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1. Introduction

Macdonald [33] defined symmetric functions P,(X;q,t) with two parameters g¢,¢
indexed by partitions as the unique symmetric function basis satisfying certain trian-
gularity (with respect to monomials in infinitely many variables X = x1,x2,...) and
orthogonality (with respect to a generalized Hall inner product) conditions. The Macdon-
ald symmetric functions give a simultaneous generalization of Hall-Littlewood symmetric
functions Py(X;0,t) and Jack symmetric functions lim;_,; Py (X;t%,¢).

The coefficients of P,(X;q,t) when written as a sum of monomials are rational func-
tions in the parameters ¢ and ¢. Macdonald conjectured that the Kostka—Macdonald
coefficients K ,,(q,t) defined by expanding the integral form J,(X;q,t), a scalar multi-
ple of the original P,(X;q,t), into the plethystic Schur basis,

Ju(X1q,t) =Y Ky u(g,t)sa[X (1 - 1),
A

are polynomials in ¢ and ¢ with nonnegative integer coefficients. Here the square brackets
denote plethystic substitution. In short, s)[A] means sy applied as a A-ring operator to
the expression A, where A is the ring of symmetric functions. For details, see [35] (1.8).
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Inspired by work of Garsia and Procesi [14] on Hall-Littlewood symmetric functions,
Garsia and Haiman [15] constructed a bi-graded module for the symmetric group and
conjectured that the Frobenius character is

Hy,(X5q,t) = Ju[X/(1 = t);9,1].

Thus, the Kostka-Macdonald coefficients give the Schur function expansion of H,(X; g, t).
This conjecture gives a representation theoretic interpretation for the Kostka-Macdonald
polynomials as the graded coefficients of the irreducible decomposition of these modules.
Haiman [19] resolved both conjectures by analyzing the isospectral Hilbert scheme of
points in a plane, ultimately showing that it is Cohen-Macaulay.

The nonsymmetric Macdonald polynomials E,(X;q,t) are indexed by weak com-
positions and form a basis for the full polynomial ring. They generalize Macdonald
polynomials in the sense that

Eomxa(T1, o Tm, 0,...,05¢,t) = Pore(a) (1, - -+ T3 ¢, 1),

where 0™ x a denotes the composition obtained by prepending m 0’s to a. The shift to the
full polynomial ring begun by Opdam [38], continued by Macdonald [36], and generalized
by Cherednik [10] broadened the existing theory in the hopes that the additional struc-
ture of the polynomial ring would shed more light on these important functions. Work
of Knop and Sahi [26] on Jack polynomials helped to validate this approach, and their
independently derived recurrences [25,39] ultimately inspired the combinatorial formula
for nonsymmetric Macdonald polynomials of Haglund, Haiman, and Loehr [18].

Generalizing Haglund’s elegant combinatorial formula for H,,(X;¢,t) [16,17], Haglund,
Haiman and Loehr [18] gave a combinatorial formula for E,(X;q,t) as

1-1¢
_ qleg(c)Jrltarm(c)Jrl ’

. _ maj(T") ycoinv(T) ywt(T')
Ea(Xa q, t) - Z q t X H 1
T:a—[n] c#left(c)
non—attacking

where the sum is over certain positive integer fillings 7" of the diagram of the composi-
tion a and coinv and maj are nonnegative integer statistics. In stark contrast with the
symmetric case, there are no known (nor even conjectured) positivity results for the
nonsymmetric Macdonald polynomials.

Demazure [12] generalized the Weyl character formula to certain submodules, epony-
mously named Demazure modules, which are generated by extremal weight spaces under
the action of a Borel subalgebra of a Lie algebra. The resulting Demazure characters
Kaq, Where a = w - A, for w a Weyl group element acting on a highest weight A, arose in
connection with Schubert calculus [11], and, in type A, also form a basis of the poly-
nomial ring. Recent work of Assaf and Searles [6] indicates that the type A Demazure
characters are the most natural pull backs of Schur functions to the polynomial ring.
That is to say, the combinatorics of the former stabilizes to that of the latter,



4 S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463

Komxca(T1, .oy T,y 0,000, 0) = Sore(a)(T1, -+ Tin)-

Therefore, in the search for polynomial analogs of Schur positivity statements for non-
symmetric Macdonald polynomials, the natural basis for comparison is the basis of
Demazure characters.

Sanderson [40] first made the connection between specializations of Macdonald poly-
nomials and Demazure characters by using the theory of nonsymmetric Macdonald
polynomials in type A to construct an affine Demazure module with graded character
P,(X;q,0), parallel to the construction of Garsia and Procesi [14] for Hall-Littlewood
symmetric functions H,,(X;0,t). Ion [20] generalized this result to nonsymmetric Mac-
donald polynomials in general type using the method of intertwiners in double affine
Hecke algebras to realize E,(X;q,0) as a single affine Demazure character. Inspired
by this, Lenart, Naito, Sagaki, Schilling and Shimozono [30] constructed a connected
Kirillov—Reshetikhin crystal to give a combinatorial proof of the coincidence with affine
Demazure characters using similar methods.

Recently, Assaf [1] proved the specialization E,(X;q,0) is a nonnegative, graded sum
of finite Demazure characters. The proof utilizes the machinery of weak dual equivalence
[8]. Hence, the resulting formula is difficult to work with and, in practice, requires com-
puting the full fundamental slide polynomial [5] expansion of F,(X;¢,0). In order to
have a better understanding of this nonnegativity and to have a deeper connection with
the underlying representation theory of Demazure modules, we use crystal theory to give
a new proof of this graded nonnegativity for finite Demazure characters from which we
extract an explicit formula for the Demazure expansion. The immediate benefit of our
new approach is two-fold. On the one hand, our method yields a formula which is very
easily computable. On the other, weak dual equivalence exists only for the general linear
group whereas the crystal theory used in our new approach extends to all types, thus
our results give hope that these new methods might be a key to a result in general type.

Kashiwara [22] introduced the notion of crystal bases in his study of the representation
theory of quantized universal enveloping algebras U,(g) for complex, semi-simple Lie
algebra g at ¢ = 0. The theory of canonical bases, developed earlier by Lusztig [32],
studies the same problem from a more geometric viewpoint, though many of the main
ideas from [32] carry over to [22]. A crystal base is a basis of a representation for Uy (g) on
which the Chevalley generators have a relatively simple action. Combinatorially, a crystal
is a directed, colored graph with vertex set given by the crystal base and directed edges
given by deformations of the Chevalley generators. By constructing a gl,, crystal for a
set of combinatorial objects, we create a combinatorial skeleton of the corresponding gl,,
modules whose character is the generating function of those objects. In particular, the
generating function is Schur positive. Moreover, crystal theory provides unique highest
weight elements, from which tractable formulas can be derived. Stembridge [44] gave
a local characterization of simply-laced crystals that allows one to prove that a given
construction is indeed a crystal by analyzing local properties of the raising and lowering
operators which give rise to the edges of the graph.
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Demazure crystals, whose structure was conjectured by Littlemann [31] and proved
by Kashiwara [23], are certain truncations of classical crystals that give a combinatorial
skeleton for Demazure modules. Unlike full crystals, Demazure crystals are not uniquely
characterized by their highest weight elements. Further complicating matters, in the
Demazure case the crystals are truncated so Stembridge’s methods are not immediately
applicable.

In this paper, we remedy this impediment and develop a new local characterization
of Demagzure crystals. These tools allow us to overcome the apparent limitations of
Stembridge’s axioms and readily surpass the difficulties mentioned above. In particular,
in §4 we consider different families of subsets of crystals with certain nice properties.
This leads us to Definition 4.15, where we present six local axioms for a subset of a
normal gl,, crystal to be considered a Demazure subset. Our first principal result, stated
precisely in Theorems 4.16 and 4.18, is the following:

Theorem. Every Demazure gl,, crystal is a Demazure subset of a normal gl,, crystal, and
every Demazure subset of a normal gl,, crystal is a Demazure gl,, crystal.

This provides a universal method for proving that a given subset of a crystal is a
Demazure crystal.

Furthermore, since the characters for Demazure crystals depend on the highest weight
and an element of the Weyl group, the existence of an explicit Demazure crystal does
not immediately yield a formula for the character. Instead, the Demazure character is
determined by a specific lowest weight, but since lowest weights are not unique, this
requires inspecting the entire crystal to determine the global lowest weight, which we
term the Demazure lowest weight. To overcome this obstacle, we present an algorithm in
Definition 4.20 that deterministically computes the Demazure lowest weight beginning
with the unique highest weight. That is, from Theorem 4.22, we obtain a formula:

Theorem. If D is a Demazure gl,, crystal, then its character is

ch(D) = Z x\{vt(b)lx;vt(b)z .. ~x‘7"l’t(b)” - Z Rt (2 (b))
beD

beD
b highest weight
where the latter sum is over highest weight elements, Z(b) is the result of applying Defi-
nition /.20 to b, and k., denotes the Demazure character.

Thus, we have an efficient formula for characters of Demazure crystals.

Our motivation for deriving the results in §4 provides our immediate application,
which is to construct Demazure crystals whose characters are the nonsymmetric Mac-
donald polynomials specialized at ¢ = 0. This we do in §5 Definition 5.3, in which we
define explicit raising and lowering operators on semistandard key tabloids, the combi-
natorial objects for which the specialized nonsymmetric Macdonald polynomials are the
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generating functions. We use Kohnert’s paradigm for Demazure characters to define an
explicit map 9 that embeds our structure into the normal gl,, crystals on semistandard
Young tableaux, giving Theorem 5.33:

Theorem. The map P from semistandard key tabloids to semistandard Young tableaux
is a weight-preserving injective map that intertwines the crystal operators. In particular,
the image of P is a subset of a normal gl,, crystal.

Hence, we are now in the situation to apply our characterization of Demazure crystals,
which culminates in Theorem 5.42, and states:

Theorem. The graph on semistandard key tabloids defined by the raising operators
is a Demazure subcrystal of a mormal crystal. Therefore, writing Ey(X,;q,0) =
Y a Kap(@)ka(Xy), we have

Ka,b(Q) = Z qmaj(T)7

TeSSKD(b)
T highest weight
wt(Z(T))=a

where SSKD(b) denotes the set of semistandard key tabloids of shape b, and maj is the
Haglund—Haiman—Loehr statistic. In particular, nonsymmetric Macdonald polynomials
specialized at t = 0 are a nonnegative q-graded sum of Demazure characters.

Our results give an explicit formula for this expansion, however, in the symmetric
case we can say more. The Hall-Littlewood symmetric functions may be regarded as
the ¢ = 0 specialization of Macdonald symmetric functions. They are long known to be
Schur positive and their Schur coefficients, the Kostka—Foulkes polynomials K ,(t), have
rich interpretations in geometry and representation theory. Lascoux and Schiitzenberger
[28] recursively defined a statistic called charge on these objects that precisely gives
K ,(t). Using our formula for nonsymmetric Macdonald polynomials, we arrive at a
new expression for Ky ,(t) using the much simpler maj statistic. In Theorem 6.5, we
prove the following:

Theorem. The Kostka—Foulkes polynomials K ,(t) are given by

Ky . (t) = Z tmaj(T)’

TeSSKD(0!#1=#1 xrev(p'))
T highest weight
wt(T)=\’

where X denotes the conjugate of \.

We conclude by noting that the Demazure coefficients of specialized nonsymmet-
ric Macdonald polynomials give a refinement of the Kostka—Foulkes polynomials that
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removes certain multiplicities. Moreover, as nonnegative expansions into Demazure char-
acters are becoming more ubiquitous among geometrically significant bases for the
polynomial ring, we expect our methods to have wider applications to come.

2. Macdonald polynomials

Symmetric functions arise in many areas of mathematics, appearing as characters of
polynomial representations of the general linear group, Frobenius characters of repre-
sentations of the symmetric groups, and as natural representatives of Schubert classes
for Grassmannians. In these contexts, the Schur functions and their generalizations play
the pivotal role of irreducible objects, and the problem of determining the coefficients
of a given symmetric function in the Schur basis combinatorializes problems of finding
irreducible decompositions, branching rules, and computing intersection numbers.

In §2.1, we review the rich contexts in which we find Schur functions, Hall-Littlewood
symmetric functions, and Macdonald symmetric functions along with their associated
combinatorics on Young tableaux. In §2.2, we generalize these symmetric functions to
the nonsymmetric setting of the full polynomial ring, where generalizations to other
root systems become more accessible. Finally, in §2.3, we motivate the specialization
considered in this paper from the points of view of simplified combinatorial structures
where positivity manifests in meaningful ways.

2.1. Symmetric polynomials

We begin by reviewing several of the classical bases for the ring Ag of symmetric
functions in variables X = x1,x2,%3,... over the rational numbers; for more details,
see [35]. Bases for Ag are naturally indexed by partitions, which are weakly decreasing
sequences of nonnegative integers. Perhaps the simplest basis for Ag is the basis of
monomial symmetric functions, denoted by m(X), and defined by

mX)= Y afagag. (2.1)
sort(a)=XA

where the sum is over all weak compositions a = (a1, as,as,...) whose nonzero parts
rearrange the partition A. As we shall see in the examples to come, monomial positivity is
often the necessary precursor to deeper positivity results. Most of the bases we consider
will also exhibit triangularity with respect to the monomial basis under the dominance
partial order on partition defined by

AL<pEe N+ F A< pr+ -+ ue Yk (2.2)

Dominance order refines lexicographic order, the latter of which is a total order.
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(3] (3] (4] (3] (3] [4] (3] (4] [4] [4]
2[2 2[3 2[2 2[3 2 23 2[4 2[4 3[3 2[3
11 1)1 11 12 1)1 11 12 11 11 12
(3] [4] (4] [4] [4] [4] [4] (4] [4] [4]
2[4 2[4 3[4 3[3 2[4 3[4 3[3 3[4 3[4 3[4
1]3 1]2 11 1]2 AE 1]2 2[2 AE 2]2 2[3

Fig. 1. The twenty elements of SSYT4(2,2,1).

Another important basis for symmetric functions with deep connects to the represen-
tation theory of the symmetric group is the basis of power sum symmetric functions,
denoted by py(X), and defined multiplicatively by the rules

pk(X)::v]f+z’§+x§+~~, (2.3)
PA(X) = pa, (X)pa, (X) - pa (X)), (2.4)

when A is a partition of length £. We can use the power sum basis to define the Hall
inner product on symmetric functions by setting

(PA(X), (X)) = 2262 45 (2.5)

where z) = Hi>1 i"™imy! for m; the multiplicity of ¢ in A. From the formula above, the
power sum basis is orthogonal with respect to this inner product.

The basis of Schur functions, denoted by s)(X), is the unique symmetric function
basis that is upper uni-triangular with respect to the monomial basis and orthogonal with
respect to the Hall inner product. Schur polynomials may be defined combinatorially as
the generating polynomial for semistandard Young tableaux.

The diagram of a partition X\ has A; left justified unit cells in row 3.

Definition 2.1. Given a partition A, a semistandard Young tableau of shape A is a filling
of the Young diagram of A with positive integers such that entries weakly increase left to
right along rows and strictly increase bottom to top along columns. We denote the set
of semistandard Young tableaux of shape A with entries in {1,2,...,n} by SSYT, ().

For example, the semistandard Young tableaux of shape (2,2,1) with entries in
{1,2,3,4} are shown in Fig. 1.

The weight of a semistandard Young tableau T is the weak composition wt(7") whose
1th part, w(T);, is the number of entries equal to .

Definition 2.2. The Schur polynomial sy (x1,...,x,) is given by

sx(T1y ..y Tn) = Z x‘ft(T)l . ~a:‘,’th(T)". (2.6)
TESSYT, (\)

The Schur function sy (X) is the stable limit of the Schur polynomial as n grows.
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We may define the Kostka numbers, denoted by K , as the transition coefficients
between the Schur basis and the monomial basis, i.e.

sx(X) = Ky umpu(X), (2.7)
A

where K ,, is the number of semistandard Young tableaux of shape A and weight p. In
particular, we have K , € N.

Schur polynomials arise in many important contexts wherein expansions of symmetric
functions into the Schur basis becomes of fundamental importance. For V* the irre-
ducible polynomial representation of GL,(C), its character is given by char(V?}) =
sa(x1,...,2,). Given any polynomial representation V', its character char(V) is a sym-
metric polynomial, and so the expansion of char(V') into the Schur basis corresponds
precisely to the irreducible decomposition of V, i.e.

V= @ (V’\)@CA < char(V) = ZC)\S)\(J,‘l, cey X))
by By

Under this paradigm, the Hall inner product corresponds precisely to the inner product
on characters, and the coefficients of the Schur polynomials expanded into monomial
basis give multiplicities of highest weight multiplicities. Dually, for S* the irreducible
representation of S,, over C, its Frobenius character is given by ch(S*) = s,(X).

Geometrically, the Chern class of the Schubert variety X, for the Grassmannian
Gr(n, k) is naturally represented by the Schubert polynomial &\ k) = sx(®1, ..., Tk).
Therefore intersection numbers for Grassmannian Schubert varieties can be computed
by taking the Schur coefficients of the product of Schur polynomials.

Consider now symmetric functions over Q(g,t) for two independent indeterminants
q,t. Here we may define a generalization of the Hall inner product by

O o
(PA(X), pu(X)) gt = 2200 [ [ T (2.8)
=1

Taking ¢ =t in Eq. (2.8) results in the classic Hall inner product in Eq. (2.5).
Macdonald [33] defined a new basis of symmetric functions over this larger ground
field using this generalized inner product.

Definition 2.3 (/33]/). The Macdonald symmetric functions Py(X;q,t) are the unique
basis for Ag(y,¢) that are upper uni-triangular with respect to monomial symmetric func-
tions and are orthogonal with respect to the generalized Hall inner product in Eq. (2.8).

Given that dominance order is a partial order, this definition requires a theorem to
be well-defined. However, the uniqueness is obvious, as is the specialization

Py(X:q,q) = sa(X). (2.9)
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In fact, Macdonald defined this basis to be a simultaneous generalization of the
Hall-Littlewood symmetric functions P,(X;0,¢) and the Jack symmetric functions
lim;_,; P\(X;t*,t), both of which have deep connections to representation theory and
geometry.

Macdonald also considered a slight modification of the P,(X;q,t) basis called the
integral form, denoted by J,(X;q,t), and related to the P,(X;q,t) basis by

(X0, =] (1 - qam(a)tleg(“)“) Pu(X;q,1), (2.10)
cEX

where for ¢ a cell of the diagram of A, we set arm(c) to be the number of cells strictly
right of ¢ and leg(c) the number of cells strictly above c. With this basis, we may define
the Kostka-Macdonald polynomials denoted by K ,(q,t) by

X qv ZK)\;L (I7 5)\ (1 _t)]’ (211)

where s)[X (1 —t)] denotes the plethystic Schur basis, which may be defined as the dual
basis to the Schur functions under the generalized Hall inner product Eq. (2.8) at ¢ = 0,
ie.

{a[X (X =0, 5.(X))oe = 0,

A priori, the coefficients K ,(q,t) are rational functions in the parameters ¢,¢ with
rational coefficients. Based on hand computations, Macdonald conjectured that, in fact,
K ,.(g,t) are polynomials in ¢,t with nonnegative integer coefficients.

Garsia and Haiman [15] considered the modified Macdonald polynomial H,(X;q,t)
that relates to the integral form via plethysm as

HH(Xaqat) = ‘]H[X (%_t) 7Q7t] = ZKA,N(Qat)S)\(X)7 (212)
A

where now the Kostka—Macdonald coefficients precisely give the Schur expansion of the
modified Macdonald polynomial. Thus we have fallen into the fundamental problem of
giving a combinatorial interpretation for the Schur coefficients of a given symmetric
function.

Garsia and Haiman [13], building on earlier work of Garsia and Procesi [14] on
Hall-Littlewood polynomials, constructed a bi-graded S,, module and proved that if
the dimension of the module is n!, then its bi-graded Frobenius character must be
H,(X;q,t). As Schur functions are the Frobenius characters of the irreducible repre-
sentations of Sy, this would prove Macdonald’s conjecture. Haiman [19] analyzed the
isospectral Hilbert scheme of points in the plane, ultimately showing that it is Cohen—
Macaulay (and Gorenstein), and from this established the n! Conjecture of Garsia and
Haiman as well as Macdonald positivity.
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Theorem 2.4 ([19]). The Kostka—Macdonald polynomials are polynomials in q,t with non-
negative integers coefficients, i.e. Ky ,(q,t) € N[g,t].

