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn for all ξ1, . . . , ξn ∈ Y.

The operator ℓ(ξ) is bounded and right-adjointable, and its adjoint is given by

ℓ(ξ)∗a = 0 for all a ∈ A

ℓ(ξ)∗(ξ1 ⊗ · · · ⊗ ξn) = ⟨ξ | ξ1⟩Aξ2 ⊗ · · · ⊗ ξn for all ξ1, . . . , ξn ∈ Y.

In particular, for Y = X1 and for an arbitrary ξ ∈ V1,l,r, consider the operator L(ξ) on Gr∞, which we
define using the spaces Vb′,l′,r′ by:

L(ξ) : η
•

l′ r′

b′

↦→δr=l′ ·

•

ξ
•

l

η
•

r′

(1 + b′)

(3.12)

For ξ ∈ Gr1,∞, one defines L(ξ) by linearity. The following is now immediate:
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Proposition 3.14. The unitary operator U in Corollary 3.13 satisfies U∗L(ξ)U = ℓ(ξ) for all ξ ∈ Gr1,∞.

Since one has ∥L(ξ)∥ = ∥ξ∥ for all ξ ∈ Gr1,∞ [27], it follows immediately that L(ξ) is bounded for all
ξ ∈ Gr1,∞, and that one can use continuity to define L(ξ) for all ξ ∈ X1. It follows from the arguments in
[13, Propositions 4.7–4.9] that the ∗-operation extends continuously on each Xn.

We now introduce the C*-algebra B∞, a corner of which (the unital simple C*-algebra B0 from Notation
3.21) will be the main C∗-algebra in this article.

Definition 3.15. Let XR be the real subspace {ξ ∈ X1| ξ = ξ∗}. Then we define B∞ to be the C*-algebra
generated by

A∞ ∪ {L(ξ) + L(ξ)∗| ξ ∈ XR} ⊂ B∗(X∞).

We will often denote the (operator) norm on B∞ by || · ||B∞ .

There will be a convenient way to diagrammatically realize B∞. Given ξ ∈ Vb,l,r, define π(ξ) to be the
operator on Gr∞ given by (the linear extention of):

π(ξ)η := δr=l′ ·
min{b,b′}∑︂

k=0

•

k

•
ξ

l

•
η

r′

(b− k) (b′ − k)

(3.13)

for η ∈ Vb′,r′,l′ . We extend the definition of π(ξ) linearly in ξ to all of Gr∞. By the following Proposition
([13, Proposition 4.16]), we obtain that π(ξ) is bounded:

Proposition 3.16. For each η ∈ Gr∞, π(η) is a polynomial in A∞ and {L(ξ) + L(ξ)∗| ξ ∈ XR}. Conse-
quently, π(η) is bounded for each η ∈ Gr∞.

Remark 3.17. We notice that under this representation, π, the composition of operators satisfies π(ξ′)◦π(ξ) =
π(ξ′ ⋆ ξ), where ξ′ ∈ Vb′,l′,r′ , ξ ∈ Vb,l,r and − ⋆ − is the Walker Multiplication, which diagrammatically
is given by Equation 3.13 ([19]). We moreover have that Gr∞ with the Walker product − ⋆− is isomorphic
to Gr∞ with the wedge/graded product −∧− as unital (tracial) ∗-algebras. (See [19, Lemmata 5.2 and
5.3], for further details on the traces and the isomorphism). It is straightforward to see that if ξ ∈ XR, then
π(ξ) = ξ⋆− = L(ξ)+L(ξ)∗. From this observation, we see that B∞ is generated by A∞ and {π(η)| η ∈ Gr∞}.

3.2 A weight and a conditional expectation on B∞

The AF ∗-algebra Gr∞ ∩A∞ can be endowed with the following positive linear functional given by the linear
extension of

Φ : Gr∞ ∩A∞ −→ given by •
a

↦−→ δl=r · •
a . (3.14)

Proposition 3.6, allows us to see this map is simply the trace on C. (See Equation 2.5.) Therefore, the map
Φ extends to a faithful, positive, semifinite, tracial weight on A∞.

If we if we let Π0 ∈ B(X∞) be the projection from X∞ onto A∞, then from (Lemma 2.10 in [30]), Π0

induces a faithful conditional expectation, E from B∞ onto A∞. Diagrammatically, this map is given by

E : B∞ −→ A∞,

b ↦−→ Π0 b Π0.

•
b ↦−→

•
b∅ (3.15)

A straightforward computation shows that if x ∈ Gr∞, then Π0xΠ0 ∈ A∞, so E is well defined by
continuity. From [30, Lemma 2.10 and Remark 2.13] we obtain the following proposition:
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Proposition 3.18 ([13]). The following assertions hold:

• The map E is a faithful conditional expectation from B∞ onto A∞.

• The composite map Φ ◦ E is a faithful, semifinite tracial weight on B∞, which is finite on {π(ξ)|ξ ∈
Gr∞}.

As Hilbert spaces, we have that L2(B∞,Φ◦E) ∼= X∞⊗A∞L
2(A∞,Φ). In fact, one can check diagrammat-

ically that this equivalence is realized by the unitary W given by W (π(ξ)) = ξ for all ξ ∈ Gr∞. Moreover,
W satisfies W (bη) = bW (η) for all b ∈ B∞ and each η ∈ Gr∞.
Remark 3.19. The above proposition allows us to canonically identify Gr∞ as a dense subspace of B∞, and
we will suppress the π in π(x) when the context is clear.
Remark 3.20. In order to present a more visually appealing picture of the multiplication in B∞ we endow
Gr∞ with the following multiplication and tracial weight (sometimes refered to as the Voiculescu trace)

x ∧ y =
•
x

l r

b

∧
•
y

l′ r′

b′

:= δr=l′ ·

•
•
x

l

•
y

r′

(b+ b′)

and

Tr(x) =

•
x

l r

b∑︁
NC2

,

where
∑︁

NC2 represents the sum over all non-crossing pairings of the b strings on the bottom of the diagram.
It was shown in [19], that there is a tracial weight preserving ∗-isomoprhism Ψ from π(Gr∞) to Gr∞ satisfying

Φ(π(x)) ◦ E = Tr(Ψ(π(x))) and Ψ(π(x)π(y)) = Ψ(π(x)) ∧Ψ(π(y)).

This means that the C*-algebra completion of Gr∞ in the GNS representation of Tr is also isomorphic to
B∞. We will use this multiplication below to declutter many diagrams.

Notation 3.21. For each n ∈ N we let pn ∈ Gr0,n,n be the element

pn := n
•

.

We note that (Φ ◦E) descends to a positive, faithful linear tracial functional Trn(•) = (Φ ◦E)(pn • pn) on
the unital C*-algebra

Bn := pn ∧B∞ ∧ pn ⊂ B∞,

which inherits a subalgebra C*-norm, denoted by || · ||Bn .
By defining also p0 := ∅ ∈ V0,0,0 to be the empty diagram, we can consider Tr0 and the tracial unital

(simple) C*-algebra
B0 := p0 ∧B∞ ∧ p0 ⊂ B∞,

which is of special interest to us. This subalgebra also inherits a C*-norm, denoted by || · ||B0
. Notice that B0

contains all diagrams with no strings on the top; i.e. l = 0 = r. Moreover, we observe that 1B0
= ∅. Finally,

for m,n ≥ 0, we define the (m,n)-th corner of B∞ by nBm := pn ∧B∞ ∧ pm. Observe that nBn = Bn for
every n.

Finally, on each Bn, we define trBn := trn to be trn(b) =
1
δnx

Trn(b). (We remind the reader that δx > 1

was introduced earlier on in Notation 3.1.) Notice that trn(pn) = 1.
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Notation 3.22. We denote the von Neuman closure of B∞ by M∞ := B′′
∞ ⊂ B∗(L2(B∞,Tr)). Moreover,

for m,n ≥ 0, we denote the corners nMm := pn ∧ M∞ ∧ pm and define the Hilbert space L2(nMm) :=
pn � L2(B∞) � pm.

The following lemma will be crucial to our analysis. It requires δx > 1, which we have assumed:

Lemma 3.23. The following statements hold:

• There exists a separable and infinite-dimensional Hilbert space H such that B∞ ∼= B0 ⊗K(H) ([12],
Corollary 4.15)

• For each n ∈ N ∪ {0}, B∞ is simple as a C*-algebra and consequently, the corner Bn is simple too.
(See Section 5 in [12].)

• For every n ∈ N ∪ {0}, the unital C*-algebra Bn has a unique trace given by Trn. (Theorem 5.5 and
Corollary 5.7 in [12].)

• Given n ∈ N ∪ {0}, the von Neumann algebra defined by

Mn := B′′
n ⊆ B(L2(Bn),Trn)

is an interpolated free group factor L(Ft), for t ∈ (1,∞] whose unique trace we denote by τn. ([9], [2],
[11])

• For S any fixed set of isomorphism classes of simple objects in Cx, the full RC*TC generated by
x = x ∈ C, we have K0(B0) = Z[S]. Moreover in this isomorphism, 1C ↦→ B0. [13], [12]

Remark 3.24. Independently of any other result of the following sections other than Lemma 3.40, one can
prove that there is an isomorphism of von Neumann algebras Mn

∼= nMn, eliminating any possible ambiguity
in the definitions. We choose not to bring this result and the required notational remarks here as it would
slow down the exposition. This result becomes of central importance, as it will allow us to work with all the
corners nMm as embedded in the same ambient von Neumann algebra M∞.

