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Abstract
Many irregular domains such as social networks, financial
transactions, neuron connections, and natural language
constructs are represented using graph structures. In recent
years, a variety of graph neural networks (GNNs) have been
successfully applied for representation learning and prediction
on such graphs. In many of the real-world applications,
the underlying graph changes over time, however, most
of the existing GNNs are inadequate for handling such
dynamic graphs. In this paper we propose a novel technique
for learning embeddings of dynamic graphs using a tensor
algebra framework. Our method extends the popular graph
convolutional network (GCN) for learning representations
of dynamic graphs using the recently proposed tensor M-
product technique. Theoretical results presented establish
a connection between the proposed tensor approach and
spectral convolution of tensors. The proposed method
TM-GCN is consistent with the Message Passing Neural
Network (MPNN) framework, accounting for both spatial and
temporal message passing. Numerical experiments on real-
world datasets demonstrate the performance of the proposed
method for edge classification and link prediction tasks on
dynamic graphs. We also consider an application related to
the COVID-19 pandemic, and show how our method can be
used for early detection of infected individuals from contact
tracing data.

1 Introduction
Graphs are popular data structures used to effectively
represent interactions and structural relationships be-
tween entities in structured data domains. Inspired by
the success of deep neural networks for learning repre-
sentations in the image and language domains, recently,
application of neural networks for graph representation
learning has attracted much interest. A number of graph
neural network (GNN) architectures have been explored
in the contemporary literature for a variety of graph
related tasks and applications [33, 30]. Methods based
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Figure 1: Our proposed TM-GCN approach.

on graph convolution filters which extend convolutional
neural networks (CNNs) to irregular graph domains are
popular [4, 7, 12]. Most of these GNN models operate
on a given, static graph.

In many real-world applications, the underlying
graph changes over time, and learning representations
of such dynamic graphs is essential. Examples include
analyzing social networks [2], detecting fraud and crime
in financial networks [23], traffic control [32], understand-
ing neuronal activities in the brain [6], and analyzing
contact tracing data [28]. In such dynamic settings, the
temporal interdependence in the graph connections and
features also play a substantial role. However, efficient
GNN methods that handle time varying graphs and that
capture the temporal correlations are lacking.

By dynamic graph, we refer to a sequence of graphs
G(t) = (V,A(t),X(t)), t ∈ {1, 2, . . . , T}, with a fixed set
V of N nodes, adjacency matrices A(t) ∈ RN×N , and
graph feature matrices X(t) ∈ RN×F where X(t)

n: ∈ RF
is the feature vector consisting of F features associated
with node n at time t. The graphs can be weighted, and
directed or undirected. They can also have additional
properties like (time varying) node and edge classes,
which would be stored in a separate structure. Suppose
we only observe the first T ′ < T graphs in the sequence.
The goal of our method is to use these observations to
predict some property of the remaining T−T ′ graphs. In
this paper, we consider edge classification, link prediction
and node property prediction tasks.

In recent years, tensor constructs have been explored
to effectively process high-dimensional data, in order
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to better leverage the multidimensional structure of
such data [13]. Tensor based approaches have been
shown to perform well in many applications. Recently,
a new tensor framework called the tensor M-product
framework [3, 10] was proposed that extends matrix
based theory to high-dimensional architectures.

In this paper, we propose a novel tensor variant
of the popular graph convolutional network (GCN)
architecture [12], which we call TM-GCN. It captures
correlation over time by leveraging the tensor M-product
framework. The flexibility and matrix mimeticability
of the framework, help us adapt the GCN architecture
to tensor space. Figure 1 illustrates our method at a
high level: First, the time varying adjacency matrices
A(t) and feature matrices X(t) of the dynamic graph
are aggregated into an adjacency tensor and a feature
tensor, respectively. These tensors are then fed into
our TM-GCN, which computes an embedding that can
be used for a variety of tasks, such as link prediction,
and edge and node classification. GCN architectures are
motivated by graph convolution filtering, i.e., applying
filters/functions to the graph Laplacian [4], and we
establish a similar connection between TM-GCN and
spectral filtering of tensors. Such results suggest possible
extensions of other convolution based GNNs such as [4, 7]
for dynamic graphs using the tensor framework. The
Message Passing Neural Network (MPNN) framework
has been used to describe spatial convolution GNNs [8].
We show that TM-GCN is consistent with the MPNN
framework, and accounts for spatial and temporal
message passing. Experimental results on real datasets
illustrate the performance of our method for the edge
classification and link prediction tasks on dynamic
graphs. We also demonstrate how TM-GCN can be
used in an important application related to the COVID-
19 pandemic. We show how GNNs can be used for early
identification of individuals who are infected (potentially
before they display symptoms) from contact tracing data
and a dynamic graph based SEIR model [28].

