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Abstract

It is known that if finite subsets of a locally finite metric space M admit C-bilipschitz
embeddings into `p (1 ≤ p ≤ ∞), then for every ε > 0, the space M admits a (C + ε)-
bilipschitz embedding into `p. The goal of this paper is to show that for p 6= 2,∞ this result
is sharp in the sense that ε cannot be dropped out of its statement.
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1 Introduction and Statement of Results

During the last decades, the study of bilipschitz embeddings of metric spaces into
Banach spaces has become a field of intensive research with a great number of
applications. The latter are not restricted to the area of Functional Analysis, but
also include Graph Theory, Group Theory, and Computer Science. We refer to
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[16, 17, 18, 24, 26]. This work is focused on the study of relations between the
embeddability into `p of an infinite metric space and its finite pieces. Let us recollect
some needed notions.

Definition 1.1. A metric space is called locally finite if each ball of finite radius in
it has finite cardinality.

Definition 1.2. Let (A, dA) and (Y, dY ) be metric spaces. Given, 1 ≤ C < ∞, a
map f : A → Y , is called a C-bilipschitz embedding if there exists r > 0 such that

∀u, v ∈ A rdA(u, v) ≤ dY (f(u), f(v)) ≤ rCdA(u, v). (1)

A map f is a bilipschitz embedding if it is C-bilipschitz for some 1 ≤ C < ∞. The
smallest constant C for which there exists r > 0 such that (1) is satisfied, is called
the distortion of f .

Unexplained terminology can be found in [15, 24].

It has been known that the bilipschitz embeddability of locally finite metric spaces
into Banach spaces is finitely determined in the sense described by the following
theorem.

Theorem 1.3 ([23]). Let A be a locally finite metric space whose finite subsets admit

bilipschitz embeddings with uniformly bounded distortions into a Banach space X.

Then, A also admits a bilipschitz embedding into X.

Theorem 1.3 has many predecessors, see [2, 3, 4, 21, 22]. Applications of this theo-
rem to the coarse embeddings important for Geometric Group Theory and Topology
are discussed in [23]. To expand on the theme, the argument of [23] yields a stronger
result, namely the one stated as Theorem 1.4. In order to formulate Theorem 1.4,
it is handy to employ the parameter D(X) of a Banach space X introduced in [20].
Let us recollect its definition. Given a Banach space X and a real number α ≥ 1,
we write:

• D(X) ≤ α if, for any locally finite metric space A, all finite subsets of which
admit bilipschitz embeddings into X with distortions ≤ C, the space A itself
admits a bilipschitz embedding into X with distortion ≤ α · C;

• D(X) = α if α is the least number for which D(X) ≤ α;

• D(X) = α+ if, for every ε > 0, the condition D(X) ≤ α + ε holds, while
D(X) ≤ α does not;

• D(X) = ∞ if D(X) ≤ α does not hold for any α < ∞.

In addition, we use inequalities like D(X) < α+ and D(X) < α with the natural
meanings, for example D(X) < α+ indicates that either D(X) = β for some β ≤ α
or D(X) = β+ for some β < α.

2



Theorem 1.4 ([23]). There exists an absolute constant D ∈ [1,∞), such that for

an arbitrary Banach space X the inequality D(X) ≤ D holds.

Recently, new estimates of the parameter D(X) for some classes of Banach spaces
have been obtained in [20]. Recall that a family of finite-dimensional Banach spaces
{Xn}

∞
n=1 is said to be nested if Xn is a proper subspace of Xn+1 for every n ∈ N.

For such families, an estimate for D(X) from above is expressed by:

Theorem 1.5 ([20, Theorem 1.9]). Let 1 ≤ p < ∞. If {Xn}
∞
n=1 is a nested family

of finite-dimensional Banach spaces, then D
(

(⊕∞

n=1Xn)p

)

≤ 1+.

The next assertion is an immediate consequence of Theorem 1.5:

Corollary 1.6 ([20, Corollary 1.10]). If 1 ≤ p < ∞, then D(`p) ≤ 1+.

It should be mentioned that the case where p = ∞ was discarded because the
classical result of Fréchet [9] implies that D(`∞) = 1. Observe also that it is a
well-known fact that D(`2) = 1. Although the paper [20] contains some estimates
for D(X) from below, the following question was left open: whether D(`p) = 1+ or
D(`p) = 1 for 1 ≤ p < ∞, p 6= 2?