Nevertheless, it remains an important open problem in algebraic combinatorics to give
a manifestly positive formula for K ,(g,t).

2.2. Nonsymmetric polynomials

We turn our focus now to the full polynomial ring Q[z1,...,x,] in variables X,, =
T1,...,Tn, which as the obvious basis of monomials indexed by weak compositions a =
(a1,...,a,) € N™ given by X¢ = z{* ---z%*. The Bruhat order on weak compositions

given by the transitive closure of the cover relations

a > t,;-a ifi<janda; <a;
tm'-a>a—|—ei—ej ifi<jandaj—ai>1,

where e; is the ith standard basis vector. Triangularity in the polynomial setting will be
with respect to this partial order which refines lexicographic order.

Opdam [38] and Macdonald [36] introduced a polynomial generalization of Macdonald
symmetric functions that were generalized to any root system by Cherednik [10]. Ex-
panding the ground field to include the two parameters ¢, ¢, the Cherednik inner product
on Q(q,t)[x1,...,x,] is given by

(f.9)=11] <f g ﬁ) : (2.13)

— -1

where [1] means the constant term and - is defined linearly by g = ¢~ 1, =t~1, 7; = x;

and

O | TR Gl e T
i<j k20 (1 —tgha;/z;)(1 — tgh*1a;/z;)
Parallel to the characterization of P,(X;q,t), we have the following.

Definition 2.5 (/10]). The nonsymmetric Macdonald polynomials E,(X,;q,t) are the
unique basis for Q(q, t)[z1,...,x,] that are upper uni-triangular with respect to mono-
mials and are orthogonal with respect to the Cherednik’s inner product.

The nonsymmetric Macdonald polynomials can be realized as a truncation of the
nonsymmetric Macdonald polynomials which, in addition, shows that the symmetric
functions are the stable limit,

EO""XCL(:I;17 e T, 0,00, 0; Q7t) = Lsort(a) (-rla sy T q>t) (214)
lim Eomxa($1, ey T, 05000 0 Qat) = Psort(a) ($1,$2, S Q7t)7 (215)

m—r oo
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where sort(a) is the partition rearrangement of the weak composition a.

Recall that Schur functions appear as a specialization of Macdonald symmetric
functions, namely Py(X;0,0) = sx(X). Ion [21] showed that the analogous special-
ization of nonsymmetric Macdonald polynomials is a Demazure character, namely
E.(X,;0,0) = k4(X,). Demazure characters, which form a geometrically significant
basis for the full polynomial ring, are presented in depth in section 3.2, but for now we
note that they are generalizations of Schur polynomials in the same senses as Eqgs. (2.14)
and (2.15). This provides a natural place to begin searching for meaningful positivity
results in the nonsymmetric setting.

Since Demazure characters are monomial positive, any positivity results for Demazure
characters must include monomial positivity as well. The coefficient of X2 in Ey(X,;q,t)
is nonzero if and only if @ < b in Bruhat order, but these coefficients lie in Q(q,t), and
so monomial positivity must lie elsewhere.

The nonsymmetric integral form, denoted by &,(X,,; ¢, 1), is given by

&(Xuia.t) =[] (1 - qleg(c)ﬂtarm(c)“) By(Xn; 1), (2.16)

cea

where the leg of a cell ¢ in a composition diagram is the number of cells strictly right of
¢ in the same row, and the arm of c¢ is the number of cells strictly below ¢ in the same
column whose row is weakly shorter than that of ¢ plus the number of cells strictly above
and one column left of ¢ whose row is strictly shorter.

Knop [25] showed that &(X,;q,t) has its monomial coefficients in Z[q,t], paving
the way for further positivity. However, recall that Macdonald positivity arose only
when considering plethystic substitutions. At present, there is no well-defined notion of
plethysm for the full polynomial ring.

To circumvent this difficulty, from the combinatorial formula for nonsymmetric Mac-
donald polynomials due to Haglund, Haiman, and Loehr [18], one sees that when spe-
cializing the single parameter ¢ = 0, the nonsymmetric Macdonald polynomial and its
integral form coincide and, moreover, become monomial positive. Assaf [1] proved this
specialization Ey(X,;q,0) is, in fact, Demazure positive.

Theorem 2.6 ([1]). For weak compositions a,b, define coefficients K, (q) by

Ey(Xn:q,0) =Y Kap(q)ka(Xn). (2.17)

Then we have K, (q) € N{q]. In particular, nonsymmetric Macdonald polynomials spe-
cialized at t = 0 are a nonnegative q-graded sum of Demazure characters.

While Assaf’s proof is combinatorial, it does not give a direct formula for the De-
mazure expansion. Assaf proves that Fy(X,;q,0) is nonnegative on the fundamental
slide polynomials, a basis for Z[x1,xa,...] developed by Assaf and Searles [5] arising
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a
Fig. 2. The two relative positions for attacking cells x, y.
leg

/—’4%

1< J

Fig. 3. The leg of a cell contributing to the major index.

from their study of Schubert polynomials. From there, she uses the machinery of weak
dual equivalence [8] to group terms in the fundamental slide expansion into Demazure
characters, which Assaf and Searles [6] showed are fundamental slide positive. However,
extracting a formula requires one to write fundamental slide polynomials in terms of
Demagzure characters, which is inefficient and introduces negative signs, albeit ones that
ultimately cancel.

In the present paper, we use the theory of crystal bases to give a new combinatorial
proof of Theorem 2.6 that yields a manifestly positive formula for K, ;(¢). Moreover, as
crystals themselves are combinatorial skeletons of representations, this also gives a rep-
resentation theoretic model for these specialized nonsymmetric Macdonald polynomials.

2.8. Semistandard key tabloids

Haglund, Haiman and Loehr [18] gave a combinatorial formula for the monomial
expansion of nonsymmetric Macdonald polynomials. Integrality for the nonsymmetric
integral form is immediate from their formula, as is monomial positivity for the special-
ization we consider.

The diagram of a weak composition has a; cells left-justified in row 4, indexed in
coordinate notation with row 1 at the bottom.

Two cells of a diagram are attacking if they lie in the same column or if they lie in
adjacent columns with the cell on the left strictly higher than the cell on the right. A
filling is non-attacking if no two attacking cells have the same value (see Fig. 2).

For a non-attacking filling T', the major index of T, denoted by maj(T), is the sum of
the legs of all cells ¢ such that the entry in c is strictly less than the entry immediately
to its right, as illustrated in Fig. 3.

A triple is a collection of three cells, possibly including basement cells along the left
edge, with two row adjacent and either (Type I) the third cell is above the left and the
lower row is strictly longer, or (Type II) the third cell is below the right and the higher
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Fig. 4. The positions and orientation for co-inversion triples.

row is weakly longer. The orientation of a triple is determined by reading the entries
of the cells from smallest to largest, where the entry of a basement cell is its row index
and ties are broken with a letter to the right smaller. A co-inversion triple is a Type I
triple oriented counterclockwise or a Type II triple oriented clockwise, as illustrated in
Fig. 4. Note that, as proved in [18] (Lemma 3.6.3), the entries of the cells that form a
co-inversion triple in a non-attacking filling are necessarily distinct.

Generalizing their earlier formula for Macdonald symmetric functions [17], Haglund,
Haiman and Loehr gave the following explicit combinatorial formula for the monomial
expansion of the nonsymmetric Macdonald polynomials [18], which also yields a formula
for the nonsymmetric integral form.

Theorem 2.7 ([18]). The nonsymmetric Macdonald polynomial E,(X,;q,t) is given by

. . 1-1¢
. — maj(T) coinv(T) ywt(T)
Ea(Xna q, t) - Z q J t Xn H 1 — qleg(c)+1tarm(c)+1 .
T:a—[n] c#left(c)

non—attacking

(2.18)

Comparing with Eq. (2.16), we see that while the denominator can be cleared, the
appearance of negative signs is inevitable even for the integral form. However, when
specializing to ¢t = 0, the product on the right collapses to 1 giving a manifestly positive
monomial expansion. We review notation from [1].

Definition 2.8. Given a weak composition a, a semistandard key tabloid of shape a is
a non-attacking filling of the composition diagram of a with positive integers such that
there are no co-inversion triples. We denote the set of semistandard Young tableaux of
shape a by SSKD(a).

For example, Fig. 5 shows the semistandard key tabloids of shape (0,2, 1,2).

Classically, a semistandard Young tabloid is a filling of a Young diagram with weakly
increasing rows and no column condition. Thus a tabloid is determined by its row sets,
since there is a unique ordering for each row that results in a valid filling. Our nomencla-
ture for semistandard key tabloids arises from the same paradigm, though now emphasis
is placed on columns rather than on rows.
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4]4] [4]4] [a]4] [4]4] 4] [a]3] [4]3] [4]3] [4]3] 3]
3 3 1 3 3 3 1
2]2] [2]1] [1]1] [1]1] 2] [2]2] [2]1] [1]1] [a]1] 2]
4]2] 2] [4]2] [3]3] 3] [3]2] [4l4] [3[3] [3]2] [3]1]
3 3 2 1 2 2 2 2

2[1] [1]x] ([z2]1] [a]z] 2] [a1] [1[3] [1]4] [1]a] [1]4]

Fig. 5. The semistandard key tabloids of shape (0,2, 1, 2).

Proposition 2.9. Given two semistandard key tabloids S,T € SSKD(a), if S and T have
the same set of entries within each column, then S =T.

Proof. This follows for standard key tabloids from [1] (Theorem 5.6), and extends to
semistandard key tabloids by the usual destandardization used in the proof of [1] (Propo-
sition 2.6). O

3. Crystals for the general linear group

Kashiwara’s theory of crystal bases [22] provides a powerful tool for studying repre-
sentations as well as for categorifying Schur positive symmetric functions by providing
the combinatorial skeleton of a representation whose character is the given symmetric
function.

In §3.1, we recall the basic definitions for abstract and normal crystals in the case
when g is the general linear group gl,,. In §3.2, we consider the action of the Borel sub-
algebra b consisting of upper-triangular matrices on extremal weight spaces indexed by
the Weyl group S,, and we review the corresponding crystal theory associated with these
Demazure modules. In §3.3, we give an explicit realization of normal and Demazure crys-
tals with base indexed by semistandard Young tableaux and semistandard key tableaux,
respectively.

3.1. Normal crystals

Let e1,eo, ..., e, denote the standard basis for V' = R™ with the usual inner product.
The root system ® = {e; —e; | i # j} contains a subset of positive roots ®* = {e; —e; |
i < j} which in turn contains the simple roots o; = e; — e; 1 for i = 1,...,n — 1. The
weight lattice A = Z" contains a subset of dominant weights At C A defined as those
A€ Asuchthat \f > X o> --- >\, > 0.

Definition 3.1. A finite gl,-crystal of dimension n is a nonempty, finite set B not con-
taining 0 together with crystal operators e;, f; : B— BU {0} for i =1,2,...,n—1 and
a weight map wt : B — A satisfying the conditions
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] —— [ ——

Fig. 6. The standard crystal B(n) for gl,,.

(1) for b,b" € B, e;(b) = V' if and only if f;(b') = b, and in this case we have wt(b') =
wt(b) + au;

(2) for b e Band i = 1,...,n — 1, we have ¢;(b) — &;(b) = wt(b); — wt(b);1+1, where
€i,p; : B — Z are the string lengths given by

gi(b) = max{k € Zx | eF(b) # 0}
¢i(b) = max{k € Zzo | f£(b) # 0}.

Note that gl -crystals may be defined more generally, though those under considera-
tion in this paper will always be both finite and semi-normal, meaning they satisfy the
conditions above.

Abusing notation, we often refer to a crystal by its underlying set B when the weight
map and crystal operators are understood from context.

A crystal graph is a directed, colored graph with vertex set given by the crystal basis
B and directed edges given by the crystal lowering operators f;, where we draw an i-edge
from b to f;(b) if fi(b) # 0 and all edges to 0 are omitted.

Example 3.2. The standard crystal B(n) has basis {[i]|¢=1,...,n}, weight map
wt ([1]) = e;, crystal raising (resp. lowering) operators e; (resp. f;) that act by decre-
menting (resp. incrementing) the entry if j = ¢ + 1 (resp. j = i), and taking it to 0
otherwise. We draw the crystal graph for B(n) as shown in Fig. 6.

We say a crystal B is connected if its underlying crystal graph is connected as a(n
undirected) graph. A subset X C B has an induced structure coming from the crystal
structure on B, and whenever X is a connected component of B this structure will be a
crystal. In this case we call X a full subcrystal of B.

Definition 3.3. The character of a crystal B is the polynomial

ch(B) = Z :L“;Vt(b)lacgt(bh gVt O, (3.1)
beB

From Definition 3.1(1), if b,b" € B are elements of the same full subcrystal of B, then
we have Y. wt(b); = >, wt(b');. In particular, the character of a full subcrystal is a
homogeneous polynomial of fixed degree.

For example, the standard crystal B(n) degree 1, and its character is ch(B(n)) =
r1 + T3 + - -+ + xp, which is both homogeneous and symmetric.
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The Weyl group for gl,, is the symmetric group S,, which has a natural action on
gl,,-crystals described as follows. For 1 < ¢ < n, let S; act on B by reflecting b € B across
its ¢-string, written formally as

FOTO ) wi(0); > wib) i,
Si(0) =9 (B i1 —wi(b): . (3.2)
e B) if wt(b)ips > wh(b)s.

7

Kashiwara [22] showed these operators satisfy the braid relations for the symmetric
group, thus to any permutation w € S, we may define S,, by S;, S, ---S;, whenever
W = 8;, 8, -+ Si, 1S a reduced expression for w, that is, whenever w = s;,s;, - - - 54, with
k minimal. Here k is the length of w.

Proposition 3.4. The character of a (finite, semi-normal) gl,,-crystal is a symmetric poly-
nomial in the variables x1,xo,...,xy.

Definition 3.5. An element u € B of a gl,,-crystal is a highest weight element if e;(u) = 0
for all i = 1,2,...,n — 1, and u is a lowest weight element if f;(u) = 0 for all i =
1,2,...,n—1.

Given Proposition 3.4, one might ask what symmetries the underlying gl -crystal
possesses. Indeed, any gl,,-crystal contains a unique highest weight element and a unique
lowest weight element.

Just like every = € B is connected to the highest weight element u € B by a sequence

of lowering operators fzi " f,Z? (u) = x, any x € B is also connected to the lowest weight

element z € B via a sequence of raising operators e;;’ e 62 (z) = . In particular, for
every x € B with fi™ ... fi*(u) = z, there exists y € B such that e;™, ...e;'; (2) =y
and vice versa. The symmetry within the crystal that swaps the highest and lowest

elements and flips the remaining vertices accordingly is concretely stated as follows.

Definition 3.6. Let BB be a finite, connected semi-normal gl,,-crystal, b = v € B its highest
weight element, and z € B its lowest weight element. The crystal flip map F : B — B is
the involution that sends each element

fir o fitu) e et (2)

tm

€n—i

and any edge x EiN y to the corresponding edge F(x) —— F(y) between the images of
the vertices.

Remark 3.7. We note that at the level of characters, the map F acts by conjugating
each summand by the element of the Weyl group corresponding to the half twist, that
is, with the permutation n n — 1---3 2 1. Since by Proposition 3.4 the character of
a gl -crystal is symmetric, then the action of .S, is trivial, and thus the character the
crystal is unchanged as expected.
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Fig. 7. Tensor product of two standard gls crystals.

From Definition 3.1(2), since ¢;(b) = 0 for any highest weight element b, we necessarily
have wt(b) is dominant. For example, the highest weight element of B(n) is [1], which
has weight e; € AT,

Conversely, dominant weights also index irreducible representations of gl,,. In order
to strengthen the connection between crystals and the representation theory of gl,, we
must restrict our attention to normal crystals, those arising as full subcrystals of tensor
products of the standard crystal.

Definition 3.8. Given two crystals By and Bs, the tensor product By ® By is the set
B1 ® Bs together with crystal operators e;, f; defined on By ® By by

fi(b1) @ ba  if €i(b2) < @i(b1),

by ® fi(by) if £i(by) = @i(by), (3.3)

fi(b1 @ bg) = {

and weight function wt(b; ® be) = wt(b1) + wt(b2) computed coordinate-wise.

Example 3.9. The tensor product of two copies of the standard gl; crystal B(3) is shown
in Fig. 7. Notice it has two connected components, one of dimension 6 with highest
weight (2,0,0) and the other of dimension 3 with highest weight (1,1, 0).

Definition 3.10. An abstract gl,,-crystal is normal if every full subcrystal is isomorphic
to a full subcrystal of B(n)®* for some positive integer k.

A connected, normal crystal B has a unique highest weight b, and we call wt(b) € AT
the highest weight of B. Moreover, two connected normal crystals are isomorphic as
colored directed graphs if and only if they have the same highest weight. In other words,
connected normal crystals are index by dominant weights, which in turn index irreducible
representations. Given a dominant weight A € AT, let B(\) denote the connected normal
crystal whose unique highest weight element has weight .
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Even more compelling is the remarkable fact that the combinatorial procedure of
tensor products on crystals corresponds to the tensor product of the corresponding rep-
resentations. For example, Fig. 7 computes that the tensor product of two copies of the
standard crystal B(3) = B((1,0,0)) is given by B((2,0,0)) and B((1, 1,0)).

The character of a connected normal crystal ch(B())) is the character of the irreducible
representation V* which is the Schur polynomial sy(x1,. .., ).

Since the character of a crystal is symmetric and the character of a connected, normal
crystal is a Schur polynomial, crystals provide a combinatorial method for proving sym-
metry and Schur positivity of a given polynomial. Moreover, the highest weights provide
an efficient formula for the Schur expansion of the character of a normal crystal B by

ch(B) = > Swi(b) (X). (3.4)
beB
b highest weight

Moreover, the existence of an explicit crystal structure gives a representation-theoretic
interpretation for the corresponding polynomial by providing a natural action on a crystal
base whose character is the given polynomial.

3.2. Demazure crystals

Given a complex, semi-simple Lie algebra g with a Cartan subalgebra b, we can
decompose a representation V of g into weight spaces V = @@ V,. The extremal weights
are indexed by the Weyl group W, and the corresponding extremal weight spaces are all
of dimension 1 with a natural action of W permuting them. Demazure [11] considered
the action of a Borel subalgebra b O h on an extremal weight space, and we call the
resulting modules Demazure modules. While the irreducible representations V* of g are
indexed by dominant weights A, the corresponding Demazure modules V) are index by
a pair (A, w) where A is a dominant weight and w is an element of the Weyl group.

Example 3.11. For w = id the identity, the Demazure module Vlé is the one-dimensional
highest weight space of V*. For w = wy the long element of W, the Demazure Vlﬁo is the
full g representation V*. Thus Demazure modules can be regarded as an interpolation
between the highest weight space and the full module.

In the case of gl,,, the Borel is the subalgebra of upper triangular matrices, and the
Demazure modules are indexed by pairs (A, w) where X is a partition of length n and w
is a permutation. The data (A, w) is equivalent to the weak composition @ = w - A, since
we may recover A as the weakly decreasing rearrangement of @ and w as the shortest (in
Coxeter length) permutation taking a to A. To keep this correspondence bijective, for a
given dominant weight A\, we consider only permutations w for which w acts faithfully
on A, meaning w is the shortest permutation u for which u - A =w - .

Demazure [12] gave a formula for the character of the Demazure module V) which,
in the case of the general linear group, can be described as follows. For 1 <i < n, let s;
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denote the simple transposition that acts on polynomials in n variables by interchanging
x; and x;41. The divided difference operators 0; and 7; for 1 < i < n act on polynomials
in n variables by
TlyeesTy) — ;- flT1,...,x
3zf(131,,217n):f( 1 ) n) 7 f( 1, ) n)’ (35)

Ti — Tig1
mif(xy, .., xn) = 05 (if(z1,...,2,)) (3.6)

It can be shown that the 0; and ; satisfy the braid relations for the symmetric group.
Therefore, for w € S,,, we may define 8,, = 0;,0;, - - - 0;, and m,, = m;, m;, - - - ™;, Whenever

Siy Siy -+ Sip, 1 @ reduced expression for w.