2 Related Work
Unsupervised Embedding: Unsupervised graph

embedding techniques have been popular for link predic-
tion on static graphs [5]. A number of dynamic graph
embedding methods have been proposed recently, which
extend the static ones. DANE [16] adapted the popular
dimensionality reduction approaches such as Eigenmaps
to time varying graphs by efficiently updating the eigen-
vectors from the prior ones. The popular random walk
based methods have also been extended to obey the
temporal order in recent works [22].

Numerous deep neural network based unsupervised
learning methods have been developed for dynamic

graph embedding. Examples include DynGEM [9],
Know-Evolve [26], DyRep [27], Dynamic-Triad [34], and
others. In most of these methods, a temporal smoothness
regularization is used to obtain stable embedding across
consecutive time-steps.

Supervised Learning: The idea of using graph
convolution based on the spectral graph theory for
GNNs was first introduced by [4]. [7] then proposed
Chebnet, where the spectral filter was approximated
by Chebyshev polynomials in order to make it faster
and localized. [12] presented the simplified GCN, a
degree-one polynomial approximation of Chebnet, in
order to speed up computation further and improve the
performance. There are many other works that deal with
GNNs when the graph and features are fixed/static; see
the review papers [33] and [30] and references therein.

Recently, Li et. al [17] develop a diffusion convolu-
tional RNN for traffic forecasting, where road networks
are modeled assuming both the nodes and edges remain
fixed over time, unlike in our setting. Seo et. al [25]
devise the Graph Convolutional Recurrent Network for
graphs with time varying features, while the edges are
fixed over time. EdgeConv was proposed in [29], which is
a neural network (NN) approach that applies convolution
operations on static graphs in a dynamic fashion. [32]
develop a temporal GCN method called T-GCN, which
they apply for traffic prediction. Here too, the graph
remains fixed over time, and only the features vary. [31]
propose a method which they refer to as a tensor graph
CNN. Here, the standard GCN [12] based on matrix
algebra is considered, and a “cross graph convolution”
layer is introduced to handle the time varying aspect
of the dynamic graph. In particular, the cross graph
convolution layer involves computing a parameterized
Kronecker sum of the current adjacency matrix with
the previously processed adjacency matrix, followed by
a GCN layer. Recently, [18] described a tensor version
of GCN for text classification, where the text seman-
tics are represented as a three-dimensional graph tensor.
This work neither considers time varying graphs, nor the
tensor M-product framework.

The set of methods most relevant to our setting of
learning embeddings of dynamic graphs use combina-
tions of GNNs and recurrent architectures (RNN), to
capture the graph structure and handle time dynamics,
respectively. The approach in [19] uses Long Short-Term
Memory (LSTM), a recurrent network, in order to handle
time variations along with GNNs. They design archi-
tectures for semi-supervised node classification and for
supervised graph classification. [23] presented a vari-
ant of GCN called EvolveGCN, where Gated Recurrent
Units (GRUs) and LSTMs are coupled with a GCN to
handle dynamic graphs. This paper is currently the
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state-of-the-art. [24] proposed the use of a temporal
self-attention layer for dynamic graph representation
learning. However, all these approaches are based on a
heuristic RNN/GRU mechanism to evolve weights, and
the models are not time aware (time is not an explicit
entity). [21] present a tensor NN which utilizes the ten-
sor M-product framework. Their approach is applicable
to image and other high-dimensional data that lie on
regular grids.