3.3 The Watatani C*-tower of GJS algebras

We now consider

ιn : Gr∞ ∩B0 → Gr∞ ∩Bn by ιn

⎛⎝ •
ξ

⎞⎠ :=

•

ξ

n

(3.16)

We now state some of the basic properties of these maps:

Proposition 3.25. For each n ∈ N we have that

• the map ιn is a ∗-algebra homomorphism, and for all ξ ∈ Gr∞ ∩B0 we obtain tr0(ξ) = trn(ιn(ξ)), and

• the map ιn extends to an injective C*-algebra homomorphism

ιn : B0 ↪→ Bn.

Proof. The first bullet point is an immediate diagrammatic calculation. As for the second bullet point, note
that tr0 and trn are faithful states on B0 and Bn, respectively. Using the functional calculus, if a is any self
adjoint element in a C∗-algebra with faithful state ω, it follows that ∥a∥ = lim

p→∞
[ω(|a|p)]1/p. Indeed, the map

f : t ↦→ |t| is continuous on the spectrum of a and moreover, f ∈ Lp for every p ∈ [1,∞]. Thus, by the Riesz
Representation Theorem there exists a positive Radon measure µ defined on the spectrum of a such that∫︁
fpdµ = ω(|a|p), and hence ω(|a|p)1/p = ||f ||p → ||f ||∞ = ||a||, as p→ ∞. Therefore, for all ξ ∈ Gr∞ ∩B0,

∥ξ∥2B0
= lim

p→∞
tr0((ξ

∗ ∧ ξ)p)1/p = lim
p→∞

trn(ιn(ξ
∗ ∧ ξ)p))1/p = ∥ιn(ξ)∥2Bn

.

The second bullet point follows.
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The inclusion in extends to a normal inclusion of von Neumann algebras M0 ↪→Mn since it is an isometry
in the 2-norm, ∥ · ∥2 induced by the respective traces on M0 and Mn. Indeed, note that in a tracial von
Neumann algebra, the 2-norm on bounded sets (in the operator norm) induces the strong operator topology,
so it follows that in is strongly continuous on bounded sets.

Here are some useful facts about the inclusion of B0 into Bn and M0 into Mn

Proposition 3.26. The following statements hold for every n ∈ N:

1. The image set in[M0] ⊂Mn is a subfactor of index δ2nx . [10]

2. The inclusion in[B0] ⊂ Bn is of finite type, and has Watatani index δ2nx . [12]

3. Relative commutants (inside the GNS-spaces B(L2(Bn)) ∼= B(L2(Mn))) are characteized as

(in[M0])
′ ∩Mn = Gr0,n = (in[B0])

′ ∩Bn.

Proof. We need only prove (3) above. Indeed, from [10], (in[M0])
′ ∩Mn = Gr0,n, and a quick diagrammatic

computation shows that Gr0,n ⊂ (in[B0])
′ ∩Bn. Therefore, we have:

Gr0,n ⊆ in(B0)
′ ∩Bn = in(M0)

′ ∩Bn ⊆ in(M0)
′ ∩Mn = Gr0,n

so every set containment above is an equality. Note that the first equality holds since in(B0) is weakly
dense in in(M0), and hence in(B0)

′ = in(M0)
′. We should warn the reader that this equality relies on

the fact that (L2(B0) ⊃ B′′
0 = M0

∼= ιn[B0]
′′ ⊂ (L2(Bn))). This is rigorously proven in Corollary 3.41 and

the discussion before it, using Lemma 3.40, independently of the results between here and there. (See also
Remark 3.24.)

Definition 3.27. For n ∈ N, define En : Mn → in[M0] to be the canonical conditional expectation. Dia-
grammatically, we have:

En

⎛⎜⎝ •
m

b

nn
⎞⎟⎠ =

1

δnx
·

•

m

b

nn

(3.17)

We immediately see that En restricts to a conditional expectation from Bn onto in[B0]. Furthermore,
Popa’s entropic condition for finite index [26] implies that for all positive b ∈ Bn we have En(b) ≥ 1

δnx
b . This

means that for each positive b ∈ Bn we get ∥En(b)∥Bn
≥ 1

δnx
∥b∥Bn

.

3.4 Concrete bimodules

Recall that as in Notation 3.21, for n,m ≥ 0 we denote the corner pm ∧ B∞ ∧ pn by mBn. We shall now
describe the B0 bimodules we will use to construct the representation of C.

Definition 3.28. Let X = 0B1. Then X is a B0 −B0 bimodule under the actions

b� ξ � b′ = b ∧ ξ ∧ i1(b′),

which diagrammatically respectively places b and b′ to the left and right of ξ.. We place the following left and
right B0-valued inner products on X :

B0
⟨ξ, η⟩ := ξ ∧ η∗, and ⟨ξ | η⟩B0

:= δx · E1(ξ
∗ ∧ η).

In the right inner product, it is understood that we are canonically identifying B0 with i1[B0].
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We will diagrammatically depict our B0 actions using the Graded product (Remark 3.20). In terms of
diagrams the above inner products are represented as follows:

B0⟨ξ, η⟩ =

•

η∗
•

ξ
•

and ⟨ξ | η⟩B0 =

•

•

η
•

ξ∗
•

1

(3.18)

Proposition 3.29. The left and right inner products on B0XB0 give uniformly equivalent norms, and B0XB0

is complete under both norms.

Proof. Let B0
∥ · ∥ be the norm under the left B0 inner product and ∥ · ∥B0

be the norm under the right inner
product, according to the notation established in Definition 3.28. Note that B0

∥ξ∥ coincides with the norm
of ξ in the C*-algebra B∞, and also that from [26],

B0∥ξ∥2 = ∥ξ∗ ∧ ξ∥B∞ = ∥ξ ∧ ξ∗∥B∞ ≤ δ2x · ∥E1(ξ ∧ ξ∗)∥B∞ ≤ δ2x · B0∥ξ ∧ ξ∗∥ = δ2x · ∥ξ∗ ∧ ξ∥ = δ2x · B0∥ξ∥
2
.

As ∥δx · E1(ξ ∧ ξ∗)∥ = ∥ξ∥2B0
, it follows that

1√
δx

B0∥ξ∥ ≤ ∥ξ∥B0 ≤
√︁
δx ·B0

∥ξ∥,

hence the norms are equivalent. It follows that 0B1 = X is complete in both norms.

Notation 3.30. More generally, given n, l, r ≥ 0 satisfying l+r = n, one can define the B0 Hilbert bimodule
lBr with left and right B0 actions given by

x� ξ � y = il(x) ∧ ξ ∧ ir(y),

where once more, the action is given by the multiplication inside B∞. As usual, lBr is endowed with left and
right B0 inner products given by:

• B0
⟨ξ, η⟩ = δlx · El(ξ ∧ η∗) and

• ⟨ξ|η⟩B0
= δrx · Er(ξ

∗ ∧ η).

Again, the two inner products give equivalent complete norms on lBr. (See Proposition 3.29.) Up to B0-
valued inner product preserving B0 Hilbert C*-bimodule isomorphisms, lBr is independent of the decom-
position of n as (l + r).

We can also describe sub-objects of the lBr: if ql ≤ pl = 1Bl
and qr ≤ pr = 1Br

are orthogonal projections
in Bl and Br, respectively, the span of diagrams of the form

•
b

•

∧ •
ξ

l
ql

r
qr

b

∧
•
b′

•

defines a pre-Hilbert C* B0-bimodule (ql ∧ lBr ∧ qr). The left and right B0-valued inner products and B0

actions are the obvious ones.
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Notation 3.31. We shall now describe the the conjugate bimodule, X . (See Definition 2.7, Example
2.15, and also [20, p 3443].) To do so, we will first show that X = 0B1 is isomorphic to 1B0 by defining the
map ϕ, which pushes the dot to the right:

ϕ :

∞⨁︂
n=0

Vn,0,1 −→
∞⨁︂

n=0

Vn,1,0 by ϕ

⎛⎜⎝ •
ξ

⎞⎟⎠ =
•
ξ (3.19)

It then follows that for all ξ, η ∈0 B1,

• The inner products are related as B0
⟨ϕ(ξ), ϕ(η)⟩ = i1 [B0

⟨ξ, η⟩] and ⟨ξ | η⟩B0
= i1 [⟨ϕ(ξ) | ϕ(η)⟩B0

] ,

• the map ϕ extends to a unitary B0-bimodule isomorphism of 0B1 onto 1B0, and

• for any ξ ∈ X , we have that ϕ(ξ)∗ = ϕ−1(ξ∗).

More generally, observe that an obvious definitions of ϕ, analogous to that in Equation 3.19 will exhibit
B0-bilinear unitaries with similar properties realizing 0Bn

∼= . . . ∼= lBr
∼= . . . ∼= nB0, where l + r = n,

which we still denote by ϕ. Thus, for every n ∈ N, we have

ϕn : 0Bn −→ nB0

is a unitary B0-bimodule isomorphism. Additionally, we introduce the congujation map

( · ) : 0Bn −→ 0Bn

ξ ↦→ ϕ−n(ξ∗) := ξ.