Theorem 3.12 (/29]). For \ a partition of length n and w a permutation of S, the
character of the Demazure module V. is given by

ch(Vlg\) = T (xi\lxé\Q -~-x;\L") . (3.7)

For gl,,, the Demazure characters form a basis for the polynomial ring in n variables.
Thus it is natural to index them by weak compositions, and we define the Demazure
character k,(x1,...,2,) to be

Ka(T1, ..., 2n) = ch(VU @), (3.8)

w(a)

where sort(a) is the weakly decreasing rearrangement of a and w(a) is the shortest
permutation taking a to sort(a).

Example 3.13. We may compute the Demazure character r(; 302y by taking A =
(2,2,1,0) and w = 2413, and then computing the character of ‘/-2(31,3,1,0). Taking the
reduced expression s3s12 for the permutation w = 2413, we have

2,2,1,0
K(1,2,0,2) = ch(V2(413 )) = TyM Mo (x?a:%xg)

= T3 (JJ%%%Z‘?, + x%xgxg)

=73 ((ﬂ%l’%l‘g + CC%QZ'QQL’% + xlxgxg)

= x%x%m + x%x%u + I%I‘QCE% + 1’%%21’3.%4
—l—x?mgxi + mlxgxg + xlxgxgm + acla:%xi.

Taking w = wy, the long element of S,,, the Demazure characters include the Schur
polynomials. That is, when the weak composition a is weakly increasing, we have

K Am—1ye ) (T15 o, n) = Sa(T1, ..., 2p). (3.9)

Furthermore, the Schur functions can be realized as the stable limit,
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Komxa(T1y -y Ty 0,005 0) = Sgore(a)(T1, -+ vy Tim) (3.10)

n}gnoo HO”"Xa(xla R U 70) = Ssort(a) (%1,:}5‘2, . ')v (311>

where sort(a) is the partition rearrangement of the weak composition a.

Demazure crystals are certain truncations of highest weight crystals conjectured by
Littelmann [31] and proved by Kashiwara [23] to generalize Demazure characters. Given
a subset X C B(\), we define operators ©; by

D;X = {be B()\) | eF(b) € X for some k > 0}, (3.12)

where e; denotes the raising operator. It can be shown that these operators satisfy the
braid relations for the symmetric group, and so we may define

Q’UJ = Qil e Q’Lk (3.13)
for any reduced expression s;, - - - s;, for the permutation w.

Definition 3.14. For ) a partition of length n and w a permutation of S,,, the Demazure
crystal B,,()\) is given by

Bu(A) = Du{urt, (3.14)
where uy is the highest weight element in B()).

Theorem 3.15 (/23]). The character of the Demazure crystal By()\) is the Demazure
character Kqy.x.

Analogous to the case with normal crystals, Demazure crystals provide a combinatorial
method for proving that a given polynomial expands nonnegatively into the Demazure
character basis. Moreover, the existence of an explicit Demazure crystal structure gives
a representation-theoretic interpretation for the corresponding polynomial by providing
a natural action on a Demazure crystal base whose character is the given polynomial.

3.3. Crystals on tableaux

There is an explicit combinatorial construction of the crystal graph on tableaux defined
by Kashiwara and Nakashima [24] and Littelmann [31].

Definition 3.16. For T' € SSYT,,(\) and 1 < i < n, define the i-pairing of cells of T
containing entries ¢ or ¢ 4+ 1 as follows:

e g-pair cells containing ¢ and ¢ + 1 whenever they appear in the same column,



22 S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463

e iteratively ¢-pair an unpaired ¢+ 1 with an unpaired ¢ to its right whenever all entries
i and ¢ + 1 that lie between are already i-paired.

It is important to note that this pairing rule determines the lengths of the i-strings
through a given vertex. That is,

€;(T) = number of unpaired ¢ + 1’s in T, (3.15)
@;(T") = number of unpaired ’s in T'. (3.16)

We define the action of raising (and, equivalently, lowering) as follows.

Definition 3.17. For T' € SSYT,,(\) and 1 < i < n, define the raising operator é; on T as
follows: if T has no unpaired entries i + 1, then é;(T) = 0; otherwise, change the leftmost
unpaired ¢ + 1 to ¢ leaving all other entries unchanged.

For example, the full crystal structure for B(2,2,1,0) on SSYT4(2,2,1) is shown
in Fig. 8. Note that the unique highest weight element has weight (2,2,1,0), and the
character is the Schur polynomial s(3 21y (%1, ..., 74).

The lowering operators also have an explicit description, inverse to the raising oper-
ators.

Definition 3.18. For 7' € SSYT,,(\) and 1 < i < n, define the lowering operator ﬁ onT
as follows: if T has no unpaired entries 4, then f;(T) = 0; otherwise, change the rightmost
unpaired ¢ to ¢ + 1 leaving all other entries unchanged.

With this explicit description, we can also describe the crystal flip map explicitly.

Example 3.19. Consider the gl -crystal B(2,2,1,0) shown in Fig. 8. Under the action of
F we have:

fi—es fa—= e farr e

The highest weight element is mapped to the lowest weight element and vice versa as
expected,

3] [4] 4] 3]
2|2]—[3]4 3l4]—[2]2
1] [2]3 2[3] [1]1

For further examples, we have

= f1f2<

—[rofw]
)

) — e3€2 <
1

nofeofw]
S
N————
I
nofeefw]
rofco

r—l[\JOJ|
N[OV
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Fig. 8. The normal gl, crystal with highest weight (2,2, 1,0).

4] 3]
— eseser | [3[4] | =[2]3
23 12

2

At the level of characters, we see that this map sends the monomials z3x323 + o322

and z12323 — x32374, that is, maps z; to x,_iy1-

(3]
=ﬁﬁk<%

ofeci]
ro|co

=N

We may also consider the Demazure crystal Bag13(2,2, 1, 0), which is the subset shown
on the left side of Fig. 9 of the irreducible gl, crystal B(2,2,1,0) shown in Fig. 8. Note
that it also has a unique highest weight that has weight (2,2, 1,0), but there are multiple
lowest weight elements of different weights. Its character is £(1,2,0,2)-

Assaf and Schilling [4] defined an explicit Demazure crystal structure on semistandard
key tableaux [1], objects that correspond to Mason’s semi-skyline augmented fillings
[37]. As semistandard key tableaux are precisely the semistandard key tabloids with
maj = 0 [1] (Proposition 3.1). Their definitions will come as a special case of the more
general structure we define on semistandard key tabloids, so we defer the details to
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Fig. 9. The Demazure gl, crystal indexed highest weight (2,2,1,0) and permutation 2413 realized on
SSYT4(2,2,1) (left) and on SSKT(1,2,0,2) (right).

Proposition 5.15. However, for comparison, the right side of Fig. 9 shows the Demazure
crystal structure directly on semistandard key tableaux of shape a = (1,2,0,2).

4. Characterizations of Demazure crystals

One can prove that a given colored, directed graph with weighted vertices is the crystal
of a gl,,-representation by finding a weight-preserving bijection with semistandard Young
tableaux that intertwines the crystal operators. To circumvent this difficulty of finding
an explicit bijection, Stembridge [44] gave a local characterization of normal crystals for
simply-laced types that allows one to determine directly if a given colored, directed graph
is the crystal for some representation. Parallel to this, one can prove that a given subset
of a normal crystal is a Demazure crystal by finding a weight-preserving injection into
semistandard Young tableaux, or bijection to key tableaux, that intertwines the crystal
operators. In this section, we present an alternative local characterization of Demazure
subsets of normal crystals.

In §4.1, we define extremal subsets of normal crystals, which contain Demazure sub-
sets as a special case. These extremal subsets are easy to find and characterize. In §4.2,
we extend the axioms for extremal subsets to a local characterization for Demazure sub-
sets, giving a powerful tool for proving that a given structure is a Demazure crystal.
In §4.3, we characterize the Demazure lowest weight elements for Demazure crystals.
These important elements play a role analogous to highest weight elements for normal
crystals in that they are the unique elements that encode the character of the crystal in
their weights.
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4.1. Extremal subsets of crystals

Given a connected, normal crystal B()\), recall that a weight vector is an extremal
weight if it is of the form w- A for some permutation w. Similarly, we say that an element
b € B(\) is extremal if its weight wt(b) is an extremal weight.

Recall from Definition 3.1 ;(b) = max{k € Zx¢ | e¥(b) # 0} and ¢;(b) = max{k €
Z>o | fF(b) # 0}. Henceforth, for any b € B()\) set f7(b) := ffi(b)(b) and ef(b) =

ors
€
x, whenever e; and f; are defined at x, we will often make use of the following differences:

)(b) whenever ¢;(b) and €;(b) are nonzero, respectively. In addition, for any vertex

Aigj(x) = g;(x) — j(ei(@)), Viej(x) = g;(fi(r)) — (), (4.1)
Aipj(x) == pj(ei(xr) —i(x),  Vip;(x) = @;(x) — @;(fi(z)). (4.2)

With this notation in hand, we briefly recall the axioms of Stembridge [44, Section
1] for regular graphs in type A. We refer the reader to [44] for a useful visualization of
these axioms.

Definition 4.1 (///]). A directed, colored graph X is regular if the following hold:

(P1) all monochromatic directed paths have finite length
(P2) for every vertex x, there is at most one edge x <~ y and at most one edge z AN z;
2 ifj=1
(P3) assuming e;(x) is defined, then Aje;(x) + Ajpj(z) =< —1 ifj=i+1 ;
0 ifli—j|>2
(P4) assuming e;(z) is defined, Ae;(z), Ajp;(x) < 0 for j # 4
(P5) Ajej(z) =0= esej(x) =ejei(xr) =y and Vg, (y) = 0;
Vigj(x) = 0= fifj(x) = fjfi(z) = y and Ajei(y) = 0.
(P6) Ajej(z) = Ajei(z) = -1 = eie?ei(x) = ejelej(z) = y and V,p;(y) = V,pi(y) =
—1;
Vipj(x) = Vipi(z) = =1 = fifi fi(x) = fif} fj(x) = y and Aigj(y) = Ajei(y) =
—1.

Using these axioms, we show extremal weight elements sit at the ends of their i-strings.
Proposition 4.2. If b € B()) is extremal, then for each i, either ¢;(b) =0 or g;(b) = 0.

Proof. Let uy be the highest weight element. Then e;(uy) = 0 for all ¢ ensures that
g;(b) = 0 for all i. Now suppose b € B(\) has weight w - A and assume the result holds
for all extremal elements of weight v - A with ¢(v) < ¢(w). In particular, we can find v
so that w = s; - v for some j and consider y = €(b), which by the induction hypothesis
is an extremal element and for every i satisfies either ¢;(y) = 0 or g;(y) = 0. Clearly,
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@;(b) = 0. If | — j| > 1 then by (P3) we know that V;&;(y) = V,¢;(y) = 0 and thus
gi(y) = 0 or p;(y) = 0 implies that €;(b) = 0 or ;(b) = 0, respectively.

If |4 — j| = 1, then without loss of generality let j = ¢ + 1 and suppose &;(y) # 0.
By Definition 3.1(2) wtit1(ej(y)) = wti(e;j(y)) — ei(y) and since b = f;(y) then
wtipo(ef(y)) = wti(ef(y)) — ¢;(y). I fi(b) = 0 we’re done, so assume otherwise.
Computing the weight of f(b) we see that wt;12(ef(y)) = wtir1(e}(y)) — pi(b). Com-
bining all three equalities gives us that ¢;(y) = &;(y) + ¢i(b) > €;(y). Since by (P3)
Ajei(x)+Ajpi(x) = —1 for any x € B(\), the previous inequality implies that e;(b) = 0.
Lastly, since by (P4) A,e;(b) < 0 then ¢;(b) < ¢;(y) and thus £;(b) = 0 whenever
gi(y)=0. O

Given any normal crystal B(\) and any subset X of B(\), we consider the induced
subgraph on X that includes all edges z — y whenever z,y € X. Similarly, we allow
X to inherit the weight map from B()). Given that we will be dealing with subgraphs
X C B(X) we will need to differentiate between the string lengths of a vertex = € B(A),
as measured by ¢;(x) and ¢;(x), and length of the strings actually included in X. Hence,
we will often encounter = € X satisfying o;(z) > 0 in B()A) for which f;(x) ¢ X. For
this reason ¢; and e; will always measure the original string lengths in B(\). We are
especially interested in two special classes of subsets.

Definition 4.3. Given a connected, normal crystal B()), a subset X C B()\) is extremal
if

(D1) ux € X, where uy is the highest weight element of B(\);
(D2) for z € X and 1 < i < n, if ¢;(x) # 0, then e;(z) € X;
(D3) for x € X and 1 < i < n, if f;(x) # 0 and f;(x) ¢ X, then e;(z) ¢ X.

Informally, an extremal subset contains the highest weight element and contains either
all elements of an i-string, no elements of an i-string, or only the top element of an i-
string.

Though we will not require the full power of Stembridge’s axioms here, his conditions
impose certain constraints on the string lengths of certain subgraphs inside B(A) which
are crucial in our study of extremal subsets. We proceed with these technical observations
illustrated in Fig. 10.

Proposition 4.4. Suppose y € B(X) satisfies Aiej(y) = —1 for |i — j| = 1. If f;i(y) is
nonzero, then

(i) Vjpi(y) = -1,
(il) Avei(fifi(y) = Ajeilfifi(y)) = —1, and
(it)) Vigpj(eie;(y)) = 0.
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Fig. 10. A diagrammatic interpretation of Proposition 4.4.
Proof. Since Ajej(y) = —1 it follows by (P3) that A;p;(y) = Vigj(ei(y)) = 0, so

fiei(y) # 0 and by (P5) £;(y) = fifsei(y) and Agei(f;(y) = 0. Again by (P3), this
implies that Aj;;(f;(y)) = V,pi(y) = —1 proving statement (3).

Now, since Ajp;(fj(y)) = —1 then ¢;(fj(y)) > ¢i(y) = 0 and so f;f;(y) # 0. If
Nie;i(fifi(y)) = 0 then by (P5) it would follow that V,p;(y) = 0 contradicting (4);
likewise for V;¢;(y) = 0. Thus, Ae;(fif;(y)) = Ajei(fif;j(y)) = —1 proving (4i).

Lastly, for (iii) observe that if either V;p;(e;e;(y)) = 0 or Vpi(eej(y)) = 0
then by (P5) necessarily f;fjeie;(y) = y which is false by (iz) above. Hence by (P3)
Vpi(eie;(y)) = —1 and V,e;(eie;(y)) = 0, or equivalently Aje;(fjee;(y)) = 0, which
by (P5) implies V;p;j(e?ej(y)) =0. O

Proposition 4.5. Suppose x € B(\) and Vp;(x) = 0. For any integer s > 0, if f; fi(z) #
0 then Vip;(f:(z)) = 0.

Proof. Since V;p;(x) = 0 then by (P5) fif;j(x) = f;fi(z) and so ¢;(z) = ¢;(fi(x)).
Thus, ¢;(f;(@)) = @;(fifi(x)) = @;(fif;j(x)) implying that Vip;(f;(z)) = 0. So
now suppose that V;p;(fj(z)) = 0 for all 0 < r < s — 1 so that fifj(z) =
fjfifjfl(x) = fifi(z) and thus, goj(f]‘?*l(x)) = wj(fifjfl(x)). Once again, since
0i(fi(x)) = @;(fifif; ' (x)) = @;(fif; (x)) implying that Vp;(fi(z)) =0. O

For clarity, in the subsequent lemma we will make use of the following terminology.
Given a vertex b € B(\) satisfying f; f;(b) = f;fi(b) we refer to the subgraph containing
the four vertices b, f;(b), f;(b) and f;f;(b) and the four corresponding 7, j edges as a
commuting square. Analogously, if instead f; ff fi(b) = f;f2f;(b) then we refer to the
corresponding subgraph of eight vertices and i, j edges as an sly-hexagon.

Lemma 4.6. Suppose x € B(\) satisfies e;(x) = e;(xz) = 0 and ¢;(x), pi(z) > 0. Let G,
denote the mazimal connected subgraph of B(\) generated by x under the action of f;
and f;.

(a) Ifli—j| > 1 then f] f5(x) = f5 f{ () € Gy for any j(x) =5 >0 andgpl( )y=7r>0.
(b) If li— | =1 then f7 f7 (@) = f; f7 7 (@), where ff f1 7 (x) = £ pr o)
ffi(m)(x) and ffi fj(x) = ffi(w)ffi(wH% ffJ(gC)(x) Moreover, there exists a
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subgraph of G, with the same boundary that can be tessellated by sla-hexagons and

commuting squares.

Proof. Suppose |i — j| > 1, then by (P4) and (P3) every square consisting of
1,7 edges commutes and thus G, is a diamond with boundary edges given by
IL(@), 7 fi (@), 7 (x), £7 f; (¥) where p;(z) > s > 0 and p;(z) > r > 0 such that
[Lf7(x) = f] fi () for all such 7, s.

Now suppose that |¢—j| = 1. Since S,, acts on the weights of the vertices by permuting
the entries and e;(z) = e;(z) = 0 then wt(f; f7 (z)) # wt(f; f; (x)) implies these vertices
cannot possibly be the same. Thus, f; f; f7(z) = f; f; f; (z). In particular, since e;(z) =
0 then by (P4) it follows that e; f7(x) = 0 for all ¢;(z) > s > 0 and so by (P3) we must
have o;(f77(x)) = ¢;(fi(2)) + 1. Thus, ;(f7 (z)) = @i(x) + ¢;(x). Swapping i,j we
obtain the alternate statements so that all together the string lengths of the boundary
of G, follow.

To prove the final statement we note that by exchanging the roles of i,j and f;,e;
the analogous statements from Propositions 4.4 and 4.5 can be made for y € B(\)
satisfying V;p;(y) = —1 with e;(y) # 0. Diagrammatically, these correspond to flipping
the diagrams in Fig. 10 and reversing the arrows. With these generalizations in hand
we directly construct a subgraph of G, out of commuting squares and sly-hexagons
whose boundaries are precisely the edges between =z, f (), f fi(x), fi (), fi f}(z) and
[ 17 fi(z) as follows:

(1) Draw the outer ¢,j edges with strings length ¢;(x),p;(z) and ¢;(z) + ¢;(z) as
detailed above.

(2) Starting with = and iteratively using part (i) from Proposition 4.4, draw as many
sly-hexagons as possible before intercepting the lower boundary (for ¢;(x) > ¢;(z)
the exact number of hexagons will be H := LMJ).

(3) Using part (i4) from Proposition 4.4 add sly-hexagons to the left and right of the
hexagons drawn in the previous step and then iterate with the newly drawn sl,-
hexagons, filling as much space as possible within the boundary of the graph (this
will add exactly H(yp;(z) — ¢;(z) + H — 1) new hexagons).

(4) Using part (i4i) of Proposition 4.4 include the commuting squares in the outer corners
of the sly-hexagons (giving 2(¢;(x) + ¢;(x) — 2) squares).

(5) Lastly, using Proposition 4.5 fill in the remaining space inside the boundary of G,
with commuting squares (this adds exactly (¢;(z)—1)(¢;(z)—2)+(¢;j(z)—1)(¢;(x)—
2) new squares).

By following these steps, the resulting subgraph of G, has boundary given by the
boundary of G, and is tessellated by exactly H(p;(x) — ¢;(z) + H) sly-hexagons and
2i(2)(i(@) = 1)+ () (9 () — 1) commuting squares. O
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Fig. 11. The step by step construction of the tessellated subgraph of G, for ¢;(z) = 2 and ¢;(z) = 4. At
each step the newly added arrows are bolded for emphasis.

Example 4.7. Suppose z € B(\) satisfies the conditions of Lemma 4.6 for |i — j| =
with ¢;(z) = 2 and ¢;(z) = 4. In Fig. 11 we can see each step of the construction of
the subgraph of G, where H = 2 and the total number of slo-hexagons and commuting
squares is 8 and 14, respectively.

Proposition 4.8. For A a partition of length n and w a permutation of S, the Demazure
crystal By (A) is an extremal subset of B(\).

Proof. Suppose w has length one so that B, (A) = ®;(uy) for some 1 < i < n. Then, by
definition, conditions (D1)-(D3) will hold. We proceed by induction on the length of w.

Suppose B, (A) is extremal for any v of length at most m — 1. If w has length m
then By, () equals ©;9,(uy) for some v of length m — 1 so that ©,(uy), equal to
0,9, ...D;, _, (uy) for some reduced expression sy, ...s;,  of v, is an extremal subset
of B(A).