3 Tensor M-Product Framework
Here, we cover the necessary preliminaries on tensors
and the M-product framework. For a more general
introduction to tensors, we refer the reader to the review
paper [13]. In the present paper, a tensor is a three-
dimensional array of real numbers denoted by boldface
Euler script letters, e.g. X ∈ RI×J×T . Matrices are
denoted by bold uppercase letters, e.g. X; vectors are
denoted by bold lowercase letter, e.g. x; and scalars
are denoted by lowercase letters, e.g. x. An element
at position (i, j, t) in a tensor is denoted by subscripts,
e.g. Xijt, with similar notation for elements of matrices
and vectors. A colon will denote all elements along that
dimension; Xi: denotes the ith row of the matrix X, and
X::k denotes the kth frontal slice of X. The vectors Xij:
are called the tubes of X.

The framework we consider relies on a new definition
of the product of two tensors, called the M-product
[3, 11, 10]. A distinguishing feature of this framework is
that the M-product of two three-dimensional tensors is
also three-dimensional, which is not the case for e.g.
tensor contractions [13]. It allows one to elegantly
generalize many classical numerical methods from linear
algebra. The framework, originally developed for three-
dimensional tensors, has been extended to handle tensors
of dimension greater than three [11]. The following
definitions 3.1–3.3 describe the M-product.

Definition 3.1. (M-transform) Let M ∈ RT×T be
a mixing matrix. The M-transform of a tensor X ∈
RI×J×T is denoted by X ×3 M ∈ RI×J×T and defined
elementwise as

(3.1) (X×3 M)ijt
def=

T∑
k=1

MtkXijk.

We say that X×3 M is in the transformed space. Note
that if M is invertible, then (X ×3 M) ×3 M−1 = X.
Consequently, X×3 M−1 is the inverse M-transform of
X. The definition in (3.1) may also be written in matrix
form as X×3 M def= fold(M unfold(X)), where the unfold
operation takes the tubes of X and stack them as columns
into a T × IJ matrix, and fold(unfold(X)) = X.

Definition 3.2. (Facewise product) Let
X ∈ RI×J×T and Y ∈ RJ×K×T be two tensors.
The facewise product, denoted by X4Y ∈ RI×K×T , is
defined facewise as (X4Y)::t

def= X::tY::t.

Definition 3.3. (M-product) Let X ∈ RI×J×T and
Y ∈ RJ×K×T be two tensors, and let M ∈ RT×T
be an invertible matrix. The M-product, denoted by
X ? Y ∈ RI×K×T , is defined as

X ? Y
def= ((X×3 M)4(Y×3 M))×3 M−1.

In the original formulation of the M-product, M was
chosen to be the Discrete Fourier Transform (DFT)
matrix, which allows efficient computation using the Fast
Fourier Transform (FFT) [3, 11]. The framework was
later extended for arbitrary invertible M (e.g. discrete
cosine and wavelet transforms) [10]. Additional details
are in the supplement.

4 Tensor Dynamic Graph Embedding
Our approach is inspired by the first order GCN by [12]
for static graphs, owed to its simplicity and effectiveness.
For a graph with adjacency matrix A and feature matrix
X, a GCN layer takes the form Y = σ(ÃXW), where

Ã def= D̃−1/2(A + I)D̃−1/2,

D̃ is diagonal with D̃ii = 1 +
∑
j Aij , I is the matrix

identity, W is a matrix to be learned when training the
NN, and σ is an activation function, e.g., ReLU. Our
approach translates this to a tensor model by utilizing
the M-product framework. We first introduce a tensor
activation function σ̂ which operates in the transformed
space.

Definition 4.1. Let A ∈ RI×J×T be a tensor and σ an
elementwise activation function. We define the activation
function σ̂ as σ̂(A) def= σ(A×3 M)×3 M−1.