The main goal of this paper is to complete the picture by proving that D(`p) ≥ 1+

if p ∈ [1,∞), p 6= 2. See Theorem 1.11 and Corollary 1.9. It is worth pointing out
that our proofs for the cases p = 1 and p > 1 are different from each other.

Definition 1.7 ([8, Fact 7.7, p. 335]). A Banach space X is called strictly convex if
the condition ||x+ y|| = ||x||+ ||y|| for x, y ∈ X\{0} implies x = λy for some λ > 0.

In the present work, it is shown that D(X) > 1 for a large class of strictly
convex Banach spaces X implying that D(X) = 1+ for all strictly convex Banach
spaces satisfying the assumption of Theorem 1.5. To be more specific, the following
statement will be proved (see Section 2):

Theorem 1.8. Let X be a strictly convex Banach space such that all finite subsets

of `2 admit isometric embeddings into X, but `2 itself does not admit an isomorphic

embedding into X. Then D(X) > 1.

With the help of Theorem 1.8, one derives:

Corollary 1.9. Let p ∈ (1,∞), p 6= 2. Then every strictly convex Banach space of

the form X = (⊕∞
n=1Xn)p, where {Xn}

∞
n=1 is a nested sequence of finite-dimensional

Banach spaces satisfies D(X) > 1.

Combining Theorem 1.5 and Corollary 1.9 one obtains:

Corollary 1.10. Let p ∈ (1,∞), p 6= 2, and let {Xn}
∞
n=1 be a nested family of

finite-dimensional strictly convex Banach spaces. Then, the space X = (⊕∞

n=1Xn)p
satisfies D(X) = 1+. The equality D(`p) = 1+ for p ∈ (1,∞), p 6= 2, follows as a

special case of this result.

3



The case p = 1 is quite different because `1 is not strictly convex. This case is
examined in Section 3, where we prove:

Theorem 1.11. D(`1) > 1.

Juxtaposing this outcome with Theorem 1.5, we reach:

Corollary 1.12. D(`1) = 1+.

Remark 1.13. It should be mentioned that the above results are not the first known
ones claiming D(X) > 1. Before now, results of this kind were obtained in [14,
Theorem 2.9] and [20, Theorem 1.12] for some other Banach spaces and their classes.

2 Proof of Theorem 1.8

Prior to presenting the proof of Theorem 1.8, let us provide some auxiliary infor-
mation. By developing the notion of a linear triple [6, p. 56], we introduce the
following:

Definition 2.1. A collection r = {ri}
n
i=1, n ≥ 3, of points in a metric space (A, dA)

is called a linear tuple if the sequence {dA(ri, r1)}
n
i=1 is strictly increasing and if, for

1 ≤ i < j < k ≤ n, the equality below holds:

dA(ri, rk) = dA(ri, rj) + dA(rj, rk). (2)

A linear triple is a linear tuple with n = 3.

Lemma 2.2. An isometric image of a linear tuple r = {ri}
n
i=1 in a strictly convex

Banach space is contained in the line segment joining the images of r1 and rn.

Proof. It suffices to prove the lemma for linear triples, and then to use this result
for all triples of the form {r1, ri, rn}, i = 2, . . . , n− 1.

It may be assumed, without loss of generality, that the image of r1 is 0. Let 0, x,
and z be the images of the linear triple under an isometric embedding. Equality (2)
and the assumption that the embedding is isometric imply that ||x||+||z−x|| = ||z||.
By Definition 1.7, this yields x = λ(z − x) for some λ > 0. The conclusion that x
belongs to the line segment joining 0 and z follows.

For the sequel, the next fact is needed (by BZ we denote the unit ball of a Banach
space Z):

Lemma 2.3. Let Z be a finite-dimensional Banach space and F be a Banach space.

Then, for each ε > 0, there exists δ = δ(ε, Z, F ) > 0 such that if a δ-net in BZ admits

an isometric embedding into F , then F contains a subspace whose Banach-Mazur

distance to Z does not exceed (1 + ε).