It is obvious that uy € By, ()A), proving (D1). Suppose x € B, (A) and e;(x) # 0. Ifi = 5
then by the definition of a Demazure crystal it follows that e;(x) € By, (). If |i — j] > 2
since €} (x) € D, (uy) then by axiom (P5) we have e;(e}(z)) # 0. Moreover, since D, (u)
is extremal then necessarily e; (e} (z)) € D, (uy), which since e; (e} (z)) = €] (ei(z)) implies
that e;(x) € D, (uy). If [i—j| = 1 then axiom (P6) guarantees that e;(e} (x)) # 0 so by the
induction hypothesis either e;(e}(z)) = e}(ei(z)) € D, (ux) or e;‘efe;‘(x) = ejeje;(z) €
D, (uy). In the first case, it is clear that e;(z) € ©,;(D,(ux)). In the second case, this
implies there is some reduced expression of v satisfying i; = ¢ and i = j so that
Byw(A) =9,9,9;9,,...9,, ,(ux). In particular, this means there is a y € D, (uy) for
which e (y) = ejej e} (x). However, since eje; (r) = y then e} (z) € D;(D,(uy)). In either
case, (D2) is satisfied.

Now suppose x € B, (), e;(x), fi(x) # 0 and e;(x) € By, (A). Clearly, if ¢« = j then
fi(z) € Byy(N). If [ — j| > 2 then since efe;(z) and e} (z) € D, (uy), it follows by axiom
(P5) and the induction hypothesis that e fi(z) = fi(e] (7)) # 0 and fi(e}(z)) € D, (uy).
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Thus, f;(z) € By(A) proving (D3). The remaining case, when |i — j| = 1, follows from
axiom (P6) and the induction hypothesis by similar arguments to the ones above. O

Recall that highest weights uniquely characterize normal gl, crystals. In contrast,
for a fixed partition A of length at most n, every Demazure subcrystal B, (\) has the
same highest weight, namely \. Thus, we need additional information to begin to classify
Demazure crystals.

Definition 4.9. Given a subcrystal X C B of a normal gl,, crystal, an element x € X is a
lowest weight element of X if for every i =1,2,...,n—1 either f;(z) =0 or f;(x) ¢ X.

The full crystal B()\) has a unique lowest weight element, which has weight the reverse
of A and is the only vertex in B(A) to satisfy ¢;(x) = 0 for all 4. In contrast, for any
X G B()\) any lowest weight element x of X will satisfy ¢;(x) > 0 for some i. In
particular, a Demazure subcrystal B, (\) can, in general, have multiple lowest weight
elements. For example, the Demazure crystal Bag13(2,2,1,0) shown in Fig. 9 has two
lowest weight elements. In order to differentiate between the multiple lowest weights of
a given subset we introduce the following notion.

Define the dominance order on weak compositions of length n by a < b if and only if
for every k =1,...,n, we have

a1+a2+'~+ak<b1+b2+~~-+bk. (43)
Using this, we justify our nomenclature for extremal subsets with the following.

Proposition 4.10. Any extremal subset X C B(A) is connected. Moreover, if x € X is a
lowest weight element then either x is extremal or there exists an extremal lowest weight
element z € X such that wt(x) > wt(z) in dominance order on weak compositions.

Proof. Suppose X C B(\) is extremal. Then for any « € X such that z # uy there exists
1 < i < n for which e;(x) # 0. Since X is extremal then e¥(x) € X for all N > 0 for
which e\ (z) # 0. Thus, there is some sequence i1, . .., i such that €} e} ...e} (z) = ux.
Since this holds for any x € X, then X is connected.

Suppose, in addition, that x is a lowest weight element of X and thus f;(z) = 0 for all
i. If in B(A) p;(x) = 0 for all 4 then z is the unique lowest weight element of B(\) and
clearly extremal. Hence, for any other vertex there must exists an ¢ for which p;(x) # 0.
Consequently, if z is not extremal then for any reduced path €] e;, ...e7
exists 1 < r < k for which f; _ e; ...ef (z) # 0. By iterated applications of axioms

(z) = uy there

(P5) and (P6) one can see that since x is not extremal then there must exist a y € B())
such that y = f7 ... f5 fi,_,ef ...ej (z) with wt(z) > wt(y). Moreover, combining
conditions (D2) and (D3) with the following two facts for r < s < k ensures that y € X.
Namely, (1) by Lemma 4.6(a) when [i,_1 — 5] > 1 all squares between i,_; and is-

strings commute, and (2) when |i,_1 — 5] = 1 the is-strings in the tessellated subgraph
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in Lemma 4.6(b) contain commuting squares between them. Iterating this procedure
for each such y will eventually terminate in an extremal lowest weight element z € X
satisfying wt(x) > wt(z). Thus, every lowest weight element of X is either extremal or
is higher in dominance order than some other extremal lowest weight element of X. O

4.2. Local characterizations

While the unique highest weight does not uniquely characterize a Demazure crystal
and lowest weights themselves are not unique, each Demazure crystal has a unique
lowest weight element at the lowest level of the crystal. Moreover, this element uniquely
determines the Demazure crystal.

Definition 4.11. Given a subcrystal X C B of a normal gl,, crystal, an element z € X
is a Demazure lowest weight element of X if it is a lowest weight element of X and for
every other lowest weight element y € X, we have wt(y) > wt(z).

The following result follows from the triangularity of Demazure characters with respect
to monomials and the fact that dominance order refines lexicographic order.

Proposition 4.12. The Demazure crystal B, (\) has a unique Demazure lowest weight
element z with wt(z) = w- \.

Recall the length of a permutation w € S,,, denoted by ¢(w), is the minimum number
of simple transpositions needed to express w. The weak Bruhat order on S,, is defined by
u =< v whenever v = s;, ---s;,u and £(v) = k + £(u). The Demazure modules {V.}},cw
form a filtration of the highest weight module V* compatible with weak Bruhat order
on W; that is, w < w’ if and only if V) C V. Translating this to Demazure crystals
gives the following.

Proposition 4.13. Let u,v be permutations that act faithfully on a dominant weight \.
Then By () C By(A) if and only if u < v.

Proof. Reduced expressions for a permutation w are in one-to-one correspondence with
maximal chains in the weak order from the identity to w. It is well-known (e.g. see [34,
(1.17)]) w =< v if and only if for any reduced expression s;, ---s;, for v there exists a
subsequence (i, ...,%1) of (ji,...,Jj1) such that s;, ---s;, is a reduced expression for u.
The filtration of Demazure crystals now follows from Eq. (3.12) and Eq. (3.14). O

In particular, combining Propositions 4.12 and 4.13 gives the following.

Corollary 4.14. If u <X v in the weak order on permutations and both act faithfully on a
dominant weight X, then u -\ > v - A in dominance order on weak compositions.
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Fig. 12. An illustration of both axioms (D4) and (D5b) (left) and axiom (D5a) (right).

We now refine our notion of extremal subsets to correspond to Demazure crystals.

Definition 4.15. Given a connected, normal crystal B()), a subset X C B()) is Demazure
if it is extremal and for any extremal elements x,y € X the following conditions hold
(see Fig. 12):

(D4) For [i—j| > 1,if e (z) = €j(y) € X, then f;(x) and f;(y) are nonzero and contained
in X. Moreover, if fi(x) # 0 and fi(y) # 0 for some |k —i| = |k — j| = 1 then
Jofi (@) #0.

(D5) For |i —j| =1,
(a) if ejej(y) =z and f;(z) # 0 then f;(z) € X.
(b) if €j (z) = €] (y) then either fi(y) or f;(z) € X. If both f;(y) and f;(z) € X

then f7 f*(z) = f; fi(y) € X.

(D6) For [i —j| = 1, if €] (x) = ejef(y) and f} ... f} (r) € X for some path for which

no reduced expression s;, ...s;, satisfies s;, = j, then f} ... f*(y) € X.

n

To begin to justify our definition, we have the following.
Theorem 4.16. Any Demazure crystal B,,(A\) C B(\) is a Demazure subset.

Proof. By Proposition 4.8 any Demazure crystal B,,(\) is an extremal subset of B(\).
Thus, without loss of generality suppose x,y € B, ()) are extremal elements and that
z € By(A) is such that z = e} (z) = €}(y). By Proposition 4.2 it follows that z is also
extremal.

The first part of (D4) follows from axioms (P5) and (P6) in [44]. For the second part,
without loss of generality assume ¢ < j so j =i+ 2 and k =4+ 1. Since z is extremal,
then there exists some reduced subword w’ < w such that z € ®,, (uy) C By, (\) where if
w' = s, ...s;, then f ... fi(ux) = 2. Now since fiy1(x) and fi11(y) are both nonzero
and x,y are extremal, it also follows that s;1s;w’ and s;418;1 0w’ are reduced subwords
of w. Thus, ©;+19;D (uy) and D;110,;42D,(uy) are also contained in B,,(A). More-
over, because by the first part of (D4) we also know that ;120D (uy) C By(N)
then it follows that ©;110;9D,2(uy) C By(N). Finally, since f;+1(z) and fiy1(y) are
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nonzero then ¢;y1(f;% 5(x)) # 0, which combined with the previous statement implies

fiv1fio(x) # 0 as desired.

Conditions (D5) follow from the following observations. If z is an extremal element
of By (A) with €;(z) = ej(2) = 0 and f(2), f;(2) # 0, then for any reduced expression
Siy - - - 8i, of wthere is a sub-expression s;, ...s;, for some k such that z € ®;, ... D;, (uy)
and f; (z) = 0 for all 1 < a < k. Suppose s;_s;,8;, is a subword of s;, ...s;, with
k < c¢<b<a<nand denote by G, the subgraph of B,,(\) generated by the action of
fi and f; on z. Then one of the following situations must hold.

(1) If there exists a subword for which i, = 4,4, = j and i. = i, then G is the subgraph
with highest weight element 2 and lowest weight element f7 f7 f (z) and whose edges
given by all the i-strings and j-strings connecting these two vertices.

(2) If for any such subword, i, # i for any a but i, = j and i, = ¢, then G, is the
subgraph with highest weight element z, lowest weight elements { f f(2) }o<s<ei(2)s
with the edges connecting them and all commuting squares between these edges, as
outlined in the tessellation in part (b) of Lemma 4.6.

(3) If for any subword, i, # i and 4, # j for any a and b but i. = 4, then G, is the full
irstring {£2()}s30.

(4) If for any subword, i, # 4,4, # j and i. # ¢ for any a, b, ¢ then G is the single vertex
{2z} with no edges.

By Lemma 4.6(b) it directly follows that both parts of (D5) are satisfied by each of the
four cases above.

Finally, (D6) follows from the relations of the symmetric group and axioms (P5) and
(P6) in [44]. Namely, if z,y are extremal, ef(z) = eje;(y), and « is some path with
reduced expression s;, ...s;, such that f* ... f*(x) € By()), it follows that B, (\) =
D, 0;9,;D!,(A) where x and y are lowest weight elements of ©,0,9/ (\) and « is a

w

sub-expression of w”. If no reduced expression for « satisfies s;, # j, then (a - s;)s; #
sk(a - s;) for any k and thus there exists no path in B, (\) satisfying fi fi ... fi (z) =

s
track of the weights after each application of the lowering operators, one can see that

*

(y). Moreover, by iterated applications of axioms (P5) and (P6) and keeping

& ... fi(y) # 0. Combining this with the fact that o is a sub-expression of w” implies
that f7 ... ff(y) € By(A) as desired. O

in

In order to prove the converse of Theorem 4.16, we begin by noting that every De-
magzure subset has a unique lowest weight at the lowest level.

In anticipation of the following proof, we recall that a crystal can be regarded as a
partially ordered set with a < b if there exists a sequence of lowering operators f;,, ..., fi,
such that a = f;, - -« fi, (b). Regarded as such, a connected gl,,-crystal is a lattice, meaning
each pair of elements a,b has a unique join (least upper bound), denoted by a V b, and
a unique meet (greatest lower bound), denoted by a A b.
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Fig. 13. Case 1.1 for the proof of Lemma 4.17.

Lemma 4.17. For any Demazure subset X C B(\) there exists a unique lowest weight
element Z satisfying wt(xz) > wit(Z) in dominance order for any other lowest weight
element x € X. In particular, Z is extremal and hence if x is also extremal then wt(zx) <
wt(Z) in Bruhat order.

Proof. Consider the set of lowest weight elements of X. By Proposition 4.10 it suffices to
consider only those weights which are extremal. Suppose X does not have a unique lowest
weight element as asserted. Since extremal weights form a poset under Bruhat order, then
there must exist extremal lowest weights z,y € X for which wt(b) < wt(x) = wt(y) for
any other extremal element b € X. Consider wt(z) A wt(y) in the Bruhat graph of the
extremal elements of X. A straightforward application of axioms (P5) and (P6) in shows
that the element v € X satisfying wt(u) = wt(z) A wt(y) must also be extremal. Let

Siy ... 5, and sj, ...s;, be reduced expressions for the paths from = and y to u, so that

* *

*
i€ -

e (x)=¢}, ...€; (y) = u
Case 1: Assume for any reduced expressions s;, ...s;, and s;, ...s;, the relation |i; —
j1| = 1 always holds. Suppose there exists no paths for which iy # j; and jo = 45.
— If |iy — 42| > 2 then it follows that |ia — j1| = 1. If |jo — j1| > 2 then
‘jg —i1| = |]2 —7;2‘ = 1. Since |j1 —i1| = |]1 —ill = ]., then jl = j2 which is
clearly impossible since s;, ...s;, is reduced.
— If iy —i2] = 1, since jy # ig if |j1 —Jj2| > 2 it follows that jo = i5. Hence, there
exists a reduced expression for the path from u to y satisfying ji = iz, which
contradicts our assumptions. If |j1 — j2| = 1 by (D5b) either f7 f7 (u) € X or

i1

¥ fx
21771
there is reduced expression satisfying ji = is.

(u) € X. In either case, since |j; — is| = |i1 — j2| = 2 this again implies

Thus, if |i; — 71| = 1 for all possible reduced expressions, then there is at least one
such expression for which js = i1 or io = j1. So then, without loss of generality,
suppose iz = ji.

(1) If jo # i for any such path then by (D6) there is a ' € X satisfying

ef € -..e; (y') = u. However, this implies that wt(y) < wt(y’) which con-

tradicts y being a Demazure lowest weight element of X (see Fig. 13).
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Fig. 14. Case 1.2 for the proof of Lemma 4.17.

(2) If jo = o for some path, since is = ji, then by (D5) we must have
o[ o (u) = I *( ) € X. If j3 = ji1, then wt( 5 o (u) = wt(x) A
wt(y) = wt(u), which is impossible. Clearly, if i3 = i; an analogous con-

tradiction arises. Thus, i3 # 41 and jz # ji. So let v’ = f7 f7 (u) and

1

u" = f [ (u) (see Fig. 14). ’

(a) Suppose every reduced expression of the paths from u' to z or u” to y
satisfies |i3 — i1| = 1 or |j3 — j1| = 1, respectively.

(1) I frfo (') or f7 fF (u”) € X, since either [j3—i1| = 2 or |iz—j1| =

2, by (D4) it follows that f7 f (u) or f7 fF (v) € X. Moreover, by

J3
(D6) this implies that either f7 (u”) = f f} f} (u) € X or f} (u') =
;3 Jikl Z*l (u) € X and so, fl*s Jikl (u") = 3 i*l (u') or ;3 1*1 (u) =
* f5 (u") are also in X. Thus, we may iterate Case 1 with v’ or u”
in place of u.
(ii) If either f I

with u' or v” in place of u, respectively.

& (u') or (u"”) € X, then we can iterate Case 1

(b) Suppose there exist reduced expressions for the paths from u’ to x or

" to y satisfying |i3 — 11| 2 or |j3 — 71| = 2. In this case, we proceed
to Case 2 with v/ or v” in place of u, respectively.
Case 2: Suppose there exist reduced expressions s;, ...s;, and sj, ...s;, for the paths

from z and y to u satisfying the relation |i; — ji| > 2.

(1) Suppose i # j1 for any k. If |i, — j1| > 2 then by (D4) this would imply
that f;, (z) € X, which contradicts y being a lowest weight. Thus, there
must exist some maximal r for which |iy — j1| > 2 for all 1 < k < r but
lir —j1| = 1. Set u' := f ... f#(u) (see Fig. 15).

(a) If f f;‘l( u') € X then any path from it cannot terminate in y, since this
would contradict u satisfying wt(u) = wt(z) A wt(y). Thus, the longest
possible path out of u’ that passes through f; f* (v’) must be shorter
than the path from v’ to y and hence we can 1terate Case 1 with v’ in
place of w.
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Fig. 15. Case 2.1 for the proof of Lemma 4.17.

(b) If f f# (u') ¢ X, then by (D5) f7 f7 (u') € X. Since j1 # 4,41 then by
c0n51der1ng |ir+1 — 71| we can iterate Case 1 or Case 2 as needed, with
u’ in place of u. Clearly, if ji # i1 for any k an analogous result holds.
(2) Now suppose every reduced expression satisfies 7,, = j; for some r and j, = i3
for some s. Then we can choose paths such that r and s are minimized. As
an immediate consequence |j; — i,—1| = |js—1 — i1] = 1, else the minimality
of r and s would be violated. Moreover, if k < r is the largest index for which
lix —ik—1] = 2 then it follows that |ig_1 —i¢| > 2 for all k < t < r. However,
this implies there exists some reduced expression s;; ... s;, for the same path
for which i/._; = j; which contradicts the minimality of r. Thus, iy, = ix—1+1
and jg = jrr—1 — 1 (or vice versa) for all 1 < k < r and 1 < k' < s. Since
ir = j1 and js; = i1, then without loss of generality if we assume i; < j;
theniy =j1 —r+1land jo, =751 —s+1limply s=rand ix =51 —7+k
for all 1 < k < r. In particular, |j1 —ig| =71 — (1 —r+ k)| =|r—k|l > 2
whenever k < r — 2. Likewise, |j2 — x| = 2 for k < r — 3.

Therefore, setting v’ := f ... f (u) by (D4) it follows that f;  fr (v') €
X. It is clear the analogous situatlon holds for v := fr ... ]1( ) In this

way we can obtain a sequence of elements in X that lie higher in Bruhat
order than v’ and u”. Moreover, since i,_1 = j; — 1 and j,_1 = 71 — 1 then
we can proceed to Case 1 by replacing u with «’ and u”, respectively. (See
Fig. 16)

Thus, by iterative applications of Case 1 and 2 we can eventually find an element v’
on the path between v and x or w and y which satisfies Case 1.1 and yields the desired
contradiction. That is, if x,y € X are extremal lowest weights with wt(xz) = wt(y), then
there is a z € X also extremal satisfying wt(z) < wt(z) in Bruhat order. Since X is
finite, then this implies X has a unique Demazure lowest weight element. O

Finally, we have our main result of this section.
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Fig. 16. Case 2.2 for the proof of Lemma 4.17.

Theorem 4.18. For any Demazure subset X C B(\) there exists w € S, such that X =
By (N). That is, any Demazure subset of a normal crystal is a Demazure crystal.

Proof. By Lemma 4.17 the set X contains a unique Demazure lowest weight satisfying
wt(Z) < wt(b) in dominance order for any b € X and wi(r) < wt(Z) in Bruhat order
for any other extremal lowest weight x € X. Hence, if y € X is any extremal weight
with wt(y) = o - A then since wt(y) < wt(Z) in Bruhat order, if wt(Z) = w - A it follows
that o < w. Since by Definition 4.15 X is an extremal subset and thus closed under the
action of e;, it follows that X = B, ()), the Demazure crystal with highest weight uy
and Demazure lowest weight Z. O

4.8. Demazure lowest weights

Highest weight elements are extremely powerful since they uniquely characterize nor-
mal crystals, immediately determine the character, and are easily found from a vertex of
the crystal by applying any sequence of raising operators. In contrast, Demazure lowest
weight elements satisfy the first two conditions but lack the essential property of being
easy to find by applying arbitrary sequences of lowering operators.

In order to find the Demazure lowest weights of a Demazure crystal algorithmically,
we consider certain sequences of lowering operators that may be applied to elements of
extremal subsets.