Notice that this defines an B0-conjugate linear unitary isomorphism. Using an analogous property to the
third bullet point, it follows that ξ = ξ on 0Bn, so 0Bn is identical to its double dual as B0-bimodules.
Finally, the isomorphism

ϕn : 0Bn −→ nB0

ξ ↦→ ξ∗,

is also a B0-bimodule unitary isomorphism.

The following propositions will establish the most important algebraic properties of the bimodule X :

Proposition 3.32. The bimodule B0
XB0

has finite left and right B0-bases; i.e. X is fgp. (See Definition
2.12.)

Proof. We first show that X has a finite left B0-basis. Note that for ξ, v ∈ X , an expression of the form
B0⟨ξ, v⟩ � v is the same as the product ξ ∧ v∗ ∧ v. Observe that ξ ∧ v∗ ∈ B0 and v∗ ∧ v ∈ B1.

Consider I := 1B0 · 0B1 := span{b′b| b′ ∈ 1B0 and b ∈ 0B1}. Note that I is a two-sided ideal in B1

containing all diagrams of the form:
•

•
b′

•
b (3.20)

If I were proper, then since B1 is unital, it follows that the closure of I, I would also be a proper ideal in
B1. However, since B1 is simple (Lemma 3.23), it follows that I = B1, hence I = B1. Therefore, there exists
finite sets {wj}nj=1, {w′

j}nj=1 ⊂ X such that

p1 = 1B1 =

n∑︂
j=1

w∗
j ∧ w′

j . (3.21)
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From this equation, it follows that for any ξ ∈ X ,

ξ =

n∑︂
j=1

ξ ∧ w∗
j ∧ w′

j =

n∑︂
j=1

B0
⟨ξ, wj⟩ � w′

j .

By Lemma 1.7 in [20], these two sets can be made the same. This is, there exists a finite set {vj}nj=1 ⊂ X
such that for any ξ ∈ X ,

ξ =

n∑︂
j=1

ξ ∧ v∗j ∧ vj =
n∑︂

j=1

B0⟨ξ, vj⟩ � vj .

showing {vj}nj=1 defines a left B0-basis for X . Moreover, one can easily show that this set also satisfies

n∑︂
j=1

v∗j ∧ vj = p1 = 1B1
. (3.22)

Now it suffices to exhibit a right B0-basis for X . To do so, we will first show that {ζj := ϕ[ϕ(vj)
∗]}nj=1 is a

right basis for 1B0. By the last property of the map ϕ, that pushes the dot to the right introduced in Remark
3.31, we obtain that ζj = v∗j . We then have that

1B1 =

n∑︂
j=1

ζj ∧ ζ∗j ,

so for an arbitrary ξ ∈ X = 0B1 we obtain that

ϕ(ξ) = 1B1 ∧ ϕ(ξ) =
n∑︂

j=1

ζj � ⟨ζj | ϕ(ξ)⟩B0
=

n∑︂
j=1

•

•
v∗j

•
•
vj

•
ξ

therefore, by the B0-linearity of ϕ−1, we get

ξ =

n∑︂
j=1

•
v∗j ∧

•
•
vj

•
ξ =

n∑︂
j=1

[ϕ(vj)
∗] � ⟨[ϕ(vj)∗] | ξ⟩B0

.

Which proves that {ϕ(vj)∗ := uj}nj=1 is a right B0-basis for X .

Proposition 3.33. The left and right indices of X as a B0 − B0 Hilbert bimodule match. More precisely,
we have that r-Ind(X ) = δx = l-Ind(X ). Therefore, X is normalized. (See Definition 2.13 and the following
paragraph.)

Proof. Let {vj}nj=1 be a left B0-basis of X = 0B1. Using the decomposition B1 = 1B0∧ 0B1 described in the
proof of Proposition 3.29, one can easily see that in B1, the vj can be chosen to satisfy

∑︁n
j=1 v

∗
j vj = 1B1

.
This means that

n∑︂
j=1

⟨vj | vj⟩B0 = δx ·
n∑︂

j=1

E1(v
∗
j ∧ vj) = δx · E1

⎛⎝ n∑︂
j=1

v∗j ∧ vj

⎞⎠ = δx · E1(1B1) = δx.

As for the right index, use the basis constructed in the proof of Proposition 3.32 and proceed as above.

To show that the bimodule X is minimal (Definition 2.14) we will need the next proposition:
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Proposition 3.34. Considering the right Hilbert B0-bimodule XB0 = 0B1B0
, we have B∗(XB0) = K(XB0) =

B1 where B1 acts with its canonical left action. Picturing X as a left Hilbert B0 module, B0X , we have
B∗(B0X ) = K(B0X ) = Bop

1 , where B1 acts with its canonical right action.

Proof. Consider 1B0 = ϕ[X ] and arbitary elements ζ, ξ, η ∈ X . Recall that the right inner product is given
by ⟨ϕ(η) | ϕ(ζ)⟩B0

= ϕ(η)∗ ∧ ϕ(ζ). Since we know by Proposition 3.32 that X is fgp, by Lemma 1.7 in [20],
it follows that B∗(XB0) = K∗(XB0), which in turn is generated by the rank 1 operators |ϕ(ξ)⟩⟨ϕ(η)|(ϕ(ζ)) =
ϕ(ξ) � ⟨ϕ(η) | ϕ(ζ)⟩B0 = ϕ(ξ) ∧ ϕ(η)∗ ∧ ϕ(ζ). This means that |ϕ(ξ)⟩⟨ϕ(η)| is the multiplication operator
ϕ(ξ)∧ϕ(η)∗. As discussed in the proof of Proposition 3.32, B1 is the linear space spanned by these products.
The first statement follows, and the second statement follows by a similar argument.

Remark 3.35. Similar reasoning will show that B∗(lBr) ∼= B∗(nB0) = Bn, whenever n = (l + r). If Y is a
B0 −B0 submodule of nB0, then

Y = p[ nB0]

for some projection p ∈ Bn ∩ in[B0]
′ = Gr0,n. It follows that if x ∈ B∗(Y), then x can be extended to be a

bounded operator x̃ on nB0 satisfying x̃ = 0 on (1−p)[nB0]. It is easily seen that x̃ is adjointable, x̃∗ = 0 on
(1− p)[ nB0] and x̃∗ = x∗ on Y. Consequently, it follows that x̃ ∈ pBnp. Conversely, any operator z ∈ pBnp
is in B∗(Y); therefore B∗(Y) = pBnp.

Corollary 3.36. The endomorphism algebra of B0-bimodule maps on X = 0B1 is characterized as

EndB0−B0
(X ) ∼= B1 ∩Gr0,1 .

Proof. We replace X by the isomorphic bimodule ϕ[X ] = 1B0. Let ξ ∈ 0B1 be arbitrary, and note that if
T ∈ Gr0,1 ∩B1, then clearly T ∈ EndB0−B0

(1B0) via the usual action:

T (ϕ(ξ)) = ξ
•

•

T
•

.

Conversely, we claim that if T ∈ EndB0−B0
(1B0) , then T ∈ Gr0,1 ∩B1. On the one hand, in particular

T ∈ B∗(1B0B0
), so T ∈ B1, by Proposition 3.34. On the other, T ∈ EndB0−B0 (1B0) implies T ∈ B∗(1B0B0

)∩
(i1[B0])

′. As a consequence, T ∈ B1 ∩ (B∗(1B0B0
) ∩ (ii[B0])

′) = B1 ∩ (ii[B0])
′ = B1 ∩Gr0,1, in light of (the

proof of) Proposition 3.26.

Proposition 3.37. The Hilbert B0-bimodule X is minimal (See Definition 2.14).

Proof. Let T ∈ EndB0−B0
(ϕ[X ]) = Gr0,1 ∩B1, where again ϕ[X ] = ϕ[0B1] = 1B0. Let {vj}nj=1 be the left

B0-basis for 0B1 constructed in the proof of Proposition 3.32, and pretending for for the moment that each
vi is actually in Gr∞, we have (formally):

n∑︂
j=1

⟨ϕ(vj) | T (ϕ(vj))⟩B0
=

n∑︂
j=1

•
vj

•
T

•
v∗j =

n∑︂
j=1

•
vj

•
v∗j

•
T =

•
T ∈ C.

Notice that we are making use of the maps ϕ, that push the dot to the right ϕ : lBr −→ (l+1)B(r−1), defined
in Notation 3.31. In our particular case and to make this computation rigorous, we will make use of

ϕ : B1 −→ 2B0 given by
•

↦−→
•
.
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Approximate each vj in norm by a sequence {vkj }∞k=1 ⊂ Gr∞ ∩ 0B1. If we let T ′ be the element

T ′ := T

•
,

then the above diagrams imply that for each k ∈ N,

n∑︂
j=1

⟨ϕ(vkj ) | T [ϕ(vkj )]⟩B0 = T ′ ∧ ϕ
[︁
(vkj )

∗vkj
]︁
.