We can now define our proposed dynamic graph em-
bedding. Let A ∈ RN×N×T be a tensor with frontal
slices A::t = Ã(t), where Ã(t) is the normalization of
A(t). Moreover, let X ∈ RN×F×T be a tensor with
frontal slices X::t = X(t). Finally, let W ∈ RF×F ′×T be
a weight tensor. We define our dynamic graph embed-
ding as Y = A ?X ?W ∈ RN×F ′×T . This computation
can also be repeated in multiple layers. For example, a
2-layer formulation would be of the form

Y = A ? σ̂(A ?X ?W(0)) ?W(1).

One important consideration is how to choose the
matrix M which defines the M-product. For time-
varying graphs, we choose M to be lower triangular
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and banded so that each frontal slice (A ×3 M)::t
is a linear combination of the adjacency matrices
A::max(1,t−b+1), . . . ,A::t, where we refer to b as the
“bandwidth” of M. This choice ensures that each frontal
slice (A×3 M)::t only contains information from current
and past graphs that are close temporally. We consider
two variants of the lower banded triangular M matrix in
the experiments; see the supplement for details. Another
possibility is to treat M as a parameter matrix to be
learned from the data.

In order to avoid over-parameterization and improve
the performance, we choose the weight tensor W (at
each layer), such that each of the frontal slices of
W in the transformed domain remains the same, i.e.,
(W×3 M)::t = (W×3 M)::t′ ∀t, t′. In other words, the
parameters in each layer are shared and learned over
all the training instances. This reduces the number of
parameters to be learned significantly.

An embedding Y ∈ RN×F ′×T can now be used for
various prediction tasks, like link prediction, and edge
and node classification. In Section 5, we apply our
method for edge classification and link prediction by
using a model similar to that used by [23]: Given an
edge between nodes m and n at time t, the predictive
model is
(4.2)
p(m,n, t) def= softmax(U[(Y×3 M)m:t, (Y×3 M)n:t]>),

where (Y ×3 M)m:t ∈ RF ′ and (Y ×3 M)n:t ∈ RF ′ are
row vectors, U ∈ RC×2F ′ is a weight matrix, and C
the number of classes. Note that the embedding Y is
first M-transformed before the matrix U is applied to
the appropriate feature vectors. This, combined with
the fact that the tensor activation functions are applied
elementwise in the transformed domain, allow us to avoid
ever needing to apply the inverse M-transform. This
approach reduces the computational cost, and has been
found to improve performance in the edge classification
task.

4.1 Theoretical Motivation for TM-GCN Here,
we present the results that establish the connection be-
tween the proposed TM-GCN and spectral convolution
of tensors, in particular spectral filtering and approxima-
tion on dynamic graphs. This is analogous to the graph
convolution based on spectral graph theory in the GNNs
by [4], [7], and [12]. All proofs and additional details are
provided in Section D of the supplement.

Let L ∈ RN×N×T be a form of tensor Laplacian
defined as L

def= I − A. Throughout the remainder
of this subsection, we will assume that the adjacency
matrices A(t) are symmetric.

Proposition 4.1. The tensor L has an eigendecompo-

sition L = Q ?D ?Q>.

Definition 4.2. (Filtering) Given a signal X ∈
RN×1×T and a function g : R1×1×T → R1×1×T , we de-
fine the tensor spectral graph filtering of X with respect
to g as

(4.3) Xfilt
def= Q ? g(D) ?Q> ?X,

where

g(D)mn:
def=
{
g(Dmn:) if m = n,

0 if m 6= n.

In order to avoid the computation of an eigendecompo-
sition, [7] uses a polynomial to approximate the filter
function. We take a similar approach, and approximate
g(D) with an M-product polynomial. For this approxi-
mation, we impose additional structure on g.

Assumption 1. Assume that g : R1×1×T → R1×1×T is
defined as

g(V) def= f(V×3 M)×3 M−1,

where f is defined elementwise as f(V ×3 M)11t
def=

f (t)((V×3 M)11t) with each f (t) : R→ R continuous.

Proposition 4.2. Suppose g satisfies Assumption 1.
For any ε > 0, there exists an integer K and a set
{θ(k)}Kk=1 ⊂ R1×1×T such that

∥∥∥g(D)−
K∑
k=0

D?k ? θ(k)
∥∥∥ < ε,

where ‖ · ‖ is the tensor Frobenius norm, and where
D?k def= D ? · · · ?D is the M-product of k instances of
D, with the convention that D?0 = I.