Lemma 2.3 is an immediate consequence of Bourgain’s discretization theorem [7].
It should be emphasized that this theorem provides a much stronger claim because
Bourgain found an explicit estimate for δ as a function of ε and the dimension of
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Z; besides in Bourgain’s theorem, the distortion of embedding of Z is estimated in
terms of distortion of embedding of a δ-net of BZ . See [5, 10] for simplifications
of Bourgain’s proof, see also its presentation in [24, Section 9.2]. Meanwhile, the
existence of δ(ε, Z, F ) can be derived from earlier results of Ribe [25] and Heinrich
and Mankiewicz [11], see [10, p. 818].

Proof of Theorem 1.8. Denote the unit vector basis of `2 by {ei}
∞
i=1. Our intention

is to find a locally finite subset M of `2 in such a way that:

(A) M contains a δ( 1
n
, `n2 , X)-net Mn of a shifted unit ball yn +B`n

2
, n ∈ N; and

(B) There exists a sequence {αi}
∞
i=1 of positive numbers such that, if T : M → X

is an isometry and T (0) = 0, then the image of T (Mn) is contained in the linear
span of {T (α1e1), . . . , T (αnen)}.

The following result is to be applied.

Theorem 2.4 ([13]). Let B be a normed linear space. Then, a necessary and

sufficient condition that B be isomorphic to an inner product space is that there exists

a constant k ≥ 1 such that, for each finite dimensional subspace J of B, there exists

a linear mapping HJ of J into a Hilbert space satisfying (1/k)||x|| ≤ ||HJx|| ≤ k||x||
for each x in J .

Theorem 2.4 will be used to show that the existence of a set M satisfying both
conditions (A) and (B) will prove Theorem 1.8, by whose assumption finite subsets
of M admit isometric embeddings into X. What is left is to establish that M itself
does not admit an isometric embedding into X.

In fact, such an embedding T could be assumed to satisfy T (0) = 0. Combining
condition (A) with Lemma 2.3, one concludes that the subspace spanned by T (Mn)
contains another one, which is

(

1 + 1
n

)

-isomorphic to `n2 . By condition (B), the
latter subspace has to coincide with the linear span of {T (α1e1), . . . , T (αnen)}.

Let B be the linear span of {T (αiei)}
∞
i=1. By the conclusion of the previous

paragraph, the normed linear space B satisfies the condition of Theorem 2.4 with
k = 2. Thus, the closure of B in X is isomorphic to `2, which is a contradiction.

Set

M =

(

∞
⋃

n=1

Mn

)

⋃

{0},

where Mn are finite sets constructed in the way described hereinafter.
Denote by Ri, i ∈ N, the positive rays generated by ei, that is, Ri = {αei : α ≥

0}. Let M1 be the δ(1, `
1
2, X)-net in the line segment [0, 2e1], where we assume that

M1 includes e1. It is clear that M1 satisfies (A).
For n > 1 sets {Mn}

∞
n=1 will be constructed inductively. Suppose that we have

already created M1, . . . ,Mn−1. To construct Mn, we pick points sni ∈ Ri, 1 ≤ i ≤ n,
and one more point, snn+1 ∈ Rn - so that Rn contains both snn and snn+1 - in such a
way that conv({sni }

n+1
i=1 ) is at distance at least n from the origin, and conv({sni }

n+1
i=1 )

contains a shift yn + B`n
2
of the unit ball (for some yn). This is clearly possible.
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Next, we select a δ( 1
n
, `n2 , X)-net Nn in this shifted unit ball yn + B`n

2
and include

it in Mn together with {sni }
n+1
i=1 . At this point, it is evident that condition (A) is

satisfied.

e2

e1

1

y1

2 s21

2

s22

s23

y2

1

Weuse× tomark elements of M1

Weuse tomark elements of M2

Figure 1: M1 and M2.

To ensure that condition (B) is also satisfied - as it will be seen later - we add,
for each element z ∈ Nn, finitely many additional elements of conv({sni }

n+1
i=1 ) to Mn

according to the procedure suggested below:

• If z ∈ {sni }
n+1
i=1 , there is nothing to include. If z /∈ {sni }

n+1
i=1 , we find and include

inMn an element w1(z) in a convex hull of an n-element subsetW1(z) of {s
n
i }

n+1
i=1

with z being on the line segment joining w1(z) and sni ∈
(

{sni }
n+1
i=1 \W1(z)

)

. One
of the ways of doing this for M2 is shown in Figure 1.