Letting k → ∞, we obtain

lim
k→∞

n∑︂
j=1

⟨ϕ(vkj ) | T [ϕ(vkj )]⟩B0 = T ′ ∧ •
=

•
T (3.23)

Performing a similar computation for the the right B0-basis for 1B0 given by {ϕ[ϕ(vj)∗ = v∗j ]}nj=1 we obtain
that ∑︂

j=1n
B0

⟨ T (ϕ[ϕ(vj)∗]), (ϕ[ϕ(vj)∗]) ⟩ = T (3.24)

To conclude, we must show that the diagrams obtained in Equation (3.23) and Equation (3.24) are equal.
Since T directly comes from sums of diagrams in the category C, using Frobenius reciprocity (Proposition
3.6) together with the canonical spherical structure of C (Remark 2.8), we immediatly see that these two
diagrams correspond to the left and right traces of T, which are identical. This observation completes the
proof.

We now study tensor powers of our bimodule B0
XB0

. In the following lemma we describe the bimodule
structure of the n-fold fusion X⊠B0

n, which will turn out extremely useful in the sequel. For a more
detailed view on this fusion with respect to B0, we refer the reader to Example 2.15 above.

Lemma 3.38 ([13], Proposition 4.11). For each n ∈ N, there is a B0-bilinear unitary, which on diagrams is
given by (See also Proposition 4.11 in [13].)

Ψn : B0(X⊠B0
n)B0 −→ B0(0Bn)B0

•
ξ1

b1

⊠B0

•
ξ2

b2

⊠B0
· · ·⊠B0

•
ξn

bn

↦−→

•

•
ξ1 ξ2 . . . ξn

n

(b1 + b2 + · · ·+ bn)

. (3.25)

Proof. It is clear that Ψn is well-defined and B0-bilinear on [Gr∞ ∩ 0B1]
⊙n. Here, we are balancing our

tensor product ⊙ by Gr∞ ∩B0. From the definitions of the left and right B0-valued inner products on X⊠B0
n

and Notation 3.30, it is easy to see that Ψn is isometric on diagrams. To extend Ψn to a unitary to all of
X⊠B0

n, we observe that [Gr∞ ∩ 0B1]
⊙n ⊂ X⊙n is dense, and that the latter space is clearly dense in X⊠B0

n.
Middle B0-linearity now automatically follows from Gr∞ ∩B0-linearity.

To conclude the proof, it suffices to show that Ψn is surjective. To see this, recall Lemma 3.23 asserting
that B1 is simple and unital, and moreover, the unit element in B1 is a finite sum 1B1

= p1 =
∑︁n

j=1 v
∗
j ∧ vj ,

where each vj ∈ X . (See Equation 3.22.) We shall now proceed by means of induction. If n = 2, for an
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arbitrary element b ∈ 0B2, we have (formally):

•
b =

•

•
b =

n∑︂
j=1

•
•

•
b

•
v∗j

•
•
vj

(3.26)

Notice that in the last term of the above equation, the elements inside the orange boxes are elements in X .
Thus, the element

∑︁n
j=1(b ∧ v∗j )⊠ vj ∈ X⊠B0

X maps to the arbitrarily chosen b under Ψ2. This proves the
claim for n = 2. The inductive step of the proof is the same as the base case, with the single difference that
now b has n strings to the right. These details are simple and thus not explained here.

Notation 3.39. From the fgp B0-bimodules lBr we can perform a type of GNS-construction to obtain
a Hilbert space. For arbitrary i, j ≥ 0, we define L2(lBr) := L2(0Bl+r,Trl+r) as the completion of the pre-
Hilbert space whose underlying vector space is given by 0Bl+r and its complex-valued inner product is given
by

⟨η | ξ⟩L2(0Bl+r) := Trl+r (⟨η | ξ⟩B0
) .

For η ∈ lBr, we write η · Ω, to denote its corresponding image in the complete space L2(lBr). Notice that
using the maps ϕ from Notation 3.31 we can turn this space into a Bn-Bm bimodule. In fact, it is easily
seen that Bl

(L2(lBr))Br
∼=Bl

(pl � L2(B∞) � pr)Br
. Furthermore, for the case Bn, where the module is an

algebra, ϕ induces a Bn-unitary isomorphism between the standard GNS-construction L2(Bn,Trn) and our
L2(0B(n+n)).

The purpose for introducing these Hilbert spaces is to compare the relative commutants of the
C*-algebras Bn over different representations; i.e. the relation between M0 = B′′

0 ⊂ B(L2(B0)) and
in[B0]

′′ ⊂ B(L2(Bn)). (These von Neumann algebras were introduced earlier in Lemma 3.23.) In doing so,
we invoke a lemma communicated by André Henriques which we simply state here:

Lemma 3.40. Let B be a unital ∗-algebra acting on the Hilbert spaces H and K, and M = B′′ ⊂ B(K).
Assume there exists a dense subspace H◦ ⊂ H such that for every η, ξ ∈ H◦, there exists x, y ∈ K such that
⟨b � ξ | η⟩H = ⟨b � x | y⟩K holds for all b ∈ B. Then the representation of B on H extends to a normal
representation of M on H.

We now check that the hypotheses of the previous lemma apply to B0 acting on L2(B0) and B0 acting
on L2(0Bn). For an arbitrary n ≥ 0, any ξ, η ∈ 0Bn · Ω, and any arbitrary b ∈ B0 we have that

⟨b� ξ | η⟩L2(0Bn) = Tr (⟨b� ξ | η⟩B0) = Trn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

•
• ••

•
ξ∗

b∗
•

•
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

K∑︂
k=1

Trn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•
•

w∗
k

ξ∗

b∗

•

wk

η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

K∑︂
k=1

Trn (⟨b� [wk ∧ ξ] | [vk ∧ η]⟩B0
)
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Here, {wk}Kk=1 is a finite left B0-basis for the fgp bimodule nB0
∼= X⊠n, giving us that 1Bn = pn =∑︁

k w
∗
k ∧ wk, similarly as in Equation 3.21.

We immediately obtain the following:

Corollary 3.41. For n ≥ 0, we have an isomorphism of von Neumann algebras

B(L2(B0)) ⊃M0
∼= B′′

0 ⊂ B
(︁
L2(0Bn)

)︁
.

We close this section with a proposition that will be very useful in Chapter 4:

Proposition 3.42. Let n = l + r. On lBr, one has

tr(⟨ξ | η⟩B0
) = tr(B0

⟨η, ξ⟩)

Proof. We will work on nB0. Note that in this case, if ξ, η ∈ nB0, then η∗ξ ∈ B0 and ξ ∧ η∗ ∈ Bn. If we
utilize the maps Φ and E from the discussion before Proposition 3.18, we have:

tr(⟨ξ | η⟩B0) = tr(η∗∧ξ) = (Φ◦E)(η∗∧ξ) = (Φ◦E)(ξ∧η∗) = δnx ·trn(ξ∧η∗)) = δnx ·tr(En(ξ∧η∗)) = trn(B0⟨η, ξ⟩)

4 Realizing a RC*TC as Hilbert C*-Bimodules
In this chapter we will show that the constructions of Section 3.4 induce a full bi-involutive (strong-)monoidal
functor of the form

F : Cx ↪→ Bimfgp(B0).

As a reminder, B0 is a separable simple tracial unital exact C*-algebra, (see Proposition 3.23) as
in Notation 3.21, and every X ∈ Bimfgp(B0) is a minimal (Definition 2.14 and Proposition 3.37) normal-
ized (Definition 2.13 and Proposition 3.33) finitely generated projective (fgp) (Definition 3.29 and
Proposition 3.32) Hilbert C*-bimodule (Definition 3.28). We direct the reader to Section 2.2 with spe-
cial attention to Example 2.15 for a more detailed viewpoint on the RC*TC of bimodules Bimfgp(B0). We
moreover assume that C is an essentially small strict RC*TC with simple unit and its canonical bi-
involutive and spherical structures. We moreover fix a symmetrically self-dual object x = x ∈ C,
(Lemma 3.3) of dimension δx > 1 and we denote by Cx the full RC*TC of C, whose objects are all tensor
powers of x.

Let us now start constructing the functor F. For a given n ∈ N we define (see Lemma 3.38)

F(x⊗n) := B0 (0Bn)B0
(∼= B0(X⊠B0

n)B0). (4.1)

We shall now define F on the morphism spaces. To do so, we make use of the embedding of diagrams
coming from C into the C*-algebra A∞, as described in Proposition 3.6. (We remind the reader that the
construction of A∞ was done in the paragraphs preceeding Proposition 3.7.) For n,m ∈ N and f ∈ C(x⊗n →
x⊗m), we define the action of F(f) on diagrams by only using the multiplication internal to the C*-algebra
A∞ ⊆ B∞ ⊆ B(X∞). In the sequel, we will often simply write f instead of FR(f), directly identifying
diagrams in the category with those in A∞.

For a diagram ξ ∈ 0Bn ∩Gr∞, we define

F(f)(ξ) := ξ ∧ f,

corresponding to the (linear extension of the) following diagrammatic computation:

F(f) : (Gr∞ ∩ 0Bn) −→ (Gr∞ ∩ 0Bm)
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•
ξ

n

b

↦−→

•

ξ ∧

•

f =

• m

f

n

ξ
•

b

. (4.2)

The next result will allow us to extend the definition of F(f) to all of 0Bn.