As in the work of [7], a tensor polynomial approximation
allows us to approximate Xfilt in (4.3) without computing
the eigendecomposition of L:

(4.4)

Xfilt = Q ? g(D) ?Q> ?X

≈ Q ?
( K∑
k=0

D?k ? θ(k)
)
?Q> ?X

=
( K∑
k=0

L?k ? θ(k)
)
?X.

All that is necessary is to compute tensor powers of
L. We can also define tensor polynomial analogs of the
Chebyshev polynomials and do the approximation in
(4.4) in terms of those instead of the tensor monomials
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D?k. We note that if a degree-one approximation is
used, the computation in (4.4) becomes

Xfilt ≈ (I ? θ(0) + L ? θ(1)) ?X
= (I ? θ(0) + (I−A) ? θ(1)) ?X.

Setting θ def= θ(0) = −θ(1), which is analogous to the
parameter choice made in the degree-one approximation
in [12], we get

(4.5) Xfilt ≈ A ?X ? θ.

If we let X contain F signals, i.e., X ∈ RN×F×T , and
apply F ′ filters, (4.5) becomes

Xfilt ≈ A ?X ?Θ ∈ RN×F
′×T ,

where Θ ∈ RF×F ′×T . This is precisely our embedding
model, with Θ replaced by a learnable parameter tensor
W. These results show: (a) the connection between TM-
GCN and spectral convolution of tensors, analogous
to the GCN, and (b) that we can indeed develop higher
order convolutional GNNs like [4, 7] for dynamic graphs
using our framework.

4.2 Message Passing Framework The Message
Passing Neural Network (MPNN) framework is popularly
used to describe spatial convolution GNNs [8]. The graph
convolution operation is considered to be a message
passing process, with information being passed from one
node to another along the edges. The message passing
phase of MPNN constitutes updating the hidden state
hv,` at node v in the `th layer with message mv,`+1 as

mv,`+1 =
∑

w∈N(v)

Φ`(hv,`,hw,`, evw),

hv,`+1 = Ψ`(hv,`,mv,`+1),

where N(v) is the neighbors of v in the graph, evw is the
edge between nodes v and w, Φ` is a message function,
and Ψ` is an update function. A number of GNN models
can be defined using this standard MPNN framework for
static graphs. For the standard GCN model [12], we have
Φ`(hv,`,hw,`) = Av,whw,`, where Av,w is the entry of
adjacency matrix A, and Ψ`(hv,`,mv,`+1) = σ(mv,`+1)
where σ is a pointwise non-linear function, e.g., ReLU.

In this paper, we consider dynamic graphs and the
designed GNN has to do spatial and temporal message
passing. That is, for a graph G(t) at time t, the MPNN
should be modeled such that the information/message is
passed between neighboring nodes, as well as the corre-
sponding nodes in the graphs {G(t−1),G(t−2), . . . ,G(1)}.
Recently, a spatio-temporal message passing framework
was defined for video processing in computer vision [20].

Table 1: Dataset statistics.
Window Partitioning

Dataset Nodes Edges T (days) C Strain Sval Stest

SBM 1,000 1,601,999 50 – – 35 5 10
BitcoinOTC 6,005 35,569 135 14 2 95 20 20
BitcoinAlpha 7,604 24,173 135 14 2 95 20 20
Reddit 3,818 163,008 86 14 2 66 10 10
Chess 7,301 64,958 100 31 3 80 10 10

However, their framework does not account for time
direction, and the graph is not considered to be evolving.
We define the message passing framework for a dynamic
graph as follows: The message passing phase will consti-
tute updating the hidden state h(t)

v,` at node v of graph
G(t) in the `th layer with message m(t)

v,`+1 as

m
(t)
v,`+1 =

∑
w∈N(v)

t∑
τ=1

Φ(τ)
`

(
t∑

τ=1
Γ(τ)
` (h(τ)

v,` ),h
(τ)
w,`, e

τ
vw

)
,

h
(t)
v,i+1 = Ψ`(h(t)

v,`,m
(t)
v,`+1).