Definition 4.19. Let X C B(\) be an extremal subset of a normal crystal. For i < j and
b € X, define an operator FJ; ;) on X by

Fi (b)) = [{fidt - 157 () (4.4)

where 7, = @ (Flg41,51(b)) if fr.(Flr41,5(b)) € X and otherwise 7 = 0. We say Fj; ; acts
faithfully on b if i, > 0 for each ¢ < k < J.
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In other words, FJ; ; applies lowering operators sequentially from f; down to f; with
each applied as many times as possible without annihilating the element or leaving X,
and this is faithful if it can be done with each f;* acting nontrivially.

We use these composite lowering operators to find the Demazure lowest weight element
from the highest weight element by the following algorithm.

Definition 4.20. Given a connected Demazure crystal B, define an element Z € B by
the following procedure. Set Xg to be the (unique) highest weight element of B, and for
k > 0, do the following

(1) if Xj_1 is a lowest weight, then set Z = X;_; and stop;
(2) otherwise, set X = Fl;, j,1(Xk—1) where
(a) ix is minimal among all 4 for which there exists j > i such that Fj; ;; acts
faithfully on Xj_1, and
(b) jx is maximal among all j > i) for which F};, ; acts faithfully on Xj_;.

In [2] (Proposition 2.4), Assaf shows every permutation w has a unique reduced word
7 characterized by the properties that, when writing 7 = (7(®)|---|7(1)) such that each
subword 7(?) is an increasing subsequence of maximal length,

(1) each such subsequence 7(*) is an interval of integers, and
(2) the smallest letters in each subsequence decrease from left to right, i.e. min(7(*) >

min(ﬂ(i_l)).

Such a word is called super-Yamanouchi [2] (Definition 2.3). For example, the word

SOOI e ey
~ N AN /N
(5,6,7]4,5[3,4,5,6|1,2,3)

is the super-Yamanouchi reduced word for the permutation 41758236.

Lemma 4.21. Let B,,(\) be a Demazure crystal, and let uy be the highest weight element.
Let 7 be the super- Yamanouchi reduced word for w, and write m = (x®) |- |71 for the
decomposition of T into increasing subsequences of maximal length. Then for all i < k,
F

Gy acts faithfully on Fox-1y 0.0 F_ ) (uy).

Proof. From Proposition 4.2, for X C B(\) an extremal subset, if b € X is an extremal
element and Fy; ; acts faithfully on b within X, then Fj; ;;(b) € X is an extremal element.
The result now follows from Definition 3.14 and Eq. (3.13) since 7 is a reduced word for
w. O
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In fact, the sequence F, ) o --- o F_q)(uy) is precisely the result of Definition 4.20.
Thus we always have a canonical sequence of lowering operators that will terminate at
the Demazure lowest weight.

Theorem 4.22. For B a connected Demazure crystal, the element Z € B determined by
Definition /.20 is the Demazure lowest weight of B.

Proof. Consider the Demazure crystal B, (\). Let 7 = (7] ... |7()) denote the de-
composition of the super-Yamanouchi reduced word for w into increasing subsequences
of maximal length. We proceed by induction on k. If £k = 1, then 7 is an increasing
interval, say m = (i, + 1,...,7j) for some ¢ < j. In this case, fr(uy) ¢ By (M) for any
h & [i, j]. Therefore the only intervals [', j'] for which Fj;s ;1 acts faithfully are contained
in [¢, j], so by Lemma 4.21, since F; ;) acts faithfully on wuy, the result of Definition 4.20
is Z = Fr(uy) as desired.

Now let £ > 1 and assume the result whenever the super-Yamanouchi reduced word
for w has fewer than k increasing intervals. Let v be the permutation with reduced
word 71 ...z Then 7=V ... 71 is super-Yamanouchi, and v acts faithfully on
A. Therefore by induction, the element Z’ € B,()\) constructed by Definition 4.20 for

B,(\) is given by Z' = F -1y 0 --- 0 F_)(uy). Since w = 7™y, we have v < w in
weak Bruhat order and so, by Proposition 4.13, we have B, () C By (\). In particular,
Z" € By(N).

From the characterization of super-Yamanouchi words, it follows that for each 1 <
i<k, if ﬂj@ denotes the j*" entry of 7 then

min(7(?) < min {W(s) [i4+1<s< k} : (4.5)
1< U

Therefore Z’ is the element constructed by the first k — 1 iterations of Definition 4.20(2)
since each min(7(") is minimal within B,,(\) as well. By Lemma 4.21, F_ ., acts faithfully
on Z', and since f(Z') ¢ Bw(\) for h ¢ 7(¥) the final step of Definition 4.20(2) will
result in Z = F_x)(Z') = Fr(uy) as desired. O

Parallel to the expansion in Eq. (3.4), we have the following tractable character for-
mula.

Corollary 4.23. For B any Demazure crystal, we have

ch(B) = > Rt (Z(u))- (4.6)

u€B
u highest weight

5. Demazure crystal on key tabloids

We now apply the tools and techniques of crystal theory to the specialized non-
symmetric Macdonald polynomials. In particular, we will define crystal operators on
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Fig. 17. An example of the 2-pairing on a semistandard key tabloid. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

semistandard key tabloids that generate a Demazure crystal, thereby giving a new com-
binatorial proof of Theorem 2.6 along with a tractable formula for the coefficients that
arise in the Demazure expansion of a specialized nonsymmetric Macdonald polynomial.

In §5.1, we define explicit raising and lowering operators on semistandard key tabloids
that are inverse to one another and change the weight in the prescribed way. In §5.2,
we shift our paradigm to Kohnert’s diagram model for Demazure characters in order
to obtain an injection from semistandard key tabloids to semistandard Young tableaux
that intertwines with the crystal operators. Then, in §5.3, we use the tools developed in
§4 to prove our operators define a Demazure crystal by showing that their image under
the map to semistandard Young tableaux is in fact a Demazure subset.

5.1. Crystal operators on key tabloids

Generalizing the crystal constructions on Young tableaux, we give a new proof of
Theorem 2.6 by constructing an explicit Demazure crystal on semistandard key tabloids.
To begin, we define a pairing rule that will determine the lengths of the i-strings.

Definition 5.1. For T' € SSKD(a) and 1 < ¢ < n an integer, define the i-pairing of the
cells of T with entries ¢ or ¢ + 1 as follows: i-pair together ¢ and ¢ + 1 whenever they
occur in the same column, and then iteratively i-pair an unpaired i+ 1 with an unpaired
1 to its left whenever all entries ¢ or ¢ + 1 that lie between them are already i-paired.

Example 5.2. For a = (0,0,0,0,0,10,12,0,8, 3), Fig. 17 shows the 2-pairing for the given
semistandard key tabloid. The paired entries are connected with red lines and the only
unpaired 3 is circled.

Definition 5.3. Given any T" € SSKD(a) and an integer 1 < i < n define the raising
operator e; on SSKD(a) whose action on T is as follows:

o if T' does not have any cells containing an unpaired ¢ + 1 then e;(7") = 0.
o otherwise, e; changes the rightmost unpaired ¢ + 1 to ¢ and
— swaps the entries 7 and ¢ + 1 in each of the consecutive columns left of this entry
that have an ¢ + 1 in the same row and an 7 above, and
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Fig. 18. An example of the raising operators applied to a semistandard key tabloid.

— swaps the entries ¢ and ¢ 4 1 in each of the consecutive columns right of this entry
that have an ¢ + 1 in the same row and an ¢ below.

Example 5.4. Let a = (0,0,4,0,6,2,2). Then e4 acts on cells with entries 4 and 5 as
shown in Fig. 18. At each step, the circled entries contain the unpaired 5’s and the red
highlighted entries are the columns on which e4 will act. As can be seen, each application
of e4 decreases the number of unpaired 5’s by one. When no more remain, then e, acts
by zero.

Note for any T € SSKD on which e; acts non-trivially, the consecutive sequence of
columns that will be affected by its action, which we henceforth call the affected columns,
will have entries ¢ and 7 4+ 1 distributed in a specific way, as illustrated in Fig. 19. The
following result collects useful facts about these affected columns.

Proposition 5.5. Let T € SSKD(a) and ¢ an integer such that e;(T) # 0. Then the
columns of T that are modified non-trivially by the action of e; will satisfy the following
properties:

i) The column of the rightmost unpaired i + 1 will have no cells with value equal to i.

i) For any two consecutive columns both of which contain a cell equal to i, the i in the
right column must be in the same row or higher than the i in the left column.

iii) The column immediately left of the leftmost affected column cannot have a cell con-
taining an unpaired i.

iv) The i+ 1 in the leftmost affected column cannot have a cell with value i immediately
to its left.

v) The column immediately right of the rightmost affected column cannot have any cells
with an unpaired ¢ + 1.

vi) The i+ 1 in the rightmost affected column cannot have a cell with value i +1 imme-
diately to its right.

Proof. We prove each point separately.

i) This follows from the definition of i-paring, since if such an ¢ existed then the leftmost
unpaired ¢ + 1 would be paired.
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If this is not the case, then both cells containing ¢ are attacking, contradicting T' €
SSKD(a).

If such a cell existed then by Definition 5.1 it would ¢-pair with the rightmost unpaired
i+ 1, which is a contradiction.

Consider the cell, say w, containing an i+ 1 in the leftmost affected column. Then if
the cell immediately to its left, say x, has value 4, then by (iii) this ¢ must be paired
with some ¢ 4+ 1 located in the same column and below it, say in cell y. Let z denote
the cell immediately to the right of y, which lies below w in the same column. If the
row of z is strictly shorter than the row of y, then since T' € SSKD(a), the type I
triple x,y, z must be oriented clockwise, so z must have entry ¢ + 1 and thus attack
w, contradicting that T is non-attacking. If instead the row of = is weakly longer
than the row of y, then the type II triple x, w, z must be oriented counterclockwise,
so z must again have entry ¢ + 1. Thus, the cell left of the leftmost affected ¢ + 1
cannot have value 1.

This follows since there can exist no unpaired 7 + 1’s right of the rightmost unpaired
v+ 1.

Consider the cell, say w, with value ¢ + 1 in the rightmost affected column of T', and
suppose the cell immediately to its right, say z, also contains i + 1. By (v),  must
pair with an ¢ located in the same column and above it, say in cell y. Let z denote the
cell immediately to the left of y, which lies above w in the same column. If the row
of y is weakly longer than the row of x, then since T' € SSKD(a), the type II triple
z,y,x must be oriented counterclockwise, so z must have entry i, a contradiction
since the ¢ 4+ 1 in the rightmost affected column is either unpaired or paired with an
1 below it. Thus the row of y is strictly shorter than the row of z, and from here
we will create an infinitely long row contradicting the finite number of cells of T'. In
particular, since the row of z is strictly longer than that of y, there is a cell, say z1,
immediately right of x and, since y, z, z; is a type I triple, 1 must have entry ¢ + 1.
Since x; lies right of the rightmost unpaired ¢ 4+ 1, z1 must pair with some cell y;
containing ¢. Since T is non-attacking, we must have y; weakly above y. If the row
of vy, is weakly longer than the row of z, then the cell, say z;, immediately left of
y1 must contain entry ¢, else z1,y1, 21 is a type II co-inversion triple. However, since
T is non-attacking, we must have z; = y, and we have already asserted the row of y
is strictly shorter than the row of x. Thus the row of y; is strictly shorter than the
row of z1. In particular, we may now repeat the argument to obtain x2, y2, 3, y3, - - .-
Thus we have a contradiction. O

Unlike the crystal operators on semistandard Young tableaux, the raising operator e;
semistandard key tabloids can invert the relative order of ¢ and i + 1 within a given

column, motivating the following definition.

Given any T € SSKD(a) and integer 1 < i < n such that e;(T) # 0, we say e; flips

T if its action on T changes an ¢ above ¢ + 1 in some column to an ¢ + 1 above . For
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Fig. 19. The layout of the consecutive columns of T' € SSKD(a) affected by e;. The rightmost unpaired i+ 1
of T is highlighted in red and contains no cells equal to ¢ in the same column. For any other two adjacent
columns, the row of the ¢ in the left column must be at the same height or lower than the row of the 7 in
the right column.

instance, in Example 5.4 the first application of e; does not flip the tabloid but the
second application of e, does.

From Definition 5.3, we see that for any T € SSKD(a), the action of e¢; on T is
restricted to cells with ¢ and ¢ + 1’s in a consecutive set of columns left and right of the
rightmost unpaired 7+ 1. As will be demonstrated in the following two lemmas, the very
specific distribution these columns satisfy (see Fig. 19) imposes certain restrictions on
the lengths of the rows containing ¢ + 1 and ¢ in each column.

Lemma 5.6. Let i be an integer 1 < i < n and suppose T € SSKD(a) has a cell with an
unpaired i + 1 in column ¢ and row r, for some c,7 > 1.

If T contains a sequence of consecutive columns immediately right of column c such
that each column has an i + 1 in row r and an i in some row below it, then row r is
weakly longer than the rows of all the i’s contained in the sequence.

Proof. Denote by {c+ s}1<s<m the maximal sequence of consecutive columns right of
column c¢ satisfying the conditions above, and for each column ¢ + s, denote by r, the
row containing ¢. Notice s < r. We proceed by induction on s, noting the result is trivial
for s = 1.

First, suppose the row of r is strictly shorter than that of r;. Since any other value
would create a type I co-inversion triple, then the cell below ¢ + 1 in column ¢ and left
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of 4 in column ¢ + 1 must contain an i. This contradicts the i + 1 in column ¢ being
unpaired. Hence, 7 must be weakly longer than ry.

Now, suppose there is an s > 1 such that r is weakly longer than r,_; but is strictly
shorter than r,. Then the cell left of the ¢ in row r, and below the 7 + 1 in column
¢+ s — 1 must have value 4. Since no column may have two cells of equal value, this
implies s = rs_1. Thus, the row of r is weakly longer than that of r4, contradicting the
assumptions. O

Lemma 5.7. Let i be an integer 1 < i < n and suppose T € SSKD(a) has a cell with an
unpaired i + 1 in column ¢ and row r, for some c,r > 1.

If T contains a sequence of consecutive columns immediately left of column ¢ such that
each column has an i+ 1 in row r and an i in some row above it, then row r is strictly
longer than the rows of all the i’s contained in the sequence.

Proof. Once again, denote by {¢—s}i1<s<n the maximal sequence of consecutive columns
left of column c satisfying the assumptions above, and for each column ¢ — s, denote by
rs the row containing i. We proceed by induction on —s.

Suppose r is weakly shorter than r,,. Then, the cell immediately left of the i contained
in column ¢ — n must have value 7. However, since n is maximal, if such a cell existed it
would be paired with the i + 1 contained in column ¢, which is a contradiction.

If there exists s < n such that r is strictly longer than r,; but weakly shorter than
rs_1, then the cell immediately left of the i contained in column ¢ — s — 1 has entry i.
This implies s = rs_1, so that r;_1 is both strictly longer and weakly shorter than r,
which is nonsense. 0O

The specific distribution of the cells containing ¢ and ¢ + 1 exemplified in the previous
two lemmas is the key to proving that the raising operators e; are well defined on
SSKD(a). In order to do so we show that for any T € SSKD(a) on which e; acts non-
trivially, e;(T") has no attacking cells nor any co-inversion triples and has the same major
index as T

Lemma 5.8. Let T € SSKD(a) and 1 < i < n be an integer such that e;(T) # 0. Then
ei(T) has no attacking cells.

Proof. First consider the case of two cells located in the same column. If the column
contains both an ¢ and an i + 1, then e; will act by swapping these entries, and hence its
image will never have a column with two cells of the same value. Likewise, if the column
contains an unpaired ¢ + 1, then this column cannot contain a cell with value 7. Thus,
when e; sends this ¢ + 1 to 4 it will not be attacking a cell in the same column, so we
need only consider the case of attacking cells in adjacent columns with the cell on the
left strictly higher than the cell on the right.

If the left cell has value ¢ and the right cell has value i + 1 (see the left diagram in
Fig. 20), then e; acts non-trivially on these columns only if 4 is paired with an i+ 1 below
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Fig. 20. The different cases for the proof of Lemma 5.8.

it and immediately left of the 741 in the right cell. Since e; will act by exchanging these
entries, the image of these columns will remain non-attacking.

Suppose instead the left cell has value ¢ + 1 and the right cell has value i (see the
middle diagram in Fig. 20). If the top row is weakly longer then the entry immediately
right of the left cell must have value i + 1. Thus, if e; acts non-trivially on these columns
it must swap all ¢’s and ¢ + 1’s and consequently does not create any attacking cells.

If the top row is strictly shorter, then the entry immediately left of the right cell must
have value i (see the right diagram in Fig. 20). Moreover, if e; acted only on the right
column then the right cell containing an ¢ would be paired with an i + 1 above it, which
occurs only if there exists an unpaired i + 1 in some column to its left. However, by
the definition of e;, this implies the i + 1 above the right cell and the ¢ + 1 in the left
cell lie in the same row. By Lemma 5.6 this is impossible since this would mean the top
row is both weakly longer and strictly shorter than the bottom row. If e; acted on the
left column then once again by Lemma 5.6 this leads to a contradiction regarding the
relative lengths of the top and bottom row. 0O

Lemma 5.9. Let T € SSKD(a) and 1 < i < n and integer such that e;(T) # 0. Then
maj (e4(T)) = maj(T).

Proof. We will show that the set of cells ¢ for which the entry is greater than that to its
right is preserved by e;, which implies preservation of major index.

Consider a fixed row of T'. If no cell in that row changes from T to e;(7T"), then the
major index is trivially maintained. Suppose then that cells by,...,bx, & > 1, change
in passing from T to e;(T). By Proposition 5.5, these entries must lie in consecutive
columns, say with b; immediately left of b; . Let a denote the cell immediately left of
b1 and let ¢ denote the cell immediately right of by.

By the definition of e;, all entries in by, ...,b; of T must be equal, and e; will toggle
the values between i and i 4 1 so they are equal in e;(T") as well. Thus there is no decent
among by, ..., b; before or after applying e;. Therefore the only cases to be checked are
the potential descent from a to b; and from by to c.

If a < i, then a < 4,7 + 1 creating a descent in both T" and e;(T), and if @ > i + 1,
then a > i,i + 1 avoiding a descent in both 7" and ¢;(T'). By Proposition 5.5(iv), a # i,
so this resolves all cases for a.
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Similarly, if ¢ < 4, then i,i + 1 > ¢ avoiding a descent in both T and e;(T'), and if
¢>i+1, theni,i4+1 < ¢ creating a descent in both T and e;(T). By Proposition 5.5(vi),
¢ # i+ 1, so this resolves all cases for ¢. O

Lemma 5.10. Let T € SSKD(a) and 1 < i < n an integer such that e;(T) # 0. Then
coinv(e; (7)) = 0.

Proof. Suppose T' € SSKD(a) has two consecutive rows forming a triple. If only one of
the cells contains an entry equal to ¢ or ¢ + 1 but the other two cells do not then clearly
the action of e; on these columns will not modify the existing orientation and so the
image of T under e; will not contain co-inversion triples.

Now suppose the triple has two cells with value ¢ or ¢ + 1. By [18] (Lemma 3.6.3),
a co-inversion triple will never contain two cells with equal value, and so it suffices to
consider triples containing one cell with value ¢, one cell with value ¢z + 1, and one cell
with value x # i,i41. Hence, let T € SSKD(a) be such that e;(T") contains a co-inversion
triple with only one cell not equal to ¢ or ¢ + 1. We will show that such a 7" cannot exist
by considering each possible co-inversion triple of this form and deriving a contradiction.

Assume e;(T') contains a triple of type I, thus the bottom row is strictly longer than
the top row of the triple.

e Suppose i lies in the top cell, i+ 1 in the bottom left cell, and x in the bottom right
cell (see figure below). Then the only possible pre-image interchanges the ¢ and i+ 1.
However, if in T i 4 1 lies above ¢ in the same column then by Lemma 5.6 the top
row must be weakly longer than the bottom row, which is a contradiction.

i1

zolne

e Suppose i+ 1 lies in the top cell, x in the bottom left cell, and ¢ in the bottom right
cell. If in T the cells above and right of x were either both i or both i+ 1, they would
be attacking. Thus, T" must have an ¢ in the cell above x and an i+ 1 in the cell right
of z. This implies that in 7" the cell containing ¢ is paired with an ¢ + 1 below it in
the same column. By the definition of e;, the i 4+ 1’s in the adjacent columns must
lie in the same row so z = ¢ + 1. This is impossible since by assumption x # i + 1.