Lemma 4.1. For every n,m ∈ N, we have that

1. the subset Gr∞ ∩0Bn ⊂ 0Bn is dense.

2. Given f ∈ C(x⊗n → x⊗m), the map F(f) : Gr∞ ∩ 0Bn → Gr∞ ∩ 0Bm is bounded and ||f ||A∞ = ||f ||C
(see Definition 2.2), and therefore extends to a bounded (right-adjointable) map
F(f) ∈ Bimfgp(B0)(0Bn → 0Bm), with F(f)∗ = F(f†), so F is a dagger functor.

Proof. Statement (1) was proven above. (See Remark 3.19 and the Proposition preceeding it.) We shall now
prove (2). This proof can also be found in Proposition 4.16 in [13], but we give it here for the convenience
of the reader. By definition, on diagrams we have that F(f)(−) = (−) ∧ (f). The bound is now obvious
since this map is given by multiplication in the Banach algebra A∞, and it moreover corresponds to the
operator of right creation by f in the full Fock space picture. (Definition 3.12 and Proposition 3.14.) A
diagrammatic computation will reveal that ⟨F(f)ξ | η⟩B0 = ⟨ξ | F(f†)η⟩B0 . Thus, F(f) is right-adjointable
with F(f)∗ = F(f†).

We now describe the tensorator and unit data for F:

ιF : 1Bimfgp(B0) −→ F(1C),

given by the identity on B0. For arbitrary n, m ≥ 0 we define

µF
n,m : 0Bn ⊠

B0
0Bm −→ 0B(n+m),

by extending the following diagramatic composition (and omitting the unitors):

ξ
•

b

n

⊠ η
•

b′

n′

↦−→ ξ

•
η

(b+ b′)

(n+m)

. (4.3)

Notice that if f and g are morphisms in C, then µF(f, g) = id1 ⊗ f ⊗ g on diagrams. So far, in defining
µF
n,m we have only used the (unitary) associators and the unitors in Bimfgp(B0), so naturality in n and
m automatically holds, alongside with unitarity. Therefore, by Lemma 4.1, µF

n,m extends to a unitary
isomorphism 0Bn ⊠B0 0Bm

∼−→ 0B(n+m), which is again natural in both n and m. Similarly, we can also
extend µF(f, g) from diagrams to all of 0Bn⊠B0 0Bm, since this map is just a series of vertical and horizontal
compositions in C. It is clear that bi-adjointability for µF(f, g) holds on diagrams, so the extension of µF is
also bi-adjointable. This therefore establishes the following Proposition.

Proposition 4.2. The functor (F, µF, ιF) is strong monoidal.
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Remark 4.3. A direct diagrammatic argument demonstrates the functor F is faithful. This, however, is a
general fact about strong-monoidal dagger functors between rigid C*-categories with simple unit.

We can further unveil more structure on the functor F.

Proposition 4.4. The dagger tensor functor (F, µF, ιF) is bi-involutive with structure maps

χn : F(x⊗n) = 0Bn −→ F(x⊗n) = 0Bn

η ↦−→ ϕ−n(η∗),

for every n ∈ N.

Proof. Clearly each χn is a bounded bi-adjointable bimodule isomorphism, since it is the composition of such
maps. That {χn} is a monoidal natural transformation for which Diagrams (2.8) commute is a straightfor-
ward diagrammatic verification, and showing each χn is unitary follows from the properties of the map ϕ
introduced in Notation 3.31 and simple diagrammatic considerations.

We shall postpone the proof that this functor is full until the end of the next chapter, where we develop
the tools necessary to prove it.

5 Hilbertifying C*-Bimodules
For the reminder of this article, we will further restrict our scope to the category Bimtr

fgp(B0) ⊂ Bimfgp(B0)
consisting of those bimodules which are compatible with the trace [20, Definition 5.7]; i.e., Y ∈
Bimtr

fgp(B0) if and only if for each ξ, η ∈ Y the following identity holds:

trB0
(⟨η | ξ⟩B0

) = trB0
(B0

⟨ξ, η⟩) . (5.1)

Notice this subcategory is still a RC*TC, since the fusion of bimodules compatible with the trace is again
compatible.

The goal of this section is to construct a fully-faithful bi-involutive strong monoidal functor of the form:

M0
(− ⊠

B0

L2(B0))M0
: Bimtr

fgp(B0) −→ Bimsp
bf(M0)

Y ↦−→ M0
(Y ⊠

B0

L2(B0))M0
(5.2)

Bimtr
fgp(B0)(Y → Z) ∋ f ↦→ f ⊠ idL2(B0) (5.3)

(See Example 2.10 for a description of Bimsp
bf(M0.))

We shall now explain how to obtain the M0-bimodules. For a fixed but arbitrary Y ∈ Bimtr
fgp(B0), consider

the algebraic B0-balanced tensor product Y ⊠B0
L2(B0) endowed with the (densely-defined) sesquilinear

form:

⟨ξ⊠aΩ, η⊠bΩ⟩ := ⟨⟨η | ξ⟩B0
�aΩ, bΩ⟩L2(B0) := trB0

( b∗⟨η | ξ⟩B0
a ) , for all a, b ∈ B0, and ξ, η ∈ Y. (5.4)

Notice that ⟨ξ ⊠ aΩ, η ⊠ Ω⟩ = ⟨[ξ � a] ⊠ Ω, [η � b] ⊠ Ω⟩. We can moreover endow this space with a right
B0-action given by

(ξ ⊠ aΩ) � b := (ξ ⊠ abΩ).

This action is bounded. Indeed, for arbitrary ξ ∈ Y and b ∈ B0, we have

||ξ ⊠ bΩ||22 = trB0(⟨ξ � b | ξ�⟩B0) = trB0(B0⟨ξ � b, ξ � b⟩) ≤ ||b||2 · trB0(⟨ξ | ξ⟩B0) = ||b||2 · ||ξ ⊠ Ω||22.

Here, we used the repeatedly used the compatibility with the trace condition, Equation (5.1), together with
Lemma 1.26 in [20].
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Remark 5.1. The algebraic B0-balanced tensor product space Y ⊠B0 L2(B0), is a Hilbert space so it needs
no further completion. Indeed, since Y is fgp, it then has a finite right B0-basis {ui}ni=1. By observing that
p =

∑︁
i |ui⟩⟨ui| is a self-adjoint idempotent, we can then realize Y ∼= p[B0] ⊂ B0

⊕n as right B0-modules via

y =
∑︂
i

ui � ⟨ui | y⟩B0
↦−→

⎛⎝ n∑︂
j=1

⟨ui | uj⟩B0
· ⟨uj | y⟩B0

⎞⎠n

i=1

.

We now observe that the orthogonal projection p⊠ idL2(B0) ∈ B∗ (︁B0
⊕n ⊠B0

L2(B0)
)︁

realizes Y ⊠B0
L2(B0)

as a (necessarily closed) direct summand of the Hilbert space B0
⊕n ⊠B0

L2(B0) ∼= L2(B0)
⊕n.

We can therefore extend this action from Y ⊠ Ω to the whole Hilbert space Y ⊠B0
L2(B0). To see this

right B0-action extends to a (normal) right action of M0, we use Lemma 3.40, observing that for the
dense subspace Y ⊠ L2(B0) spanned by the vectors ξ ⊗ bΩ, the following identity ⟨ξ ⊠ aΩ � b, η ⊠ cΩ⟩ =
tr(c∗⟨η | ξ⟩B0

ab) = ⟨(⟨η | ξ⟩B0
� aΩ) � b, cΩ⟩ holds.

There is a densely defined left B0-action given by

b� (ξ ⊠ cΩ) := (b� ξ)⊠ (cΩ).

In the following we will show that this action is bounded on Y⊠B0 L2(B0) and how to extend this to a normal
left M0-action. The distinctive elements that make this extension work are the existence of a a positive
definite trace on the right-adjointable operators and a faithful, trace-preserving conditional
expectation, which we shall respectively denote by:

Tr : B∗(Y) −→ E : B∗(Y) −→ B0,

Remark 5.2. Recall that since Y is fgp, it then follows that B∗(Y) = K∗(Y) = FinRan(Y). We can therefore
characterize right-adjointable operators as finite combinations of ket-bras, |ξ⟩⟨η|, for ξ, η ∈ Y.

In lights of the above Remark, we can explicitly define these maps as the -linear extensions of

Tr ( |ξ⟩⟨η| ) := 1√︁
Ind(Y)

· trB0
[ ⟨η | ξ⟩B0

] and E ( |ξ⟩⟨η| ) := 1√︁
Ind(Y)

· B0
⟨ξ, η⟩. (5.5)

Recall that since Y ∈ Bimtr
fgp(B0), it is already normalized (see Definition 2.13 and Example 2.15), so

that l-Ind(Y) =
√︁

Ind(Y) = r-Ind(Y) ∈ Z(B0)
+ = R≥0.