Here, the function Γ(τ)
` accounts for the message passing

between hidden states over different time τ ≤ t, and
function φ

(τ)
` accounts for message passing between

neighbors N(v) over time τ ≤ t. The model accounts
for extensive spatio-temporal message passing.

For the proposed TM-GCN model, we have a
function Γ(τ)

` (h(τ)
v,` ) = Mt,τh

(τ)
v,` , where Mt,τ is the

(t, τ) entry of the mixing matrix M. The message
function is Φ(τ)

` (z(t)
v,`,h

(τ)
w,`) = Mt,τAv,w,τ , where z(t)

v,` =∑t
τ=1 Γ(τ)(h(τ)

v,` ), and Av,w,τ is the entry of the adjacency
tensor A. The update function is Ψ`(h(t)

v,`,m
(t)
v,`+1) =

σ(m(t)
v,`+1) with an elementwise non-linear function σ.
Note that the above message passing model does not

include the inverse transform M−1 as in the definition
of the M-products. This is because, the M-transform
is responsible for the temporal message passing and
undoing it is not necessary. In our experiments too,
we found that transforming back (applying the inverse
transform M−1) did not yield improved results as
suggested by the above MPNN model. This does
not affect any of the theory presented in the previous
section since the spectral filtering is performed in the
transformed domain (see the supplement for details).

5 Numerical Experiments
We first present results for edge classification and link
prediction. We then show how we can use GNNs
for predicting the state of individuals from COVID-19
contact tracing graphs.
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Table 2: Results for edge classification. Performance measures are F1 score†or accuracy∗. A higher value is better.
Dataset

Method Bitcoin OTC† Bitcoin Alpha† Reddit† Chess∗

WD-GCN 0.3562 0.2533 0.2337 0.4311
EvolveGCN 0.3483 0.2273 0.2012 0.4351
GCN 0.3402 0.2381 0.1968 0.4342
TM-GCN - M1 0.3660 0.3243 0.2057 0.4708
TM-GCN - M2 0.4361 0.2466 0.1833 0.4513

Table 3: Results for link prediction. Performance measure is MAP. A higher value is better.
Dataset

Method SBM Bitcoin OTC Bitcoin Alpha Reddit Chess
WD-GCN 0.9436 0.8071 0.8795 0.3896 0.1279
EvolveGCN 0.7620 0.6985 0.7722 0.2866 0.0915
GCN 0.9201 0.6847 0.7655 0.3099 0.0899
TM-GCN - M1 0.9684 0.8026 0.9318 0.2270 0.1882
TM-GCN - M2 0.9799 0.8458 0.9631 0.1405 0.1514

N

N
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N

N
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Figure 2: Partitioning of A into training, validation and
testing data.

5.1 Datasets and Preprocessing We consider five
datasets (links to the datasets are in the supplement):
The Bitcoin Alpha and OTC transaction datasets [23],
the Reddit body hyperlink dataset [14], a chess results
dataset [15], and SBM is the structure block matrix by [9].
The bitcoin datasets consist of transaction histories
for users on two different platforms. Each node is a
user, and each directed edge indicates a transaction
and is labeled with an integer between −10 and 10
which indicates the senders trust for the receiver. We
convert these labels to two classes: positive (trustworthy)
and negative (untrustworthy). The Reddit dataset is
built from hyperlinks from one subreddit to another.
Each node represents a subreddit, and each directed
edge is an interaction which is labeled with −1 for a
hostile interaction or +1 for a friendly interaction. We
only consider those subreddits which have a total of 20
interactions or more. In the chess dataset, each node
is a player, and each directed edge represents a match
with the source node being the white player and the
target node being the black player. Each edge is labeled
−1 for a black victory, 0 for a draw, and +1 for a

white victory. Table 1 summarizes the statistics for the
different datasets, where T is total # graphs and C is
the # classes. The SBM dataset has no labels and hence
we use it only for link prediction.