• If w1(z) ∈ {sni }
n+1
i=1 , there is nothing else to include. If w1(z) /∈ {sni }

n+1
i=1 , we

find and include in Mn an element w2(z) in a convex hull of an (n− 1)-element
subset W2(z) of {s

n
i }

n+1
i=1 such that w1(z) is on the line segment joining w2(z)

and sni ∈
(

{sni }
n+1
i=1 \W2(z)

)

.

• We continue in an obvious way.

6



• If we do not terminate the process in one of the previous steps, we arrive at the
situation when wn(z) is in a convex hull of a 2-element subset of {sni }

n+1
i=1 , and

hence it is on some line segment of the form [sni , s
n
j ]. At this point we stop.

It has already been stated that condition (A) is satisfied for M . Now, let us
verify condition (B). To do this, it suffices to prove that, for each isometry T :
(Mn ∪ {0}) → X satisfying T (0) = 0, the image T (Mn) is contained in the linear
span of {T (sn1 ), . . . , T (s

n
n)}. This condition looks slightly different from the one in

(B). However, defining {αi}
∞
i=1 by α1 = 1 and αiei = sii one can see that in essence

the conditions are equivalent because, by Lemma 2.2, the images {T (sni )}
∞
n=i are

multiples of each other.

To show that T (Mn) is contained in the linear span L of {T (sn1 ), . . . , T (s
n
n)}, the

procedure outlined underneath is applied, where in each step Lemma 2.2 is used.

• Since 0, snn, and snn+1 form a linear triple, and T (0) = 0, we have T (snn+1) ∈ L.

• Whenever wn(z) is defined, one has T (wn(z)) ∈ L because wn(z) ∈ [sni , s
n
j ].

• Likewise, for each z such that wn−1(z) is defined, one obtains T (wn−1(z)) ∈ L
since wn−1(z) is in the line segment joining wn(z) and one of sni .

• We proceed in a straightforward way until we get T (z) ∈ L.

In addition, it is easy to see that the assumption that conv({sni }
n+1
i=1 ) is at distance

at least n from the origin together with the fact that each set Mn is finite and is
contained in conv({sni }

n+1
i=1 ), implies that the set ∪∞

n=1Mn is locally finite.

Proof of Corollary 1.9. To check that this X satisfies the conditions of Theorem 1.8
two well-known facts come in handy:

(1) Each finite subset of Lp[0, 1] admits an isometric embedding into `p, see [1].
(2) The space Lp[0, 1] contains a subspace isometric to `2, see [12, p. 16].

Combining (1) and (2) we conclude that all finite subsets of `2 are isometric to
subsets of `p, and, thence, to subsets of X. On the other hand, it is known that
each infinite-dimensional subspace of X contains a subspace isomorphic to `p (this
can be done using a slight variation of the argument used to prove [15, Proposition
2.a.2]), and as such it is not isomorphic to `2.

Remark 2.5. The first part of the proof of Theorem 1.8 demonstrates that its state-
ment can be strengthened by replacing the condition “`2 does not admit an isomor-
phic embedding into X” by “there is α > 1 such that X does not contain a subspace
whose Banach-Mazur distance to `2 does not exceed α”. It is known [19] that the
latter condition is strictly weaker. In addition, it is not difficult to see that although
Joichi did not formally state the pertinent modification of the main result of [13], it
arises from the proof.
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3 The case of `1

Proof of Theorem 1.11. Recall [1] that each finite subset of L1(−∞,∞) admits an
isometric embedding into `1. To prove Theorem 1.11 we construct in L1(−∞,∞)
a locally finite metric space M such that its isometric embeddability into `1 would
imply that `1 contains a unit vector x which, for every n ∈ N, can be represented as
a sum of 2n vectors with pairwise disjoint supports and of norm 2−n each. This leads
to a contradiction: consider the maximal in absolute value coordinate of the vector
x, let it be α. If, for some n ∈ N, |α| > 2−n, it is clearly impossible to partition the
vector into 2n vectors of norm 2−n each with pairwise disjoint supports.

The starting point of the construction is the fact that the indicator function 1(0,1]

has, for each n ∈ N, a representation as a sum of 2n pairwise disjoint vectors of
norm 2−n. To be specific, we adopt the writing:

• 1(0,1] = d0 + d1, where d0 = 1(0, 1
2
], d1 = 1( 1

2
,1]

• 1(0,1] = d00 + d01 + d10 + d11, where d00 = 1(0, 1
4
], d01 = 1( 1

4
, 1
2
], d10 = 1( 1

2
, 3
4
], d11 =

1( 3
4
,1]

• We carry on in an obvious way.