: or : or

NEnn=ME

e Suppose z lies in the top cell, ¢ in the bottom left cell, and ¢ + 1 in the bottom

i+1‘

right cell. If T' contained an ¢ in both cells of the bottom row, then this would
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imply the right column of the triple was the leftmost affected column of T. However,
by Proposition 5.5 (iii) there cannot be an unpaired ¢ left of the leftmost affected
column, hence this situation is impossible. If instead, T' contained an ¢ in the left
bottom cell and an 7 + 1 in the right bottom cell, then by Definition 5.3 e; would
not act on both columns. Thus this cannot be the preimage of ¢;(T"). Finally, if both
cells on the bottom row of T" had value ¢ + 1 then the left column of the triple would
be the rightmost affected column. By Proposition 5.5 (vi) this is impossible. Thus,
for any T' € SSKD(a) its image e;(T") will never contain a co-inversion triple of this
form.

: V : or : or :
Lide) L]

Now assume e;(T') contains a triple of type II, and thus the top row is weakly longer

i+ 1

o

i+1‘ ) ‘

than the bottom row of the triple.

e Suppose i lies in the bottom cell, i + 1 in the top left cell, and x in the top right cell.
If in T the cells in the triple left and below x both had value ¢ or 7 + 1, then these
cells would be attacking. Thus, T must have an ¢ right of x in the top row and an
i+ 1 below x in the bottom row. By Definition 5.3, the 7 in the top left cell must be
i-paired with an 7+ 1 below it and left of the ¢+ 1 below z. By Lemma 5.7 since i lies
above i+ 1 then the bottom row must be strictly longer. This is a contradiction since
by definition type II triples must have the top row weakly longer than the bottom

row.

=) [

;<—§OT‘EOTE

e Suppose z lies in the bottom cell, 7 in the top left cell, and i+1 in the top right cell. If
T had an i+ 1 in the top left cell and an 7 in the top right cell, then by Definition 5.3
and Proposition 5.5(v) e; would only act on left column, so this cannot be the

molng

preimage. If T contained an 4 in both cells of the top row then the right column of
the triple would be the leftmost affected column of T'. By Proposition 5.5 (iii) this
cannot occur since the left column of the triple cannot have an unpaired i. Thus
in T, both cells in the top row of the triple must have value i + 1. However, this
implies the left column of the triple is the rightmost affected column of T, so by
Proposition 5.5 (vi) the column to its right cannot contain an unpaired i + 1. Thus
this co-inversion triple cannot be a part of the image under e; for any T' € SSKD(a).
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o Lastly, suppose x lies in the top left cell, ¢ in the top right cell, and i + 1 in the

i+ 1

znjonjas

bottom cell. Then the only possible preimage has an 4 + 1 in the top right cell and
an 7 in the cell below it. Since the top row is weakly longer than the bottom row,
this implies x = ¢ + 1 which is a contradiction.

€
S :

From these lemmas, we establish the following theorem.

Theorem 5.11. For any integer 1 < i < n, the raising operators e; : SSKD(a) —
SSKD(a) U {0} are well-defined maj-preserving maps on SSKD(a).

Proof. Recall that if T is a semistandard key tabloid no cells of 7" can form attacking
pairs or co-inversion triples. By Lemmas 5.8 and 5.10 we have that for any T' € SSKD(a)
with €;(T") # 0 then e;(T) has no attacking cells and coinv(T) = 0. Thus ¢;(T) €
SSKD(a). Moreover, by Lemma 5.9 we also have maj(e;(T)) = maj(T) so e; is indeed
maj-preserving. 0O

In an entirely analogous manner for integers 1 < ¢ < n we can define lower-
ing operators, denoted by f;, satisfying f;(T') = T if and only if e;(T) = T’ for all
T,T" € SSKD(a).

Definition 5.12. Given any T' € SSKD(a) and an integer 1 < ¢ < n, define the lowering
operator f; on SSKD(a) whose action on T is as follows:

e Set f;(T) = 0 whenever
— T does not have any cells containing an unpaired ¢ or
— the leftmost unpaired i is in row ¢ and all columns to its left have an 4 in the same
row with an ¢ + 1 above them.
e otherwise, f; changes the leftmost unpaired 7 to i + 1 and
— swaps the entries ¢ and ¢ 4+ 1 in each of the consecutive columns left of this entry
that have an ¢ in the same row and an ¢ + 1 above, and
— swaps the entries ¢ and i+ 1 in each of the consecutive columns right of this entry
that have an ¢ in the same row and an i + 1 below.



S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463 49

Whenever T has an unpaired i yet f;(T) = 0, we say that T is subject to Demazure
death.

We similarly say that f; flips T if within some column if f; changes i + 1 above 7 to
become i above i + 1.

Remark 5.13. Given any T' € SSKD(a) we note that if f;(T) # 0 then the first column
cannot have an unpaired ¢ in row ¢ (since f; will always act on the leftmost unpaired
i). So if N; is the number of unpaired cells with value i of T then f?(T") # 0 for all
1< s <N but fNiT(T) = 0. Thus for any T with ¢;(T) = 0 either f;(T) = 0 or f; will
act nontrivially exactly N; times.

We now prove that these raising and lowering operators are inverse to one another

when nonzero.
Theorem 5.14. For S,T € SSKD(a), we have e;(S) =T if and only if f;(T) = S.

Proof. Suppose T' € SSKD(a) and 4 and integer such that e;(T) # 0. Since T contains
an unpaired 7 + 1, necessarily there is no unpaired ¢ left of the rightmost unpaired
i + 1. Consequently, the leftmost unpaired 7 in e;(T") will be precisely the image of the
rightmost unpaired ¢ + 1 in 7. By Proposition 5.5(iv), the affected columns left of the
rightmost unpaired ¢ + 1 in 7" will be the same affected columns left of the leftmost
unpaired 7 in e;(T"). Furthermore, if the ¢ + 1 in the rightmost affected column of 7" has a
cell immediately right with value ¢, then this ¢ will either be unpaired or paired with an
i+ 1 above it and will thus be unaffected by the action of e; and f;. Hence the columns
right of the rightmost unpaired i + 1 in T" affected by e; are the same as columns right of
the leftmost unpaired ¢ in e;(T") affected by f;. Thus f;(e;(T)) = T. Notice here that we
do not have f;(e;(T)) = 0 by Demazure death precisely because e;(T') is a semistandard
kay tabloid.

Likewise, if S € SSKD(a) with f;(S) # 0 then since f; acts non-trivially only if there
is no unpaired ¢+ 1 right of the leftmost unpaired 4, then the rightmost unpaired ¢+ 1 in
fi(S) must be the image of the leftmost unpaired ¢ in S. In the rightmost column of S
affected by f;, the cell containing an ¢ cannot have an ¢4 1 immediately to its right since
S is non-attacking. Thus the columns in S affected by f; right of the leftmost unpaired i
are the same as the columns in f; right of the rightmost unpaired i + 1 in f;(S) affected
by e;. Furthermore, if in the leftmost column of S affected by f; the cell containing an 4
had a cell with an ¢ + 1 immediately to its left, then this ¢ + 1 cannot have an i above
it since that would create an attacking cell. Thus, the columns of S affected by f; left
of the leftmost unpaired i are the same as the columns of f;(S) affected by e; left of the
rightmost unpaired ¢ + 1. Hence, e;(f;(S)) =S. O
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5.2. Rectification of key tabloids

Assaf and Schilling [4] defined an explicit Demazure crystal structure on semistandard
key tableauz [1], the objects that correspond to Mason’s semi-skyline augmented fillings
[37]. As semistandard key tableaux are precisely the semistandard key tabloids with
maj = 0 [1] (Proposition 3.1), we can consider our operators restricted to this case, and
in so doing we recover the constructions of Assaf and Schilling [4].

Proposition 5.15. The raising operators in Definition 5.3 restricted to semistandard key
tableauz agree with the raising operators in [}] (Definition 3.7).

Proof. Using notation and terminology from [4], the condition m,(w(T')) < 0 is precisely
the statement that there exists unpaired ¢’s left of the rightmost unpaired ¢ + 1 and
m;(w(T)) = 0 is the statement that no unpaired i + 1's exists. Moreover, in an SSKT
there can never be columns as in Lemma 5.7 since the entry immediately left of the 7 in
column ¢+ 1 would have to be greater than i 4 1, and consequently, the entry to the left
of it would need to be smaller than ¢+ 1, which contradicts rows being weakly decreasing.
Thus, the entry where ¢ is maximal as in [4] is precisely the i+ 1 in the leftmost affected
column ¢ — n. Since by definition in [4], e; swaps ’s and ¢ 4+ 1’s in all columns weakly
right of this entry, then the columns flipped by the original definition of [4] and the one
given here are exactly the same. O

In particular, by [4] (Theorem 3.14), the raising operators on semistandard key
tableaux give a Demazure crystal. We aim to show this holds for semistandard key
tabloids as well by comparing the latter with the former. To achieve this, we shift our
paradigm from tabloids to diagrams, arbitrary collections of unit cells in the first quad-
rant, based on Kohnert’s [27] elegant combinatorial algorithm for computing a Demazure
character.

Definition 5.16 (/27/). A Kohnert move on a diagram selects the rightmost cell of a given
row and moves the cell to the first available position below, jumping over other cells in
its way as needed.

Given a weak composition a, the key diagram a as the set of left justified cells with
a; in row 7, indexed in cartesian coordinates. Fig. 21 shows all diagrams that can be
obtained via Kohnert moves from the key diagram of (0, 3, 2).

Denote the set of diagrams that can be obtained by Kohnert moves from the diagram
of a, called Kohnert diagrams for a, by KD(a). Note that there might be multiple ways
to obtain a diagram from different Kohnert moves of a given diagram, but each resulting
diagram is included in the set exactly once.
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Fig. 21. Iterative construction of Kohnert diagrams for (0, 3,2), where an edge down indicates the lower
diagram can be obtained from the higher via a single Kohnert move.
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Fig. 22. An example of the diagram map D on a semistandard key tabloid.

Theorem 5.17 ([27]). The Demazure character K, is given by

Rg = Z x‘l)Vt(D)l e m:th(D)"’ (51)
DeKD(a)

where wt(D) is the weak compositions whose ith part is the number of cells in the ith
row of D.

The poset structure on Kohnert diagrams that arise for a key diagram is not a crystal
structure, and Kohnert moves do not generally correspond to crystal moves. However, the
Demazure crystal structure from [4] has a natural analog on Kohnert diagrams through
the correspondence between diagrams and tableaux based on [8] (Definition 3.14).

Definition 5.18. The diagram map D sends a nonattacking filling to a diagram by letting
D(T) be the diagram with a cell in row r and column c if and only if T has a cell with
entry r in column c.

Assaf [8] (Theorem 3.15) shows that the diagram map is a bijection between Kohnert
diagrams for a and semistandard key tableaux for a (see Fig. 22). We translate the
crystal operators under this bijection as follows.
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Fig. 23. An illustration of the pairing rule on diagrams.
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Fig. 24. The images of the semistandard key tabloids in Fig. 9/Example 4.2 under the diagram map.

Definition 5.19. Given any diagram D with n > 1 rows and integer 1 < 7 < n, define the
vertical i-pairing of D as follows: i-pair any boxes in rows 7 and ¢ + 1 that are located
in the same column, and then iteratively vertically i-pair any unpaired box in row i + 1
with the rightmost unpaired box in row 4 located in a column to its left whenever all the
boxes in rows ¢ and ¢ + 1 in the columns between them are already vertically i-paired.

Example 5.20. The vertical 2-pairing for the diagram in Fig. 23 is indicated by shading
in blue the cells in row 2 that are 2-paired with a cell in row 3 strictly to its right, and
the latter cells are shaded in red. The purple cell is the rightmost unpaired. Note that
this diagram is precisely D(7T') for T' the diagram in Fig. 17, and the two pairing rules
correspond.

Definition 5.21. Given any integer n > 0 and any diagram D with at most n rows, for
any integer 1 < ¢ < n define the raising operator €; on the space of diagrams as the
operator that pushes the rightmost vertically unpaired box in row ¢ + 1 of D down to
row i. If D has no vertically unpaired boxes in row ¢ + 1 then é&;(D) = 0.

Example 5.22. The leftmost diagram in Fig. 24 has two vertically unpaired cells in row
5 (indicated as O), and so é4 acts by lowering these cells (resulting in O) from the right
until none remains. These diagrams are precisely the images of the semistandard key
tabloids in Fig. 18 under the diagram map.

Proposition 5.23. Let T' € SSKD(a) and suppose e;(T) # 0. Then D(e;(T)) = &;(D(T)).
That is, the raising operators on tabloids and on diagrams coincide.
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Proof. Suppose T' € SSKD(a) and e;(T") # 0. Then e; will send the rightmost ¢ + 1 in T
to ¢ and flip all the entries with values ¢ and ¢+ 1 in certain affected columns of T". Since
D sorts the cells in any fixed column of T' based on the value of their entries and not the
row in which they are situated, then if T, 7" € SSKD(a) differ only by a flip of an 7 and
i+ 1 in a given column then D(T) = D(T”). Now, a quick comparison of Definitions 5.1
and 5.19 makes it apparent that the rightmost unpaired ¢ + 1 in T" corresponds to the
rightmost unpaired box in D (7). Thus, the column on which D acts corresponds to the
only affected column of T" on which e; does not act by a flip but by sending the rightmost
unpaired ¢ + 1 to an i. Thus, D(e;(T)) = &(D(T)). O

Proposition 5.23 shows the crystal operators on tabloids are equivalent to the Kohnert
crystal operators [7, Definition 3.3.3] defined for any diagram. In [7, Theorem 5.3.4], Assaf
proves that, under certain conditions, these operators generate a Demazure crystal. While
the assumptions of the theorem are not applicable in this case, the main ingredients of
the proof are nonetheless essential.

In order to make use of the known Demazure crystal structure on Kohnert diagrams
for a key diagram, we recall the rectification map [7, Definition 4.2.4] sending an arbitrary
diagram to a Kohnert diagram for some key diagram. On the level of tabloids, rectification
sends a semistandard key tabloid to a semistandard key tableau.

The key to understanding the rectification map is the following characterization stated
in [6] (Lemma 2.2).

Lemma 5.24 (/6]). A diagram D can be obtained via a series of Kohnert moves on a key
diagram if and only if for every position (r,c) € N x N with ¢ > 1, we have

#{(s,c—1)eD|s=r}>#{(s,c)eD|s>r}. (5.2)

Recall the crystal flip map F from Definition 3.6 and consider the map from diagrams
satisfying Lemma 5.24 to semistandard Young tableaux that gives a partial inverse of
the diagram map, based on [8] (Definition 3.14).

Definition 5.25. For fixed n, define the tableau map T on diagrams D with no cells above
row n satisfying Lemma 5.24 as follows. Place entry n —r 4 1 in each cell of row r; drop
and sort the cells of each columns to be bottom-justified and to increase from bottom to
top; apply the crystal flip map F.

For example, Fig. 25 show the three steps of the tableau map on a diagram. Note
the first two steps of Definition 5.25 are equivalent to the column sorting map of [4]
(Definition 3.5), and so by [4] (Proposition 3.6), the result is a semistandard Young
tableau. Therefore the crystal flip applies, making the tableau map of Definition 5.25
well-defined.

An equivalent reformulation of Lemma 5.24 is that the image under the tableau map
of any diagram satisfying Eq. (5.2) is a semistandard Young tableau of partition shape.
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Fig. 25. An illustration of the tableau map T with n = 4.

Recall from § 3.3 that é denotes the raising operators on semistandard Young tableaux.

Proposition 5.26. For any diagram D satisfying Eq. (5.2), T (D) is a semistandard Young
tableau of partition shape. Moreover, if €;(D) # 0, then T (&;(D)) = é;(T(D)).

Proof. Assaf and Seales [6] (Definition 4.5) define the column sorting map on standard
key tableaux that lets cells fall vertically until it has partition shape, reverses entries by
i — n—i+1, and sorts columns. Assaf and Schilling [4] (Proposition 3.6) generalize this
to a map ¢ on semistandard key tableaux, proving ¢ is an injective map from SSKT(a)
to SSYT()), where X is the partition rearrangement of a.

By [8] (Theorem 3.15), the diagram map D is a bijection between Kohnert diagrams
for a and semistandard key tableaux for a. Then the column sorting map may be factored
as the composition of the tableau map and the diagram map, namely ¢ = T o D. Since
D is a bijection, this gives T = ¢po D!,

By Lemma 5.24, since any diagram D satisfying Eq. (5.2) may be identified with a
semistandard key tableau of some shape a, D~!(D) is a semistandard key tableau of
shape a, and so T(D) = ¢ o D7}(D) is a semistandard Young tableau of shape the
partition rearrangement of a.

Assaf and Schilling [4] (Lemma 3.9) prove the map ¢ intertwines the crystal operators
on semistandard key tableaux by showing ¢(e;(T)) = fn_i(¢(T)). Since the crystal flip
map satisfies F(fn,—i(T)) = e;(F(T)), the desired interwining for T follows. O

We utilize the characterization in Lemma 5.24 to define a map from semistandard key
tabloids to semistandard key tableaux and ultimately, by Proposition 5.26, to semistan-
dard Young tableaux. In terms of diagrams, we have [7, Definition 4.2.2].

Definition 5.27. Given any diagram D with n > 1 columns and integer 1 < ¢ < n, define
the horizontal i-pairing of D as follows: i-pair any boxes in columns ¢ and i+ 1 that are
located in the same row and then iteratively ¢-pair any unpaired box in column ¢ + 1
with the topmost unpaired box in column ¢ located in a row above it whenever all the
boxes in columns ¢ and 7+ 1 in the rows between them are already horizontally i-paired.

Remark 5.28. Notice horizontal i-pairing is nothing more than a “transposed” version
of vertical i-pairing in Definition 5.19 with the concept of rows and columns exchanged.
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That is, the concepts are equal under the mapping that sends a cell in position (7, c¢) to

(c,7).
Using the horizontal pairing rule, we have [7, Definition 4.2.4].

Definition 5.29. Given any integer n > 0 and any diagram D with at most n columns,
for any integer 1 < ¢ < n, define the rectification operator s; on the space of diagrams
as the operator which pushes the bottom-most horizontally unpaired box in column ¢+ 1
of D left to column 4. If D has no unpaired boxes in column 7 4+ 1 then s; acts by zero.

Unlike the raising operators, we will use the rectification operators in a prescribed
way to map a given diagram to one that can be obtained from a composition diagram
by a sequence of Kohnert moves. However, it is shown in [7, Lemma 4.3.3] that the end
result of rectification is independent of the order in which operators are applied.

Definition 5.30. Given a diagram D, define the rectification of D, denoted by rect(D), as
follows. If 9,(D) = 0 for all 7 > 1, then set rect(D) = D. Otherwise, finding the minimal
column index ¢ > 1 such that s,(D) # 0, replacing D with 9;(D), and repeat.

Key diagrams are a special case of diagrams that can arise, and we remark with the
result below that they often correspond to extremal elements. For this, recall f;(b) =

7O ).

Proposition 5.31. Given any key diagram D with é;(D) = 0 and f;(D) # 0 for some 1,
then fl*(D) is also a key diagram.

Proof. If &;(D) = 0 and f;(D) # 0 for some i then necessarily wt(D); > wt(D);41. Since
D is a key diagram, it is left justified so row ¢ must be strictly longer than row 7 + 1.
Thus all cells in row 4 in columns with index greater than wt(D);+1 will be vertically
unpaired. If & = wt(D); —wt(D);4 1, since f; acts on the leftmost vertically unpaired box
in row i, then f; will act nontrivially on D exactly k times, pushing each of the cells in
row ¢ and columns wt(D); 41 + 1 through wt(D); up to row i 4+ 1 sequentially from left
to right. Since f; will not affect any rows with index j # 4,7 + 1 then fF(D) = f#(D)

will have wt(D); cells in row ¢ + 1 and wt(D);11 cells in row ¢ and, consequently, be left
justified. O

The following lemma is the precursor to showing that rectification commutes with the
crystal operators by showing that the pairing structures are respected.