The data is temporally partitioned into T graphs,
with each graph containing data from a particular time
window. Both T and the time window length can vary
between datasets. For each node-time pair (n, t) in
these graphs, we compute the number of outgoing and
incoming edges and use these two numbers as features.
The adjacency tensor A is then constructed as described
in Section 4. The T frontal slices of A are divided
into Strain training slices, Sval validation slices, and Stest
testing slices, which come sequentially after each other;
see Figure 2 and Table 1.

Since the adjacency matrices corresponding to
graphs are very sparse for these datasets, we apply
the same technique as [23] and add the entries of each
frontal slice A::t to the following l − 1 frontal slices
A::t, . . . ,A::(t+l−1), where we refer to l as the “edge life.”
Note that this only affects A, and that the added edges
are not treated as real edges in the classification and
prediction problems.

The bitcoin and Reddit datasets are heavily skewed,
with about 90% of edges labeled positively, and the re-
maining labeled negatively. Since the negative instances
are more interesting to identify (e.g. to prevent finan-
cial fraud or online hostility), we use the F1 score to
evaluate the edge classification experiments on these
datasets, treating the negative edges as the ones we want
to identify. The classes are more well-balanced in the
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chess dataset, so we use accuracy to evaluate those edge
classification experiments.

5.2 Graph Tasks For the link prediction experi-
ments, we follow [23] and use negative sampling to con-
struct non-existing edges, and use mean average preci-
sion (MAP) as a performance measure. The negative
sampling is done so that 5% of edges are existing edges
for each time slice, and all other edges are non-existing.
Precise definitions of the different performance measures
we use are given in Section B of the supplement.

For edge classification, we use an embedding Ytrain =
A::(1:Strain) ?X::(1:Strain) ?W for training. When comput-
ing the embeddings for the validation and testing data,
we still need Strain frontal slices of A, which we get by
using a sliding window of slices. This is illustrated in
Figure 2, where the green, blue and red blocks show the
frontal slices used when computing the embeddings for
the training, validation and testing data, respectively.
The embeddings for the validation and testing data are
Yval = A::(Sval+1:Strain+Sval) ? X::(Sval+1:Strain+Sval) ? W

and Ytest = A::(Sval+Stest+1:T ) ? X::(Sval+Stest+1:T ) ?W,
respectively. For link prediction, we use the same em-
beddings, with the only difference that the embedding
blocks contain Strain − 1 slices. This is necessary since
we want to use information up to time t to predict edge
existence at time t+ 1. Preliminary experiments with
2-layer architectures did not show convincing improve-
ments in performance. We believe this is due to the
fact that the datasets only have two features, and that a
1-layer architecture therefore is sufficient for extracting
relevant information in the data.

For training, we use the cross entropy loss function:

loss = −
∑
t

∑
(m,n)∈Et

C∑
c=1

αcf(m,n, t)c log(p(m,n, t)c),

where α ∈ RC is a vector summing to 1 which
contains the weight of each class. For edge classification,
f(m,n, t) ∈ RC is a one-hot vector encoding the true
class of the edge (m,n) at time t. For link prediction,
f(m,n, t) ∈ R2 is also a one-hot vector, but now
encoding if the edge is an existing or non-existing edge.
As appropriate, we weigh the minority class more heavily
in the loss function for skewed datasets, and treat α as
a hyperparameter. See Section B of the supplement for
further details on the experiment setup, including the
training setup and how hyperparameter tuning is done.

The experiments are implemented in PyTorch with
some preprocessing done in Matlab. Our code is
available at https://github.com/IBM/TM-GCN. In the
experiments, we use an edge life of l = 10, a bandwidth
b = 20, and F ′ = 6 output features. For TM-GCN, we

consider two variants of the M matrix (M1 and M2); see
the supplement for details.

We compare our method with three other methods.
The first one is a variant of the WD-GCN by [19], which
they specify in Equation (8a) of their paper. For the
LSTM layer in their description, we use 6 output features
instead of N . This is to avoid overfitting and make the
method more comparable to ours which uses 6 output
features. The second method is a 1-layer variant of
EvolveGCN-H by [23]. The third method is a simple
baseline which uses a 1-layer version of the GCN by
[12]. It uses the same weight matrix W for all temporal
graphs. Both EvolveGCN-H and the baseline GCN use
6 output features as well. We use the prediction model
(4.2) as the final layer in all models we compare.