In the sequel, the following notation will be employed: let d = 1(0,1] and denote
the functions introduced above by dσ, where σ is a finite string of 0’s and 1’s. Denote

by `(σ) the length of the string σ. For each σ = {σi}
`(σ)
i=1 , the subinterval I(σ) of

(0, 1] is defined by:

I(σ) =





`(σ)
∑

i=1

σi2
−i, 2−`(σ) +

`(σ)
∑

i=1

σi2
−i



 .

With this notation dσ = 1I(σ) and the mentioned above representation of 1(0,1] as
a sum of 2n terms can be written as:

d =
∑

σ, `(σ)=n

dσ,

where the summands are disjointly supported. Now, denote by T the set of all
finite strings of 0’s and 1’s. It is obvious that {dσ}σ∈T is not a locally finite set.
Nonetheless, we can add to {dσ} pairwise disjoint functions in such a way that a
locally finite subset of L1(−∞,∞) will be obtained, and the existence of an isometric
embedding of this set into `1 would imply the existence in `1 of a vector x with the
properties described at the beginning of the proof.

First, opt for an injective map Ψ from the collection of all finite strings of 0’s and
1’s into Z\{0}.

Now, we consider the set M satisfying the conditions: It contains both functions
d and 0, and, in addition, it includes all sums fσ := dσ + `(σ) · 1(Ψ(σ),Ψ(σ)+1], where
σ ∈ T .
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Since `(σ) is less than any fixed constant only for finitely many strings σ, this
set is a locally finite subset of L1(−∞,∞). It has to be shown that isometric
embeddability of this set into `1 implies the existence in `1 of a vector x with the
properties stated in the first paragraph of the proof, thus resulting in a contradiction.

Indeed, if there is an isometric embedding of M into `1, then there is an isometric
embedding F which maps 0 to 0 and - as it will be proved - in such a case x = F (d)
is the desired vector. More elaborately put, the existence of such an isometric
embedding implies that there exist vectors {xσ}σ∈T so that, for each n ∈ N, the
vectors {xσ}`(σ)=n are disjointly supported, have norm 2−n, and

x = F (d) =
∑

σ, `(σ)=n

xσ.

Each element a =
∑

∞

i=1 aiei of `1 can be considered as a possibly infinite union
of intervals in the coordinate plane which join (i, 0) and (i, ai). The total length of
all intervals is equal to ||a||.

The proposed construction guarantees that if `(σ) = n, then ||fσ − d|| = ||fσ||+
||d|| − 2 · 2−n. Since F is an isometry, F (0) = 0, and F (d) = x, this implies
||F (fσ)−x|| = ||F (fσ)||+||x||−2·2−n. Consequently, the total length of intersections
of the intervals corresponding to x and to F (fσ) is 2

−n for σ ∈ {0, 1}n.
On the other hand, if σ 6= τ and `(σ) = `(τ) = n, the functions fσ and fτ

are disjointly supported and, therefore, ||fσ − fτ || = ||fτ − 0|| + ||fσ − 0||. As a
result, ||F (fσ) − F (fτ )|| = ||F (fσ)|| + ||F (fτ )||. This means that the intersections
of the intervals corresponding to F (fσ) and F (fτ ) have total length 0. It does not
immediately imply that vectors F (fσ) and F (fτ ) are disjointly supported: one can
imagine, for example, that F (fσ) contains the interval joining (i, 0) and (i, 1

4
) and

F (fτ ) contains the interval joining (i, 0) and (i,−1
4
).

Let us define the vector xσ for σ satisfying `(σ) = n as a vector for which the
corresponding intervals are intersections of the intervals corresponding to x and to
F (fσ). The previous paragraphs imply that xσ and xτ satisfy ||xσ|| = ||xτ || = 2−n

and have disjoint supports when `(σ) = `(τ) = n and σ 6= τ (for the latter we use
the fact that the interval corresponding to x at i can have ‘positive’ or ‘negative’
part, but not both).

Finally, let s =
∑

σ, `(σ)=n xσ. With the preceding arguments, we conclude that

||s|| = 1 and |si| ≤ |xi| for each i ∈ N. Thus, s = x, and the desired decomposition
of x is completed.
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