We provide a summary of the properties of Tr and E in the form of a proposition:

Proposition 5.3. The following statements hold on Bimtr
fgp(B0):

1. The map Tr is tracial;

2. The trace Tr is positive definite;

3. The mapping E is B0-bilinear and unital;

4. In fact, E is a fully faithful map; and

5. The conditional expectation E preserves the trace, and therefore, for each ξ, η ∈ Y, and each a, b ∈ B0

⟨ξ ⊠ aΩ, η ⊠ bΩ⟩ = tr ( B0
⟨ξ � a, η � b⟩ ) = ⟨Ω, B0

⟨η � b, ξ � a⟩Ω⟩. (5.6)

Notice that by Lemma 3.23, B0 has a unique trace, so for some λ > 0, we have that Tr |B0
= λ · trB0

. Since
idY =

∑︁
j |vj⟩⟨vj | for a left B0-basis {vj}nj=1 for Y, λ =

√︁
Ind(Y).

Proof. 1. This is a direct computation.
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2. An arbitrary element x ∈ B∗(Y) = FinRan(Y) can be written as x =
∑︁t

r=1 |ξr⟩⟨ηr|. Suppose {ui}mi=1

is a right basis for YB0
. Assuming x · x∗ has zero trace and by first expanding the η’s with respect to

this basis, and then expanding the ξ’s, we obtain that

0 =
1√︁

Ind(Y)
· Tr(x · x∗) = 1√︁

Ind(Y)
·

t∑︂
r,s=1

Tr (|ξr⟩⟨ηr| ◦ |ηs⟩⟨ξs|)

=

t∑︂
r,s=1

trB0

⎛⎝⟨ξs | ξr⟩B0
·

m∑︂
i,j=1

⟨ui | ηr⟩∗B0
· ⟨ui | uj⟩B0

· ⟨uj | ηs⟩B0

⎞⎠
=

t∑︂
r,s=1

trB0

⎛⎝ m∑︂
k=1

⎡⎣ m∑︂
j=1

⟨ηs | uj⟩B0
· ⟨uj | uk⟩B0

⎤⎦∗

· ⟨ξs | ξr⟩B0
·

[︄
m∑︂
i=1

⟨ηr | ui⟩B0
· ⟨ui | uk⟩B0

]︄⎞⎠
=

t∑︂
r,s=1

m∑︂
k=1

trB0
(b∗ks · ⟨ξs | ξr⟩B0

· brk) =
m∑︂

k=1

trB0

⎛⎝ m∑︂
l,l′

c∗lk · ⟨ui | uj⟩B0
· cl′k

⎞⎠ .

Here, (
∑︁m

i=1⟨ηr | ui⟩B0 · ⟨ui | uk⟩B0) =: (brk) ∈ MatT×m(B0), and
∑︁t

r=1⟨ul | ξr⟩B0 · brk =: clk ∈
Matm×m(B0). Notice that in the third equality we used the fact that the matrix (⟨ui | uj⟩B0

)ij is an
idempotent. The last equality is then a positive definite quadratic form in Bm, and therefore conclude
that each of the k terms in the sum is zero, by the faithfulness of trB0

. We then obtain that for each
k, i ∈ {1, . . . ,m}

0 =

m∑︂
j=1

⟨ui | uj⟩B0 · cjk =

t∑︂
r=1

⟨ui | ξr⟩B0 · ⟨ηr | uk⟩B0 .

This implies that
∑︁t

r=1 |ξr⟩⟨ηr| = 0, thus establishing that Tr is positive definite.

3. The left B0-linearity is obvious. The right bilinearity follows from

E(|ξ⟩⟨η| · b) = E(|ξ⟩⟨b∗ � η|) = B0
⟨ξ, b∗ � η⟩ = 1√︁

Ind(Y)
B0⟨b∗ � η, ξ⟩∗

=
1√︁

Ind(Y)
(b∗ ·B0 ⟨η, ξ⟩)∗ =

1√︁
Ind(Y)

B0⟨ξ, η⟩ · b = E(|ξ⟩⟨η|) · b,

for all ξ, η ∈ Y and b ∈ B0. Unitality follows from the fact that idY =
∑︁m

i=1 |ui⟩⟨ui|, where {ui}i=1,...m

is a right B0-basis for YB .

4. Applying Lemma 1.26 in [20] to the full bimodule B0YB0 implies E is a conditional expectation (of
index finite type). (The bimodule B0YB0 is full since B0 is simple.) This map is clearly fully faithful,
from the definition of the inner products.

5. By compatibility with the trace, Equation (5.1), we have that

Tr ( |ξ⟩⟨η| ) = 1√︁
Ind(Y)

· trB0 ( ⟨η | ξ⟩B0 ) =
1√︁

Ind(Y)
· trB0 ( B0⟨ξ, η⟩ ) = trB0 ( E(|ξ⟩⟨η|) ) .

Remark 5.4. Notice that all the bimodules lBr introduced in Notation 3.30 define objects in Bimtr
fgp(B0), in

light of Proposition 3.42.

Proposition 5.5. The left B0-action on Y ⊠ Ω extends to a bounded left B0-action on Y ⊠B0
L2(B0).
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Proof. This follows from the fact that Y is fgp. Indeed, for arbitrary b ∈ B0 and y ∈ Y, we have that
||b � (y ⊠ Ω)||22 = tr(⟨b � y | b � y⟩B0) ≤ tr(||b||2 · ⟨y | y⟩B0) = ||b||2 · ||y ⊠ Ω||22. The inequality is a direct
application of (3) in [20, Proposition 1.12], stating that ⟨b� y | b� y⟩B0

≤ ||b||2 · ⟨y | y⟩B0
.

We now extend the left B0-action on Y ⊠B0 L2(B0) to a normal left-M0 action by using Lemma 3.40.
For the dense subspace Y ⊠ Ω spanned by the vectors ξ ⊠ aΩ, since the conditional expectation preserves
the trace, we obtain

⟨b� (ξ ⊠ aΩ), η ⊠ cΩ⟩ = trB0 (B0⟨b� ξ � a, η � c) = trB0 (b · B0⟨ξ � a, η � c⟩) = ⟨bΩ, B0⟨η � c, ξ � a⟩ · Ω⟩

Hence the left B0-action on Y ⊠B0
L2(B0) extends to a normal left M0-action.

Remark 5.6. For the remainder of this chapter will need to further exploit the structure of M0-bimodules
of the form Z ⊠B0

L2(B0), and their tensor products. We say that a vector ξ ∈ Z ⊠B0
L2(B0) is (left)

bounded if and only if the mappping

Lξ :M0Ω → Z ⊠
B0

L2(B0), given by mΩ ↦→ m ▶ ξ

extends to a bounded map defined on L2(B0) ∼= L2(M0). If ξ, η are bounded vectors, then the composite
map L∗

η ◦ Lξ makes sense and takes values in M0Ω. This defines a left M0-valued inner product on
the set bounded vectors, denoted ⟨η | ξ⟩M0

. (For a proof see [1] or [16].) One can easily see that for an
arbitrary z ∈ Z, the vector z ⊠ Ω ∈ Z ⊠B0

L2(B0) is bounded, and hence ⟨z | z⟩M0
∈ M0. A computation

will reveal that L∗
z⊠Ω : Z ⊠B0 L2(B0) → L2(M0) is given by y ⊠ Ω ↦→ B0⟨y, z⟩Ω. It then follows that

⟨z ⊠ Ω | z ⊠ Ω⟩M0 = B0⟨z, z⟩.
We now show that M0

(− ⊠B0
L2(B0))M0

defines a bi-involutive fully-faithful strong monoidal
functor into the claimed target category. Again, we need to be certain that the von Neumann closure of B0

is independent of the space over which we represent it.

Lemma 5.7. The σ-weak topologies on the left (resp. right) action of B′′
0 coming from the left (resp. right)

action on L2(B0) and the action on Y ⊠B0
L2(B0) agree.

Proof. Let’s first show the statement corresponding to the left actions. Let (B0�) denote the image of B0 as
a subset of B(L2(B0)), and let (B0 ▶) that of B0 considered as a subset of B(Y⊠B0

L2(B0)). By Lemma 3.40,
we can consider the von Neumann algebra (M0 ▶) ⊂ B(Y ⊠B0

L2(B0)). Moreover, this lemma tells us that
for every b ∈ B0 we have that (b ▶) = ((b�) ▶). So we automatically obtain that (B ▶)′′ ⊆ (M ▶), since
both are von Neumann algebras containing the same copy of B0. Now, since ▶ defines a σ-weak continuous
map ▶: M → B(Y ⊗

B0

L2(B0)), it then follows that ▶ commutes with taking σ-weak-limits. Thus, for an

arbitrary m ∈M and a net bλ such that bλ� −→ m σ-weak, we have the following chain of equalities:

WOT − lim
λ
bλ ▶= WOT − lim

λ
((bλ�) ▶) = (WOT − lim

λ
bλ�) ▶= m ▶,

thus establishing that (B0 ▶)′′ = (M ▶) ⊂ B(Y ⊗
B0

L2(B0)). The proof of the corresponding statement for

the right actions is straightforward and thus we omit it.

Proposition 5.8. The assignment M0(−⊠B0 L2(B0))M0 defines a faithful dagger functor out of Bimtr
fgp(B0).