Tables 2 and 3 show the results for edge classification
and link prediction, respectively. For edge classification,
our method outperforms the other methods on the
two bitcoin datasets and the chess dataset, with WD-
GCN performing best on the Reddit dataset. For link
prediction, our method outperforms the other methods
on the SBM, bitcoin and chess datasets. For Reddit,
our method performs worse than the other methods.
Results from some additional experiments are provided
in Section C of the supplement.

5.3 COVID-19 Application One of the primary
challenges related to the COVID-19 pandemic has been
the issue of identifying early the individuals who are
infected (ideally before they display symptoms) and
prescribe testing. Here, we demonstrate how we can
potentially use GNNs on contact tracing data to achieve
this.

Contact tracing, a process where interactions be-
tween individuals (infected and others) are carefully
tracked, has been shown the be an effective method for
managing the spread of COVID-19. A variety of contact
tracing methodologies have been used today around the
world, see [1, 28] for lists. Recently, Ubaru et. al [28]
presented a probabilistic graphical SEIR epidemiologi-
cal model (Susceptible, Exposed, Infected, Recovered)
to describe the dynamics of the disease transmission.
Their model considers a dynamic graph (with individu-
als as nodes) that accounts for the interactions between
individuals obtained from contact tracing, and uses a
stochastic diffusion-reaction model to describe the dis-
ease transmission over the graph.

The novel SEIR model in [28] considers the graph
Laplacian Lt (from contact tracing data) at each time
t and describes the evolution of the state {S,E, I,R}
for each node/individual. Figure 3 illustrates the state
{S,E, I,R} evolution as defined by the model on a
sample dynamic graph with 10 individuals (for easy
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Figure 3: Graphical SEIR model disease transmission visualization.

Table 4: COVID-19 Data: Mean absolute error and error
ratio for infection state I prediction.

Methods COVID-19 Dataset
Error Ratio

WD-GCN 1.667 0.337
EvolveGCN 4.969 0.912
TM-GCN 1.466 0.278

visualization). We see how the infection (one individual
as red node in first graph) transmits, we have magenta
nodes with I > 0.04, and the yellow nodes with I >
0.002, and we note the interactions and the state change
over time. Here, we show how we can use dynamic GNNs
to predict the infection state I at time T + 1, using only
the dynamic graphs up to time T , when the true SEIR
model is unknown.

We consider a simulation with N = 1000 individuals
and total time T = 100. We simulate the contact tracing
dynamic graph as in [28], and assume at each time t
a small number of individuals are tested at random
for both IgM (if positive state I is set to 1) and IgG
(state R is set to 1) antigen tests. The state of the
remaining individuals are determined by the SEIR model.
We train the dynamic GNNs on the first T = 80 time
instances and test the GNNs on the remaining 20 time
instances. Our goal is to train a GNN that learns the
relation between the contact tracing graphs and the
infection state (some exact values for those who were
tested and others from the SEIR model), in order to
better predict the individuals’ state I at time t+ 1 than
just using the SEIR model. Table 4 gives the mean
absolute error and error ratio obtained by the three
dynamic GNNs for infection state I prediction on the
test time instances. We note that, the proposed TM-
GCN yields best results among the three methods,
since it has a better time awareness (explicitly considers
b previous time instances via the M-product) than others.
Using such predictions, we can issue early warnings to
individuals who are infected and prescribe testing.

6 Conclusion
We have presented a novel approach for dynamic
graph embedding which leverages the tensor M-product
framework. We used it for edge classification and
link prediction in experiments on five datasets, where
it performed competitively compared to state-of-the-
art methods. We also demonstrated the method’s
effectiveness in an important application related to the
COVID-19 pandemic. Future research directions include
further developing the theoretical guarantees for the
method, investigating optimal structure and learning of
the transform matrix M, using the method for other
prediction tasks, and investigating how to utilize deeper
architectures for dynamic graph learning.
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