Lemma 5.32. Rectification operators preserve vertical i-pairing. That is, given any dia-
gram D with n columns, if N;(D) is the number of cells in row i+1 that are not vertically
i-paired, then N;(D) = N;(s.(D)) for any 1 < ¢ < n.
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Likewise, raising operators on diagrams preserve horizontal i-pairing. That is, given
any diagram D with m rows, if M;(D) is the number of cells in column i + 1 that are
not horizontally i-paired, then M;(D) = M;(é.(D)) for any 1 <r < m.

Proof. Since rectification operators act by pushing a cell one space to its left, it suffices
to consider all possible arrangements of cells in positions (¢, c), (i,¢ + 1), (¢ + 1,¢), and
(i+1,c+ 1) on which s, acts non-trivially and show that in each case the total number
of vertically i-paired boxes is invariant under s, for any 1 < ¢ < n.

If only one position in the arrangement is nonempty and s, acts nontrivially, it is clear
that pushing this cell left to column ¢ will not modify any existing vertical i-pairings.

If the arrangement consists of two nonempty cells, then either both cells lie in column
¢+ 1 or they lie in positions (i+1, c+1) and (i, ¢). If the first, then by Definition 5.27 the
bottom cell is horizontally paired only if the top cell is also, in which case s, pushes the
cell in position (7, c+1) left which leaves its vertical i-pairing with the cell in (i+1,c+1)
unaltered. The second situation follows from a dual argument to the first.

¢ c+1 c c+l c c+l1

i+1 O S i+1 O ¢ i+1©
O —* 0 T .0

If the arrangement consists of three nonempty cells then either the cell in position (i, c+1)
or in position (i + 1,c¢+ 1) can be pushed left. Although the specific cells that are paired
with each other changes, the number of cells that were vertically paired or unpaired does
not. Thus, N;(D) = N;(s.(D)) for any 1 < ¢ < n.

c c+1 ¢ c+1 c c+l1 ¢ c+l1

i+1 (OO0 9 i+ OO0 o, it O 9 i+1 ()
7O T 0 00 T+ 00

By Remark 5.28 the statement that for any ¢ raising operators preserve the cells that
are not horizontally i-paired follows identically from the work above by exchanging rows
and columns. O

The following theorem is the key to establishing a Demazure crystal structure for non-
symmetric Macdonald polynomials, essentially by pulling the structure of semistandard
key tabloids back to semistandard key tableaux.

Theorem 5.33. The rectification operators and the raising operators on diagrams com-
mute. That is, given any diagram D for which 5.(D) # 0 then for any row index
r > 1, é.(D) # 0 if and only if é.(s.(D)) # 0. Likewise, if €.(D) # 0 then for any
column index ¢ > 1, 9.(D) # 0 if and only if 5.(é-(D)) # 0. In this case, we have
9:(6-(D)) = é,(5.(D)) for all values of r and c for which 5.(D) # 0 and é.(D) # 0.
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Proof. Suppose s, acts on a diagram D by pushing cell (r+1,c¢+1) to (r+1,¢) and &,

acts of D by pushing cell (' 4+ 1,¢' + 1) to (’,¢ + 1). Since the raising operators and

rectification operators preserve the horizontal and vertical pairings, respectively, then
the statements that €,.(D) # 0 if and only if &,.(s.(D)) # 0 and s.(D) # 0 if and only if
9.(€é-(D)) # 0 follow immediately from Lemma 5.32.

Since s, only affects cells (r+1,c+1) and (r+1, ¢), and &, only affects cells (r'+1, ¢’+1)
and (7', ¢ + 1), and by Lemma 5.32 their actions do not modify the respective pairings,

then it is clear that if these four cells do not overlap in any way then the raising and

rectification operators will commute. Thus, it suffices to check the following two cases.

Case 1:

Case 2:

Suppose r =’ and ¢ = ¢’ (see left diagram in Fig. 26). That is, s, and &, both
act on D by pushing cell (r+1, c+1) left and down, respectively. Since s.(D) # 0
and é,.(D) # 0 then positions (r,¢ + 1) and (r + 1,¢) must both be empty. In
particular, this implies that (r,c) must also be empty, since otherwise the cell
in (r+1,c+ 1) would pair vertically with it. Thus, s.(D) sends (r+1,c+1) to
(r+1,c¢). Since (1, ¢) is empty and all cells in row r to the left of column ¢ were
vertically r-paired, then (r 4+ 1, ¢) is actually the rightmost vertically unpaired
cell in row r + 1. Thus, é.(s.(D)) pushes (r + 1,¢) down to position (r,c). If
instead we act of D by &, first, then the cell in (r+1, ¢c+1) is first sent to (r,c+1).
Once again, since (r,c¢) is empty and all cells in column ¢ in rows higher than
r are horizontally c-paired then the cell in (r,c+ 1) is the bottom-most cell in
column ¢ + 1 that is horizontally unpaired. Thus, E. pushes (r,c + 1) left to
position (r, ¢). Since all other cells of D remain in the same exact positions after
applying E. and é,, then we see that in this situation s.€,(D) = é,5.(D).
Suppose instead that r = ' + 1 and ¢ = ¢/ + 1 (see right diagram in Fig. 26).
That is, 9. sends (r, c+1) to (r, ¢) and €, sends (r, c+1) to (r, ¢). Since 5.(D) # 0
then there must be a cell in position (r+1,c+1). Otherwise, (r,c+1) would be
horizontally c-paired with (r+ 1, ¢) which contradicts our assumptions. Now, o,
acts on D by pushing (r, c+1) left to position (r, ¢). Since in D the cell in (r+1, ¢)
was the rightmost vertically unpaired cell in row 7 + 1, then every cell in row r
in a column left of ¢ must be vertically r-paired. Hence, in s.(D) the rightmost
unpaired cell in row r+1 is located in position (r+1, c+1). Consequently, €, acts
on o.(D) by pushing (r+1, c+1) down to position (r, c+1). If instead &, acts first,
then (r+41, ¢) is pushed down to (r, ¢). This time, since every cell in column ¢ and
row higher than r+1 is horizontally c-paired, then the bottom most horizontally
unpaired cell in column ¢+ 1 of €.(D) is in position (r 4+ 1,c+1). Thus, s, acts
on &.(D) by pushing this cell left to (r + 1, ¢). Since in both compositions the
resulting diagrams have cells in positions (r + 1,¢), (r,¢) and (r,¢ + 1) and no
cell in position (r + 1,¢+ 1), then as before s.6,(D) = é.5.(D). O
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Fig. 26. Diagrams depicting the operations described in Case 1 (left) and Case 2 (right) of the proof of
Theorem 5.33. At each step the cells on which the raising and rectification operators act are colored blue
and red, respectively. The light gray circles are meant to denote empty spaces and are included only to
clarify the relative position of the filled cell.

Corollary 5.34. The raising operators commute with rectification. That is, given any di-
agram D and any row index r > 1, €.(D) # 0 if and only if €,(rect(D)) # 0. In this
situation, we have rect(é,(D)) = é,(rect(D)).

Proof. Suppose €, acts on D by moving the cell in position (r + 1,¢) to position (r,c).
If rect(D) = D then it suffices to show that rect(é.(D)) = €é.(D). In particular, by
Lemma 5.32 we know that raising operators preserve horizontal pairing. Thus, if s.(D) =
0 for all ¢ > 1, then s.(é.(D)) = 0 for all ¢ > 1. Consequently, rect(é,(D)) = é.(D).

If instead rect(D) # D, then there must exist some ¢ > 1 such that s.(D) # 0. By
Theorem 5.33 we know that whenever s.(D) # 0 and é.(D) # 0 then these operators
commute. Thus, it immediately follows that rect(é,(D)) = é.(rect(D)), as desired. O

For the sake of conciseness, we introduce the following notation.

Definition 5.35. The embedding map ° : SSKD — SSYT is the composition of the maps
T orect o D.

With this in hand, we combine the previous results and show that % is in fact a crystal
homomorphism from SSKD(a) into SSYT, that is, " preserves the crystal structures.

Corollary 5.36. Let a be a weak composition of length n, and let C C SSKD(a) be any
subset closed under the raising and lowering operators on semistandard key tabloids. Then
there exists a partition A such that P(C) C SSYT,,(A). Moreover, for any T € SSKD(a)
such that e;(T) # 0, we have

P(ei(T)) = &;(P(T)).

In particular, each connected component of the graph determined by the raising op-
erators on semistandard key tabloids is a subset of a normal crystal.
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Fig. 27. Examples of the map € given by the rectification algorithm from semistandard key tabloids, to
diagrams, to Kohnert diagrams (via rectification), to semistandard Young tableaux.

Example 5.37. In Fig. 27 we see a detailed example of the embedding map % acting
on some of the elements of the Demazure crystal Byse1(3,1,1,0). The colored entries
and balls denote the unpaired cells on which the raising operators act. For a detailed
example of the entire Demazure crystal Bysa1(3,1,1,0) we refer the reader to Fig. 36 in
the Appendix.

5.3. Demazure property

We leverage the tools developed in Section 4 to show that rectification is, in fact, a
crystal isomorphism between the graph determined by raising operators on semistandard
key tabloids and the Demazure crystal on semistandard key tableaux.

To begin, we must show the graph is extremal, as in Definition 4.3. In particular, we
must show each component contains the necessary highest weight element. To that end,
we have the following.

Lemma 5.38. If T € SSKD(a) is such that e;(T") = 0 for all i, then rect(D(T)) is a key
diagram with partition weight.

Proof. If ¢;(T) = 0 for all 4 then clearly all cells with entries ¢ 4 ¢ are i-paired and so
wt(T)i41 < wt(T); for all i. Thus, wt(T") is a partition. Consequently, it suffices to show
that rect(D(T)) is left justified.

By Lemma 5.32 rectification preserves the number of vertical i-pairs, therefore all the
cells in row 7 + 1 of rect(D(T)) must be vertically i-paired. That is to say, for any cell
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Fig. 28. Example of rectification of a diagram where é; acts trivially for all 1.

in row ¢ + 1 there is a cell in row ¢ located either below it or in a column to its left. In
particular, in column one this implies all cells must lie in a consecutive block of rows with
indexes 1 < --- < Ry,. This in turn forces the cells in column two to lie in at most two
blocks of consecutive rows with indexes 1 < --- < Rg, and Ry, +1 < -+ < Ry, satisfying
Ry, < Ry,. Iterating this procedure we find that column c+ 1 must have cells in at most
¢+ 1 blocks of consecutive rows with indexes 1 < -+ < Rey1),, Be, +1 <0 < Req),,
vy Re, 1< < Reyyy, satistying Ry, < Re; forall 1 <j <c (see Fig. 28).
Since rectification acts on the column with the lowest possible index and on the lowest
row of the affected column, then if D(T") has cells in column two that have row index
higher than R;, then the first rectification operator to act will be 9. Specifically, since
column one has no cells in rows higher than R;, then every cell in column two in rows
Ry, +1 < -+ < Ry, is not horizontally 1-paired. Thus, 9; will act Ra, — R;, times on
D(T) and push all the cells of column two in rows Ry, +1 < --- < Ry, left to column
one, left justifying the first two columns in the process. Since all the cells in column two
now lie in consecutive rows 1 < --- < Ry, , rectification will now act by applying s, to
S?ZQ_R“ (D(T)) exactly (Rs, — Ra,) + (R3, — Ra,) times and left justifying columns two
and three. Iterating this procedure if we set ms(c+ 1) := > 7 (R(ct1),,, — Re,) and
g = STI(CH)SQM(CH) e S?C(CH), then rectification will act on D(T) in the following

manner:

rect(D(T)) = Ay 152 ... A (D(T)),

where M is the number of columns of D (7). Thus for each 1 < ¢ < M — 1, the diagram
AAp—2...A1(D(T)) has the same cells as D(T) but with the first ¢ + 1 columns left
justified and all columns to the right of column ¢+ 1 identical to those of D(T"). Hence,
rectification will sequentially left justify the first ¢ columns of D(7T') with ¢ increasing
one step at a time and so D(T) is rectified to a key diagram of partition weight. O

Example 5.39. In Fig. 28 we can see how a diagram Y satisfying é;(Y) = 0 for all i is

rectified to a partition diagram. In particular, f; = 93, §Io = 9193, 513 = 529393 so that

rect(D(Y)) = AszA5:(Y).
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Lemma 5.40. Fach connected component of the graph on SSKD(a) defined by the raising
operators e; has a unique tabloid Y such that e;(Y) =0 for all i.

Proof. Assume Y we not unique. Since the graph is connected there is a vertex X and
index 4 such that e;(X) = Y. Suppose there exists e;(X) # 0 for some j # 4. Recall that
we can apply rectification and diagram maps to each vertex and embed the graph into
a crystal. Denote by Dx = rect(D(X)), then by Theorem 5.33 we know that é;(Dx) =
Dy and é;(Dx) = D,,(x).- Moreover, by Stembridge’s crystal axioms the vertices Dy
and D, (x) will be part of either a commuting square or an sl; relation. Either way,
€;(Dy) # 0. By Corollary 5.36 there exists W € SSKD(a) such that Dy = €;(Dy) and
thus e;(Y") = W which contradicts the original assumption.

More generally, since the graph is connected we can assume there exists a vertex X
with wt(X) < wt(Y") such that e:zi’“ e eZL” (X) =Y for some indexes i and such that
e;j(X) # 0 for some j # 1. By considering a vertex X with the previous properties
and k£ minimal we can iteratively apply the previous argument and obtain an identical
contradiction. O

Theorem 5.41. Fach connected component of the graph on SSKD(a) defined by the raising
operators e; is an extremal subcrystal of a normal crystal.

Proof. Let C denote a connected component of the graph on SSKD(a) defined by the
raising operators e;. By Corollary 5.36, °(C) C SSYT,,(\) for some partition A\. We will
show that C is an extremal subset of B()). By Lemma 5.40, there is a unique ¥ € C
such that e;(Y") = 0 for all ¢. By Lemma 5.38, °(Y") is the highest weight in B(X), where
A = wt(Y") is the partition weight of rect(D(Y")). In particular, C contains the highest
weight of B()), proving condition (1) of Definition 4.3. By definition, C is closed under
e;, proving condition (2).

Finally, to show condition (3) we note that if z € C and f;(z) # 0, then by definition
fi(x) € C. Thus, suppose fi(z) = 0 but that both f;(V(z)) # 0 and & (P(z)) # 0. If
every cell with value i of x is i-paired, then every box in row 4 of D(z) will be vertically
i-paired. By Lemma 5.32 it follows that every cell in row ¢ of rect(D(z)) will also be
vertically i-paired. Finally, it is straightforward to see that the tableau map T also
preserves the number of i-paired entries with value i. Hence, if f;(z) = 0 because x
contains no unpaired i, then f;(°(x)) = 0 which contradicts the assumptions. Hence,
fi(z) = 0 due to the Demazure condition. In this case, the leftmost unpaired i of x
must lie in column 1 and row i. However, this implies that x contains no cells with
value 7 + 1 which are not i-paired. Thus ¢;(z) = 0. However, by Lemma 5.32 and an
analogous argument to the one above, this implies that é;(9(x)) = 0, which cannot be.
Thus, if both f;(P(z)) # 0 and é&;(P(x)) # 0, then there exists e;(z), fi(z) € C such
that fi(z) = fi(P(2)) and ei(z) = &:(P(x)). O

Finally, we prove the embedded subset is Demazure.



62

S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463

Theorem 5.42. Fach connected component of the graph on SSKD(a) defined by the raising

operators e; is a Demazure subcrystal of a mormal crystal.

Proof. Let C denote the connected component of the graph on SSKD(a) defined by
raising operators e;. By Theorem 5.41 we know C is an extremal subset. Thus, it remains
to show that C satisfies conditions (4) — (6) of Definition 4.15. Since C C B(\), for any
x € C it makes sense to consider the operator ¢;(x) from Definition 3.1. Recall from

equation (3.16) that ¢;(z) equals the number of cells with value ¢ which are not i-paired.
In particular, if ¢;(z) > 0 and f;(x) # 0 then

oi(x) li—j] =2
@i(fi(z)) = pj(x) or pj(a) + 1 [i—j]=1
p;(x)—1 i=].

Moreover, since C is an extremal subset of B(\), then by condition (3) of Definition 4.3,
if [i — j| = 1 and both ¢;(x), p;(x) > 0 then ¢;(f;(z)) = pi(z) + ¢;(z) > 1. We prove
each condition of Definition 4.15 individually.

(D4)

(Dba)

Suppose [i — j| > 2, z,y € C are extremal, and €] (z) = e} (y) = u for some u € C
also extremal. To prove (4a) of Definition 4.15 we note that since f;(u) # 0 and
fi(u) will not affect any cells with values j, j + 1 then all cells, paired an unpaired
alike, with values j, j +1 of u will remain the same in = f*(u). Thus, f;(u) # 0
implies f;(x) # 0. Clearly, if f;(u) # 0 then also f;(y) # 0.

For the second part of (D4) assume, without loss of generality, that i < j,
fix1(x), fix1(y) # 0, and set z := f *;42 (x). Since necessarily @;11(z) > 0,
then f;1+1(z) can only be zero due to Demazure death. Hence, z must contain a
consecutive sequence of ¢ + 1’s in row ¢ + 1 and columns 1,...,c for some ¢ > 1
with 7 +2’s above them in columns 1,...c— 1. Since €], 5(2) = x and fiy1(x) # 0
then all columns 1,...c of z must also contain cells with value i + 3. Likewise,
since ef(z) = y and f;11(y) # 0 then there exists ¢ < ¢ such that all columns
1,...,c of z contain cells with value ¢ but column ¢’ +1 does not. Consequently, =
contains 7+ 1’s and ¢+ 2’s in columns 1,...,c, ’s in columns 1,...,c, and ¢+ 3’s
in columns 1,...,c—1 with no ¢’s in column ¢’ + 1 and no 7+ 3 in column c. Since
u = ef(x) then u must contain ¢ + 1’s in columns 1,...c¢ with no ¢+ 1 in column
¢ +1and i+ 2’s in columns 1,...,c. In particular, ¢’ < ¢ so column ¢ + 1 of u
contains an ¢ + 2 that is unpaired with any ¢ 4+ 1 which implies that e;12(u) # 0.
However, by assumption u is extremal with f;io(u) # 0, so e;42(u) = 0. Thus,
fir1(z) #0.

Suppose that = € C is extremal and f; f (x) € C. If p1(x) > 0 then fij(x) =0
only if x has a Demazure death for 7. Hence, there is a column ¢ of x containing
the leftmost ¢ not paired with an i41 such that all columns strictly to its left have
an ¢ in row ¢ and an i 4+ 1 in a row above it. However, by (iii) of Proposition 5.5
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this immediately yields a contradiction. This is because even if there exists an
i+ 1 that is not i+ 2-paired in a column ¢’ < ¢ of x, the resulting element f}, ()
will still contain an ¢ in row ¢ and column ¢’ that is not ¢ + 1 paired and will
cause f;ff (x) = 0. Hence, fi(z) # 0. An analogous argument shows that if
fifri(z) € C and @;(x) > 0 then also f;(z) € C. This proves condition (5a) in
Definition 4.15.