Proof. Let Y,Z ∈ Bimtr
fgp(B0) and f : Y → Z be a fixed but arbitrary B0-bimodule map. We denote

f̃ := f⊠idL2(B0). It is clear that f̃ is B0-M0 bilinear and bounded. It is also evident that M0
(−⊠B0

L2(B0))M0

respects composition of maps and the dagger structures, so it only remains to check that f̃ is in fact M0-
bilinear. Let m be an arbitrary element in M0, and (bn) ⊂ B a sequence such that SOT−limn(bn ▶) = m ▶ .
we then have that

m ▶ f̃(y ⊠ Ω) = ∥ · ∥2 − lim
n
bn ▶ f̃(y ⊠ Ω) = ∥ · ∥2 − lim

n
f̃((bn � y)⊠ Ω)

= f̃
(︂
∥ · ∥2 − lim

n
((bn � y)⊗ Ω)

)︂
= f̃

(︂
|| · ||2 − lim

n
bn ▶ (y ⊗ Ω)

)︂
= f̃(m ▶ (y ⊠ Ω)).
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Faithfulness follows since the trace trB0 is faithful. Notice that we are arguing using sequences converging
in the SOT, as opposed to nets. Indeed, on || · ||∞-bounded sets, the || · ||2-norm topology on B0Ω is
equivalent to the SOT on B0. Thus, by Kaplansky Density Theorem, we can replace SOT converging nets
by || · ||2-converging sequences which are automatically bounded in || · ||∞.

Proposition 5.9. The functor M0
(−⊠B0

L2(B0))M0
is strong monoidal with tensorator given by the linear

extension of:
µY,Z : (Y ⊠

B0

L2(B0)) ⊠
M0

(Z ⊠
B0

L2(B0)) −→ ((Y ⊠
B0

Z) ⊠
B0

L2(B0))

mapping (ξ ⊠ Ω)⊠ (η ⊠ Ω) ↦→ (ξ ⊠ η)⊠ Ω.

Proof. Let y ∈ Y and x ∈ Z be fixed but arbitrary. We shall first show that this map is well-defined. For
an arbitrary operator m ▶∈ M0, consider a bounded net (bi) ⊂ B0 such that bi ▶→ m ▶ SOT, as i → ∞.
We then obtain that

||((y �m)⊠ z))⊠Ω− y ⊠ (bi � z)⊠Ω||22 = lim
i

||(y ⊠ (bi −m)� z)⊠Ω||22 ≤ ||y||2B · ||(bi −m)� z ⊠Ω||22 = 0.

We shall next show that µ is an isometry. By Remark 5.6 and Equation (1.1) in [1] defining the product on
the M0-relative fusion of two bimodules in Bimsp

bf(M0), we have the following chain of equalities:

⟨(y ⊠ Ω)⊠ (z ⊠ Ω), (y ⊠ Ω)⊠ (z ⊠ Ω)⟩ = ⟨(y ⊠ Ω) ◀ ⟨z ⊠ Ω | z ⊠ Ω⟩M0
, y ⊠ Ω⟩

= trB0
(⟨y | y � B0

⟨z, z⟩⟩B0
) = trB0

(⟨y | y⟩B0
· B0

⟨z, z⟩)
= trB0

(B0
⟨⟨y | y⟩B0

� z | z⟩) = trB0
(⟨z | ⟨y | y⟩B0

� z⟩B0
)

= trB0
(⟨y ⊠ z | y ⊠ z⟩B0

) = ⟨(y ⊠ z)⊠ Ω, (y ⊠ z)⊠ Ω⟩.

Thus, this map defines an isometry. Since µY,Z obviously has dense range, then it extends to a unitary
M0-bimodule map. As a word of warning, to use the inner product on the M0-fusion bimodule, one needs
to know a priori that Y ⊠B0

L2(B0) and Z ⊠B0
L2(B0) define spherical/extremal bifinite M0-bimodules; i.e.

they are objects in Bimsp
bf(M0). This is independently demonstrated as part of the proof of Proposition 5.11,

but we postpone it not to slow down the exposition.
It remains to verify that µ defines a natural transformation. A simple computation will show that

naturality holds when restricted to the dense subspace (Y ⊠B0
Ω)⊠B0

(Z ⊠B0
Ω), and this will suffice, since

all the transformations involved are bounded. This completes the proof.

Proposition 5.10. The functor −⊠B0
L2(B0) is bi-involutive with structure maps

χY : Y ⊠
B0

L2(B0) −→ Y ⊠
B0

L2(B0) given on Y ⊠ Ω by

y ⊠ Ω ↦−→ y ⊠ Ω,

for Y ∈ Bimtr
fgp(B0).

Proof. We need to show this is a family of unitary isomorphisms satisfying the conditions in Definition (2.9).
By compatibility with the trace condition (Equation 5.1) we have the following chain of equalities:

⟨χY(y ⊠ Ω) | x⊠ Ω⟩ = ⟨y ⊠ Ω | x⊠ Ω⟩ = ⟨x⊠ Ω | y ⊠ Ω⟩
= trB0 (⟨x | y⟩B0) = trB0 (B0⟨y, x⟩) = trB0 (⟨y | x⟩B0)

= ⟨y ⊠ Ω | x⊠ Ω⟩ = ⟨y ⊠ Ω | χ−1
Y (x⊠ Ω)⟩,

proving that χY is right-adjointable and that it extends to a unitary. To show that that this family of
unitaries {χY} is natural, monoidal and that Diagrams (2.8) commute is a matter of simple diagrammatic
computation. This completes the proof.
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Proposition 5.11. The following 2-cell commutes:

Cx

Bimtr
fgp(B0) Bimsp

bf(M0).

F G

−⊠B0
L2(B0)

T
∼=

(5.7)

Here, T = {Tn}n≥0 is a monoidal unitary natural isomorphism whose components are

Tn : (0Bn) ⊠
B0

L2(B0) −→ G(x⊗n) = p0 � L2(0Mn) � pn given on 0Bn ⊠ Ω by

(p0 ∧ b ∧ pn)⊠ Ω ↦−→ p0 � bΩ � pn = (p0 ∧ b ∧ pn)Ω,

and G is the fully faithful bi-involutive strong-monoidal functor constructed on [2]. In in our language, G is
given on objects by

x⊗n ↦−→ M0

(︁
p0 � L2(0Mn) � pn

)︁
M0

and on morphisms

(f : x⊗n −→ x⊗m) ↦−→ G(f) :

•
ξ

n

b

↦−→ •
ξ

n

b

f

m

. (5.8)

It then follows that F is full; i.e.,

F[C(x⊗n → x⊗m)] = Bimtr
fgp(B0)(X⊠B0

n → X⊠B0
m).

Proof. Each of the maps Tn is densely defined and is clearly B0-bilinear and isometric with dense range.
Thus, each Tn extends to a B0-unitary. For an arbitrary map f ∈ C(x⊗n → x⊗m), checking that (Tm◦(−⊠B0

L2(B0))◦F)(f) = (G◦Tn)(f) is an easy computation. The tensorator µT is given by extending juxtaposition
of diagrams, similarly as was previously done for µF. Therefore, establishing Diagram 5.7 commutes, as well
as proving that F does take values in the bifinite spherical bimodules over M0 up to a monoidal unitary
natural isomorphism.

To show that F is full we implement a finite-dimensional linear algebraic trick: Since G is full and faithful
between rigid categories, we have that

dim[C(x⊗n → x⊗m)] = dim[Bimsp
bf(M0)(G(x⊗n) → G(x⊗m))] =: D <∞.

Since F and (−⊠B0
L2(B0)) are faithful, we obtain

D = dim[F[C(x⊗n → x⊗m)])] ≤ dim[Bimtr
fgp(0Bn → 0Bm)] = dim[Bimtr

fgp(0Bn → 0Bm) ⊠
B0

L2(B0)] ≤ D.

Thus all inequalities must be simultaneously satified, proving F is full. This completes the proof.

Now we unitarily Cauchy-complete F on Cx: on subobjects of tensor powers of x: for a given n ∈ N,
a projection p ∈ C(x⊗n → x⊗n) determines a sub-object of x⊗n, denoted p[x⊗n] ∈ Cx, we then define

F(p[x⊗n]) := F(p)[0Bn] ∈ Bimtr
fgp(B0),

and linearly extend the definition of F over direct sums. Here, F(p)[ 0Bn] ∈ Bimtr
fgp(B0) denotes the

range of F(p). We shall now define F(f), where f : p[x⊗n] → q[x⊗m] is a morphism between projections
p ∈ C(x⊗n) and q ∈ C(x⊗m). We define

F(f) : F(p)[0Bn] −→ F(q)[0Bm]
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as the extension of the mapping acting on a diagram ξ ∈ Gr∞ ∩ 0Bn by:

•

•
ξ

b

p

n

↦−→

•

•
ξ

b

p

f

q

m

. (5.9)

We now extend the tensorator data for F. For arbitrary n, m ≥ 0, and projections p ∈ C(x⊗n → x⊗n)
and q ∈ C(x⊗m → x⊗m) we define

µF
p,q : F(p)[ 0Bn]⊠B0

F(q)[ 0Bm] −→ F(p⊗ q)[ 0Bn+m],

by extending the following diagramatic composition (and omitting the unitors):

•

p

n

n

ξ

b

⊠

•

q

m

m

η

b′

↦−→

•

•
ξ η

(b+ b′)

p q

(n+m)

(5.10)

Notice that if p′ and q′ are projections in the Cauchy completion of Cx, and if f : p → p′ and g : q → q′

are morphisms in Cx, then µF(f, g) = id1 ⊗ f ⊗ g on diagrams. By Lemma 4.1, µF
p,q extends to a unitary

isomorphism F(p)[0Bn]⊠B0 F(q)[0Bm]
∼−→ F(p⊗ q)[0B(n+m)], and is clearly natural in p and q. We can also

extend µF(f, g) from diagrams to all of F(p)[0Bn] ⊠B0 F(q)[0Bm], since this map is just a series of vertical
and horizontal compositions in the category. It is clear that bi-adjointability for µF(f, g) holds on diagrams,
so the extension of µF is also bi-adjointable.