Now suppose that x,y € C are extremal and that e;(z) = e, ;(y) = u for some
u € C also extremal. Since ¢;(u), p;+1(u) > 0 we know that v;41(z), vi(y) > 1.
Thus, if f;11(x) = 0 it must be due to Demazure death. We will show that if this
is the case then f;(y) # 0. So suppose x has a continuous sequence of i+ 1’s in row
i+ 1 and columns 1, ..., ¢, all of which are ¢ 4+ 1-paired with an i 4+ 2 above them
except for the ¢4 1 in column c. Since ef(x) = v and f;11(u) # 0 then x contains
a consecutive sequence of i’'s in situated above the i + 1" in columns 1,...,¢ — 1
for some ¢’ < ¢. If ¢ < ¢ then this would imply that column ¢ of u contains an 7
that is not paired with an 741 and thus, an i+ 2 that is also not ¢+ 1-paired. But
u is extremal and since f;11(u) # 0 then e;42(u) = 0. Thus ¢ = ¢ and so column
c of u has an ¢ that is not 7+ 1-paired and whose columns 1, ..., c—1 each contain
an ¢ in row ¢ + 1 which are paired with an ¢ 4+ 1 above them, which in turn is also
paired with an ¢ + 2 in a higher row. Therefore, f;11(u) leaves columns 1,...,¢
untouched, and thus f;j(y) = fi(fi1(u)) # 0. The remaining case when f;(y) =0
instead follows analogously. This proves the first part of (5b) from Definition 4.15.
Now suppose that neither f;(y) nor f;1(z) are zero. Since C C B()) is an extremal
subset, then o;11(f;(y)) = wi(u) > 0 and @;(f(x)) = @iy1(u) > 0. Thus, if
either f;ff  (z) = 0 or fiy1f(y) = 0 it is due to Demazure death. As before,
suppose this is the case and columns 1,...,c—1 of f;f (x) have a continuous se-
quence of i’s in row ¢ which are all i-paired with i+1’s above them and that column
c contains the leftmost 4 which is not i+1-paired. If col; ... (x) = coly, . .(f1(x))
then f;(z) = 0 due to Demazure death, which is impossible since e;(z) # 0 and
C contains full i-strings. Hence, coly ... (x) # coly,.. o (fi,(x) for some column
¢ < c. By an identical argument to the one above, it follows that ¢/ = ¢ and
so columns 1,...,¢ — 1 of z have a continuous sequence of i’s in row 4, a con-
tinuous sequence of i + 1’s in row r > 4, a continuous sequence of i + 2’s above
the ¢ + 1’s, and an 7 and an ¢ + 2 in column ¢ both of which are not paired
with an ¢ + 1. In particular, this implies that coly,  .(u) = coly,  .(z) and thus
coly,....c.(y) = coly,....(fi1(x)). However, this means f;(y) = 0 which contradicts
the initial assumptions. If instead we assume that f;11f7(y) = 0 then an anal-
ogous contradiction can be derived. This proves the second part of (5b) from
Definition 4.15.

Finally, suppose that xz,y € C are extremal elements satisfying el(z) =
ej1€;(y) = u for some u € C also extremal and that, in addition, fx(z) # 0
for some k # i + 1. Moreover, recall that ¢;(f7(u)) > ¢,(v) whenever |i — j| =1
and ¢;(fi(v)) = ¢;j(u) whenever |i — j| = 2. In order to show that f(y) is also
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nonzero we observe how the columns of u behave locally under the action of f; and
fix1. If a column ¢ of u contains an ¢ that is not paired with an 7 + 1 then under
the action of f the i in column ¢ of u will become an i 4 1-paired /unpaired i + 1,
depending on whether or not an unpaired ¢ + 2 exists in a column weakly right
of ¢. Hence, either both or neither f;;1(x) and f;11(y) are zero. If additionally,
the 7 in column ¢ of u is 7 — 1-paired, then in both f;(u) and f; f ,(u) the cell
containing the + — 1 with which this ¢ was paired will become unpaired. Thus,
fi—1(x) and f;_1(y) will be nonzero. Since the cells containing entries k < i — 1
or i + 2 < k are entirely unaffected by f; and f;11, then clearly if fi(x) # 0 then
fy(k) # 0 also.

In an analogous manner as above, if we consider the action of f; and f;11 on a
column c of u with an ¢ 4+ 1 which is not paired with an ¢ + 2, we can see that if
fe(x) £0for k #i+1, then f;11(y) is also nonzero. Moreover, since the lowering
operator simply swaps the rows of cells that are paired within the same column,
then any cells with values ¢ —1,4,7+ 1,7+ 2 that are paired with each other in the
same column remain paired with each other after applying f; and f; 1. Thus, if
fi - fi.(x) # 0 for some path ji,...,j, for which the path fj ... f;r  fit1(x)
for some other j1,...,j;,_; either does not exist or is not equal to f;, ... f;, (x),
then the path f;, ... f;, (y) is also nonzero. Thus, condition (6) of Definition 4.15
holds for C. O

In particular, we have a new proof of Theorem 2.6 that yields an explicit formula
for the nonsymmetric Kostka—Foulkes polynomials K, ;(q) defined by Ey(X,;q,0) =

Za Ka,b(Q)’fa(Xn)-

Corollary 5.43. For weak compositions a,b, we have

Kap(q) = > gD, (5.3)

TeSSKD(b)
T Demazure lowest weight
wt(T)=a

In particular, K, (q) € N[g] and so nonsymmetric Macdonald polynomials specialized
at t =0 are a nonnegative q-graded sum of Demazure characters.

6. Combinatorial formulas

Sanderson [40] first made the connection between specializations of Macdonald poly-
nomials and Demazure characters by using the theory of nonsymmetric Macdonald
polynomials in type A to construct an affine Demazure module with graded character
P,(X;q,0), parallel to the construction of Garsia and Procesi [14] for Hall-Littlewood
symmetric functions H,,(X;0,t). Ion [20] generalized this result to nonsymmetric Mac-
donald polynomials in general type using the method of intertwiners in double affine



S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463 65

Hecke algebras to realize E,(X;q,0) as an affine Demazure character. Assaf [1] used the
machinery of weak dual equivalence [8] to realize E,(X;q,0) as a sum of finite Demazure
character in type A. Corollary 5.43 gives an explicit formula for this expansion. In this
final section, we consider consequences of the formula in Eq. (5.3) in both the symmetric
and nonsymmetric settings.

In §6.1, we review the Schur expansion of Hall-Littlewood symmetric functions. We
also show how the highest weights of our Demazure crystals can be used to give an
alternate formulation that uses the simple major index statistic instead of the intricate
charge statistic. In §6.2, we use our explicit algorithm in Definition 4.20 to generate the
Demazure lowest weight of a component from the highest weight, making Eq. (5.3) easy
to compute. We also relate the symmetric and general cases to give a refinement of the
Kostka—Foulkes coefficients in terms of the nonsymmetric Kostka—Foulkes polynomials.

6.1. Hall-Littlewood polynomials

The Hall-Littlewood symmetric functions P,(X;t) may be regarded as the ¢ = 0
specialization of Macdonald symmetric functions, ie. P,(X;t) = P,(X;0,t). The
Kostka—Foulkes polynomials, denoted K ,(t), give the transition coefficients between
Hall-Littlewood symmetric functions and the Schur functions by

sA(X) =) Kau()Pu(X;5t) and H,(Xit) =Y Ky ,(t)sa(X), (6.1)
o A

where the modified version H,(X;t) = H,(X;0,t) is defined analogously to Eq. (2.12).

One readily observes that Ky ,(0) = 0y ,, equivalently P,(X;0) = s,(X). It is also
easy to verify that P,(X;1) = m,(X), from which it follows that K ,(1) = K ,. That
is, the Kostka—Foulkes polynomials are a t-graded version of the Kostka numbers, which
have representation theoretic and geometric significance.

Hall-Littlewood polynomials arise in similar contexts as Schur functions, from which
the representation theoretic and geometric importance of the Kostka—Foulkes polynomi-
als becomes apparent. For x, a unipotent character of GL,,(F;) and u a conjugacy class,
the evaluation of x, at u is given by ya(u) = t" WKy ,(1/t). For R,, the t-graded S,-
module constructed by Garsia and Procesi [14], the Frobenius character of R, is given
by ch(R,) = t"("W H,(X;1/t). Geometrically, if we consider the Springer action of S,, on
the cohomology ring H*(B,,) of a Springer fiber B,,, then the cohomology ring H*(B,)
has Frobenius series ¢"(") H,(X;1/t). For details of these connections, see Shoji [42].

Recall the Kostka numbers K , enumerate semistandard Young tableaux of shape A
and partition weight p. Lascoux and Schiitzenberger [28] defined a statistic called charge
on these objects that precisely gives the t-grading of the Kostka—Foulkes polynomials
K ,(t). More generally, we consider tableaux with partition weight and skew shape,
that is, of shape given by the set theoretic difference A\ v for v C \. Schiitzenberger [41]
introduced the notion of jeu-de-taquin slides that map skew tableaux to straight shapes.
For details on jeu-de-taquin, see Stanley [43] (Appendix A).



66 S. Assaf, N. Gonzdlez / Journal of Combinatorial Theory, Series A 182 (2021) 105463

5 [
2[2 2 2[3 2[2 2 3
1 1[1]2] 1]2]3]

—
—
[ V)
[
—
w
—
—

[2[2]  [1]1]2]2]3]

Fig. 29. The seven semistandard Young tableaux of partition shape and weight (2,2,1) used to compute
Hz,2,1)(X;5t).

Definition 6.1. The cocharge of a tableau T with partition weight p is the integer cc(T)
uniquely characterized by the following properties:

(1) if T is a single row, then cc(T) = 0;

(2) it S, T are jeu-de-taquin equivalent, then cc(S) = cc(T);

(3) if T = RU S is a disjoint union of shapes with R above and left of S such that R
has no entry equal to 1, then cc(T) = cc(SU R) + #R, where SU R has S above and
left of R.

The charge of T is ¢(T') = n(u) — cc(T), where n(p) = >, (1 — 1) ;.

It is a theorem that such a statistic exists, but from this definition one obtains an
algorithmic procedure, called catabolism, for computing it. The main result, first asserted
by Lascoux and Schiitzenberger [28] with omitted proof details supplied by Butler [9] is
the following.

Theorem 6.2 (/28,9]). The Kostka—Foulkes polynomials K ,,(t) are given by

Kaut)y= > @, (6.2)
TESSYT(N)
wt(T)=p

For example, Fig. 29 shows the seven semistandard Young tableaux of partition shape
and weight (2,2, 1). Their charges, from left to right, are 0,1,1,2,2,3, 4, from which we
compute

Ha01)(X5t) = 5(2,2,1) +t83,1,1) + (t + t2)5(372) + (£ + t3)3(4,1) + t45(5)-

Recall Eiey(n)(Xn;q,0) = Hx(Xn;q,0) and also by Eq. (3.9), we have fyey(r)(Xn) =
$x(Xy). Therefore Corollary 5.43 gives a formula that we can relate to the Hall-
Littlewood polynomial H)(X,;0,t) via the following result, proved combinatorially in
[1] (Theorem 5.6).

Theorem 6.3 ([1]). For \ a partition of length m and rev()\) its weakly increasing rear-
rangement, we have

Erev()\)(Xm;Q7O) = WHA’ (meovq)? (63)
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where X' denotes the conjugate (diagrammatic transpose) of A, and w is the symmetric
function involution determined by wsy = Sy

To utilize Corollary 5.43 in the context of Theorem 6.3, we have the following.

Lemma 6.4. Given a weakly increasing weak composition b, every connected component
of the Demazure crystal on SSKD(b) is a normal crystal.

Proof. When b is weakly increasing of length n, the specialized nonsymmetric Macdon-
ald polynomial Fy(X,;q,0) is symmetric in x1,...,2,. Given a weak composition a of
length n, by [6] (Theorem 4.2) the Demazure character x, is symmetric in zy, ..., %, if
and only if a is weakly increasing. By Theorem 2.6, or equivalently by Corollary 5.43,
the coefficients in the Demazure expansion of Ey(X,;q,0) are polynomials in ¢ with
nonnegative coefficients. Since the Demazure characters k, are a basis for polynomials,
every term appearing in the Demazure expansion of Ej(X,;q,0) must be symmetric,
that is, every Demazure character that appears with nonzero coefficient is, in fact, a
Schur polynomial in n variables. Consequently, the corresponding crystals must be full
crystals. O

Since normal gl,,-crystals are uniquely determined by their highest weights, which also
give their characters, we have a new paradigm for computing Kostka-Foulkes polynomials
that utilizes the highest weight elements of the tabloid crystal together with the simple
major index statistic.

Theorem 6.5. The Kostka—Foulkes polynomials K ,(t) are given by

Kxu(t) = > gl (6.4)
TeSSKD(0™ xrev(u'))
wt(T)=X’
ei(T)=0Vi

for any m > || - 1.

Proof. Let n = |u| and set b = 0™ x rev(y'). By Lemma 6.4, since b is weakly increasing,
every component of the Demazure crystal on semistandard key tabloids is a full crystal.
Thus components can be indexed by their highest weights and their characters are given
by the corresponding Schur polynomials. Combining this with Theorem 6.3 gives

WH;L(Xm;an> = EO"‘chv(,u’)(Xm;quo) = Z Ka,b(q)srcv(a) (Xm)

a weakly inc.

Applying w to the expression above yields

H,u(Xm;O>Q) = Z Ka,b(Q)wsrcv(a) (Xm) = Z Ka,b(q)srcv(a)’(Xm)-

a weakly inc. a weakly inc.
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Fig. 30. The highest weights for the Demazure crystal for E(gs 3 3y(X;q,0).

Now fix a weakly increasing weak composition a and set A = rev(a)’. Using highest
weights, Corollary 5.43 becomes

K)\,M(q) = Ka,b(q) = Z qmaj(T).

TeSSKD(b)
T highest weight
wt(T)=rev(a)

The formula now follows. 0O

Example 6.6. The seven highest weight semistandard key tabloids of shape (02,2, 3) are
shown in Fig. 30. The g-weight of these terms is easily determined by the major index
statistic, giving

E3,2,3(X;4,0)
= K(03,2,3) T qK(02,1,1,3) + (¢ + q2)5(02,1,2,2) +(¢* + qg)ﬁ(0,1,1,1,2) + q4/€(1,1,1,1,1)-

Each of the above Demazure characters corresponds to a Schur polynomial in z1, ..., x5,
and writing it as such we have

E3,2,3)(X;¢,0) = 8(32) + q5¢3,1,1) + (¢ + 92)3(2,2,1) + (¢ + q3)3(2,1,1,1) + q48(1,1,1,1,1)-

Exchanging ¢ with ¢ and conjugating each partition gives H(3 2 1)(X;t) computed earlier.
6.2. Explicit Demazure expansions

Recall highest weight elements of a Demazure crystal do not give the Demazure char-
acters. Thus highest weights of the tabloid crystal do not immediately give a formula for
the Demazure expansion of the specialized nonsymmetric Macdonald polynomial outside
of the symmetric case resolved by Theorem 6.5.

Example 6.7. The six highest weight semistandard key tabloids of shape (0,3,0,2) are
shown in Fig. 31, indicating that the Demazure crystal has six connected components,
and so the Demazure expansion of E(g3,0,2)(X;q,0) has six terms. However, these
tabloids do not determine the Demazure characters themselves.
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Fig. 31. The highest weights for the Demazure crystal for E(g 3,0,2)(X; ¢, 0).

fs 3 N N
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fs o fa I, fs fa
"[1]4]2] "[1]4]3] "[2]4]3] "[2]4]4] "[2]4]4

1[3]2]

Fig. 32. Using Definition 4.20 to construct the Demazure lowest weight tabloids from two highest weight
tabloids.

2l2]2]  [2]2]2]  [2[2[4]  [2]a]4]  [2]2]4]  [1]4]4]

Fig. 33. The Demazure lowest weights for the Demazure crystal for E (g 3,0,2)(X; g, 0).

We can construct the Demazure lowest weights from the highest weights using Defi-
nition 4.20. Given the explicit objects, this is easy to compute.

Example 6.8. Consider the leftmost tabloids Fig. 32, which are two highest weight ele-
ments both of weight (2,2,1). Following Definition 4.20, we first act by Fj; 3. For the
second iteration, the top row will act with FJ3 3 while the bottom row will act by Fiz a1,
after which both examples terminate at their respective lowest weight elements.

Mapping each of the highest weight tabloids in Fig. 31 to their corresponding De-
mazure lowest weights results in the tabloids in Fig. 33. The ¢-weight of these terms is
easily determined by the major index statistic, giving

FE,3,0,2)(X;q,0) = H(0,3,0,2)+q5(0,371,1)+qf€(0,2,1,2)+q2/‘€(071,2,2)+q2"€(1,271,1)+q3f€(1,1,172)~

Notice that while Egs 23)(X;q¢,0) had multiplicity in its Schur expansion, the De-
mazure expansion of E 3 0,2)(X; ¢, 0) is multiplicity-free. This is particularly interesting
since these polynomials agree as functions in the stable limit, i.e.
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lim Egm x(0,3,0,2)(X5¢,0) = w}gnoo Eom o (03,2,3)(X5¢,0) = wH22.1)(X;0,q).

m—r oo

This happens precisely because, as demonstrated in the example above, the algorithm
for computing the Demazure lowest weights differs for two highest weights of the same
weight. Comparing expansions, we have

E,3,0,2)(X;4,0)

= K(0,3,0,2) T 4K(0,3,1,1) T 4K(0,2,1,2) T+ q25(0,1,2,2) + q2ﬁ(1,2,1,1) + q3f€(1,1,1,2) .
—_——— ——

$(2,2,1) ts(3,1,1) (t+12)s(3,2) (t24+t3)s4,1)

Summarizing this refinement, we have the following.

Corollary 6.9 (/1]). Given a weak composition b with column lengths u, for m sufficiently
large, we have

Ky u(t) = Z Ka,omxp(t). (6.5)

sort(a)=X\
6.3. Concluding remarks

Recall that the first results in the direction of this paper began with Sanderson [40]
who showed that E,(X; ¢, 0) is equal to a single affine Demazure character for the general
linear group. Ion [20] generalized her result to other types using the framework of double
affine Hecke algebras, and Lenart, Naito, Sagaki, Schilling and Shimozono [30] gave a
crystal-theoretic proof that also encompasses other types.

Our crystal-theoretic approach to the nonnegative expansion of E,(X;¢q,0) as a sum
of finite Demazure characters for the general linear group was motivated by several
factors. First, we hoped to improve upon the combinatorial formula for the expansion
that came from the original proof of Assaf [1], and Corollary 5.43 succeeds in that thanks
to Theorem 4.22. Second, the crystal approach gives a representation theoretic context
for the nonnegativity, which suggests that an affine Demazure module should admit a
finite Demazure flag, and that this can be proved using crystal theory. Indeed, we prove
just this in a recent follow up paper [3]. Third, our methods utilize tools such as crystals
[23] and Stembridge’s local characterization [44] that exist for other types, giving hope
that our techniques can be generalized.

While we might hope to extend our results to gain deeper understanding of the non-
symmetric Macdonald polynomials in two parameters, E,(X;q,t), the impediment here
appears more daunting. The nonnegativity results and connections to representation the-
ory and geometry in the classical symmetric case come only through plethysm, which has
no known analog in the polynomial ring. Nevertheless, by considering specializations at
other natural values of ¢, one can hope to gain insights to help to cross this final barrier.
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Fig. 34. The Demazure crystals for E(q 3,0,2)(X;q,0) on SSKD(0,3,0,2) with highest weights (2,2,1,0)
corresponding to k(g,1,2,2)(X) (center), (2,1,1,1) corresponding to s(1,1,1,2)(X) (left), and (2,1,1,1) cor-
responding to s(1,2,1,1)(X) (right), with edges f1.”, f2|, fa™\, defined by lowering operators.
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Appendix A. Complete example of the Demazure crystals for Eq s,0,2)(X; g, 0)

The following six Demazure crystals, in Figs. 35 and 34, correspond to the Demazure

expansion of E 30 2)(X;q,0) from Example 6.7.
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Fig. 35. The Demazure crystals for F(g 3,0,2)(X;q,0) on SSKD(0,3,0,2) with highest weights (3,1,1,0)
corresponding to K(p,3,1,1)(X) (top left), (3,2,0,0) corresponding to k(g,3,0,2)(X) (bottom center), and
(2,2,1,0) corresponding to x(o,2,1,2)(X) (top right), where the edges f1./, fa., f3™\ are defined by lowering
operators.

As can be readily verified, the character of each crystal corresponds precisely to the
key polynomial indexed by the weak composition equal to the lowest weight of each
Demazure crystal. Hence, when taking the sum of the graded characters of all six crystals
we indeed recover the nonsymmetric Macdonald polynomial E(g 3,0,2)(X;q,0).
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Fig. 36. Detailed example of the embedding map ¥ : SSKD(a) — SSYT(A) on the Demazure crystal
B4123(3,1,1,0). The colored balls indicate the ball on which the lowering operator is acting. The edges ./,

|, ¢ denote the lowering operators for ¢ = 1, 2, 3.
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Appendix B. Detailed example of the embedding map

In Fig. 36 we present a complete example of the embedding map P = T o rect o D
acting on the entire Demazure crystal Bs123(3, 1, 1,0). The colored balls indicate the balls
on which the lowering operators act. Lowering operators for ¢ = 1,2, 3 are presented in
colors blue //, yellow |, and red \, respectively.

At each step we see how the diagram map D from semistandard key tabloids to
diagrams, the rectification map from diagrams to Kohnert diagrams, and the tableau
map T from Kohnert diagrams to semistandard Young tableau, intertwine the crystal
operators f;, fi, and fi, respectively.
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