We are now ready to state the final form of the most important result of this manuscript, which summa-
rizes this whole article:

Theorem 5.12. Given a singly-generated small RC*TC, Cx with simple unit with generator x ∈ Cx, there
exists a unital, simple, separable, exact C*-algebra B0 with unique trace, and a fully-faithful bi-involutive
strong monoidal functor

F : Cx ↪→ Bimtr
fgp(B0),

into a full subcategory of fgp minimal and normalized B0-bimodules. Moreover, the K0 group of B0 is the free
abelian group on the classes of simple objects in Cx, and the image of the simple objects of Cx are precisely
the canonical generators of K0(B0).

Remark 5.13. One can extend the result of Theorem 5.12 by allowing C to be countably generated. Indeed
if C is countably generated, then it is generated by a countable set of symmetric self-dual objects x1, x2, · · · .
Given a word w a word in x1, x2, · · · we define xw by

xw = xi1 ⊗ · · · ⊗ xik provided w = xi1 · · ·xij .
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Given words u, v, and w, one now defines Vu,v,w by C(xu → xw ⊗ xw). If we define W to be the set of all
words in x1, x2, · · · , one can form

Gr∞ =
⨁︂

u,v,w∈W

Vu,v,w,

and endow it with the ∗-structure and multiplication as described in Sections 3.1 and 3.2, where we now
color the strings according to the labels x1, x2, · · · . Let B∞ be the C*-algebra generated by Gr∞, and let
B0 = p0 ∧ B∞ ∧ p0, where p0 is the empty diagram. It is also true that B0 is a unital, separable, simple,
exact C*-algebra.

If w ∈W , we define

Xw =
⨁︂
v∈W

Vv,w,∅
∥·∥

then Xw ∈ Bimtr
fgp(B0) via the actions and inner products as described in Section 3.4. Moreover, the mapping

xw ↦−→ Xw induces a fully-faithful bi-involutive strong monoidal functor

F : C ↪→ Bimtr
fgp(B0).

We note that there is no separable C*-algebra, B with unique trace, over which we can fully realize every
RC*TC as a full subcategory of Hilbert C*-bimodules. This stems from the fact that the K0 group of any
such B must be countable, and thus there are only countably many values for the traces of projections in
B ⊗K(H). On the other hand, amongst all of the countably generated fusion categories, any δ ≥ 2 can be
the dimension of a generating object. However, our main theorem does allow us to establish this result, if
we restrict our scope to unitary fusion categories:

Corollary 5.14. There exists a unital simple exact separable C*-algebra B with unique trace over which we
can represent every unitary fusion category C in the spirit of Theorem 5.12.

Proof. Up to equivalence, there are countably many fusion categories. Let C1,C2, · · · be a set of represen-
tatives for these fusion categories, and let C be their free product (see [8] for a description). Then C is a
small RC*TC with simple unit, and each Ck embeds into C in the obvious way. We can therefore apply the
construction in Remark 5.13 to C to obtain B.

6 A concrete example: Vecfd(G)

We now develop an explicit illustration of Theorem 5.12. We will describe the C*-algebra B0 and the
bimodules 0B1 (Notation 3.21) utilized in the statement of the theorem, which in turn where introduced in
Section 4.

Let G be a countable discrete group and choose C = Vecfd(G), the tensor category of finite dimensional
G-graded vector spaces. A complete set of representatives for the simple objects of C is given by {g}g∈G,
where C(g→h) ∼= δg=h · . It is easy to see that the balanced unitary dual functor on C is determined by its
action on simples, and is given by g =g−1 , (see Definition 2.4 and Remark 2.5). By letting xg :=g ⊕g−1

for each g ∈ G, we obtain a set of symmetrically self-dual objects (Definition 3.2) of quantum dimension
(Notation 3.1) δxg

= 2 > 1 that generate C. We will identify xg with xg−1 .
Following Section 3, we can construct similar graded algebras as those in Definition 3.4, where the strings

on the bottom and on the sides are labeled by finite words in the symbols {xg}g∈G. We can use either
the structure of Definition 3.15 or that of Remark 3.17, in conjunction with Remark 5.13, to construct a
simple C*-algebra B∞, by completing the tracial graded *-algebras arising from the diagrams in C. The only
difference with the algebras from Section 3 is that B∞ now contains strings colored by the elements of G as
in 5.13. Note that the following identity holds:

xg

= qg + qg−1 ,
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where qg is the orthogonal projection onto g in C(xg → xg). Our C*-algebra, B∞ is generated by A∞ together
with the elements Yg given by:

Yg =
•
qg , and notice that Y ∗

g =
•

qg−1 ̸= Yg−1 =
•

qg−1 .

The elements (Yg) are free with amalgamation over A∞ with respect to E and form an A∞-valued circular
family [30]. This describes B∞ as an amalgamated free product. The unital C*-algebra B0 = 0B0 is the
corner p0 ∧B∞ ∧ p0, where p0 is the orthogonal projection corresponding to the empty diagram, and notice
that B0 contains all diagrams of the form:

•
m

β

∈ V∅,β,∅ ⊂ B0,

where β denotes a word in {xg}g∈G. We note that m ∈ B0 will equal zero unless β contains a copy of e,
where e ∈ G is the identity. This means that the only nonzero components after decomposing m as a direct
sum over {g}g∈G are given by words qg1 · · · qgm where g1 · · · gm = e. For a word ζ in {xg}g∈G, let pζ be
the orthogonal projection corresponding to colored composition of cups in the symbols of ζ. We describe an
example of such a projection below. More generally, for arbitrary words α and γ in {xg}g∈G, we consider
the corners αBγ = pα ∧B∞ ∧ pγ . We now describe the diagrammatic elemtents in αBγ , and depict pζ in the
case where ζ = xg ⊗ xh :

•
α

β

γ

∈ Vα,β,γ ⊂ B0, and pζ =

xg ⊗ xh xh ⊗ xg

• .

Notice that these diagrams can be endowed with the structure of a tracial graded *-algebra, similarly as in
Definition 3.4, 3.2, and Remark 3.20.

We now construct the bimodules used in the representation F : C → Bimtr
fgp(B0). For each n ∈ N and

each g ∈ G, let g
0Bn = p0 ∧B∞ ∧ pgn , and consider the assignment:

xg ↦−→ g
0B1 C(γ → ζ) ∋ f ↦−→ F(f) :

•
ξ

γ

β

↦−→ •
ξ

γ

β

f

ζ

.

There are obvious (bounded) left and right actions of B0 on each g
0Bn, with left and right inner products

similar to those introduced in Notation 3.30, giving g
0Bn the structure of a Hilbert C*-bimodule over B0,

that is compatible with the trace. (Compare with Proposition 3.42.)
The unit map for F is

ιF : 1Bimfgp(B0) −→ F(1C),

given by the identity on B0. We now describe the components µF
γ,ζ of the tensorator, where γ and ζ

are words in {xg}g∈G. We notice this is an extended definition from that of Equation 4.3, where we were
assuming every string has the same color. We define

µF
γ,ζ : 0Bγ ⊠

B0
0Bζ −→ 0B(γζ),
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by extending the following diagramatic composition:

ξ
•

β

γ

⊠ η
•

β′

ζ

↦−→ ξ

•
η

(ββ′)

(γζ)

. (6.1)

That µF
γ,ζ is a B0 bilinear and middle B0-linear isometry, follows from the equation

µF
γ,ζ(ξ ⊠ η) = ϕ−1

γ [ϕγ(ξ) ∧ η],

where ϕγ is the map that moves the dot to the right of γ, extending the maps defined in Equation 3.19,
inside Notation 3.31. Proving surjectivity of the tensorator follows an identical argument to the proof of
Lemma 3.38, with the difference that now the strings are multi-colored. Thus, µF is a B0-bilinear unitary
and is therefore a unitary natural transformation.

It now only remains to unitarily Cauchy complete the functor F induced by the assignment above. The
B0-B0 sub-bimodules of g

0Bn, for g ∈ G and n ∈ N can be described along the same lines as in the discussion
preceeding Equation 5.9, in Section 5, The extension of the tensorator to multi-colored bimodules is done
similarly as in Equation 5.10, where once again the strings are now labeled by words in the {xg}{g ∈ G}.
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